
Open Bar – a Brouwerian Intuitionistic Logic with
a Pinch of Excluded Middle
Mark Bickford
Cornell University, Ithaca, NY, USA
markb@cs.cornell.edu

Liron Cohen
Ben Gurion University of the Negev, Beer Sheva, Israel
cliron@cs.bgu.ac.il

Robert L. Constable
Cornell University, Ithaca, NY, USA
rc@cs.cornell.edu

Vincent Rahli
University of Birmingham, UK
V.Rahli@bham.ac.uk

Abstract
One of the differences between Brouwerian intuitionistic logic and classical logic is their treatment of
time. In classical logic truth is atemporal, whereas in intuitionistic logic it is time-relative. Thus, in
intuitionistic logic it is possible to acquire new knowledge as time progresses, whereas the classical
Law of Excluded Middle (LEM) is essentially flattening the notion of time stating that it is possible
to decide whether or not some knowledge will ever be acquired. This paper demonstrates that,
nonetheless, the two approaches are not necessarily incompatible by introducing an intuitionistic
type theory along with a Beth-like model for it that provide some middle ground. On one hand
they incorporate a notion of progressing time and include evolving mathematical entities in the
form of choice sequences, and on the other hand they are consistent with a variant of the classical
LEM. Accordingly, this new type theory provides the basis for a more classically inclined Brouwerian
intuitionistic type theory.
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1 Introduction

Classical logic and intuitionistic logic are commonly viewed as distinct philosophies. Much
of the difference between the two philosophies can be attributed to the way they handle the
notion of time. In intuitionistic logic time plays a major role as the intuitionistic notions of
knowledge and truth evolve over time. In particular, the seminal concept of intuitionistic
mathematics as developed by Brouwer is that of infinitely proceeding sequences of choices
(called choice sequences) from which the continuum is defined [47, Ch.3]. Choice sequences
are a primitive concept of finite sequences of entities (e.g., natural numbers) that are never
complete, and can always be further extended with new choices [26, 48, 44, 43, 31, 50, 36].
These sequences can be “free” in the sense that they are not necessarily procedurally generated.
This manifestation of the evolving concept of time in intuitionistic logic entails a notion of
computability that goes far beyond that of Church-Turing. In fact, the concept of evolving
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knowledge in intuitionistic logic is grounded in Krikpe’s Schema, which in turn relies on the
notion of choice sequences, and is inconsistent with Church’s Thesis [49, Sec.5]. Classical
logic, on the other hand, is time-invariant. That is, its notions of knowledge and truth are
constant and so the aspect of time is, intuitively speaking, flattened. As mentioned by van
Atten, “Many people believe, unlike Brouwer, that mathematical truths are not tensed but
eternal – either because such truths are outside time altogether (atemporal) or because they
hold in all time (omnitemporal)” [47, p.19].

This critical difference between the two philosophies has been used extensively to refute
classical results in intuitionistic logic. Brouwer himself used his concept of choice sequences to
provide weak counterexamples to classical results such as “any real number different from 0 is
also apart from 0” [24, Ch.8]. Those counterexamples are called weak in the sense that they
depend on the existence of formulas that have not been either proven or disproven yet (e.g.,
the Goldbach conjecture). By defining a choice sequence in which the value 1 can only be
picked once such an undecided conjecture has been resolved (proved or disproved), one could
resolve this undecided conjecture using the Law of Excluded Middle (LEM), leading to a weak
counterexample of LEM [12, Ch.1,Sec.1]. Kripke [33, Sec.1.1] also used the unconstrained
nature of choice sequences to refute other classical results, namely Kuroda’s conjecture and
Markov’s principle in Kreisel’s FC system [28].1 A constructive version of LEM in which
the operators are interpreted constructively is also false in realizability theories such as the
CTT constructive type theory [14, 5] because it allows deciding the undecidable halting
problem [40, Sec.6.3] (therefore not relying on undecided conjectures). However, a weaker
version of LEM that does not require providing a realizer of either its left or right disjuncts,
was proved to be consistent with CTT [17, 27, 40].But using a similar technique to Brouwer’s,
even this weak version of LEM was shown to be inconsistent with BITT, an intuitionistic
extension of CTT with a computable notion of choice sequences [8, Appx.A].

The use of the growing-over-time nature of choice sequences to refute classical axioms,
and in particular LEM which is a key component of classical reasoning, seems to indicate an
incompatibility between classical logic and intuitionistic logic. However, in this paper we
show that this does not have to be the case. To this end, we present a relaxed model of time
that mitigates the two approaches. Namely, on one hand it supports the evolving nature of
choice sequences, and on the other hand it enables variants of the classical LEM.

Concretely, we present OpenTT, a novel intuitionistic extensional type theory that
incorporates the Brouwerian notion of choice sequences, and is inspired by BITT [8]. OpenTT
goes beyond and departs from BITT in several ways. First, it is validated w.r.t. a novel
Beth-like model, which we call the open bar model, that is significantly simpler than the one
presented in [8]. Beth models were originally developed to provide meaning to intuitionistic
formulas [51, 7, 21, 19],and they have proven especially well-suited to interpret choice
sequences [49]. In such models, formulas are interpreted w.r.t. infinite trees of elements (such
as numbers). The models are typically formulated using a forcing interpretation where the
forcing conditions are finite elements of those trees that provide meaning to choice sequences
at a given point in time. Allowing access within the logic to the infinitely proceeding
elements of the forcing layer, i.e., the branches of the Beth trees formulas are interpreted
against, enables the use of the undecided nature of those elements to derive the negation of
otherwise classically valid formulas such as LEM. The open bar model sufficiently weakens
the “undecided” nature of those elements to enable validating a variant of LEM.

1 This method to refute classical axioms was reused via forcing methods (see, e.g., [18, Sec.7.2.4] for
the relation between forcing and choice sequences). E.g., the independence of Markov’s Principle with
Martin-Löf’s type theory was proven using a forcing method where the “free” nature of forcing conditions
replaces the “free” nature of free choice sequences in Kripke’s proof [15].
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Another benefit of OpenTT over BITT is that the notion of time induced by the new
model is flexible enough to capture an intuitionistic theory of computable choice sequences,
and in particular the Axiom of Open Data (a continuity axiom) that was missing from
BITT [8] and is a key axiom of choice sequence theories. Therefore, OpenTT provides a
computational setting for exploring the implications of such entities, for example, it can
enable the development of constructive Brouwerian real number theories. At the same time, it
also enables validating variants of the classical LEM. In other words, OpenTT together with
the open bar model presented in the paper enable a more relaxed notion of time, providing a
basis for a more classically-inclined Brouwerian intuitionistic theory.

Contributions and roadmap. Sec. 2 describes the core syntactic components of the type
theory OpenTT. Sec. 3 presents the novel open bar semantic model, which is used to validate
OpenTT. Then, OpenTT is shown to capture both a theory of choice sequences (Sec. 4),
as well as a variant of LEM (Sec. 5). Sec. 6 concludes by discussing related and future
work. All the results in the paper are formalized in Coq, see https://github.com/vrahli/
NuprlInCoq/tree/ls3/, and we provide clickable hyperlinks to the formalization throughout
the paper.

2 OpenTT and Choice Sequences

OpenTT is an intuitionistic extensional dependent type theory. It is composed of an untyped
programming language, and a dependent type system that associates types with programs.
A type T , viewed as a proposition, is said to be true if it is inhabited, i.e., if some program t

has type T – in which case t is said to realize T . This connection is made formal through a
realizability model described in Sec. 3, where types are interpreted as partial equivalence
relations on programs. In addition to standard program constructs, OpenTT contains
computable choice sequences.

Choice sequences are the seminal component in Brouwer’s intuitionistic theory, and
the one manifesting notions of time and growth over time. Choice sequences are infinitely
proceeding sequences of elements, which are chosen over time from a previously well-defined
collection. There are two main classes of choice sequences, which are often referred to as
lawlike and lawless [45]. The lawlike ones are “completed constructions” [45, Sec.1.2], where
the choices must be chosen w.r.t. a pre-determined “law” (e.g., a general recursive program).
The lawless ones, by contrast, are never fully completed and can always be extended over
time with further choices that are not constrained by any law, that is, they can be chosen
“freely” (hence the name free choice sequences). In this paper we focus on a theory with free
choice sequences, which is a key distinguishing feature in Brouwer’s intuitionistic logic, and
a manifestation of the fact that time is an essential component of Brouwer’s logic because
unlike lawlike sequences that are time-invariant, lawless ones keep on evolving over time.

The notion of time in OpenTT is captured through the use of worlds. The worlds
discussed in Sec. 2.2 constitute, as is standard practice, a poset, and are concretely defined
as states that store definitions as well as choice sequences’ choices. Thus, a world captures a
state at a given point in time. The evolving nature of time is then captured via a notion of
world extension, allowing to add new definitions, choice sequences, and choices.

OpenTT is inspired by BITT [8]. To make the paper self-contained we shall also review the
components that are identical to those in BITT, noting the differences, which we summarize
here. In addition to the standard inference rules for the standard types that are listed in
Fig. 1 (which are discussed in Appx. B), OpenTT also contains inference rules that capture

CSL 2021

https://github.com/vrahli/NuprlInCoq/tree/ls3/
https://github.com/vrahli/NuprlInCoq/tree/ls3/


11:4 Open Bar

Figure 1 Syntax of OpenTT.
η ∈ CSName (C.S. name) δ ∈ Abstraction (abstraction)
v ∈ Value ∶∶= vt (type) ∣ λx.t (lambda) ∣ ⟨t1, t2⟩ (pair)

∣ ⋆ (axiom) ∣ inl(t) (left injection) ∣ inr(t) (right injection)
∣ i (integer) ∣ η (choice sequence)

vt ∈ Type ∶∶= Πx∶t1.t2 (product) ∣ Σx∶t1.t2 (sum)
∣ Ui (universe) ∣ t1 = t2 ∈ t (equality)
∣ t1+t2 (disjoint union) ∣ {x ∶ t1 ∣ t2} (set)
∣ N (numbers) ∣ t1 < t2 (less than)
∣ N� (T.S. numbers) ∣ t1 <� t2 (T.S. less than)
∣ t1#t2 (free from definitions) ∣ Free (choice sequences)
∣ �t (time squashing)

t ∈ Term ∶∶= x (variable) ∣ t1 t2 (application)
∣ v (value) ∣ let x, y = t1 in t2 (spread)
∣ fix(t) (fixpoint) ∣ case t1 of inl(x)⇒ t2 | inr(y)⇒ t3 (decide)
∣ wDepth (world depth) ∣ if t1=t2 then t3 else t4 (equality test)
∣ δ (abstraction)

a theory of choice sequences, as described in Sec. 4. Among those, the Axiom of Open Data
is new compared to BITT. Another key difference between OpenTT and BITT is that the
former also contains a variant of the Law of Excluded Middle (the salient principle of classical
logic), described in Sec. 5, which is not valid in the latter.2

2.1 Syntax
OpenTT’s programming language is an untyped, call-by-name λ-calculus, whose syntax is
given in Fig. 1, and operational semantics in Sec. 2.3. For simplicity, numbers are considered
to be primitive, and we write n for an OpenTT number, where n is a metatheoretical number.
A term is either (1) a variable; (2) a canonical term, i.e., a value; or (3) a non-canonical
term. Non-canonical terms are evaluated according to the operational semantics presented in
Sec. 2.3. As discussed below, abstractions of the form δ can be unfolded through definitions,
and are otherwise left abstract for the purpose of this paper. In what follows, we use all
letters as metavariables and their types can be inferred from the context.

Choice sequences. A choice sequence is identified with its name, of the form η, which
for the purpose of this paper is an abstract type equipped with a decidable equality. For
simplicity we only discuss choice sequences of numbers, while our Coq formalization supports
more kinds of choice sequences. OpenTT includes a comparison operator on choice sequences,
if t1=t2 then t3 else t4, which as defined in Sec. 2.3 reduces to the then branch if t1 and t2
are two choice sequences with the same name, and otherwise reduces to the else branch.

Types. Types are syntactic forms that are given semantics in Sec. 3 via a realizability
interpretation. The type system contains standard types such as dependent products of the
form Πx∶t1.t2 and dependent sums of the form Σx∶t1.t2. For convenience we often write

2 Precisely establishing the relationship between the two systems is left for future work.
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a =T b for the type a = b ∈ T ; t ∈ T for t =T t; Πx1, . . . , xn∶t1.t2 for Πx1∶t1. . . .Πxn∶t1.t
(and similarly for the other operators with binders); t1 → t2 for the non-dependent Π type;
True for (0 = 0 ∈ N); False for (0 = 1 ∈ N); and ¬T for (T → False).

OpenTT also includes types that allow capturing specific aspects of choice sequences. In
particular, OpenTT includes a type Free of free choice sequences. It also includes the type
t#T that indicates that t is a sealed member of T in the sense that it is equivalent to a term
u in T , which is syntactically free from abstractions and choice sequences, which we denote
by synSealed(u) here (see Sec. 3 for more details). Those types are used to state axioms of
the theory of choice sequences in Sec. 4.1.

2.2 Worlds
OpenTT’s computation system is equipped with a library of definitions in which we also
store choice sequences. We here call the library a world. A definition entry is a pair of an
abstraction δ and a term t, written δ == t, which stipulates that δ unfolds to t.3 A choice
sequence entry is a pair of a choice sequence name, and a list of choices (i.e. terms).4 For
example, the pair ⟨η, [4, 8, 15]⟩ is an entry for the choice sequence named η, where [4, 8, 15]
is its list of choices so far. A world is therefore a state that records, at a given point in time,
all the current definitions together with all the choice sequences that have been started so
far, along with the choices that have been made so far for those choice sequences.

I Definition 1 (Worlds). A world w is a list of entries, where an entry is either a definition
entry or a choice sequence entry. We denote by World the type of worlds.

Next we introduce some necessary operations and properties on worlds.

I Definition 2 (World operations and properties). Let w ∈ World. (1) ∣w∣ denotes w’s depth,
that is the number of choices of its longest choice sequence. (2) w is called singular, denoted
sing(w), if it does not have two entries with the same name.

The depth of worlds is used in Sec. 4.1 to approximate the modulus of continuity of a
predicate at a choice sequence; while sing is used in Lem. 14.

A world (or a particular snapshot of the library) can be seen as a the state of knowledge at
a given point in time. It may grow over time by adding new definitions, new choice sequence
entries, or more terms to an already existing choice sequence entry. Accordingly, a world w2
is said to extend a world w1 if it contains more entries and choices, without overriding the
ones in w1. Note that the extension relation on worlds defines a partial order on World.

I Definition 3 (World extension). A world w2 is said to extend w1, denoted w2 ⪰ w1, if w1 is
a list of the form [e1, . . . , en] and w2 is a concatanation of some world w and [e′1, . . . , e′n],
where for all 1 ≤ i ≤ n, either ei = e

′
i or ei and e

′
i are choice sequence entries with the same

name such that the list in ei is an initial segment of that in e′i.

2.3 Operational Semantics
Fig. 2 presents OpenTT’s small-step operational semantics. It defines the t1 ↦w t2 ternary
relation between two terms and a world, which expresses that t1 reduces to t2 in one step of
computation w.r.t. the world w. We omit the congruence rules that allow computing within
terms such as: if t1 ↦w t2 then t1(u)↦w t2(u).

3 As the precise form of definitions is irrelevant here, we refer the interested reader to [41].
4 Our formalization also includes mechanisms to impose further restrictions on choice sequences which

are not discussed here. See computation/library.v for further details.
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Figure 2 Operational semantics of OpenTT.
(λx.F) a ↦w F[x\a]
fix(v) ↦w v fix(v)

η(i) ↦w w[η][i], if η has a i’s choice in w
wDepth ↦w ∣w∣

let x, y = ⟨t1, t2⟩ in F ↦w F[x\t1; y\t2]
case inl(t) of inl(x)⇒ F | inr(y)⇒ G ↦w F[x\t]
case inr(t) of inl(x)⇒ F | inr(y)⇒ G ↦w G[y\t]
if η1=η2 then t1 else t2 ↦w ti, where i = 1 if η1 = η2, and i = 2 otherwise

The application η(i) of a choice sequence η to a number i reduces to w[η][i], i.e., η’s i’s
choice recorded in w, if such a choice exists, and otherwise the computation gets stuck. Note
that even though this is a call-by-name calculus, it includes the following congruence rule to
access choices of choice sequences: if t1 ↦w t2 then η(t1)↦w η(t2).

In OpenTT we also allow computing the depth of a world w, that is, the number of
choices recorded in its longest choice sequence entry (this is an addition to BITT). The
nullary expression wDepth reduces to ∣w∣ in one computation step. It is used to realize an
axiom of the theory of choice sequences in Sec. 4.1.2. It is important to note that before
introducing this new computation, all computations were time-invariant computations in the
sense that if a term t computes to a value v in a world w1, then it will compute to a value
computationally equivalent5 to v in any world w2 ⪰ w1. For example, for numbers, if a term
t computes to a number n in some world w, then it also computes to n in all extensions of w.
Such terms are called time-invariant terms. It is straightforward to see that wDepth is not
time-invariant, as it can compute to different numbers in different extensions of a world. For
example, if w1 contains only one choice sequence η for which 4 choices have been made, then
the expression wDepth reduces to 4 in w1. Now, adding another choice to η gives us a world
w2 ⪰ w1 in which wDepth reduces to 5. This operator is said to be weakly monotonic in the
sense that if it returns k in w1, and w2 ⪰ w1, then it can only return a value k′ ≥ k in w2.
We next introduce types capturing the concept of time-invariance.

2.4 Space Squashing and Time Squashing
OpenTT includes a squashing mechanism, which we use (among other things) to validate some
of the axioms in Sec. 4 and 5. It erases the evidence that a type is inhabited by squashing it
down to a single constant inhabitant using set types [14, pp.60]: ↓T = {x ∶ True ∣ T}. The
only member of this type is the constant ⋆, which is True’s single inhabitant. The constant ⋆
inhabits ↓T if T is true/inhabited, but we do not keep the proof that it is true. See Appx. C
or [39] for more details on squashing.

In addition to the space squashing operator OpenTT also features another form of
squashing called time squashing. As discussed in Sec. 2.3, some computations are time-
invariant, while others, such as wDepth, are not. These two kinds of computations have
different properties,6 and this distinction should be captured at the level of types. To this
end, OpenTT includes type constructors such as the time-squashing operator �. Given a
type T , one can build the type �T , that in addition to T ’s members also contains terms that
behave like members of T at a particular instant of time (in a particular world).

5 For a precise definition of computational equivalence, see [25].
6 E.g., if t is a time-invariant term that computes to a number m less than n in a world w, then t will

also be less than n in all w ′
⪰ w. However, if t is a non-time-invariant number, t might be less than n in

some extensions of w, and larger in others.
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For the purpose of this paper, we only focus on a particular form of time-squashing for
numbers, omitting the general construction.7 Accordingly, OpenTT features a N� type of
non-time-invariant (or time-squashed) numbers. While N is required to only be inhabited
by time-invariant terms, N� is not, and allows for terms (such as wDepth) to compute to
different numbers in different world extensions. For example, N� is allowed to be inhabited
by a term t that computes to 3 in some world w, and to 4 in some world w ′

⪰ w. This
distinction between N and N� will be critical in the validation of one of the choice sequence
axioms in Sec. 4.1.2, where we make use of the depth of worlds which is not time-invariant.

In addition to the time-squashed N� type, OpenTT features a less than relation t1 <� t2
on time-squashed numbers, whose semantics is described in Sec. 3. Although similar to the
t1 < t2 type, as for N�, t1 <� t2 differs by not requiring t1 and t2 to be time-invariant.

3 Open Bar Realizability Model

This section presents a novel Beth-style model, called the open bar model, used below to
validate OpenTT, which as mentioned above contains both a theory of choice sequences and a
weak version of the classical LEM. As is standard in Beth models (or Kripke models [32, 33]),
formulas are interpreted w.r.t. worlds. Using Beth models such as the one used in [8], a
syntactic expression T is given meaning at a world w if there exists a collection B of worlds
that covers all possible extensions of w, such that T corresponds to a legal type in all worlds
in B. Such a collection is called a bar of w. In these models one has to construct such bars
to prove that expressions are types or that types are inhabited. For example, to prove that
choice sequences have type N → N, given a choice sequence η and a number n, one must
exhibit a bar where η(n) indeed computes to a number.

In this paper we take a different approach, one that avoids having to build bars altogether,
and only requires building individual extensions of worlds. Intuitively, instead of requiring
that a property P be true at a bar of a given world w, we require that for each extension w ′

of w, P holds for some extension of w ′. Therefore, a major distinction between standard Beth
models and our model is that in the former the semantics of a logical formula is computed
based on the interpretation of that formula at a bar for the current world, while the latter only
requires that in any possible extension of the current world there is always a further extension
where the formula is given some meaning. Thus, our model only requires exhibiting open
bars in the sense that not all infinite extensions of the current world necessarily have a finite
prefix in the bar. Therefore, open bars are derivable from “standard” bars, but the converse
does not hold. For the proof that choice sequences have type N→ N, this means that given
an extension w ′ of the current world w, one must exhibit a further extension w ′′ where η(n)
computes to a number, which can be done by constructing w ′′ in which η contains at least
n + 1 choices.8 As mentioned, in standard Beth models, in addition to this construction one
has to also construct the bar. Thus, the notion of open bars seems to provide a more relaxed
connection between truth and constructions than in the traditional Beth-like interpretation
of intuitionistic logic, where one must construct bars to establish validity. By not having
to make the full construction, the open bar model provides some middle ground between
classical and intuitionistic logic. Furthermore, note that in a standard Beth model, depending
on how the bar is defined, it is not always possible to constructively exhibit a point in the

7 See per_qtime in per/per.v for further details on �’s sematics.
8 See rules/rules_choice1.v for a proof of this statement.
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bar, whereas in the open bar model, the existence of the open bar directly gives a point at
the open bar. This makes the construction of building bars from other bars generally simpler.

We start by introducing the concept of open bars, which is used below to interpret types.

I Definition 4 (Open Bars). Let w be a world and f be a (metatheoretical) predicate on
worlds. We say that f is true at an open bar of w if:

O(w, f) = ∀EXT(w, λw ′
.∃EXT(w ′

, λw ′′
.∀EXT(w ′′

, f)))
where ∀EXT(w, f) = ∀w ′

. w ′
⪰ w ⇒ f(w ′)

∃EXT(w, f) = ∃w ′
. w ′

⪰ w ∧ f(w ′)

Informally, an open bar can be thought of as an object such as the one depicted above.
There, the large solid blue nodes indicate worlds which we already know to be at the bar,
while the small hollow nodes indicate worlds not yet at the bar from which the open bar
provides a way to obtain worlds at the bar. For example, given the root of the tree, the open
bar might give us the lowest solid blue world w. Given a world w ′, such as the one left to w,
where different choices have been made from w, we can ask the bar to produce another world
at the bar compatible with w ′ (i.e., that extends w ′), and we might get the middle solid blue
world.

The open bar semantics bears resemblance to the well known double negation transla-
tion [23] in standard Kripke models [32, 33]. Informally, in Kripke interpretations, A→ B is
interpreted as follows: JA → BKw = ∀EXT(w, λw ′

.JAKw′ ⇒ JBKw′). In such a semantics, the
formula ¬¬A is then interpreted as ∀EXT(w, λw ′

.¬∀EXT(w ′
, λw ′′

.¬JAKw′′)), which is classically
equivalent to ∀EXT(w, λw ′

.∃EXT(w ′
, λw ′′

.JAKw′′)). Nonetheless, our interpretation has two
benefits over such a double negation translation: it is fully constructive, and it internalizes
this double-negation/open-bar operator within the semantics, thereby avoiding having to use
it explicitly in the theory. Note that this correspondence is unique to the open bar models,
and does not hold in BITT’s closed-bar model.

We now use open bars to provide meaning to OpenTT’s types. As was done for similar
theories [3, 4, 17, 6, 8], types are interpreted here by Partial Equivalence Relations (PERs)
on closed terms. This PER semantics can be seen as an inductive-recursive definition
of (see [20, 16] for similar construction methods):9 (1) an inductive relation T1≡wT2 that
expresses type equality; (2) a recursive function t1≡wt2∈T that expresses equality in a type.
The inductive definition T1≡wT2 has one constructor per OpenTT type plus one additional
constructor giving meaning to a type at a world w, based on its interpretation at an open
bar of w (see Def. 6). Therefore, the recursive function t1≡wt2∈T has as many cases as there
are constructors for T ≡wT

′. The rest of this section presents some of these constructors and

9 Due to the limited support for induction-recursion in Coq, our formalization instead combines these
two definitions into a single inductive definition following the method described in [4, 13], which results
in the same theory, however defined in a slightly more convoluted way that the one defined here.
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cases that illustrate key aspects of the new semantics. For simplicity we present them as
equivalences, which are derivable from the formal definition. The others are defined similarly
in Appx. A or in per/per.v. We first define some useful abstractions.

I Definition 5. A term t is said to inhabit or realize a type T at w if t≡wt∈T . We further
use the following notations: inh(w, T ) for ∃t. t≡wt∈T ; a ⇓w b for ‘a computes to b w.r.t.
w’, i.e., the reflexive and transitive closure of ↦; and a ⤋w b for ∀EXT(w, λw ′

.a ⇓w′ b) which
captures that a is time-invariant.10

As mentioned above, a key aspect of our open bar model is that it is defined to be closed
under open bars, allowing interpreting all types and their PERs in terms of open bars.

I Definition 6 (Open Bar Closure). OpenTT’s semantics is closed under open bars as follows:

T1≡wT2 ⟺ O(w, λw ′
.∃T ′1, T

′
2. T1 ⤋w′ T

′
1 ∧ T2 ⤋w′ T

′
2 ∧ T

′
1≡w′T

′
2)

t1≡wt2∈T ⟺ O(w, λw ′
.∃T ′. T ⤋w′ T

′ ∧ t1≡w′t2∈T
′)

Let us now turn to the semantics of key types of OpenTT under the open bar semantics.
We start with demonstrating the N type which is in the core types of CTT.

I Definition 7 (Time-Invariant Numbers). The N type is interpreted as follows:

N≡wN ⟺ True t≡wt
′
∈N ⟺ O(w, λw ′

.∃n. t ⤋w′ n ∧ t′ ⤋w′ n)

Note the use of ⤋ above, since such numbers are required to be time-invariant (see Sec. 2.4).
In the next definition the time-invariant constraint is relaxed, allowing inhabitants of N�

to compute to different numbers in different world extensions. For example, a term that
computes to 3 in the current world w and to 4 in all (strict) extensions of w, inhabits N�
but not N. While N is a subtype of N�, in the sense that all equal members of N are equal
members of N�, the converse does not hold. For example, wDepth is in N� but not in N.

I Definition 8 (Time-Squashed Numbers). The N� type is interpreted as follows:

N�≡wN� ⟺ True t≡wt
′
∈N� ⟺ O(w, λw ′

.sameNats(w ′
, t, t

′))
where sameNats(w, t, t′) = ∃k. t ⇓w k ∧ t′ ⇓w k

As mentioned in Sec. 2.4, in addition to the N� type, OpenTT also provides a “less-than”
operator on such numbers, which we interpret as follows.

I Definition 9 (Time-Squashed Less-Than). The t1 <� t2 type is interpreted as follows:

t1 <� t2≡wt
′
1 <� t

′
2 ⟺ O(w, λw ′

.sameNats(w ′
, t1, t

′
1) ∧ sameNats(w ′

, t2, t
′
2))

t≡wt
′
∈t1 <� t2 ⟺ O(w, λw ′

.∃k1, k2. t1 ⇓w′ k1 ∧ t2 ⇓w′ k2 ∧ k1 < k2)

Note that given t1 and t2 in N� that compute to 3 and 4 respectively in some world, one
cannot derive t1 <� t2 as t1 and t2 could keep alternating between 3 and 4 such that t2
computes to 4 when t1 computes to 3, and vice versa. Though general rules for inferring such
inequalities can be formalized11, in what follows we only need a concrete instance of t1 <� t2

10We here omit some technical details; see ccomputes_to_valc_ext in per/per.v for the full definition.
11Technically, our formalization includes both weakly monotonically increasing and decreasing numbers
(denoted here N∧� and N∨� , respectively) allowing one to derive t1 <� t2 in w when t1 ∈ N∨� , t2 ∈ N∧� , and
t2 computes to a number larger than t1 in w.
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in which t1 ∈ N and t2 = wDepth ∈ N� (see Sec. 4.1.2, which makes use of wDepth ∈ N� to
capture the modulus of continuity of a predicate at a choice sequence). In this case such
alternations are avoided since wDepth is weakly monotonically increasing.

OpenTT also includes a type of free choice sequences, interpreted as follows.

I Definition 10 (Choice Sequences). The Free type is interpreted as follows:

Free≡wFree ⟺ True t≡wt
′
∈Free ⟺ O(w, λw ′

.∃η. t ⤋w′ η ∧ t′ ⤋w′ η)

As mentioned in Sec. 2.1, OpenTT includes a t#T type, which states that the term t is a
sealed member of T . For example True#Ui, False#Ui, and N#Ui are all inhabited types,
whereas (η ∈ Free)#Ui is not inhabited because this type mentions the choice sequence η.
Note that t#T and synSealed(t) did not appear in BITT.

I Definition 11 (Free From Definitions). The a#A type is interpreted as follows:

a#A≡wb#B ⟺ A≡w′B ∧ a≡w′b∈A

t≡wt
′
∈a#A ⟺ O(w, λw ′

.∃x. a≡w′x∈A ∧ synSealed(x))

As mentioned above, the other type operators of OpenTT are interpreted in a similar
fashion. This semantics of OpenTT satisfies the following properties, which are the standard
properties expected for such a semantics [3, 17], including the monotonocity and locality
properties expected for a possible-world semantics [51, 21, 19] – heremonotonicity refers to
types, and not to computations.12

I Proposition 12 (Type System Properties). The T1≡wT2 and a≡wb∈T relations satisfy the
following properties (where free variables are universally quantified):

transitivity: T1≡wT2 ⇒ T2≡wT3 ⇒ T1≡wT3 t1≡wt2∈T ⇒ t2≡wt3∈T ⇒ t1≡wt3∈T

symmetry: T1≡wT2 ⇒ T2≡wT1 t1≡wt2∈T ⇒ t2≡wt1∈T

computation: T ≡wT ⇒ T ⤋w T
′
⇒ T ≡wT

′
t≡wt∈T ⇒ t ⤋w t

′
⇒ t≡wt

′
∈T

monotonicity: T1≡wT2 ⇒ w ′
⪰ w ⇒ T1≡w′T2 t1≡wt2∈T ⇒ w ′

⪰ w ⇒ t1≡w′t2∈T

locality: O(w, λw ′
.T1≡w′T2)⇒ T1≡wT2 O(w, λw ′

.t1≡w′t2∈T )⇒ t1≡wt2∈T

Using these properties, it follows that OpenTT is consistent w.r.t. the open bar model.

I Theorem 13 (Soundness & Consistency). OpenTT’s inference rules are all sound w.r.t. the
open bar model, which entails that OpenTT is consistent.13

4 A Theory of Choice Sequences

This section focuses on OpenTT’s inference rules that provide an axiomatization of a theory
of choice sequences. This theory includes two variants of the Axiom of Open Data (Sec. 4.1.1
and 4.1.2), a density axiom (Sec. 4.2), and a discreteness axiom (Sec. 4.3). We focus our
attention on the variants of the Axiom of Open Data that captures a form of continuity
which is the core essence of choice sequences, as those where not handled in BITT.

12 See per/nuprl_props.v for proofs of these properties.
13 See rules.v and per/weak_consistency.v for more details.

https://github.com/vrahli/NuprlInCoq/tree/ls3/per/nuprl_props.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/rules.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/per/weak_consistency.v
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4.1 The Axiom of Open Data (AOD)
The Axiom of Open Data (AOD) is perhaps the seminal axiom in the theory of choice
sequences. It is a continuity axiom that states that the validity of properties of free
choice sequences (with certain side conditions) can only depend on finite initial segments
of these sequences. Let P be a sealed predicate on free choice sequences of numbers (i.e.,
P#(Free→ Ui) for some universe i), Nn the type {x ∶ N ∣ x < n} of natural number strictly
less than n, and Bn = Nn → N. The Axiom of Open Data can be formalized as follows:

Πα∶Free.P(α)→ Σn∶N.Πβ∶Free.(α =Bn
β → P(β)) (AOD)

Since AOD is a form of continuity principle, and the non-squashed Continuity Principle
is incompatible with CTT [39, 40] as well as with other computational theories [29, 46, 22],
we only attempt to validate a squashed version of AOD. That is, since there is no way to
compute the modulus of continuity of P at α, which is preserved over world extensions (as
required by the semantics of N), we instead validate versions of AOD where the sum type is
squashed. But there are two ways to squash it, as described in Sec. 4.1.1 and 4.1.2.

There are two additional restrictions we impose in order to validate the squashed variants
of AOD. First, to validate the axiom we swap α and β in P(α). This has an impact on
both the PER of this type and the world w.r.t. which it is validated. Given an inhabitant t
of P(α), we can easily build a proof of P(β) by swapping α and β in t. This is however
a metatheoretical operation. Therefore, in our variants of AOD the P(β) is squashed.
Second, note that when swapping one needs to swap α and β in all definitions and choice
sequences’ choices in the world w.r.t. which it is validated, leading to a different world.
Therefore, we require that choice sequences cannot occur in definitions and choice sequences’
choices to ensure that swapping α and β in a world w leads to an equivalent world if α
and β have the same choices. To see why this is necessary take P to be the predicate
P = λy.{x ∶ Free ∣ x =Free y}, and the world w to contain the definition δ == α. Then,
P(α) is equivalent to {x ∶ Free ∣ x =Free α} and δ is a member of P(α) in w, while P(β) is
equivalent to {x ∶ Free ∣ x =Free β} in this world, and therefore δ is not a member of P(β) if
α and β are two different choice sequences.

Before presenting and validating the variants of AOD, we present a few intermediate
results. First, we prove that from α =Bn

β, we can always construct a world in which α

and β contain exactly the same choices.14

I Lemma 14 (Intermediate World). Let w1 and w2 be two worlds such that w2 ⪰ w1 and
sing(w1) (see Def. 2). If η1 and η2 are two free choice sequences that have the same choices
up to ∣w1∣ in w2, then there must exist a world w, such that w2 ⪰ w ⪰ w1, both η1 and η2
occur in w, they have the exact same choice in w, and all these choices are numbers.

Furthermore, the following swapping operator swaps α and β in P(α) to obtain P(β).15

I Definition 15 (Swapping). Let X⋅(η1∣η2) be a swapping operation that swaps η1 and η2
everywhere in X, where X ranges over all the syntactic forms presented above.

We can then prove that the various relations introduced in Sec. 3 are preserved by the
above swapping operator. For example, crucially, we can prove that the t1≡wt2∈T relation,
which expresses that t1 and t2 are equal members in T , is preserved by swapping.16

14 See Lemma to_library_with_equal_cs in rules/rules_choice_util4.v.
15 See for example swap_cs_term in terms/swap_cs.v, which swaps two choice sequence names in a term.
16 See implies_equality_swap_cs in rules/rules_choice_util4.v for the formal statement and proof.
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I Lemma 16 (Swapping PERs). If t1≡wt2∈T then t1⋅(η1∣η2)≡w⋅(η1∣η2)t2⋅(η1∣η2)∈T ⋅(η1∣η2).

4.1.1 The Space-Squashed Axiom of Open Data (AOD↓)

The first variant of AOD we validate is the a space-squashed one, called AOD↓.

I Proposition 17. The following rule of OpenTT is valid w.r.t. the open bar model (where
H is an arbitrary list of hypotheses):

H ⊢ Πα∶Free.P(α)→ ↓Σn∶N.Πβ∶Free.(α =Bn
β → ↓P(β))

Proof. We here outline the proof, see rules/rules_ls3_v0.v for full details. Since the sum
type is ↓-squashed, a realizer for this formula can simply be λα, x.⋆ (see Sec. 2.4). Let P
be a sealed predicate on free choice sequences, α a free choice sequence, and instantiate n
with ∣w∣, the depth of the current world w. From α =Bn

β, we get that α and β have the
same choices up to ∣w∣ in the extension w ′ of w, and we have to show that P(β) is true in w ′.
Lem. 14 entails that α and β have exactly the same choices in some world w ′′ between w
and w ′. Using Lem. 16 we swap α and β in P(α) and w ′′. Thus, because choice sequences
cannot occur in definitions and choices, P(β) is valid in a world equivalent to w ′′ and hence in
w ′′ too.17 Finally, using monotonicity (Lem. 12), we obtain that P(β) is true also in w ′. J

4.1.2 The Time-Squashed Axiom of Open Data (AOD�)

Next, we present a time-squashed version of AOD, where instead of ↓-squashing the sum type
the N� time-squashed type is used, and B�n = {x ∶ N ∣ x <� n}→ N Is used instead of Bn.

18

Πα∶Free.P(α)→ Σn∶N�.Πβ∶Free.(α =B�n β → ↓P(β)) (AOD�)

Note that because n is not a member of N anymore but of N�, we use B�n instead of
Bn here to state that α and β are equal sequences up to n. If n ∈ N� then x < n, where
x ∈ N, and Bn are not types anymore: the semantics of x < n requires both x and n to be
time-invariant numbers (see Sec. 2.4). Therefore, we use x <� n here instead, which does not
require numbers to be time-invariant as per its semantics presented in Def. 9.

Before diving into the proof of AOD�’s validity, we first present a few intermediate results.

I Lemma 18. The N type is a subtype of N�, in the sense that all equal members in N
are also equal members in N� (which implies that t1 <� t2 is a type even when t1 ∈ N and
t2 ∈ N�), and the wDepth expression is a member of N� (i.e., it is equal to itself in N�).

19

I.e. the following rules are valid in OpenTT.

H ⊢ t1 =N t2
H ⊢ t1 =N� t2 H ⊢ wDepth =N� wDepth

17 See Lemma member_swapped_css_libs in rules/rules_choice_util4.v.
18Note that as in AOD↓, P(β) is also ↓-squashed here. We leave for future work to derive a version where

P(β) is not squashed. Note also that the modulus of continuity n is here in N�. We have validated
another version of this axiom in rules/rules_ls3_v1.v where n ∈ N∧� , i.e., where n is required to be
weakly monotonically increasing, which is true about wDepth (see Sec. 2.3 and 2.4).

19See rule_qnat_subtype_nat_true in rules/rules_ref.v and rule_depth_true
in rules/rules_qnat.v.

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ls3_v0.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice_util4.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ls3_v1.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_ref.v
https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_qnat.v
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For AOD↓, because its Σ type is ↓-squashed, we did not have to provide a witness for the
modulus of continuity of P at α. Instead, we could simply find a suitable metatheoretical
number in the proof of its validity, without having to provide an expression from the object
theory that computes that number. In the metatheoretical proof, we computed the depth
of the current world, which is a metatheoretical number k, and simply used k, which is a
number in the object theory, as an approximation of the modulus of continuity of P at α. The
situation is different in AOD� because the Σ type is no longer ↓-squashed. We now have to
provide an expression from the object theory that computes that modulus of continuity. As
mentioned, we use wDepth, which is an expression of OpenTT , the object theory. Thus, we
now have to prove that wDepth has the right type, namely, N�, which we proved in Lem. 18.

Using these results we prove that AOD� is valid w.r.t. the semantics presented in Sec. 3.

I Proposition 19. The following rule of OpenTT is valid w.r.t. the open bar model:

H ⊢ Πα∶Free.P(α)→ Σn∶N�.Πβ∶Free.(α =B�n β → ↓P(β))
Proof. We here outline the proof (which is similar to that of Prop.17), while full details are
in rules/rules_ls3_v2.v. Since now the sum type is not ↓-squashed, we have to provide a
witness for it. The realizer we provide for this formula is: λα, x.⟨wDepth, λβ, y.⋆⟩. Let P
be a sealed predicate on free choice sequences, and let α be a free choice sequence. We now
have to prove that wDepth ∈ N�, which follows from Lem. 18. Since wDepth computes to ∣w∣,
where w is the current world, we can then use ∣w∣ as an approximation of the modulus of
continuity of P at α, as in Prop. 17’s proof. One difference with Prop. 17’s proof is that we
have here that α =B�n β (which we prove to be a type using Lem. 18) instead of α =Bn

β.
This however still suffices to show that α and β have the same choices up to ∣w∣ in the
extension w ′ of w. From here, the proof proceeds just as that of Prop. 17. J

4.2 The Density Axiom (DeA)
Another common free choice sequence axiom, sometimes called the density axiom [42], states
that for any finite sequence of numbers f , there is a free choice sequence that contains f as
initial segment (this is Axiom 2.1 in [30, Sec.2], also referred to as LS1 in [49]).

In BITT the following Density Axiom (DeA) was validated:
Πn∶N.Πf ∶Bn.Σα∶Free.(f =Bn

α) [8]. The proof of its validity was by generating
an appropriate choice sequence space that contains the values of the finite sequence f as
part of its name. More precisely, given a finite sequence f of n terms in N from the object
theory, BITT includes computations to extract those n numbers, say k1, . . . , kn, and build a
choice sequence with the metatheoretical list of numbers [k1, . . . , kn] as part of its name,
and which is used to witness DeA’s Σ type. In OpenTT we opted against including such
names for two reasons. First, in the open bar model it is possible to validate a squashed
version of DeA (where the Σ type is squashed) without including lists of numbers in choice
sequence names. This is because the open bar model allows for internal choices to be made
(see Prop. 20 below). Moreover, deterministically generating choice sequence names is not
preserved by swapping (which would be required for example for Lem. 16 to hold). Given a
term t that deterministically generates η1, it might be that swapping η1 for η2 turns η1 into
η2 and leaves t unchanged, while t does not generate η2.

Therefore, we do not include metatheoretical lists of numbers as part of choice sequence
names in OpenTT and only validate the following ↓-squashed version of DeA, called DeA↓.

I Proposition 20. The following rule of OpenTT is valid w.r.t. the open bar model:

H ⊢ Πn∶N.Πf ∶Bn.↓Σα∶Free.(f =Bn
α)
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Proof. As this axiom is ↓-squashed, we realize it using λn, f.⋆. To prove its validity in some
world w, assume n ∈ N and f ∈ Bn in some w ′

⪰ w. We have to exhibit some w ′′
⪰ w ′ that

contains a free choice sequence that has f as its initial segment. This world w ′′ can simply be
w ′ augmented with a fresh (w.r.t. w ′) choice sequence that has f as its initial segment.20 J

Note that the Beth model in [8] requires exhibiting a choice sequence such that DeA
holds at a bar b of w. Without a mechanism to enforce initial segments, it could be that
the choice sequence picked to witness α does not include the correct choices in some of b’s
branches. This is why BITT features choice sequence names that enforce initial segments.
Thanks to open bars, OpenTT is able to do without enforcing initial segments within choice
sequence names while still featuring a version of DeA, at the detriment of requiring its Σ
type be ↓-squashed. (Troelstra calls the free choice sequences that enforce initial segments
lawless, and the ones where no initial segment is enforced proto-lawless [42, Sec.2.4].)

4.3 The Discreteness Axiom (DiA)
One final common free choice sequence axiom, sometimes called the discreteness axiom [37],
states that equality between free choice sequences is decidable (it is Axiom 2.2 in [30, Sec.2],
also referred to as LS2 in [49]). As for BITT, OpenTT features intensional and extensional
versions of the Discreteness Axiom (DiA), which we have proven to be valid w.r.t. the open
bar model (we only present the extensional version here due to space constraints).21

I Proposition 21. The following rule of OpenTT is valid w.r.t. the open bar model (the
conclusion is inhabited by λα, β.if α=β then tt else ff):

H ⊢ Πα, β∶Free.α =B β+¬α =B β

5 The Law of Excluded Middle

This section demonstrates that OpenTT provides a key axiom from classical logic, namely
the Law of Excluded Middle (LEM). Even though various other classical principles could
be considered here (and will be considered in future work), we focus on LEM as it is the
central axiom differentiating classical logic from intuitionistic logic. Thus, we show that in
addition to capturing the intuitionistic concept of choice sequences, OpenTT also includes
the following ↓-squashed version of LEM, called LEM↓, that is validated w.r.t. the open bar
model: ΠP ∶Ui.↓(P+¬P ).

For BITT, even this weak LEM↓ axiom, that does not have any computational content
(as it is realized by λP.⋆), is inconsistent [8]. More precisely, ¬LEM↓ is valid w.r.t. the
Beth metatheory presented in [8]. Intuitively, this is because LEM↓ states that there exists
a bar of the current world such that either: (1) P is true at the bar, or (2) it is false in
all extensions of the bar. This is false (i.e., the negation is true) because, for example, for
P = (Σn∶N.η(n) =N 1), where η is a free choice sequence, (1) is false because η could be
the sequence that never chooses 1, and (2) is false because there is an extension of the bar
where η chooses 1. Stronger versions of this axiom, such as the non-↓-squashed version, are
therefore also false. This counterexample for BITT does not serve as a counterexample for
OpenTT because given a world w it is always possible to find an extension where η eventually

20 See rules/rules_choice1.v for more details.
21 See rules/rules_choice2.v and rules/rules_choice5.v for further details.

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_choice1.v
https://github.com/vrahli/NuprlInCoq/tree/ls3/rules/rules_choice2.v
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holds 1. Hence, OpenTT is more amenable to classical logic than theories based on standard
Beth models, such as BITT. As illustrated in Prop. 22’s proof below, intuitively, this is
due to the fact that the open bar model implements a notion of time which allows to select
futures (i.e., extensions), thereby allowing for some internal choices to be made.

I Proposition 22. The following rule of OpenTT is valid w.r.t. the open bar model (using
LEM in the metatheory).

H ⊢ ΠP ∶Ui.↓(P+¬P )

Proof. We have to show that for every world w ′ that extends the current world w, there
exists a world w ′′ that extends w ′ such that P+¬P is inhabited in all extensions of w ′′. Let w ′

be an extension of w. We need to find a w ′′
⪰ w ′ that makes the above true. Using classical

logic we assume that ∃EXT(w ′
, λw ′′

.inh(w ′′
, P )) is either true of false. If it is true, we obtain

a w ′′
⪰ w ′ at which P is inhabited, and we therefore conclude. Otherwise, we use w ′, which is

a trivial extension of w ′. We must now show that P+¬P is inhabited in all extensions of w ′.
We prove that it is inhabited by inr(⋆) by showing that in all w ′′

⪰ w ′, P is not inhabited at
w ′′. Assuming that P is inhabited at w ′′, we get that ∃EXT(w ′

, λw ′′
.inh(w ′′

, P )) is true, which
contradicts our assumption.22 J

6 Conclusion and Related Work

The paper presents OpenTT, a novel intuitionistic type theory that features both a theory
of choice sequences and a variant of the classical Law of Excluded Middle. This was made
possible thanks to the open bar model, which internalizes a more relaxed notion of time than
traditional Beth models that allows selecting futures. Thus, OpenTT provides a theoretical
framework for studying the interplay between intuitionistic and classical logic.

Much work has been done on combining classical and constructive logics. One standard
method is to use double negation translations [23] to embed classical logic in constructive
logic. Another approach is to mix the two logics within the same framework. For example,
PIL [35] mixes both logics through a polarization mechanism. Of particular relevance is
Moschovakis’s theory that includes choice sequences and is consistent with all classically true
arithmetic sentences via a Kripke model [38].

As mentioned in the Introduction, there is a long line of work on providing intuitionistic
counterexamples to classically valid axioms using variants of choice sequences. For example,
in [15] Markov’s Principle is proved to be false in a Martin-Löf type theory extended with a
“generic” element, which behaves as a free choice sequence of Booleans. Since we have shown
that OpenTT is compatible with a variant of LEM, we plan to investigate the status of other
classically valid principles, such as Markov’s Principle and the Axiom of Choice.

As for the open bar model, Kripke (and Beth) models are often used to model stateful
theories. For example, in [34] the Kripke semantics of function types allows the returned
values of functions to extend the state at hand. In contrast, the open bar model allows
all computations to extend worlds. Other examples include [1, 2, 11, 10], where Kripke
semantics are used to interpret theories with reference cells. We leave the study of other
forms of stateful computations for future work.

22 See rules/rules_classical.v for more details.

CSL 2021

https://github.com/vrahli/NuprlInCoq/blob/ls3/rules/rules_classical.v


11:16 Open Bar

Unlike Kripke models, Beth models can interpret formulas that only eventually hold. The
notion of “eventuality” in the open bar model slightly differs from the one in Beth models,
and as hinted at in Sec. 3, is related to the “possibility” operator of modal logic [32]. A
formal study of these connections is left for future work.

Several forms of choice sequence axioms have been studied in the literature. Some of them
are currently time or space squashed in OpenTT. We plan on exploring versions of these
axioms that are “less squashed” in the sense that they have more computational content.

Finally, the comprehensive account of choice sequences in OpenTT also opens the door
for the exploration of the computational implications of the existence of such entities. For
one, Brouwer used choice sequences to define the constructive real numbers as sequences
of nested rational intervals. The computational account of choice sequences in OpenTT
provides a framework for the formalization of Brouwerian constructive real analysis, and
then comparing it to the more standard formalizations.
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Sec. 3 it combines the inductive relation T1≡wT2 and the recursive function t1≡wt2∈T into a
single inductive definition following the method described in [4, 13]). An inductive-recursive
formalization of the open bar semantics of OpenTT in Agda can be found in [9, Appx.D].

I Definition 23 (Products). Product types are interpreted as follows:

Πx1∶A1.B1≡wΠx2∶A2.B2

⟺ ∀EXT(w, λw ′
.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])

f1≡wf2∈Πx∶A.B ⟺ O(w, λw ′
.∀a1, a2. a1≡w′a2∈A⇒ f1(a1)≡w′f2(a2)∈B[x1\a1])

I Definition 24 (Sums). Sum types are interpreted as follows:

Σx1∶A1.B1≡wΣx2∶A2.B2

⟺ ∀EXT(w, λw ′
.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])

t1≡wt2∈Σx∶A.B ⟺ O(w, λw ′
.∃a1, a2, b1, b2. t1 ⤋w′ ⟨a1, b1⟩ ∧ t2 ⤋w′ ⟨a2, b2⟩

∧ a1≡w′a2∈A ∧ b1≡w′b2∈B[x1\a1]
)

I Definition 25 (Universes). To interpret universes, we need to use parameterized (by a
universe level) T1≡i,wT2 and t1≡i,wt2∈T relations instead of the ones used so far. We can then
define T1≡wT2 as ∃i. T1≡i,wT2 and t1≡wt2∈T as ∃i. t1≡i,wt2∈T . We do not present the full
construction here as it is standard. However, let us point out that using the above definitions
we can then interpret universes inductively over i, resulting in the following interpretations:

Ui≡j,wUi ⟺ i < j T1≡j,wT2∈Ui ⟺ T1≡j,wT2

I Definition 26 (Equality). Equality types are interpreted as follows:

(a1 = a2 ∈ A)≡w(b1 = b2 ∈ B) ⟺ A≡wB ∧ a1≡wb1∈A ∧ a2≡wb2∈A

t1≡wt2∈(a = b ∈ A) ⟺ O(w, λw ′
.t1 ⤋w′ ⋆ ∧ t2 ⤋w′ ⋆ ∧ a≡w′b∈A)

I Definition 27 (Disjoint Union). Disjoint union types are interpreted as follows:

A1+A2≡wB1+B2 ⟺ A1≡wB1 ∧A2≡wB2

t1≡wt2∈A+B ⟺ O(w, λw ′
. (∃x, y. t1 ⤋w′ inl(x) ∧ t2 ⤋w′ inl(y) ∧ x≡w′y∈A)
∨ (∃x, y. t1 ⤋w′ inr(x) ∧ t2 ⤋w′ inr(y) ∧ x≡w′y∈B)

)

I Definition 28 (Sets). Set types are interpreted as follows:

{x1 ∶ A1 ∣ B1}≡w{x2 ∶ A2 ∣ B2}
⟺ ∀EXT(w, λw ′

.A1≡w′A2 ∧∀a1, a2. a1≡w′a2∈A1 ⇒ B1[x1\a1]≡w′B2[x2\a2])
t1≡wt2∈{x ∶ A ∣ B} ⟺ O(w, λw ′

.t1≡w′t2∈A ∧ inh(w ′
, B[x\t1]))

I Definition 29 (Less Than). Less than types are interpreted as follows:

t1 < t2≡wu1 < u2 ⟺ t1≡wu1∈N ∧ t2≡wu2∈N

t1≡wt2∈(u1 < u2) ⟺ O(w, λw ′
.∃k1, k2. t1 ⇓w k1 ∧ t2 ⇓w k2 ∧ k1 < k2)

The time squashing type �T is defined using Howe’s computational equivalence [25],
which is omitted from this paper for space reasons (see [25] for a definition of this relation,
as well as cequiv/cequiv.v). It turns out that OpenTT is not only closed under computation
but more generally under Howe’s computational equivalence ∼, which we have proved to be
a congruence following Howe’s method [25]. We define t1 ≈w t2 as ∀EXT(w, λw ′

.t1 ∼w t2).
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I Definition 30 (Time Squashing). Time squashing types are interpreted as follows:

�T ≡w�U ⟺ T ≡wU∈N

t1≡wt2∈(�T ) ⟺ O(w, λw ′
.∃u1, u2. w ∼ t1u1 ∧ w ∼ t2u2 ∧ t1 ≈w t2 ∧ u1≡w′u2∈T )

B OpenTT’s Inference Rules

In OpenTT, sequents are of the form h1, . . . , hn ⊢ T ⌊ext t⌋. Such a sequent denotes that,
assuming h1, . . . , hn, the term t is a member of the type T , and that therefore T is a type. The
term t in this context is called the extract or evidence of T . Extracts are sometimes omitted
when irrelevant to the discussion. In particular, we typically do so when the conclusion T of a
sequent is an equality type of the form a = b ∈ A, since equality types can only be inhabited
by the constant ⋆, we then typically omit the extract in such sequents. An hypothesis h is of
the form x ∶ A, where the variable x stands for the name of the hypothesis and A its type. A
rule is a pair of a conclusion sequent S and a list of premise sequents, S1,⋯, Sn (written as
usual using a fraction notation, with the premises on top). Let us now provide a sample of
OpenTT’s key inference rules for some of its types not discussed above. The reader is invited
to check https://github.com/vrahli/NuprlInCoq/blob/ls3/ for a complete list of rules,
as well as [14], from which OpenTT borrowed most of its rules for its standard types.

B.1 Products
The following rules are the standard Π-elimination rule, Π-introduction rule, type equality
for Π types, and λ-introduction rule, respectively.

H , f ∶ Πx∶A.B, J ⊢ a ∈ A H , f ∶ Πx∶A.B, J , z ∶ f(a) ∈ B[x\a] ⊢ C ⌊ext e⌋
H , f ∶ Πx∶A.B, J ⊢ C ⌊ext e[z\⋆]⌋

H , z ∶ A ⊢ B[x\z] ⌊ext b⌋ H ⊢ A ∈ Ui
H ⊢ Πx∶A.B ⌊ext λz.b⌋

H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ Πx1∶A1.B1 = Πx2∶A2.B2 ∈ Ui

H , z ∶ A ⊢ t1[x1\z] = t2[x2\z] ∈ B[x\z] H ⊢ A ∈ Ui
H ⊢ λx1.t1 = λx2.t2 ∈ Πx∶A.B

Note that the last rule requires to prove that A is a type because the conclusion requires to
prove that Πx∶A.B is a type, and the first hypothesis only states that B is a type family
over A, but does not ensures that A is a type.

The following rule is the standard function extensionality rule:

H , z ∶ A ⊢ f1(z) = f2(z) ∈ B[x\z] H ⊢ A ∈ Ui
H ⊢ f1 = f2 ∈ Πx∶A.B

The following captures that PERs are closed under β-reductions:

H ⊢ t[x\s] = u ∈ T
H ⊢ (λx.t) s = u ∈ T

https://github.com/vrahli/NuprlInCoq/blob/ls3/
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B.2 Sums
The following rules are the standard Σ-elimination rule, Σ-introduction rule, type equality
for the Σ type, and pair-introduction rule, respectively.

H , p ∶ Σx∶A.B, a ∶ A, b ∶ B[x\a], J[p\⟨a, b⟩] ⊢ C[p\⟨a, b⟩] ⌊ext e⌋
H , p ∶ Σx∶A.B, J ⊢ C ⌊ext let a, b = p in e⌋

H ⊢ a ∈ A H ⊢ b ∈ B[x\a] H , z ∶ A ⊢ B[x\z] ∈ Ui
H ⊢ Σx∶A.B ⌊ext ⟨a, b⟩⌋

H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ Σx1∶A1.B1 = Σx2∶A2.B2 ∈ Ui

H , z ∶ A ⊢ B[x\z] ∈ Ui H ⊢ a1 = a2 ∈ A H ⊢ b1 = b2 ∈ B[x\a1]
H ⊢ ⟨a1, b1⟩ = ⟨a2, b2⟩ ∈ Σx∶A.B

The following rule states that PERs are closed under spread-reductions:

H ⊢ u[x\s; y\t] = t2 ∈ T
H ⊢ let x, y = ⟨s, t⟩ in u = t2 ∈ T

B.3 Equality
The following rules are the standard equality-introduction rule:23, equality-elimination rule
(which states that equality types are inhabited by the ⋆ constant), hypothesis rule, symmetry
and transitivity rules, respectively.

H ⊢ A = B ∈ Ui H ⊢ a1 = b1 ∈ A H ⊢ a2 = b2 ∈ B

H ⊢ a1 = a2 ∈ A = b1 = b2 ∈ B ∈ Ui

H , z ∶ a = b ∈ A, J[z\⋆] ⊢ C[z\⋆] ⌊ext e⌋
H , z ∶ a = b ∈ A, J ⊢ C ⌊ext e⌋

H , x ∶ A, J ⊢ x ∈ A

H ⊢ b = a ∈ T
H ⊢ a = b ∈ T

H ⊢ a = c ∈ T H ⊢ c = b ∈ T
H ⊢ a = b ∈ T

The following rule allows fixing the extract of a sequent:

H ⊢ T ⌊ext t⌋
H ⊢ t ∈ T

The following rule allows rewriting with an equality in an hypothesis:

H , x ∶ B, J ⊢ C ⌊ext t⌋ H ⊢ A = B ∈ Ui
H , x ∶ A, J ⊢ C ⌊ext t⌋

23The actual rule is slightly more general as it allows a1 and b1 to be “computationally equivalent” (and
similarly for a2 and b2). However, since we have not introduced this concept here, we present a simpler
version of this rule only.
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B.4 Universes
Let i is a lower universe than j. The following rules are the standard universe-introduction
rule and the universe cumulativity rule, respectively.

H ⊢ Ui = Ui ∈ Uj
H ⊢ T ∈ Uj
H ⊢ T ∈ Ui

B.5 Sets
The following rule is the standard set-elimination rule:

H , z ∶ {x ∶ A ∣ B}, a ∶ A, b ∶ B[x\a] , J[z\a] ⊢ C[z\a] ⌊ext e⌋
H , z ∶ {x ∶ A ∣ B}, J ⊢ C ⌊ext e[a\z]⌋

Note that we have used a new construct in the above rule, namely the hypothesis b ∶ B[x\a] ,
which is called a hidden hypothesis. The main feature of hidden hypotheses is that their
names cannot occur in extracts (which is why we “box” those hypotheses). Intuitively, this
is because the proof that B is true is discarded in the proof that the set type {x ∶ A ∣ B} is
true and therefore cannot occur in computations. Hidden hypotheses can be unhidden using
the following rule:

H , x ∶ T, J ⊢ a = b ∈ A ⌊ext ⋆⌋
H , x ∶ T , J ⊢ a = b ∈ A ⌊ext ⋆⌋

which is valid since the extract is ⋆ and therefore does not make use of x.
The following rules are the standard set-introduction rule, type equality for the set type,

and introduction rule for members of set types, respectively.

H ⊢ a ∈ A H ⊢ B[x\a] H , z ∶ A ⊢ B[x\z] ∈ Ui
H ⊢ {x ∶ A ∣ B} ⌊ext a⌋

H ⊢ A1 = A2 ∈ Ui H , y ∶ A1 ⊢ B1[x1\y] = B2[x2\y] ∈ Ui
H ⊢ {x1 ∶ A1 ∣ B1} = {x2 ∶ A2 ∣ B2} ∈ Ui

H , z ∶ A ⊢ B[x\z] ∈ Ui H ⊢ a = b ∈ A H ⊢ B[x\a]
H ⊢ a = b ∈ {x ∶ A ∣ B}

B.6 Disjoint Unions
The following rules are the standard disjoint union-elimination rule, disjoint union-
introduction rules, type equality for the disjoint union type, and injection-introduction
rules, respectively.

H , d ∶ A+B, x ∶ A, J[d\inl(x)] ⊢ C[d\inl(x)] ⌊ext t⌋
H , d ∶ A+B, y ∶ B, J[d\inr(y)] ⊢ C[d\inr(y)] ⌊ext u⌋

H , d ∶ A+B, J ⊢ C ⌊ext case d of inl(x)⇒ t | inr(y)⇒ u⌋

H ⊢ A ⌊ext a⌋ H ⊢ B ∈ Ui
H ⊢ A+B ⌊ext inl(a)⌋

H ⊢ B ⌊ext b⌋ H ⊢ A ∈ Ui
H ⊢ A+B ⌊ext inr(b)⌋
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H ⊢ A1 = A2 ∈ Ui H ⊢ B1 = B2 ∈ Ui
H ⊢ A1+B1 = A2+B2 ∈ Ui

H ⊢ a1 = a2 ∈ A H ⊢ B ∈ Ui
H ⊢ inl(a1) = inl(a2) ∈ A+B

H ⊢ b1 = b2 ∈ B H ⊢ A ∈ Ui
H ⊢ inr(b1) = inr(b2) ∈ A+B

The following rules state that PERs are closed under decide-reductions:

H ⊢ t[x\s] = t2 ∈ T
H ⊢ (case inl(s) of inl(x)⇒ t | inr(y)⇒ u) = t2 ∈ T

H ⊢ u[y\s] = t2 ∈ T
H ⊢ (case inr(s) of inl(x)⇒ t | inr(y)⇒ u) = t2 ∈ T

C Squashing

As mentioned in Sec. 2.4, OpenTT includes a squashing mechanism, which is used to erase
the computational content of a type by turning its PER into a trivial one.24 More precisely,
given a type T , the type ↓T , defined as {x ∶ True ∣ T}, is true iff T is true. However, while
the type T might have a trivial PER, i.e., it might be inhabited by arbitrarily complex
programs, ↓T can only be inhabited by ⋆, which is True’s only inhabitant. Indeed, as shown
in Def. 28 and Appx. B.5, a member of {x ∶ True ∣ T} is a member of True, such that T is
true. However, T ’s realizer is thrown away and is not part of {x ∶ True ∣ T}’s realizer.

More precisely, one can derive ↓T from T because given a member t of T , one can trivially
show that that ⋆ is a member of ↓T . We can capture this by the following derived rule:

H ⊢ T ⌊ext t⌋
H ⊢ ↓T ⌊ext ⋆⌋

However, the opposite is not true in general. One cannot in general derive T from ↓T because
given the realizer ⋆ of ↓T , it is not always possible to recover a realizer of T . We can capture
this by the following derived rule:

H , z ∶ ↓T, x ∶ T , J[z\⋆] ⊢ C[z\⋆] ⌊ext e⌋
H , z ∶ ↓T, J ⊢ C ⌊ext e⌋

To illustrate the point that we cannot in general derive T from ↓T , let us see how far we
can go when trying to prove:

x ∶ ↓T ⊢ T

Using the above squash-elimination derived rule, we have to prove:

x ∶ ↓T, z ∶ T ⊢ T

However, we are now stuck, as we have in general no way of deriving an extract of T given
these hypotheses. The unhiding rule mentioned Appx. B.5 can only be used when the
conclusion is an equality type, and the hypothesis rule mentioned in Appx. B.3, requires the
z hypothesis to be “visible” (not hidden) in order to use z as a realizer of the conclusion.

24 See for example [39] for more details on squashing.
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