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Abstract
We define a class of Separation Logic [10, 16] formulæ, whose entailment problem given formulæ
φ, ψ1, . . . , ψn, is every model of φ a model of some ψi? is 2-EXPTIME-complete. The formulæ in
this class are existentially quantified separating conjunctions involving predicate atoms, interpreted
by the least sets of store-heap structures that satisfy a set of inductive rules, which is also part of the
input to the entailment problem. Previous work [8, 12, 15] consider established sets of rules, meaning
that every existentially quantified variable in a rule must eventually be bound to an allocated location,
i.e. from the domain of the heap. In particular, this guarantees that each structure has treewidth
bounded by the size of the largest rule in the set. In contrast, here we show that establishment,
although sufficient for decidability (alongside two other natural conditions), is not necessary, by
providing a condition, called equational restrictedness, which applies syntactically to (dis-)equalities.
The entailment problem is more general in this case, because equationally restricted rules define
richer classes of structures, of unbounded treewidth. In this paper we show that
(1) every established set of rules can be converted into an equationally restricted one and
(2) the entailment problem is 2-EXPTIME-complete in the latter case, thus matching the complexity

of entailments for established sets of rules [12, 15].
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1 Introduction

Separation Logic (SL) [10, 16] is widely used to reason about programs manipulating re-
cursively linked data structures, being at the core of several industrial-scale static program
analysis techniques [3, 2, 5]. Given an integer K ≥ 1, denoting the number of fields in a
record datatype, and an infinite set L of memory locations (addresses), the assertions in
this logic describe heaps, that are finite partial functions mapping locations to records, i.e.,
K-tuples of locations. A location ` in the domain of the heap is said to be allocated and
the points-to atom x 7→ (y1, . . . , yK) states that the location associated with x refers to the
tuple of locations associated with (y1, . . . , yK). The separating conjunction φ ∗ ψ states that
the formulæ φ and ψ hold in non-overlapping parts of the heap, that have disjoint domains.
This connective allows for modular program analyses, because the formulæ specifying the
behaviour of a program statement refer only to the small (local) set of locations that are
manipulated by that statement, with no concern for the rest of the program’s state.

Formulæ consisting of points-to atoms connected with separating conjunctions describe
heaps of bounded size only. To reason about recursive data structures of unbounded sizes
(lists, trees, etc.), the base logic is enriched by predicate symbols, with a semantics specified
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20:2 Decidable Entailments in Separation Logic with Inductive Definitions

by user-defined inductive rules. For instance, the rules: excls(x, y)⇐ ∃z . x 7→ (z, y) ∗ z 6l c
and excls(x, y) ⇐ ∃z∃v . x 7→ (z, v) ∗ excls(v, y) ∗ z 6l c describe a non-empty list segment,
whose elements are records with two fields: the first is a data field, that keeps a list of
locations, which excludes the location assigned to the global constant c, and the second is
used to link the records in a list whose head and tail are pointed to by x and y, respectively.

An important problem in program verification, arising during construction of Hoare-style
correctness proofs, is the discharge of verification conditions, that are entailments of the form
φ ` ψ1, . . . , ψn, where φ and ψ1, . . . , ψn are separating conjunctions of points-to, predicates
and (dis-)equalities, also known as symbolic heaps. The entailment problem then asks if every
model of φ is a model of some ψi? In general, the entailment problem is undecidable and
becomes decidable when the inductive rules used to interpret the predicates satisfy three
restrictions [8]:
(1) progress, stating that each rule allocates exactly one memory cell,
(2) connectivity, ensuring that the allocated memory cells form a tree-shaped structure, and
(3) establishment, stating that all existentially quantified variables introduced by an inductive

rule must be assigned to some allocated memory cell, in every structure defined by that
rule.

For instance, the above rules are progressing and connected but not established, because the
∃z variables are not explicitly assigned an allocated location, unlike the ∃v variables, passed
as first parameter of the excls(x, y) predicate, and thus always allocated by the points-to
atoms x 7→ (z, y) or x 7→ (z, v), from the first and second rule defining excls(x, y), respectively.

The argument behind the decidability of a progressing, connected and established entail-
ment problem is that every model of the left-hand side is encoded by a graph whose treewidth1
is bounded by the size of the largest symbolic heap that occurs in the problem [8]. Moreover,
the progress and connectivity conditions ensure that the set of models of a symbolic heap
can be represented by a Monadic Second Order (MSO) logic formula interpreted over graphs,
that can be effectively built from the symbolic heap and the set of rules of the problem. The
decidability of entailments follows then from the decidability of the satisfiability problem for
MSO over graphs of bounded treewidth (Courcelle’s Theorem) [4]. Initially, no upper bound
better than elementary recursive was known to exist. Recently, a 2-EXPTIME algorithm was
proposed [12, 14] for sets of rules satisfying these three conditions, and, moreover, this bound
was shown to be tight [6].

Several natural questions arise: are the progress, connectivity and establishment conditions
really necessary for the decidability of entailments? How much can these restriction be
relaxed, without jeopardizing the complexity of the problem? Can one decide entailments that
involve sets of heaps of unbounded treewidth? In this paper, we answer these questions by
showing that entailments are still 2-EXPTIME-complete when the establishment condition is
replaced by a condition on the (dis-)equations occurring in the symbolic heaps of the problem.
Informally, such (dis-)equations must be of the form x l c (x 6l c), where c ranges over some
finite and fixed set of globally visible constants (including special symbols such as nil, that
denotes a non-allocated address, but also any free variable occurring on the left-hand side of
the entailment). We also relax slightly the progress and connectivity conditions, by allowing
forest-like heap structures (instead of just trees), provided that every root is mapped to a
constant symbol. These entailment problems are called equationally restricted (e-restricted,
for short). For instance, the entailment problem excls(x, y) ∗ excls(y, z) ` excls(x, z), with the
above rules, falls in this category.

1 The treewidth of a graph is a parameter measuring how close the graph is to a tree, see [7, Ch. 11] for
a definition.
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We prove that the e-restricted condition loses no generality compared to establishment,
because any established entailment problem can be transformed into an equivalent e-restricted
entailment problem. E-restricted problems allow reasoning about structures that contain
dangling pointers, which frequently occur in practice, especially in the context of modular
program analysis. Moreover, the set of structures considered in an e-restricted entailment
problem may contain infinite sequences of heaps of strictly increasing treewidths, that are
out of the scope of established problems [8].

The decision procedure for e-restricted problems proposed in this paper is based on a
similar idea as the one given, for established problems, in [14, 15]. We build a suitable
abstraction of the set of structures satisfying the left-hand side of the entailment bottom-up,
starting from points-to and predicate atoms, using abstract operators to compose disjoint
structures, to add and remove variables, and to unfold the inductive rules associated with
the predicates. The abstraction is precise enough to allow checking that all the models of the
left-hand side fulfill the right-hand side of the entailment and also general enough to ensure
termination of the entailment checking algorithm.

Although both procedures are similar, there are essential differences between our work
and [14, 15]. First, we show that instead of using a specific language for describing those
abstractions, the considered set of structures can themselves be defined in SL, by means of
formulæ of some specific pattern called core formulæ. Second, the fact that the systems are
not established makes the definition of the procedure much more difficult, due to the fact that
the considered structures can have an unbounded treewidth. This is problematic because,
informally, this boundedness property is essential to ensure that the abstractions can be
described using a finite set of variables, denoting the frontier of the considered structures,
namely the locations that can be shared with other structures. In particular, the fact that
disjoint heaps may share unallocated (or “unnamed”) locations complexifies the definition
of the composition operator. This problem is overcome by considering a specific class of
structures, called normal structures, of bounded treewidth, and proving that the validity of
an entailment can be decided by considering only normal structures.

In terms of complexity, we show that the running time of our algorithm is doubly
exponential w.r.t. the maximal size among the symbolic heaps occurring in the input
entailment problem (including those in the rules) and simply exponential w.r.t. the number
of such symbolic heaps (hence w.r.t. the number of rules). This means that the 2-EXPTIME
upper bound is preserved by any reduction increasing exponentially the number of rules, but
increasing only polynomially the size of the rules. On the other hand, the 2-EXPTIME-hard
lower bound is proved by a reduction from the membership problem for exponential-space
bounded Alternating Turing Machines [6].

2 Separation Logic with Inductive Definitions

Let N denote the set of natural numbers. For a countable set S, we denote by ||S|| ∈ N∪{∞}
its cardinality. For a partial mapping f : A ⇀ B, let dom(f) def= {x ∈ A | f(x) ∈ B} and
rng(f) def= {f(x) | x ∈ dom(f)} be its domain and range, respectively. We say that f is total
if dom(f) = A, written f : A→ B and finite, written f : A ⇀fin B if ||dom(f)|| <∞. Given
integers n and m, we denote by Jn . . mK the set {n, n+ 1, . . . ,m}, so that Jn . . mK = ∅ if
n > m. For a relation C ⊆ A×A, we denote by C∗ its reflexive and transitive closure.

For an integer n ≥ 0, let An be the set of n-tuples with elements from A. Given a tuple
a = (a1, . . . , an) and i ∈ J1 . . nK, we denote by ai the i-th element of a and by |a| def= n

its length. By f(a) we denote the tuple obtained by the pointwise application of f to the
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elements of a. If multiplicity and order of the elements are not important, we blur the
distinction between tuples and sets, using the set-theoretic notations x ∈ a, a ∪ b, a ∩ b and
a \ b.

Let V = {x, y, . . .} be an infinite countable set of logical first-order variables and P =
{p, q, . . .} be an infinite countable set (disjoint from V) of relation symbols, called predicates,
where each predicate p has arity #p ≥ 0. We also consider a finite set C of constants, of
known bounded cardinality, disjoint from both V and P. Constants will play a special rôle in
the upcoming developments and the fact that C is bounded is of a particular importance. A
term is either a variable or a constant and we denote by T def= V ∪ C the set of terms.

Throughout this paper we consider an integer K ≥ 1 that, intuitively, denotes the number
of fields in a record datatype. Although we do not assume K to be a constant in any of the
algorithms presented in the following, considering that every datatype has exactly K records
simplifies the definition. The logic SLK is the set of formulæ generated inductively by the
syntax:

φ := emp | t0 7→ (t1, . . . , tK) | p(t1, . . . , t#p) | t1 ≈ t2 | φ1 ∗ φ2 | φ1 ∧ φ2 | ¬φ1 | ∃x . φ1

where p ∈ P, ti ∈ T and x ∈ V. Atomic propositions of the form t0 7→ (t1, . . . , tK) are called
points-to atoms and those of the form p(t1, . . . , t#p) are predicate atoms. If K = 1, we write
t0 7→ t1 for t0 7→ (t1).

The connective ∗ is called separating conjunction, in contrast with the classical conjunction
∧. The size of a formula φ, denoted by size(φ), is the number of occurrences of symbols
in it. We write fv(φ) for the set of free variables in φ and trm(φ) def= fv(φ) ∪ C. A formula
is predicate-free if it has no predicate atoms. As usual, φ1 ∨ φ2

def= ¬(¬φ1 ∧ ¬φ2) and
∀x . φ def= ¬∃x . ¬φ. For a set of variables x = {x1, . . . , xn} and a quantifier Q ∈ {∃,∀},
we write Qx . φ

def= Qx1 . . . Qxn . φ. By writing t1 = t2 (φ1 = φ2) we mean that the terms
(formulæ) t1 and t2 (φ1 and φ2) are syntactically the same.

A substitution is a partial mapping σ : V⇀ T that maps variables to terms. We denote by
[t1/x1, . . . , tn/xn] the substitution that maps the variable xi to ti, for each i ∈ J1 . . nK and
is undefined elsewhere. By φσ we denote the formula obtained from φ by substituting each
variable x ∈ fv(φ) by σ(x) (we assume that bound variables are renamed to avoid collisions
if needed). By abuse of notation, we sometimes write σ(x) for x, when x 6∈ dom(σ).

To interpret SLK formulæ, we consider an infinite countable set L of locations. The
semantics of SLK formulæ is defined in terms of structures (s, h), where:

s : T⇀ L is a partial mapping of terms into locations, called a store, that interprets at
least all the constants, i.e. C ⊆ dom(s) for every store s, and
h : L⇀fin LK is a finite partial mapping of locations into K-tuples of locations, called a
heap.

Given a heap h, let loc(h) def= {`0, . . . , `K | `0 ∈ dom(h), h(`0) = (`1, . . . , `K)} be the set of
locations that occur in the heap h. Two heaps h1 and h2 are disjoint iff dom(h1)∩dom(h2) = ∅,
in which case their disjoint union is denoted by h1 ] h2, otherwise undefined. The frontier
between h1 and h2 is the set of common locations Fr(h1, h2) def= loc(h1) ∩ loc(h2). Note that
disjoint heaps may have nonempty frontier. The satisfaction relation |= between structures
(s, h) and predicate-free SLK formulæ φ is defined recursively on the structure of formulæ:

(s, h) |= t1 ≈ t2 ⇔ t1, t2 ∈ dom(s) and s(t1) = s(t2)
(s, h) |= emp ⇔ h = ∅
(s, h) |= t0 7→ (t1, . . . , tK) ⇔ t0, . . . , tK ∈ dom(s), dom(h) = {s(t0)} and h(s(t0)) = (s(t1), . . . , s(tK))
(s, h) |= φ1 ∧ φ2 ⇔ (s, h) |= φi, i = 1, 2
(s, h) |= ¬φ1 ⇔ fv(φ1) ⊆ dom(s) and (s, h) 6|= φ1
(s, h) |= φ1 ∗ φ2 ⇔ there exist heaps h1, h2 such that h = h1 ] h2 and (s, hi) |= φi, i = 1, 2
(s, h) |= ∃x . φ ⇔ (s[x← `], h) |= φ, for some location ` ∈ L
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where s[x← `] is the store, with domain dom(s) ∪ {x}, that maps x to ` and behaves like s

over dom(s) \ {x}. For a tuple of variables x = (x1, . . . , xn) and locations l = (l1, . . . , ln), we
call the store s[x← l] def= s[x1 ← l1] . . . [xn ← ln] an x-associate of s. A structure (s, h) such
that (s, h) |= φ, is called a model of φ. Note that (s, h) |= φ only if fv(φ) ⊆ dom(s).

The fragment of symbolic heaps is obtained by confining the negation and conjunction to
the formulæ t1 l t2

def= t1 ≈ t2 ∧ emp and t1 6l t2
def= ¬t1 ≈ t2 ∧ emp, called equational atoms,

by abuse of language. We denote by SHK the set of symbolic heaps, formally defined below:

φ := emp | t0 7→ (t1, . . . , tK) | p(t1, . . . , t#p) | t1 l t2 | t1 6l t2 | φ1 ∗ φ2 | ∃x . φ1

Given quantifier-free symbolic heaps φ1, φ2 ∈ SHK, it is not hard to check that ∃x . φ1∗∃y . φ2
and ∃x∃y . φ1 ∗φ2 have the same models (provided x 6= y). Consequently, each symbolic heap
can be written in prenex form, as φ = ∃x1 . . . ∃xn . ψ, where ψ is a quantifier-free separating
conjunction of points-to atoms and (dis-)equalities. A variable x ∈ fv(ψ) is allocated in φ
iff there exists a (possibly empty) sequence of equalities x l . . . l t0 and a points-to atom
t0 7→ (t1, . . . , tK) in ψ.

The predicates from P are intepreted by a given set S of rules p(x1, . . . , x#p)⇐ ρ, where
ρ is a symbolic heap, such that fv(ρ) ⊆ {x1, . . . , x#p

}. We say that p(x1, . . . , x#p) is the
head and ρ is the body of the rule. For conciseness, we write p(x1, . . . , x#p)⇐S ρ instead of
p(x1, . . . , x#p)⇐ ρ ∈ S. In the following, we shall often refer to a given set of rules S.

I Definition 1 (Unfolding). A formula ψ is a step-unfolding of a formula φ ∈ SLK, written
φ ⇒S ψ, if ψ is obtained by replacing an occurrence of an atom p(t1, . . . , t#p) in φ with
ρ[t1/x1, . . . , t#p/x#p], for a rule p(x1, . . . , x#p) ⇐S ρ. An unfolding of φ is a formula ψ
such that φ⇒∗S ψ.

It is easily seen that any unfolding of a symbolic heap is again a symbolic heap. We implicitly
assume that all bound variables are α-renamed throughout an unfolding, to avoid name
clashes. Unfolding extends the semantics from predicate-free to arbitrary SLK formulæ:

I Definition 2. Given a structure (s, h) and a formula φ ∈ SLK, we write (s, h) |=S φ iff
there exists a predicate-free unfolding φ⇒∗S ψ such that (s, h) |= ψ. In this case, (s, h) is an
S-model of φ. For two formulæ φ, ψ ∈ SLK, we write φ |=S ψ iff every S-model of φ is an
S-model of ψ.

Note that, if (s, h) |=S φ, then dom(s) might have to contain constants that do not occur in
φ. For instance if p(x)⇐S x 7→ a is the only rule with head p(x), then any S-model (s, h)
must map a to some location, which is taken care of by the assumption C ⊆ dom(s), that
applies to any store.

I Definition 3 (Entailment). Given symbolic heaps φ, ψ1, . . . , ψn, such that φ is quantifier-
free and fv(φ) = fv(ψ1) = . . . = fv(ψn) = ∅, the sequent φ ` ψ1, . . . , ψn is valid for S iff
φ |=S

∨n
i=1 ψi. An entailment problem P = (S,Σ) consists of a set of rules S and a set Σ

of sequents, asking whether each sequent in Σ is valid for S.

Note that we consider entailments between formulæ without free variables. This is not
restrictive, since any free variable can be replaced by a constant from C, with no impact
on the validity status or the computational complexity of the problem. We silently assume
that C contains enough constants to allow this replacement. For conciseness, we write
φ `P ψ1, . . . , ψn for φ ` ψ1, . . . , ψn ∈ Σ, where Σ is the set of sequents of P. The following
example shows an entailment problem asking whether the concatenation of two acyclic lists
is again an acyclic list:

CSL 2021



20:6 Decidable Entailments in Separation Logic with Inductive Definitions

I Example 4. The entailment problem below consists of four rules, defining the predicates
ls(x, y) and sls(x, y, z), respectively, and two sequents:

ls(x, y) ⇐ x 7→ y ∗ x 6l y | ∃v . x 7→ v ∗ ls(v, y) ∗ x 6l y
sls(x, y, z) ⇐ x 7→ y ∗ x 6l y ∗ x 6l z | ∃v . x 7→ v ∗ sls(v, y, z) ∗ x 6l y ∗ x 6l z

ls(a, b) ∗ ls(b, c) ` ∃x . a 7→ x ∗ ls(x, c) ∗ a 6l c sls(a, b, c) ∗ ls(b, c) ` ∃x . a 7→ x ∗ ls(x, c) ∗ a 6l c
Here ls(x, y) describes non-empty acyclic list segments with head and tail pointed to by x
and y, respectively. The first sequent is invalid, because c can be allocated within the list
segment defined by ls(a, b), in which case the entire list has a cycle starting and ending with
the location associated with c. To avoid the cycle, the left-hand side of the second sequent
uses the predicate sls(x, y, z) describing an acyclic list segment from x to y that skips the
location pointed to by z. The second sequent is valid. y

The complexity analysis of the decision procedure described in this paper relies on two
parameters. First, the width of an entailment problem P = (S,Σ) is (roughly) the maximum
among the sizes of the symbolic heaps occurring in P and the number of constants in C.
Second, the size of the entailment problem is (roughly) the number of symbols needed to
represent it, namely:

width(P) def= max
(
{size(ρ) + #p | p(x1, . . . , x#p)⇐S ρ} ∪ {size(ψi) | ψ0 `P ψ1, . . . , ψn} ∪ {||C||}

)
size(P) def=

∑
p(x1,...,x#p) ⇐S ρ

(size(ρ) + #p) +
∑

ψ0 `P ψ1,...,ψn

∑n

i=1 size(ψi)

In the next section we give a transformation of entailment problems with a time complexity
that is bounded by the product of the size and a simple exponential of the width of the
input, such that, moreover, the width of the problem increases by a polynomial factor only.
The latter is instrumental in proving the final 2-EXPTIME upper bound on the complexity
of the entailment problem.

To alleviate the upcoming technical details, we make the following assumption:

I Assumption 1. Distinct constants are always associated with distinct locations: for all
stores s, and for all c, d ∈ C, we have c 6= d only if s(c) 6= s(d).

This assumption loses no generality, because one can enumerate all the equivalence relations
on C and test the entailments separately for each of these relations, by replacing all the
constants in the same class by a unique representative2, while assuming that constants in
distinct classes are mapped to distinct locations. The overall complexity of the procedure
is still doubly exponential, since the number of such equivalence relations is bounded by
the number of partitions of C, that is 2O(||C||·log ||C||) = 2O(||width(P)||·log ||width(P)||), for any
entailment problem P. Thanks to Assumption 1, the considered symbolic heaps can be,
moreover, safely assumed not to contain atoms c ./ d, with ./∈ {l, 6l} and c, d ∈ C, since
these atoms are either unsatisfiable or equivalent to emp.

3 Decidable Classes of Entailments

In general, the entailment problem (Definition 3) is undecidable and we refer the reader to
[9, 1] for two different proofs. A first attempt to define a naturally expressive class of formulæ
with a decidable entailment problem was reported in [8]. The entailments considered in [8]
involve sets of rules restricted by three conditions, recalled below, in a slightly generalized
form.

2 The replacement must be performed also within the inductive rules, not only in the considered formulæ.
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First, the progress condition requires that each rule adds to the heap exactly one location,
associated either to a constant or to a designated parameter. Formally, we consider a
mapping root : P → N ∪ C, such that root(p) ∈ J1 . . #pK ∪ C, for each p ∈ P. The
term root(p(t1, . . . , t#p)) denotes either ti if root(p) = i ∈ J1 . . #pK, or the constant
root(p) itself if root(p) ∈ C. The notation root(α) is extended to points-to atoms α as
root(t0 7→ (t1, . . . , tK)) def= t0. Second, the connectivity condition requires that all locations
added during an unfolding of a predicate atom form a set of connected trees (a forest) rooted
in locations associated either with a parameter of the predicate or with a constant.

I Definition 5 (Progress & Connectivity). A set of rules S is progressing if each rule in S
is of the form p(x1, . . . , x#p)⇐ ∃z1 . . . ∃zm . root(p(x1, . . . , x#p)) 7→ (t1, . . . , tK) ∗ ψ and ψ
contains no occurrences of points-to atoms. Moreover, S is connected if root(q(u1, . . . , u#q)) ∈
{t1, . . . , tK}∪C, for each predicate atom q(u1, . . . , u#q) occurring in ψ. An entailment problem
P = (S,Σ) is progressing (connected) if S is progressing (connected).

The progress and connectivity conditions can be checked in polynomial time by a syntactic
inspection of the rules in S, even if the root(.) function is not known a priori. Note that
this definition of connectivity is less restrictive that the definition from [8], that asked
for root(q(u1, . . . , u#q)) ∈ {t1, . . . , tK}. For instance, the set of rules {p(x) ⇐ ∃y . x 7→
y ∗ p(y) ∗ p(c), p(x)⇐ x 7→ nil}, where c ∈ C is progressing and connected (with root(p) = 1)
in the sense of Definition 5, but not connected in the sense of [8], because c 6∈ (y). Note
also that nullary predicate symbols are allowed, for instance q() ⇐ c 7→ nil is progressing
and connected (with root(q) = c). Further, the entailment problem from Example 4 is both
progressing and connected.

Third, the establishment condition is defined, slightly extended from its original state-
ment [8]:

I Definition 6 (Establishment). Given a set of rules S, a symbolic heap ∃x1 . . . ∃xn . φ,
where φ is quantifier-free, is S-established iff every xi for i ∈ J1 . . nK is allocated in each
predicate-free unfolding φ⇒∗S ϕ. A set of rules S is established if the body ρ of each rule
p(x1, . . . , x#p)⇐S ρ is S-established. An entailment problem P = (S,Σ) is established if S
is established, and strongly established if, moreover, φi is S-established, for each sequent
φ0 `P φ1, . . . , φn and each i ∈ J0 . . nK.

For example, the entailment problem from Example 4 is strongly established.
In this paper, we replace establishment with a new condition that, as we show, preserves

the decidability and computational complexity of progressing, connected and established
entailment problems. The new condition can be checked in time linear in the size of the
problem. This condition, called equational restrictedness (e-restrictedness, for short), requires
that each equational atom occurring in a formula involves at least one constant. We will
show that the e-restrictedness condition is more general than establishment, in the sense that
every established problem can be reduced to an equivalent e-restricted problem (Theorem
13). Moreover, the class of structures defined using e-restricted symbolic heaps is a strict
superset of the one defined by established symbolic heaps.

I Definition 7 (E-restrictedness). A symbolic heap φ is e-restricted if, for every equational
atom t ./ u from φ, where ./∈ {l, 6l}, we have {t, u} ∩ C 6= ∅. A set of rules S is e-
restricted if the body ρ of each rule p(x1, . . . , x#p) ⇐S ρ is e-restricted. An entailment
problem P = (S,Σ) is e-restricted if S is e-restricted and φi is e-restricted, for each sequent
φ0 `P φ1, . . . , φn and each i ∈ J0 . . nK.
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For instance, the entailment problem from Example 4 is not e-restricted, because several rule
bodies have disequalities between parameters, e.g. ls(x, y)⇐ x 7→ y ∗ x 6l y. However, the
set of rules {lsc(x)⇐ x 7→ c ∗ x 6l c, lsc(x)⇐ ∃y . x 7→ y ∗ lsc(y) ∗ x 6l c}, where c ∈ C and
lsc is a new predicate symbol, denoting an acyclic list ending with c, is e-restricted. Note
that any atom ls(x, y) can be replaced by lsy(x), provided that y occurs free in a sequent
and can be viewed as a constant.

We show next that every established entailment problem (Definition 6) can be reduced to
an e-restricted entailment problem (Definition 7). The transformation incurs an exponential
blowup, however, as we show, the blowup is exponential only in the width and polynomial in
the size of the input problem. This is to be expected, because checking e-restrictedness of
a problem can be done in linear time, in contrast with checking establishment, which is at
least co-NP-hard [11].

We begin by showing that each problem can be translated into an equivalent normalized
problem:

I Definition 8 (Normalization).
(1) A symbolic heap ∃x . ψ ∈ SHK, where ψ is quantifier-free, is normalized iff for every

atom α in ψ:
a. if α is an equational atom, then it is of the form x 6l t (t 6l x), where x ∈ x,
b. every variable x ∈ fv(ψ) occurs in a points-to or predicate atom of ψ,
c. if α is a predicate atom q(t1, . . . , t#q), then {t1, . . . , t#q} ∩ C = ∅ and ti 6= tj, for all
i 6= j ∈ J1 . . #qK.

(2) A set of rules S is normalized iff for each rule p(x1, . . . , x#p)⇐S ρ, the symbolic heap
ρ is normalized and, moreover:
a. For every i ∈ J1 . . #pK and every predicate-free unfolding p(x1, . . . , x#p) ⇒∗S ϕ, ϕ

contains a points-to atom t0 7→ (t1, . . . , tK), such that xi ∈ {t0, . . . , tK}.
b. There exist sets pallocS(p) ⊆ J1 . . #pK and callocS(p) ⊆ C such that, for each

predicate-free unfolding p(x1, . . . , x#p)⇒∗S ϕ:
i ∈ pallocS(p) iff ϕ contains an atom xi 7→ (t1, . . . , tK), for every i ∈ J1 . . #pK,
c ∈ callocS(p) iff ϕ contains an atom c 7→ (t1, . . . , tK), for every c ∈ C.

c. For every predicate-free unfolding p(x1, . . . , x#p)⇒∗S ϕ, if ϕ contains an atom t0 7→
(t1, . . . , tK) such that t0 ∈ V \ {x1, . . . , x#p}, then ϕ also contains atoms t0 6l c, for
every c ∈ C.

(3) An entailment problem P = (S,Σ) is normalized if S is normalized and, for each sequent
φ0 `P φ1, . . . , φn the symbolic heap φi is normalized, for each i ∈ J0 . . nK.

The intuition behind Condition (2a) is that no term can “disappear” while unfolding an
inductive definition. Condition (2b) states that the set of terms eventually allocated by
a predicate atom is the same in all unfoldings. This allows to define the set of symbols
that occur freely in a symbolic heap φ and are necessarily allocated in every unfolding of φ,
provided that the set of rules is normalized:

I Definition 9. Given a normalized set of rules S and a symbolic heap φ ∈ SHK, the set
allocS(φ) is defined recursively on the structure of φ:

allocS(t0 7→ (t1, . . . , tK)) def= {t0} allocS(p(t1, . . . , t#p))
def= {ti | i ∈ pallocS(p)}

allocS(t1 ./ t2) def= ∅, ./∈ {l, 6l} ∪ callocS(p)
allocS(φ1 ∗ φ2) def= allocS(φ1) ∪ allocS(φ2) allocS(∃x . φ1) def= allocS(φ1) \ {x}
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I Example 10. The rules p(x, y) ⇐ ∃z . x 7→ z ∗ p(z, y) ∗ x 6l y and p(x, y) ⇐ ∃z . x 7→ z

are not normalized, because they contradict Conditions (1a) and (2a) of Definition 8,
respectively. A set S containing the rules q(x, y)⇐ ∃z . x 7→ y ∗ q(y, z) and q(x, y)⇐ x 7→ y

is not normalized, because it is not possible to find a set pallocS(q) satisfying Condition
(2b). Indeed, if 2 ∈ pallocS(q) then the required equivalence does not hold for the second
rule (because it does not allocate y), and if 2 6∈ pallocS(q) then it fails for the first one
(since the predicate q(y, z) allocates y). On the other hand, S ′ = {p(x, y) ⇐ ∃z . x 7→
z ∗ p(z, y) ∗ z 6l x ∗ z 6l nil, p(x, y) ⇐ x 7→ y, q(x, y) ⇐ ∃z . x 7→ y ∗ q(y, z) ∗ z 6l nil
, q(x, y) ⇐ x 7→ y ∗ r(y), r(x) ⇐ x 7→ nil} is normalized (assuming C = {nil}), with
pallocS′(p) = pallocS′(r) = {1}, pallocS′(q) = {1, 2} and callocS′(π) = ∅, for all π ∈ {p, q, r}.
Then allocS′(p(x1, x2) ∗ q(x3, x4) ∗ r(x5)) = {x1, x3, x4, x5}. y

The following lemma states that every entailment problem can be transformed into a
normalized entailment problem, by a transformation that preserves progress, connectivity,
e-restricted-ness and (strong) establishment.

I Lemma 11. A progressing and connected entailment problem P can be translated to
an equivalent progressing, connected and normalized problem Pn, such that width(Pn) =
O(width(P)2) in time size(P) · 2O(width(P)2). Further, Pn is e-restricted if P is e-restricted
and (strongly) established if P is (strongly) established.

I Example 12. The entailment problem P = (S, {p(a, b) ` ∃x, y . q(x, y)}) with:

S def=
{

p(x, y) ⇐ ∃z . x 7→ z ∗ p(z, y) ∗ x 6l y q(x, y) ⇐ ∃z . x 7→ y ∗ q(y, z) ∗ z 6l a ∗ z 6l b
p(x, y) ⇐ ∃z . x 7→ z q(x, y) ⇐ x 7→ y

}
may be transformed into (S ′, {p1() ` ∃x, y . q1(x, y),∃x, y . q2(x, y)}), where S ′ is the set:

p1() ⇐ ∃z . a 7→ z ∗ p2(z) ∗ z 6l a ∗ z 6l b p2(x) ⇐ x 7→ b ∗ p3()
p1() ⇐ a 7→ b ∗ p3() p2(x) ⇐ ∃z . x 7→ z ∗ p2(z) ∗ z 6l a ∗ z 6l b
p1() ⇐ ∃z . a 7→ z p2(x) ⇐ ∃z . x 7→ z

p3() ⇐ ∃z . b 7→ z q1(x, y) ⇐ ∃z . x 7→ y ∗ q1(y, z) ∗ z 6l a ∗ z 6l b
q2(x, y) ⇐ x 7→ y q1(x, y) ⇐ ∃z . x 7→ y ∗ q2(y, z) ∗ z 6l a ∗ z 6l b

The predicate atoms p1(), p2(x) and p3() are equivalent to p(a, b), p(x, b) and p(b, b),
respectively. q(x, y) is equivalent to q1(x, y) ∨ q2(x, y). Note that p2(x) is only used in a
context where x 6l b holds, thus the atom x 6l b may be omitted from the rules of p2().
Recall that a and b are mapped to distinct locations, by Assumption 1. y

We show that every established problem P can be reduced to an e-restricted problem in
time linear in the size and exponential in the width of the input, at the cost of a polynomial
increase of its width:

I Theorem 13. Every progressing, connected and established entailment problem P = (S,Σ)
can be reduced in time size(P) · 2O(width(P)2) to a normalized, progressing, connected and
e-restricted problem Pr, such that width(Pr) = O(width(P)).

The class of e-restricted problems is more general than the class of established problems, in
the following sense: for each established problem P = (S,Σ), the treewidth of each S-model
of a S-established symbolic heap φ is bounded by width(P) [8], while e-restricted symbolic
heaps may have infinite sequences of models with strictly increasing treewidth:

I Example 14. Consider the set of rules {lls(x, y) ⇐ x 7→ (y, nil), lls(x, y) ⇐ ∃z∃v . x 7→
(z, v) ∗ lls(z, y)}. The existentially quantified variable v in the second rule in never allocated
in any predicate-free unfolding of lls(a, b), thus the set of rules is not established. However,
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it is trivially e-restricted, because no equational atoms occur within the rules. Among the
models of lls(a, b), there are all n × n-square grid structures, known to have treewidth n,
for n > 1 [17] (such a grid can be represented as a list of length n2, with additional links
between the elements at positions i and i+ n). y

4 Normal Structures

The decidability of e-restricted entailment problems relies on the fact that, to prove the
validity of a sequent, it is sufficient to consider only a certain class of structures, called
normal, that require the variables not mapped to the same location as a constant to be
mapped to pairwise distinct locations:

I Definition 15. A structure (s, h) is a normal S-model of a symbolic heap φ iff there exists:
1. a predicate-free unfolding φ⇒S ∃x . ψ, where ψ is quantifier-free, and
2. an x-associate s of s, such that (s, h) |=S ψ and s(x) = s(y) ∧ x 6= y ⇒ s(x) ∈ s(C), for

all x, y ∈ fv(ψ).

I Example 16. Consider the formula ϕ = p(x1) ∗ p(x2), with p(x) ⇐S ∃z . x 7→ z and
C = {a}. Then the structures: (s, h) and (s, h′) with s = {(x1, `1), (x2, `2), (a, `3)}, h =
{(`1, `3), (`2, `3)} and h′ = {(`1, `4), (`2, `5)} are normal models of ϕ. On the other hand,
if h′′ = {(`1, `4), (`2, `4)} (with `4 6= `3) then (s, h′′) is a model of ϕ but it is not normal,
because any associate of s will map the existentials from the predicate-free unfolding of
p(x1) ∗ p(x2) into the same location, different from s(a). y

Since the left-hand side symbolic heap φ of each sequent φ ` ψ1, . . . , ψn is quantifier-free
and has no free variables (Definition 3) and moreover, by Assumption 1, every constant is
associated a distinct location, to check the validity of a sequent it is enough to consider only
structures with injective stores. We say that a structure (ṡ, h) is injective if the store ṡ is
injective. As a syntactic convention, by stacking a dot on the symbol denoting the store, we
mean that the store is injective.

The key property of normal structures is that validity of e-restricted entailment problems
can be checked considering only (injective) normal structures. The intuition is that, since
the (dis-)equalities occurring in the considered formula involve a constant, it is sufficient
to assume that all the existential variables not equal to a constant are mapped to pairwise
distinct locations, as all other structures can be obtained from such structures by applying a
morphism that preserves the truth value of the considered formulæ.

I Lemma 17. Let P = (S,Σ) be a normalized and e-restricted entailment problem and let
φ `P ψ1, . . . , ψn be a sequent. Then φ `P ψ1, . . . , ψn is valid for S iff (ṡ, h) |=S

∨n
i=1 ψi, for

each normal injective S-model (ṡ, h) of φ.

5 Core Formulæ

Given an e-restricted entailment problem P = (S,Σ), the idea of the entailment checking
algorithm is to compute, for each symbolic heap φ that occurs as the left-hand side of
a sequent φ `P ψ1, . . . , ψn, a finite set of sets of formulæ F(φ) = {F1, . . . , Fm}, of some
specific pattern, called core formulæ. The set F(φ) defines an equivalence relation, of finite
index, on the set of injective normal S-models of φ, such that each set F ∈ F(φ) encodes an
equivalence class. Because the validity of each sequent can be checked by testing whether
every (injective) normal model of its left-hand side is a model of some symbolic heap on
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the right-hand side (Lemma 17), an equivalent check is that each set F ∈ F(φ) contains a
core formula entailing some formula ψi, for i = 1, . . . , n. To improve the presentation, we
first formalize the notions of core formulæ and abstractions by sets of core formulæ, while
deferring the effective construction of F(φ), for a symbolic heap φ, to the next section (§6).
In the following, we refer to a given entailment problem P = (S,Σ).

First, we define core formulæ as a fragment of SLK. Consider a formula loc(x) def=
∃y0 . . . ∃yK . y0 7→ (y1, . . . , yK) ∗

∨K
i=0 x ≈ yi. Note that a structure is a model of loc(x) iff

the variable x is mapped to a location from the domain or the range of the heap. We define
also the following bounded quantifiers:

∃̇x . φ def= ∃x .
∧
t∈(fv(φ)\{x})∪C ¬x ≈ t ∧ φ ∃hx . φ

def= ∃̇x . loc(x) ∧ φ
∃¬hx . φ

def= ∃̇x . ¬loc(x) ∧ φ ∀¬hx . φ
def= ¬∃¬hx . ¬φ

In the following, we shall be extensively using the ∃hx . φ and ∀¬hx . φ quantifiers. The
formula ∃hx . φ states that there exists a location ` which occurs in the domain or range of
the heap and is distinct from the locations associated with the constants and free variables,
such that φ holds when x is associated with `. Similarly, ∀¬hx . φ states that φ holds if x is
associated with any location ` that is outside of the heap and distinct from all the constants
and free variables. The use of these special quantifiers will allow us to restrict ourselves to
injective stores (since all variables and constants are mapped to distinct locations), which
greatly simplifies the handling of equalities.

The main ingredient used to define core formulæ are context predicates. Given a tuple
of predicate symbols (p, q1, . . . , qn) ∈ Pn+1, where n ≥ 0, we consider a context predicate
symbol Γp,q1,...,qn

of arity #p +
∑n

i=1 #qi. The informal intuition of a context predicate
atom Γp,q1,...,qn(t,u1, . . . ,un) is the following: a structure (s, h) is a model of this atom if
there exist models (s, hi) of qi(ui), i ∈ J1 . . nK respectively, with mutually disjoint heaps,
an unfolding ψ of p(t) in which the atoms qi(ui) occur, and an associate s′ of s such that
(s′, h ]

⊎n
i=1 hi) is a model of ψ.

For readability’s sake, we adopt a notation close in spirit to SL’s separating implication
(known as the magic wand), and we write ∗n

i=1qi(yi) −−• p(x) for Γp,q1,...,qn(x,y1, . . . ,yn)
and emp −−• p(x), when n = 03. The set of rules defining the interpretation of context
predicates is the least set defined by the inference rules below, denoted CS :

p(x) −−• p(y)⇐CS x l y
x ∩ y = ∅

(I)

p(x)⇐S ∃z . ψ ∗∗mj=1pj(wj) ∗ni=1qi(yi) =∗mj=1γj

∗ni=1qi(yi) −−• p(x)⇐CS ∃v . ψσ ∗∗mj=1 (γj −−• pj(σ(wj)))

x, z,y1, . . . ,yn pairwise disjoint
σ : z ⇀ x ∪

⋃n

i=1 yi
v = z \ dom(σ)

(II)

Note that CS is not progressing, since the rule for p(x) −−• p(y) does not allocate any
location. However, if S is progressing, then the set of rules obtained by applying (II) only is

3 Context predicates are similar to the strong magic wand introduced in [13]. A context predicate α −−• β
is also related to the usual separating implication α −−∗ β of separation logic, but it is not equivalent.
Intuitively, −−∗ represents a difference between two heaps, whereas−−• removes some atoms in an unfolding.
For instance, if p and q are defined by the same inductive rules, up to a renaming of predicates, then
p(x) −−∗ q(x) always holds in a structure with an empty heap, whereas p(x) −−• q(x) holds if, moreover,
p(x) and q(x) are the same atom.
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also progressing. Rule (I) says that each predicate atom p(t) −−• p(u), such that t and u are
mapped to the same tuple of locations, is satisfied by the empty heap. To understand rule
(II), let (s, h) be an S-model of p(t) and assume there are a predicate-free unfolding ψ of p(t)
and an associate s′ of s, such that q1(u1), . . . , qn(un) occur in ψ and (s′, h) |=S ψ. If the
first unfolding step is an instance of a rule p(x)⇐S ∃z . ψ ∗∗m

j=1pj(wj) then there exist a
z-associate s of s and a split of h into disjoint heaps h0, . . . , hm such that (s, h0) |= ψ[t/x] and
(s, hj) |=S pj(wj)[t/x], for all j ∈ J1 . . mK. Assume, for simplicity, that u1∪. . .∪un ⊆ dom(s)
and let h1, . . . , hn be disjoint heaps such that (s, hi) |=S qi(ui). Then there exists a partition{
{ij,1, . . . , ij,kj

} | j ∈ J1 . . mK
}
of J1 . . nK, such that hij,1 , . . . , hij,kj

⊆ hj , for all j ∈ J1 . . mK.

Let γj
def= ∗kj

`=1q`(u`), then (s, hj \ (hij,1 ∪ . . . ∪ hij,kj
)) |=CS γj −−• pj(wj)[t/x], for each

j ∈ J1 . . mK. This observation leads to the inductive definition of the semantics for∗n

i=1qi(ui) −−• p(t), by the rule that occurs in the conclusion of (II), where the substitution
σ : z ⇀ x ∪

⋃n
i=1 yi is used to instantiate4 some of the existentially quantified variables from

the original rule p(x)⇐S ∃z . ψ ∗∗m

j=1pj(wj).

I Example 18. Consider the set S = {p(x)⇐ ∃z1, z2 . x 7→ (z1, z2)∗q(z1)∗q(z2), q(x)⇐ x 7→
(x, x)}. We have (s, h) |=S p(x) with s = {(x, `1)} and h = {(`1, `2, `3), (`2, `2, `2), (`3, `3, `3)}.
The atom q(y) −−• p(x) is defined by the following non-progressing rules (we only consider the
rules corresponding to the case where σ is the identity, since the other rules are redundant):

q(y) −−• p(x) ⇐ ∃z1, z2 . x 7→ (z1, z2) ∗ q(y) −−• q(z1) ∗ emp −−• q(z2) q(y) −−• q(x) ⇐ x l y

q(y) −−• p(x) ⇐ ∃z1, z2 . x 7→ (z1, z2) ∗ emp −−• q(z1) ∗ q(y) −−• q(z2) emp −−• q(x) ⇐ x 7→ (x, x)

The two rules for q(y) −−• p(x) correspond to the two ways of distributing q(y) over q(z1),
q(z2). We have h = h1 ] h2, with h1 = {(`1, `2, `3), (`2, `2, `2)} and h2 = {(`3, `3, `3)}. It is
easy to check that (s[y ← `3], h1) |=CS q(y) −−• p(x), and (s[y ← `3], h2) |=CS q(y). Note that
we also have (s[y ← `2], h′1) |=CS q(y) −−• p(x), with h′1 = {(`1, `2, `3), (`3, `3, `3)}. y

Having introduced context predicates, the pattern of core formulæ is defined below:

I Definition 19. A core formula ϕ is an instance of the pattern:

∃hx∀¬hy . ∗n

i=1

(∗ki

j=1q
i
j(ui

j) −−• pi(ti)
)
∗∗m

i=n+1t
i
0 7→ (ti1, . . . , tiK) such that:

(i) each variable occurring in y also occurs in an atom in ϕ;
(ii) for every variable x ∈ x, either x ∈ ti \

⋃ki

i=1 ui
j for some i ∈ J1 . . nK, or x = tij, for

some i ∈ Jn+ 1 . . mK and some j ∈ J0 . . KK;
(iii) each term t occurs at most once as t = root(α), where α is an atom of ϕ.
We also define the set of terms roots(ϕ) def= rootslhs(ϕ) ∪ rootsrhs(ϕ), with rootslhs(ϕ) def=
{root(qi

j(ui
j)) | i ∈ J1 . . nK, j ∈ J1 . . kiK} and rootsrhs(ϕ) def= {root(pi(ti)) | i ∈ J1 . . nK} ∪ {ti0 |

i ∈ Jn+ 1 . . mK}.

Note that an unfolding of a core formula using the rules in CS is not necessarily a core
formula, because of the unbounded existential quantifiers and equational atoms that occur in
the rules from CS . Note also that a core formula cannot contain an occurrence of a predicate
of the form p(t) −−• p(t) because otherwise, Condition (iii) of Definition 19 would be violated.

Lemma 20 shows that any symbolic heap is equivalent to an effectively computable finite
disjunction of core formulæ, when the interpretation of formulæ is restricted to injective

4 Note that this instantiation is, in principle, redundant (i.e. the same rules are obtained if dom(σ) = ∅
by chosing appropriate z-associates) but we keep it to simplify the related proofs.
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structures. For a symbolic heap φ ∈ SHK, we define the set T (φ), recursively on the structure
of φ, implicitly assuming w.l.o.g. that emp ∗ φ = φ ∗ emp = φ:

T (emp) def= {emp} T (t0 7→ (t1, . . . , tK)) def= {t0 7→ (t1, . . . , tK)}
T (p(t)) def= {emp −−• p(t)} T (φ1 ∗ φ2) def= {ψ1 ∗ ψ2 | ψi ∈ T (φi) , i = 1, 2}

T (t1 l t2) def=
{
{emp} if t1 = t2
∅ if t1 6= t2

T (t1 6l t2) def=
{

∅ if t1 = t2
{emp} if t1 6= t2

T (∃x . φ1) def= {∃hx . ψ | ψ ∈ T (φ1)} ∪ {ψ | ψ ∈ T (φ1[t/x]) , t ∈ (fv(φ1) \ {x}) ∪ C}

For instance, if φ = ∃x . p(x, y) ∗ x 6l y and C = {c}, then T (φ) = {∃hx . emp −−•
p(x, y), emp −−• p(c, y)}. Note that T (y 6l y) = ∅, thus emp −−• p(y, y) 6∈ T (φ).

I Lemma 20. Assume S is normalized. Consider an e-restricted normalized symbolic heap
φ ∈ SHK with no occurrences of context predicate symbols, and an injective structure (ṡ, h),
such that dom(ṡ) = fv(φ) ∪ C. We have (ṡ, h) |=S φ iff (ṡ, h) |=CS ψ, for some ψ ∈ T (φ).

Next, we give an equivalent condition for the satisfaction of a context predicate atom,
that relies on an unfolding of a symbolic heap into a core formula:

I Definition 21. A formula ϕ is a core unfolding of a predicate atom ∗n

i=1qi(ui) −−• p(t),
written ∗n

i=1qi(ui) −−• p(t) CS ϕ, iff there exists:
1. a rule ∗n

i=1qi(yi) −−• p(x)⇐CS ∃z . φ, where φ is quantifier free, and
2. a substitution σ = [t/x,u1/y1, . . . ,un/yn] ∪ ζ, ζ ⊆ {(z, t) | z ∈ z, t ∈ t ∪

⋃n
i=1 ui}, such

that ϕ ∈ T (φσ).
A core unfolding of a predicate atom is always a quantifier-free formula, obtained from the
translation (into a disjunctive set of core formulæ) of the quantifier-free matrix of the body
of a rule, in which some of the existentially quantified variables in the rule occur instantiated
by the substitution σ. For instance, the rule emp −−• p(x) ⇐CS ∃y . x 7→ y induces the
core unfoldings emp −−• p(a)  S a 7→ a and emp −−• p(a)  S a 7→ u, via the substitutions
[a/x, a/y] and [a/x, u/y], respectively. Note that a core unfolding of an atom φ may contain
variables not occurring in φ, corresponding to the existential variables occurring in the rules,
such as the variable u in the previous example.

We now define an equivalence relation, of finite index, on the set of injective structures.
Intuitively, an equivalence class is defined by the set of core formulæ that are satisfied by all
structures in the class (with some additional conditions). First, we introduce the overall set
of core formulæ, over which these equivalence classes are defined:

I Definition 22. Let VP
def= V1

P ∪ V2
P , such that V1

P ∩ V2
P = ∅ and ||Vi

P || = width(P), for
i = 1, 2 and denote by Core(P) the set of core formulæ ϕ such that roots(ϕ) ∩ fv(ϕ) ⊆ V1

P ,
roots(ϕ) \ fv(ϕ) ⊆ V2

P ∪ C and no variable in V1
P is bound in ϕ.

Note that Core(P) is a finite set, because both VP and C are finite. Intuitively, V1
P will

denote “local” variables introduced by unfolding the definitions on the left-hand sides of the
entailments, whereas V2

P will denote existential variables occurring on the right-hand sides.
The sets V1

P and V2
P can be chosen arbitrarily, provided the conditions of Definition 22 are

satisfied. Second, we characterize an injective structure by the set of core formulæ it satisfies:

I Definition 23. For a core formula ϕ = ∃hx∀¬hy . ψ, we denote by WS(ṡ, h, ϕ) the set of
stores ṡ that are injective (x ∪ y)-associates of ṡ, and such that:
(1) (ṡ, h) |=CS ψ,
(2) ṡ(x) ⊆ loc(h), and
(3) ṡ(y) ∩ loc(h) = ∅.
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The elements of this set are called witnesses for (ṡ, h) and ϕ.
The core abstraction of an injective structure (ṡ, h) is the set CP(ṡ, h) of core formulæ ϕ ∈

Core(P) for which there exists a witness ṡ ∈ WS(ṡ, h, ϕ) such that ṡ(rootslhs(ϕ))∩dom(h) = ∅.

An injective structure (ṡ, h) satisfies each core formula ϕ ∈ CP(ṡ, h), a fact that is witnessed
by an extension of the store assigning the universally quantified variables random locations
outside of the heap. Further, any core formula ϕ such that (ṡ, h) |= ϕ and rootslhs(ϕ) = ∅
occurs in CP(ṡ, h).

Our entailment checking algorithm relies on the definition of the profile of a symbolic heap.
Since each symbolic heap is equivalent to a finite disjunction of existential core formulæ,
when interpreted over injective normal structures, it is sufficient to consider only profiles of
core formulæ:

I Definition 24. The profile of an entailment problem P = (S,Σ) is the relation F ⊆
Core(P)× 2Core(P) such that, for any core formula φ ∈ Core(P) and any set of core formulæ
F ∈ 2Core(P), we have (φ, F ) ∈ F iff F = CP(ṡ, h), for some injective normal CS-model (ṡ, h)
of φ, with dom(ṡ) = fv(φ) ∪ C.

Assuming the existence of a profile, the effective construction of which will be given in Section
6, the following lemma provides an algorithm that decides the validity of P:

I Lemma 25. Let P = (S,Σ) be a normalized e-restricted entailment problem and F ⊆
Core(P)× 2Core(P) be a profile for P. Then P is valid iff, for each sequent φ `P ψ1, . . . , ψn,
each core formula ϕ ∈ T (φ) and each pair (ϕ, F ) ∈ F , we have F ∩ T (ψi) 6= ∅, for some
i ∈ J1 . . nK.

The proof relies on Lemma 17, according to which entailments can be tested by considering
only normal models. As one expects, Lemma 20 is used in this proof to ensure that the
translation T (.) of symbolic heaps into core formulæ preserves the injective models.

6 Construction of the Profile Relation

For a given normalized entailment problem P = (S,Σ), we describe the construction of a
profile FP ⊆ Core(P)× 2Core(P), recursively on the structure of core formulæ. We assume
that the set of rules S is progressing, connected and e-restricted. The relation FP is the least
set satisfying the recursive constraints (1), (2), (3) and (4), given in this section. Since these
recursive definitions are monotonic, the least fixed point exists and is unique.

Points-to Atoms. For a points-to atom t0 7→ (t1, . . . , tK), with t0, . . . , tK ∈ V1
P ∪C, we have:

(t0 7→ (t1, . . . , tK), F ) ∈ FP , iff F is the set containing t0 7→ (t1, . . . , tK) and all core formulæ

of the form ∀¬hz . ∗ni=1 qi(ui) −−• p(t) ∈ Core(P), where z = (t ∪ u1 ∪ . . . ∪ un) \ ({t0, . . . , tK} ∪ C)

such that emp −−• p(t) CS t0 7→ (t1, . . . , tK) ∗∗ni=1 emp −−• qi(ui)
(1)

For instance, if S = {p(x) ⇐ ∃y, z . x 7→ y ∗ q(y, z), q(x, y) ⇐ x 7→ y}, with V1
P =

{u, v} and V2
P = {z}, then FP contains the pair (u 7→ v, F ) with F = {u 7→ v, emp −−•

q(u, v),∀¬hz . q(v, z) −−• p(u)}.
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Predicate Atoms. Since profiles involve only the core formulæ obtained by the syntactic
translation of a symbolic heap, the only predicate atoms that occur in the argument of a
profile are of the form emp −−• p(t). We consider the constraint:
(emp −−• p(t), F ) ∈ FP if (∃hy . ψ, F ) ∈ FP , emp −−• p(t) CS ψ ∈ Core(P) and y = fv(ψ)\t (2)

Separating Conjunctions. Computing the profile of a separating conjunction is the most
technical point of the construction. To ease the presentation, we assume the existence of a
binary operation called composition:

I Definition 26. Given a set D ⊆ V1
P∪C, a binary operator ~D : 2Core(P)×2Core(P) → 2Core(P)

is a composition if CP(ṡ, h1)~D CP(ṡ, h2) = CP(ṡ, h), for any injective structure (ṡ, h), such
that
(i) dom(ṡ) ⊆ V1

P ,
(ii) h = h1 ] h2,
(iii) Fr(h1, h2) ⊆ ṡ(V1

P ∪ C),
(iv) Fr(h1, h2) ∩ dom(h) ⊆ ṡ(D) ⊆ dom(h).
We recall that Fr(h1, h2) = loc(h1) ∩ loc(h2). If S is a normalized set of rules, then for any
core formula φ whose only occurrences of predicate atoms are of the form emp −−• p(t), we
define allocCS (φ) as the homomorphic extension of allocCS (emp −−• p(t)) def= allocS(p(t)) to
φ (see Definition 9). Assuming that S is a normalized set of rules and that a composition
operation ~D (the construction of which will be described below, see Lemma 30) exists, we
define the profile of a separating conjunction:

(φ1 ∗ φ2, add(X1, F1)~D add(X2, F2)) ∈ FP , if (φi, Fi) ∈ FP Xi
def= fv(φ3−i) \ fv(φi), i = 1, 2

allocCS (φ1) ∩ allocCS (φ2) = ∅, D
def= allocCS (φ1 ∗ φ2) ∩ (fv(φ1) ∩ fv(φ2) ∪ C)

add(x, F ) def= {∃hy∀¬hz . ψ | ∃hy∀¬hz∀¬hx̂ . ψ[x̂/x] ∈ F}, add({x1, . . . , xn}, F ) def= add(x1, . . . add(xn, F ))
(3)

The choice of the set D above ensures (together with the restriction to normal models)
that ~D is indeed a composition operator. Intuitively, since the considered models are
normal, every location in the frontier between the heaps corresponding to φ1 and φ2 will
be associated with a variable, thus D denotes the set of allocated locations on the frontier.
Note that, because P is normalized, allocCS (φ1 ∗ φ2) is well-defined. Because the properties
of the composition operation hold when the models of its operands share the same store
(Definition 26), we use the add(x, F ) function that adds free variables (mapped to locations
outside of the heap) to each core formula in F .

Existential Quantifiers. Since profiles involve only core formulæ obtained by the syntactic
translation of a symbolic heap (Lemma 25), it is sufficient to consider only existentially
quantified core formulæ, because the syntactic translation T (.) does not produce universal
quantifiers. The profile of an existentially quantified core formula is given by the constraint:

(∃hx
′ . φ[x′/x], rem(x, F )) ∈ FP , if x ∈ fv(φ), x′ ∈ V2

P , x′ not bound in φ, (φ, F ) ∈ FP ,

rem(x, F ) def= {∃hx̂ . ψ[x̂/x] | ψ ∈ F, x ∈ fv(ψ), x̂ not in ψ} ∩ Core(P) ∪ {ψ | ψ ∈ F, x 6∈ fv(ψ)}

rem({x1, . . . , xn}, F ) def= rem(x1, . . . rem(xn, F ) . . .)

(4)

Note that x̂ is a fresh variable, which is not bound or free in ψ. In particular, if x ∈ roots(ψ),
then we must have x̂ ∈ V2

P , so that ∃hx̂ . ψ[x̂/x] ∈ Core(P). Similarly the variable x is
replaced by a fresh variable x′ ∈ V2

P in ∃hx
′ . φ[x′/x] to ensure that ∃hx

′ . φ[x′/x] is a core
formula.
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The Profile Function. Let FP be the least relation that satisfies the constraints (1), (2),
(3) and (4). We prove that FP is a valid profile for P, in the sense of Definition 24:

I Lemma 27. Given a progressing and normalized entailment problem P = (S,Σ), a
symbolic heap ϕ ∈ SHK with fv(ϕ) ⊆ V1

P , a core formula φ ∈ T (ϕ) and a set of core formulæ
F ⊆ Core(P), we have (φ, F ) ∈ FP iff F = CP(ṡ, h), for some injective normal CS-model
(ṡ, h) of φ, with dom(ṡ) = fv(ϕ) ∪ C.

The composition operation ~D works symbolically on core formulæ, by saturating the
separating conjunction of two core formulæ via a modus ponens-style consequence operator.

IDefinition 28. Given formulæ φ, ψ, we write φ 
 ψ if φ = ϕ∗[α −−• p(t)]∗[(β∗p(t)) −−• q(u)]
and ψ = ϕ ∗ [(α ∗ β) −−• q(u)] (up to the commutativity of ∗ and the neutrality of emp) for
some formula ϕ, predicate atoms p(t) and q(u) and conjunctions of predicate atoms α and β.

I Example 29. Consider the structure (s, h) and the rules of Example 18. We have h = h1]h2,
with (s[y ← `3], h1) |=CS q(y) −−• p(x) and (s[y ← `3], h2) |=S q(y), i.e., (s[y ← `3], h2) |=CS

emp −−• q(y), thus (s[y ← `3], h) |=CS q(y) −−• p(x) ∗ emp −−• q(y) 
 emp −−• p(x). y

We define a relation on the set of core formulæ Core(P), parameterized by a set D ⊆ V1
P ∪C:

∃hx1∀¬hy1 . ψ1, ∃hx2∀¬hy2 . ψ2 �D ∃hx∀¬hy . ψ

if ψ1 ∗ ψ2 

∗ ψ,x1 ∩ x2 = ∅,x = (x1 ∪ x2) ∩ fv(ψ),y = ((y1 ∪ y2) ∩ fv(ψ)) \ x, rootslhs(ψ) ∩D = ∅.

(5)

The composition operator is defined by lifting the � relation to sets of core formulæ:

F1 ~D F2
def= {ψ | φ1 ∈ F1, φ2 ∈ F2, φ1, φ2 �D ψ} (6)

We show that ~D is indeed a composition, in the sense of Definition 26:

I Lemma 30. Let S be a normalized, progressing, connected and e-restricted set of rules,
D ⊆ V1

P ∪ C be a set of terms and (ṡ, h) be an injective structure, with dom(ṡ) ⊆ V1
P ∪ C.

Let h1 and h2 be two disjoint heaps, such that:
(1) h = h1 ] h2,
(2) Fr(h1, h2) ⊆ ṡ(V1

P ∪ C) and
(3) Fr(h1, h2) ∩ dom(h) ⊆ ṡ(D) ⊆ dom(h).
Then, we have CP(ṡ, h) = CP(ṡ, h1)~D CP(ṡ, h2).

7 Main Result

In this section, we state the main complexity result of the paper. As a prerequisite, we prove
that the size of the core formulæ needed to solve an entailment problem P is polynomial in
width(P) and the number of such formulæ is simply exponential in width(P) + log(size(P)).

I Lemma 31. Given an entailment problem P, for every formula φ ∈ Core(P), we have
size(φ) = O(width(P)2) and ||Core(P)|| = 2O(width(P)3×log(size(P))).

I Theorem 32. Checking the validity of progressing, connected and e-restricted entailment
problems is 2-EXPTIME-complete.

Proof. 2-EXPTIME-hardness follows from [6]; since the reduction in [6] involves no (dis-
)equality, the considered systems are trivially e-restricted. We now prove 2-EXPTIME-
membership. Let P be an e-restricted problem. By Lemma 11, we compute, in time
size(P) · 2O(width(P)2), an equivalent normalized e-restricted problem Pn of size(Pn) =
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size(P)× 2O(width(P)2) and width(Pn) = O(width(P)2). We fix an arbitrary set of variables
VPn

= V1
Pn
] V2
Pn

with ||Vi
Pn
|| = width(Pn), for i = 1, 2 and we compute the relation FPn

,
using a Kleene iteration, as explained in Section 6 (Lemma 27). By Lemma 31, if ψ ∈ Core(Pn)
then size(ψ) = O(width(P)2) and if (ψ,F ) ∈ FPn then ||F || = 2O(width(Pn)3×log(size(Pn))) =
2O(width(P)8×log(size(P))), hence FP can be computed in 22O(width(P)8×log(size(P))) steps. It thus
suffices to check that each of these steps can be performed in polynomial time w.r.t. Core(Pn)
and size(Pn). This is straightforward for points-to atoms, predicate atoms and existential
formulæ, by iterating on the rules in Pn and applying the construction rules (1), (2) and
(4) respectively. For the disjoint composition, one has to compute the relation 
∗, needed
to build the operator ~D, according to (5) and (6). We use again a Kleene iteration. It
is easy to check that φ 
 ψ ⇒ size(ψ) ≤ size(φ), furthermore, one only needs to check
relations of the form φ1 ∗ φ2 
 ψ with φ1, φ2, ψ ∈ Core(Pn). This entails that the number of
iteration steps is 2O(width(P)8×log(size(P))) and, moreover, each step can be performed in time
polynomial w.r.t. Core(Pn). Finally, we apply Lemma 25 to check that all the entailments in
Pn are valid. This test can be performed in time polynomial w.r.t. ||FPn

|| and size(Pn). J

8 Conclusion and Future Work

We presented a class of SL formulæ built from a set of inductively defined predicates, used to
describe pointer-linked recursive data structures, whose entailment problem is 2-EXPTIME-
complete. This fragment, consisting of so-called e-restricted formulæ, is a strict generalization
of previous work defining three sufficient conditions for the decidability of entailments between
SL formulæ, namely progress, connectivity and establishment [8, 12, 14]. On one hand, every
progressing, connected and established entailment problem can be translated into an e-
restricted problem. On the other hand, the models of e-restricted formulæ form a strict
superset of the models of established formulæ. The proof for the 2-EXPTIME upper bound
for e-restricted entailments leverages a novel technique used to prove the upper bound of
established entailments [12, 14]. A natural question is whether the e-restrictedness condition
can be dropped. We conjecture that this is not the case, and that entailment is undecidable for
progressing, connected and non-e-restricted sets. Another issue is whether the generalization
of symbolic heaps to use guarded negation, magic wand and septraction from [15] is possible
for e-restricted entailment problems. The proof of these conjectures is on-going work.
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