
Fast and Space-Efficient Queues via Relaxation
Dempsey Wade
Bucknell University, Lewisburg, PA, USA

Edward Talmage1

Computer Science Department, Bucknell University, Lewisburg, PA, USA
edward.talmage@bucknell.edu

Abstract
Efficient message-passing implementations of shared data types are a vital component of practical
distributed systems, enabling them to work on shared data in predictable ways, but there is a
long history of results showing that many of the most useful types of access to shared data are
necessarily slow. A variety of approaches attempt to circumvent these bounds, notably weakening
consistency guarantees and relaxing the sequential specification of the provided data type. These
trade behavioral guarantees for performance. We focus on relaxing the sequential specification of
a first-in, first-out queue type, which has been shown to allow faster linearizable implementations
than are possible for traditional FIFO queues without relaxation.

The algorithms which showed these improvements in operation time tracked a complete execution
history, storing complete object state at all n processes in the system, leading to n copies of every
stored data element. In this paper, we consider the question of reducing the space complexity of
linearizable implementations of shared data types, which provide intuitive behavior through strong
consistency guarantees. We improve the existing algorithm for a relaxed queue, showing that it is
possible to store only one copy of each element in a shared queue, while still having a low amortized
time cost. This is one of several important steps towards making these data types practical in real
world systems.

2012 ACM Subject Classification Computing methodologies → Distributed algorithms

Keywords and phrases Shared Data Structures, Message Passing, Relaxed Data Types, Space
Complexity

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2020.14

Acknowledgements We would like to thank Anh Kieu, Shane Staret, and Jimmy Wei for helping
find references.

1 Introduction & Related Work

Because they present the same interface as sequential data types, shared memory objects
are a relatively intuitive way to program access to shared data by many processors. Un-
fortunately, in a distributed computation setting, physical shared memory is usually not
possible and processes communicate by sending messages. Programming in a message passing
system is more difficult, since there tend to be many messages in transit at once, on many
communication links, and their causal and temporal relationships may be masked by variable
delays. To hide this difficulty and make distributed programming easier and less error-prone,
there is much work on implementing shared memory objects as an abstraction layer on top
of message passing systems. As more and more computing moves to distributed and cloud
systems, the ability to write programs that interact with shared data in predictable and
efficient ways continues to grow, so it is vital that we work to provide the best shared data
structure implementations possible.

1 Corresponding author

© Dempsey Wade and Edward Talmage;
licensed under Creative Commons License CC-BY

24th International Conference on Principles of Distributed Systems (OPODIS 2020).
Editors: Quentin Bramas, Rotem Oshman, and Paolo Romano; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:edward.talmage@bucknell.edu
https://doi.org/10.4230/LIPIcs.OPODIS.2020.14
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Space-Efficient Relaxed Queues

Existing work on shared data types has given implementations for both specific and
arbitrary data types, but it has also shown that all operations with certain often-desirable
properties are inherently slow, requiring a delay proportional to the maximum time a message
may take in transit to ensure knowledge of preceding and concurrent operation invocations
[8, 11, 6]. In a widely distributed system, such a delay could easily be on the order of
hundreds of milliseconds, which is more than enough to negatively impact a human user’s
experience, and is extremely costly to a computation using such a shared data object.

There are several approaches to circumvent this lower bound, some of which the community
has explored for decades and some of which are newer. The lower bounds mentioned before
generally apply to linearizable implementations, in which it is possible to reduce a concurrent
execution to an equivalent sequential one without reordering non-concurrent operations.
Weaker consistency conditions, such as sequential consistency or eventual consistency, do
not have the same lower bounds, but they also do not provide the same guarantees [2, 10]
or intuitive correspondence to sequential structures. Eventual consistency is widely used in
commercial applications but gives very weak guarantees, making it difficult to reason about
the expected behavior of interactions with shared data. Even for stronger conditions like
sequential consistency, the practical effects of weakened guarantees can be hard to anticipate
and seem counter-intuitive, making them less attractive in practice.

Another approach called relaxation, developed in [1] and formalized in [5], allows better
performance in a linearizable system [5, 9]. By weakening the guarantees of the data type’s
sequential specification, more possible responses to a particular operation are allowed, and this
limited non-determinism can be exploited to eliminate the need for processes to synchronize
in every operation instance. Instead, updates can be sent in the background, allowing
quick responses and high throughput. Occasional synchronization is necessary, keeping the
worst-case time complexity high, but relaxed data types can have a much lower amortized
cost per operation than is possible for unrelaxed types.

While [9] proved the possibility of these performance gains, it did so in a theoretical model
without many of the difficulties present in real systems. Assumptions of known message delays,
free storage, and always-correct processes do not translate well to practical implementations.
In this paper, we seek to take a first step towards removing these assumptions by reducing the
space required to implement relaxed queues, while still maintaining good time performance.
Future work is still necessary to remove other idealized model assumptions and build practical
implementations of these types.

The performance gains possible with relaxed data structures, particularly queues, come at
the cost of weakened guarantees on the order of data retrieval. For example, the relaxation
we primarily consider in this work merely guarantees that some old element in the structure,
not necessarily the single oldest, is returned by each Dequeue instance. Such a weakening
reduces the usefulness of the data type in many cases, since we can no longer be confident
which element we get when we retrieve one from the structure. But because the type still
provides some ordering, these objects are still of use in applications where response time is
more important than exact ordering. For example, consider a distributed job queue, where
the primary goal is to execute a large computation as quickly as possible. While we intuitively
want to send tasks in exact FIFO order, if they are being completed concurrently, their
completion order may not exactly match their start order, so relaxing the start order will
not adversely affect the computation. Similarly, online shopping applications, such as for
high-demand, limited-run items like concert tickets, demand very quick response time, or
customers are left frustrated while they wait to find out whether they were among the first
to request a product. By relaxing the order of customers in some cases, the average wait

D. Wade and E. Talmage 14:3

time may decrease, without any customer waiting longer than they would in an unrelaxed
system. Care is necessary to avoid disadvantaging customers who made their request earlier,
but this is possible by counting requests. As a tangible example, consider the problem of
selling 1000 identical tickets for lawn seating at a concert. The exact order in which requests
are processed has no bearing on correctness, as long as the first 1000 customers are those
who get the tickets. Since we do not relax Enqueue (which already has good performance),
we know that we store requests in the order they arrive, and merely need to mark which
are the first 1000. With a fast relaxed Dequeue, we can then process all the requests more
quickly, leading to happier customers and lower load on the ticket servers.

Our Contribution

The algorithm for arbitrary data types in [11], on which the algorithm in [9] for relaxed types
is based, keeps a complete copy of the shared data locally on every process and updates
these copies based on operations invoked throughout the system. This is highly inefficient,
especially for data types like Queues, Stacks, and Heaps in which reading an element also
removes it, so only a single process will ever need the value of each stored data object. The
space overhead of full replication was necessary for those algorithms to achieve their low time
complexity, as they avoided waiting for round-trip messages by having every process simulate
the shared object by executing all operation instances on its local copy of the structure.

We consider only linearizable implementations of data types, since they provide the
strongest, most intuitive restrictions on concurrent behavior. The idea of only partially
replicating data elements has been more thoroughly explored in the context of causal
consistency [4, 12, 3] where, despite the weaker consistency condition it is difficult or
impossible to store fewer than n copies of the data and maintain consistency.

We show that by exploiting the same properties of relaxation that allow a structure to
have lower time cost, we can also reduce storage to only a single copy of each data element
in the system. This gives a reduction in space complexity by a factor of n over the existing
work. We here present this solution for one particular relaxation of FIFO queues as a proof
of concept. For this relaxation, we increase the amortized time complexity of the costly
Dequeue operation by approximately a factor of 2 over the relaxed queue implementation
in [9], but with reasonable levels of relaxation still achieve amortized time below the lower
bound for unrelaxed queues. We also show that this is better than is possible in an unrelaxed
queue implementation. In the future, we intend to explore other relaxations, where we expect
to match the time complexity of the best-known algorithm while still reducing the total
space complexity by a factor of n.

Our solution is still somewhat idealized, as we keep assumptions about known message
delay bounds and correct processes. We are working separately on fault-tolerant implementa-
tions, with the aim of eventually combining improvements along different dimensions. In
fact, a real-world solution will probably not want to reduce space complexity quite as far
as we do here, since some replication is necessary to prevent data loss in the presence of
faults. However, we feel it worthwhile to explore the bounds of possible space savings and
the tradeoff of space versus time on their own merits. This helps demonstrate the essential
parts of efficient implementations and educates our ongoing work to build practically useful
structures.

OPODIS 2020

14:4 Space-Efficient Relaxed Queues

2 Model & Definitions

We consider sequential data type specifications consisting of two parts: a list of operations,
with argument and return types, and a list of legal sequences of invocation-response pairs of
those operations. In the sequential setting, an operation’s invocation must be immediately
followed by its response. In a concurrent setting, the argument and response of an operation
may occur at different times. An operation instance is an invocation of an operation, which
specifies an argument, together with a corresponding response. We require that the set of
legal sequences in a data type specification be prefix-closed and complete, meaning that any
prefix of a legal sequence is legal and after any sequence ρ, for any invocation i there must
be a response r forming an operation instance (i, r) such that ρ · (i, r) is legal.

We focus on the queue data type, since its ordering properties lend themselves to intuitive
relaxations. Specifically, in this paper we implement queues with Out-of-Order k-relaxed
Dequeue. Informally, this is a FIFO queue in which each Dequeue, instead of being required
to return and remove the oldest element in the queue, may return and remove any of the k
oldest elements. For analysis, we will also refer to the derived parameter ` := bk/nc.

I Definition 1. A queue with Out-of-Order k-relaxed Dequeue provides two operations:
1. Enqueue(x,−) takes one value x as its argument and returns nothing.
2. Dequeue(−, r) takes no argument and returns one value r.
Let ⊥ be a special symbol to indicate an empty queue. The empty sequence is legal and, if ρ
is a legal sequence,

ρ ·Enqueue(x,−) is legal for any x 6= ⊥ which is not the argument of an Enqueue in ρ.2
ρ ·Dequeue(−, r), r 6= ⊥, is legal if r is the argument of one of the first k Enqueue(y)
instances in ρ s.t. Dequeue(−, y) is not in ρ.
ρ · Dequeue(−,⊥) is legal if there are fewer than k Enqueue(y) instances in ρ s.t.
Dequeue(−, y) is not in ρ.

We adopt the model of [9]: We consider a system of n processes which can communicate
by sending point-to-point messages to each other. This is a partially-synchronous model,
where each process has a local clock running at the same rate as real time, but with an
unknown offset, and processes know that every message takes between d− u and d real time
in transit. We assume that local computation is instantaneous to focus on the communication
costs which arise in the algorithm. Each process interacts with a user by allowing them
to invoke operations and by providing return values to those invocations. We thus model
each process with a state machine whose transitions are triggered by three types of events:
message arrival, timer expiration, and operation invocation, and which can set timers, send
messages, and/or generate operation responses in each step.

A schedule for each process describes the sequence of states and transitions of its state
machine. A run of an algorithm consists of a schedule for each process, where each transition
has an associated real time. A run is admissible if the times associated with each process’
transitions are monotonically non-decreasing and interaction with each process starts with
an operation invocation and then alternates responses and invocations. This prevents a user
from invoking an operation until its previous invocation has finished. A run is complete if
every message sent is received and each process’ schedule is infinite or ends with no timers
set. Note that this assumes that all processes are correct and do not crash.

2 We assume that arguments to Enqueue are unique. This can be achieved by another abstraction layer
adding tags such as timestamps to elements.

D. Wade and E. Talmage 14:5

We assume that local clocks have previously been synchronized by an algorithm such as
that of [7], which yields an optimal bound of ε ≤ (1− 1/n)u on clock skew, the difference
between any two local clocks.

We consider algorithms implementing data type specifications in this message passing
model which satisfy a liveness condition, that every operation invocation has a matching
response and vice versa, and linearizability, which says that for every complete, admissible
run of the algorithm, there is a permutation, called a linearization, of the operation instances
in the run which is legal by the data type specification and respects the real-time order
of instances which do not overlap in real time. We require algorithms to be eventually
quiescent, which means that if users stop invoking operations, every process’ schedule will be
finite–processes eventually stop setting timers and sending messages.

The time complexity of an operation OP in this model, denoted |OP |, is the maximum
over all instances in all complete, admissible runs of the real time between the invocation and
response of a single instance of that operation. We are also interested in the amortized time
complexity of OP , which is the maximum over all complete, admissible runs of the average
real time between invocation and response of every instance of OP . We assume that local
computation is instantaneous, partly because it is practically much faster than communication
time and partly because we are focused on minimizing the cost of communication-related
delays.

To measure space complexity of our queue implementations, we introduce the parameter
T , which represents the maximum number of data elements concurrently in the queue. That
is, in a sequence π of operation instances, T is the maximum over all prefixes ρ of π of
the number of Enqueue instances in ρ minus the number of Dequeue instances in ρ which
return a non-⊥ value. To focus on the principles of shared data objects, we only measure
the amount of data stored, not local variables used for the algorithm or buffers holding
unprocessed messages.

3 Lower Bound on Unrelaxed Queues

We begin with a brief argument for the worst-case time complexity of any algorithm for an
unrelaxed queue which stores only one copy of each data element. Our algorithm will match
this space complexity and worst-case time bound, which shows that our algorithm is not a
step backward from an unrelaxed queue with the same space complexity.

I Theorem 2. Any algorithm linearizably implementing an unrelaxed queue which stores
only one copy of each element must have |Dequeue| ≥ 2d.

Proof. Suppose that some algorithm A linearizably implements a queue and only stores one
copy of each element. Consider a run in which one process enqueues several elements, then
nothing happens until the system is quiescent. Since A stores only one copy of each element,
the oldest element head is stored at a single process, which we’ll call ph. Suppose that some
other process pd then invokes a Dequeue. Since there are no concurrent operation instances,
pd must return head. But pd doesn’t know what head is, so must retrieve it from ph. Since
the system was in a quiescent state, ph must wait to hear from pd before sending head, and
the upper bound on message delay implies that pd will not have head available to return
until up to 2d after invocation. J

In a system that does not satisfy eventual quiescence, we could prove the same result by
showing that if head is in transit, a process that is not the recipient of a message carrying
head can invoke a Dequeue and it will still need to wait up to 2d time before receiving head.

OPODIS 2020

14:6 Space-Efficient Relaxed Queues

The exception, and why we restrict ourselves to the domain of eventually quiescent algorithms,
are algorithms that effectively use the message channels for memory. By broadcasting all
elements immediately upon reception, instead of storing them, such an algorithm could
prevent a Dequeue instance from needing a long delay. This would lead to an unconscionably
large message complexity, even in the absence of activity on the data structure.

4 Algorithm

Our algorithm is a modification of that in [9], as we want to maintain its improvements
in time complexity. That algorithm uses a system of timers to ensure that all processes
execute all invocations on their local copies of the queue in the same order. This, coupled
with deterministic execution, ensures that all processes maintain the same state and can
provide consistent and correct return values. To enable the majority of Dequeue instances
to return after only local computation, the algorithm used an element-claiming system to
divide the k values which were possibilities for a legal Dequeue return value among the n
processes. As long as a process had a claimed element when a Dequeue invocation arrived,
the algorithm responded quickly to the user and coordinated with other processes in the
background. When a process ran out of claimed elements, the next Dequeue invocation was
forced to wait until the process was sure its local copy of the queue was up to date to claim
ownership of more elements and generate a Dequeue response.

We want to avoid having a complete copy of the shared state at every process, so we
add mechanisms for determining which process stores each element. This is a two-stage
system, with each element initially stored at one process, but then moved to a (potentially)
different process which claims it. This transfer is necessary for a process to be able to return
its claimed elements without waiting for communication with other processes, enabling the
common case of most Dequeue instances returning without waiting for communication.

4.1 Description
We first give an intuitive description of our algorithm’s behavior. The algorithm is event-
driven, where possible events are operation invocation, message arrival, and timer expiration.
Recall that we assume local computation is instantaneous, so events cannot interrupt other
event handlers.3

When a user invokes an operation at a particular process pi, the appropriate handler
(lines 1-4 for Enqueue, 5-11 for Dequeue) will announce the invocation to every process,
including pi. When each process receives such an announcement of an invocation op, the
message handler in lines 15-20 sets a timer to wait u+ ε time (u to account for variation in
message delay and ε to correct for clock skew) ensuring that it receives all invocations with
smaller timestamps. The process will then locally execute, in increasing timestamp order, all
invocations with smaller timestamps, ending with op, via the while loop in lines 21-25. In
[9], this guaranteed that all processes follow the same sequence of local operation executions,
allowing them to keep their local views of the shared queue synchronized. In our algorithm,
we do not store the full state of the shared queue at each process, so cannot make as strong
a claim. Instead, we track the number of each type of operation (modulo n) and current
size of the simulated queue, which enables us to determine which process should store and
retrieve the data elements involved in each Enqueue or Dequeue instance, respectively.

3 We name functions in the pseudocode based on how they may be called: HandleEvents respond to
external events, while Functions are called internally.

D. Wade and E. Talmage 14:7

We can respond to certain operation invocations before their execution is complete at all
processes, as soon as we know the correct return value. The algorithm will propagate the
instance’s effects in the background to ensure correct state. All Enqueue instances can thus
return quickly, since they have no return value. Similarly, Dequeue instances can quickly
return one of a process’ claimed elements, if there are any. Lines 12-14 generate these fast
responses. When a process runs out of claimed elements, however, quick returns to Dequeue
invocations are not possible, dividing Dequeue instances into two types, fast and slow. For
slow Dequeues, the invoking process must claim new elements, which requires waiting until
it knows about all preceding operation instances so that all processes agree which elements it
claims. This occurs when processes locally execute the slow Dequeue instance, which sends
the newly-claimed element to the invoking process as a restock message. Once the invoking
process receives a restock, it knows it has an element that is a correct return value for the
Dequeue instance and will not be returned by any other process, so the slow Dequeue can
return to the user. The algorithm does this in lines 39-53 by a similar logical structure as
that which ensures local execution of all instances in timestamp order. Here, we ensure that
restock elements are claimed, or returned by slow Dequeue instances, in the correct order.

There are two primary improvements in this algorithm over that of [9]. First, and central
to this paper’s result, we note that when processes receive an announcement of a new
Enqueue instance, they do not all need to store a copy of the argument. Instead, we separate
stored elements from those which processes have claimed. Only one process saves the new
element, putting it in a local stored queue. When a process claims that element, the storing
process can send and delete it, since it will be saved in the claiming process’ claimed queue.

Using the number of Enqueue instances which have happened so far, the algorithm
distributes enqueued elements in a round-robin fashion to achieve balanced storage. When
processes claim elements and remove them from storage, we similarly remove them in round-
robin order using the saved number of Dequeue instances, which guarantees a FIFO ordering
of stored elements across all processes. Note that this order does not hold for Dequeue
return values, since a process can claim elements, then sit idle while other processes remove
elements added to the queue since its claimed elements.

Our second improvement is the restocking procedure: when a process invokes a Dequeue,
its announcement of that invocation also serves as a request to claim a new element. If the
invoking process has no claimed elements, it must wait for the new element to arrive from
the process storing it. If the invoking process has claimed elements, restocking occurs in
the background, with the effect that if Dequeue invocations are not too frequent at any
one process, all Dequeue instances in a run could be fast. This restocking system increases
the worst-case time of a Dequeue to approximately 2d, where the original algorithm had
a worst-case time of approximately d, but this tradeoff is necessary to reduce our storage
requirements. As detailed later in the paper, we still have a lower amortized time complexity
than is possible without relaxation.

Pseudocode for our relaxed queue is in Algorithms 1 and 2. It uses local FIFO queues
claimed and stored and min-priority queues Pending and Restocks, which are keyed on the
timestamps (lexicographically-ordered pairs containing local clock values and process ids) of
the instances they store.

4.2 Correctness
To prove our algorithm is a correct, linearizable implementation of a queue with Out-of-Order
k relaxed Dequeue, we will show that every invocation has a response, then construct a
linearization of those instances based on the timestamps assigned when they are invoked,
and show that every return value is legal by the data type specification.

OPODIS 2020

14:8 Space-Efficient Relaxed Queues

Algorithm 1 Pseudocode for each pi implementing a Queue with Out-of-Order k-relaxed Dequeue.

1: HandleEvent Enqueue(val)
2: ts = 〈localtime, i〉
3: send (enq, val, ts) to all
4: setT imer(ε, 〈enq, val, ts〉, respond)
5: HandleEvent Dequeue
6: ts = 〈localtime, i〉
7: val = claimed.dequeue()
8: if val 6= ⊥ then
9: send (fastDeq, val, ts) to all

10: setT imer(ε, 〈fastDeq, val, ts〉, respond)
11: else send (slowDeq,⊥, ts) to all
12: HandleEvent ExpireTimer(〈op, val, ts〉, respond)
13: if op == fastDeq then Generate Dequeue response with return value val
14: else Generate Enqueue response with no return value
15: HandleEvent Receive (op, val, ts) from pj
16: if op ∈ {fastDeq, slowDeq} then
17: Restocks.insert(〈op, val, ts〉)
18: setT imer(d+ 2u+ ε, 〈op, val, ts〉, restock)
19: Pending.insert(〈op, val, ts〉)
20: setT imer(u+ ε, 〈op, val, ts〉, execute)
21: HandleEvent ExpireTimer(〈op, val, ts〉, execute)
22: while ts ≥ Pending.min() do
23: 〈op′, val′, ts′〉 = Pending.extractMin()
24: executeLocally(op′, val′, ts′)
25: cancelT imer(〈op′, arg′, 〈t, j〉〉, execute)
26: Function executeLocally(op, val, ts)
27: if op == enq then
28: if enqueueCount == i then
29: if clean and size < k then
30: claimed.enqueue(val)
31: else stored.enqueue(val)
32: enqueueCount += 1 (mod n)
33: size += 1
34: else
35: if restockCount == i then send (restock, stored.dequeue(), 〈op, val, ts〉) to pj
36: restockCount += 1 (mod n)
37: size −= 1
38: clean = (size == 0)
39: HandleEvent Receive (restock, restockV al, 〈op, val, 〈t, i〉〉) from pj
40: Restocks.update(〈op, val, 〈t, i〉〉, restockV al)
41: Function ExpireTimer(〈op, val, ts, restockV al〉, restock)
42: while ts ≥ Restocks.min() do
43: 〈op′, val′, ts′, restockV al′〉 = Restocks.extractMin()
44: executeRestock(op′, val′, ts′, restockV al′)
45: cancelT imer(〈op′, arg′, ts′, restockV al′〉, restock)

D. Wade and E. Talmage 14:9

Algorithm 2 Algorithm 1, continued.

46: Function ExecuteRestock(op, val, 〈∗, j〉, restockV al)
47: if op == fastDeq and j == i then
48: claimed.Enqueue(restockV al)
49: if op == slowDeq and j == i then
50: returnV al = claimed.Dequeue()
51: if returnV al == ⊥ then returnV al == restockV al

52: else claimed.Enqueue(restockV al)
53: Generate Dequeue response with return value returnV al

Let R be an arbitrary complete, admissible run of the algorithm. We assume that if
multiple events happen at the same process at exactly the same real time, message receptions
occur before timer expirations, but events of the same type may occur in any order. An
operation invocation’s timestamp is the value of the variable ts defined in line 2 or 6 for
Enqueue or Dequeue invocations, respectively.

We omit the proofs for Lemmas 3 and 4 for the sake of space, since they are fundamentally
the same as proofs in [9].

I Lemma 3. Each operation invocation in R causes exactly one response.

This defines the set of operation instances in R, by pairing each invocation with the
resultant response. We say that an operation instance’s timestamp is that of its invocation.

I Lemma 4. Every process locally executes every operation instance exactly once, in times-
tamp order.

I Construction 1. Let π be the sequence of all operations instance in R, sorted by timestamp
order.

I Lemma 5. π respects the order of non-overlapping operation instances in R.

Proof. Suppose in contradiction that op2 responds before op1’s invocation, but ts(op1) <
ts(op2), so op1 precedes op2 in π. Every operation instance takes at least ε time to respond,
by the timers in lines 4 and 10. Thus, op2’s invocation must be at least ε real time before
op1’s. But local clocks are skewed by at most ε, so ts(op2) must be less than or equal to
ts(op1), contradicting our assumption and proving the claim. J

I Lemma 6. At any time, there are no more than k elements in the union of all processes’
claimed queues and the set of restock messages in transit.

Proof. We observe that there are only two ways that elements can be added to a claimed
queue. First, in a clean state, which means that there have been no Dequeues since the
queue was last empty, Enqueue instances can add their arguments directly to claimed queues
in line 30. This cannot cause there to be more than k elements in all processes’ claimed
queues, by the check in line 29.

Second, we add elements to claimed when restocking after a Dequeue instance, in lines 48
and 52. Elements are only added to claimed after removing an element from that process’
claimed, either in line 7 or line 50, no Dequeue instance can increase the size of any process’
claimed queue above the maximum size of that queue set by Enqueue instances.

The only time an element is sent in a restock message is after a Dequeue instance. If
that instance was fast, then it removed a claimed element, so sending the restock message
does not increase the number of claimed or restocking elements. If the Dequeue instance

OPODIS 2020

14:10 Space-Efficient Relaxed Queues

was slow, then the invoking process had no claimed elements. Sending the restock message
could increase the total number of elements claimed or in transit, but since the invoking
process’ claimed queue was empty, k ≥ n, and Enqueue instances which add to claimed do
so in round-robin fashion, this means that there were previously fewer than k elements in the
union of all claimed queues and in-transit restock messages, so there are still fewer than k.

Thus, the total number of elements in all processes’ claimed queues and all in-transit
restock messages will be less than or equal to k. J

I Lemma 7. For any prefix ρ of the sequence π defined in Construction 1, after locally
executing ρ, every process’ size and clean variables will have the same values.

Proof. We first note that both size and clean are only edited in the function executeLo-
cally, so we restrict our attention to that function and prove this lemma by induction on
|ρ|, the length of the prefix ρ. When |ρ| = 0, all processes’ variables hold their initial value
of clean = true and size = 0.

Assume that after locally executing a prefix ρ′ of length k, the claim holds. Then when
any process locally executes the next operation instance op in π, it will follow the same logic,
since executeLocally is deterministic and all processes have the same parameters, since
they are executing the same operation instance, they will set clean to the same value and
change size in the same way. The only differences in behavior that may occur at different
processes are the results of the process id checks in lines 28 and 35, which do not have any
effect on the values of clean or size. Thus, after executing a prefix of length k + 1, every
process will have the same values for its clean and size variables. J

I Lemma 8. At any time, for any element c in any process’ claimed queue or in-transit
restock message and any element s in any process’ stored queue, c was the argument of
an Enqueue instance which appears in the sequence π defined in Construction 1 before the
Enqueue instance with s as argument.

Proof. Suppose in contradiction that an element x in some process pi’s claimed queue was
the argument of an Enqueue instance enq = Enqueue(x) that appears in π after another
instance enq′ = Enqueue(y), where y is in some process pj ’s stored queue (note that i and
j may not be distinct). As before, there are two possible ways the algorithm may have put x
in pi’s claimed queue: directly by enq in line 30 or as a restock for a Dequeue instance in
line 48 or 52.

Suppose first that x was added directly to pi’s claimed queue by enq. Then when each of
pi and pj locally executed enq, by line 28 and Lemma 7 we know that clean was true. Thus,
pj would only have put y in stored if either clean was false when pj locally executed enq′
and changed to true before pj locally executed enq, or if size was at least k when pj locally
executed enq′ but less than k when pi locally executed enq (or both). clean could not have
been false when processes locally executed enq′ and true when they locally executed enq
without y having been removed from stored and returned by a Dequeue in between, since
clean is only set to true when there are no elements left in the queue, by Line 38. On the
other hand, if size was at least k when pj locally executed enq′, but was not when pi locally
executed enq, there must have been a Dequeue instance between enq′ and enq in π, since
size only decreases in line 37. But when each process locally executed that Dequeue instance,
they would have set clean to false in line 38, so when pi locally executed enq, it would not
have stored x in claimed, unless clean was reset to true between the local execution of the
Dequeue instance, which we have already argued could not happen. Thus, x cannot have
been added to pi’s claimed by enq.

D. Wade and E. Talmage 14:11

The other possible way for x to be in pi’s claimed queue is for it to have been put in some
process pk’s stored queue and passed to pi as a restock element for a Dequeue instance deq.
But, since all processes locally execute all instances in the same order, restocks are taken from
storage in the order in which they were added (proving the claim for elements in in-transit
restock messages), and y would be added to stored before x, by Lemma 4, we can conclude
that y was removed from pj ’s stored queue by an instance deq′ with a lower timestamp
than that which caused x to be removed. Because the instance deq′ removing y from stored

had a lower timestamp than deq, it must have been locally executed within d+ u+ ε time
after the invocation of deq, at the latest when the timer set in line 18 (upon arrival of the
message containing deq) expires. However, no process can call executeRestock for deq
and add x to claimed until the timer on line 18 expires for deq or another instance with
larger timestamp. Such an instance can be invoked at most ε real time before deq, and the
message sent at its invocation must take at least d− u times. Thus, this instance’s restock
timer can expire no earlier than (d − u) + (d + 2u + ε) − ε = 2d + u real time after the
invocation of deq. Thus, pj must have locally executed deq′ and removed y from stored at
least (2d+ u)− (d+ u+ ε) = d− ε > 0 real time before pi added x to claimed, contradicting
our assumption.

Thus, for any x enqueued by an instance with smaller timestamp than that enqueueing y,
x cannot be in any process’ claimed queue or an in–transit restock message while y is in
another process’ stored queue, and we have the claim. J

I Lemma 9. The sequence π defined in Construction 1 is legal by the specification of a queue
with Out-of-Order k-relaxed Dequeue.

Proof. We prove this by induction on the length of a prefix ρ of π. The empty sequence is
legal, proving the base case. Suppose now that ρ = σ · op and σ is a legal sequence. Denote
the process invoking op as ph.

Case 1: op = Enqueue(arg,−). ρ is legal by the type specification.
Case 2: op = Dequeue(−, retV al), retV al ∈ V . We consider the cases of fast and slow
Dequeue instances separately:

Suppose op is a fastDeq instance. Then its return value is chosen from ph’s claimed
queue. By Lemmas 6, there are no more than k elements in all processes’ claimed
queues and in-transit restock messages. By Lemma 8, all claimed elements and those
carried by in-transit restock messages are the arguments of the earliest unmatched
Enqueue instances in the prefix of π before op. Thus, at op’s invocation retV al is the
argument of one of the first k unmatched Enqueue instances.
Every Dequeue instance’s return value in a claimed queue is removed as soon as it
is chosen (lines 7, 50) and ph removes retV al from its claimed queue during op’s
invocation. Also, no element is ever in more than one claimed queue, by the checks
on lines 48 and 52 and the fact that elements are removed from stored when sent
to claimed (line 35). Thus, no other Dequeue will return retV al. Further, once an
Enqueue instance is among the first k unmatched, it will continue to be until it is
matched, so ρ is legal.
Suppose op is a slowDeq instance. If op chooses its return value in line 50, then
Lemmas 6 and 8 show that retV al is the argument of one of the first k unmatched
Enqueue instances in σ, so ρ is legal. If op chooses its return value in line 51, then
that value was carried by a restock message. As discussed before, that means it was
the argument of one of the first k unmatched Enqueue instances, and thus ρ is legal.

OPODIS 2020

14:12 Space-Efficient Relaxed Queues

Case 3: op = Dequeue(−,⊥). For a Dequeue instance to return ⊥, then it must have
chosen its return value in line 51, and have received a ⊥ as a restock element. For the
restock message to have been carrying ⊥, then it must have come from a process with
an empty stored queue, in line 35. This means that when processes locally executed this
Dequeue instance, there were no elements in any process’ stored queue, since elements
are removed from stored queues in the order in which they were added. This means there
were fewer than k unmatched Enqueues, since processes locally execute all instances in
the order given by π, by Lemma 4 and there are fewer than k elements in claimed elements
and restock messages–which are the only other places values can be–by Lemma 6. Thus,
by the specification of a queue with Out-of-Order k-relaxed Dequeue, ρ is legal. J

I Theorem 10. Algorithm 1 is a correct, linearizable implementation of a queue with
Out-of-Order k-relaxed Dequeue.

Proof. By Lemma 5, π is an ordering of all operation instances which respects the real time
order of non-overlapping instances and by Lemma 9, π is legal. Thus, for any run R of
Algorithm 1, there is a linearization of R, and we have the claim. J

4.3 Complexity
4.3.1 Time
When discussing time complexity, we are interested in the time the algorithm takes to
respond to operation invocations, in terms of the system’s message timing parameters. With
relaxation, we can have many Dequeue instances return much faster than the worst-case,
leading to a low average cost for Dequeue. Thus, we also measure the amortized, or worst-
case of the average, time required for Dequeue. We do not consider the amortized cost of
Enqueue since every instance takes the (low) worst-case time.

One additional wrinkle in measuring the time complexity is that the mechanism for
accelerating fast Dequeue instances depends on having a significant number of elements in
the queue at all times. This would be the most common use case, and the number of fast
Dequeues, and thus average performance, scales cleanly with the size of the queue, but makes
general analysis difficult. We thus present bounds for the heavily-loaded case, where there
are consistently at least k elements in the queue. In more lightly loaded scenarios, where
there are fewer than k elements to distribute, the algorithm behaves as if k was decreased–the
structure is less relaxed. Practically, the enqueue elements are distributed evenly among all
processes, and they can dequeue those quickly before trying to claim more. Since Enqueue
instances only claim elements while the structure is clean, this is the same as if k was the
size of the queue at the first Dequeue instance until the queue is clean again. This means
that relaxation scales cleanly with the queue’s size when the first Dequeue instance occurs,
up to k.

Finally, we observe that our restocking mechanism gives the possibility of much better
average performance than the worst case represented in the amortized cost. A Dequeue

instance is fast if its invoking process has claimed elements available, so slow Dequeue

instance occur when many fast Dequeues in a row deplete the process’ stock of claimed
elements. Because we restock in the background, if Dequeue invocations are sufficiently
infrequent, then a process will never run out of claimed elements, and all Dequeue instances
will be fast. Exactly how infrequent Dequeue invocations must be for this to occur depends
on the system parameters, but the average time for each would be the same as the amortized
cost of the mix of fast and slow Dequeues which results from invoking them continuously.
Thus, for the common case when many Dequeues are not invoked immediately one after
another, a process will experience only Dequeue instances with low response times.

D. Wade and E. Talmage 14:13

I Theorem 11. The worst-case operation times for Algorithm 1 are ε for Enqueue and
2d+ u+ ε for Dequeue.

Proof. Enqueue instances and Dequeue instances at a process which currently has claimed
elements are fast operations, and respond ε time after invocation, by the timers set in
lines 4 and 10 and handled in lines 12-14, while their effects are propagated through the
system in the background. Dequeue instances at processes which do not have any claimed
elements are slow, and cannot respond until the process can coordinate with other processes
to claim an element. Such a slowDeq instance must wait for its announcement message to
arrive at the process which holds the next stored element (in FIFO order), up to u+ ε time
(line 20) for that process to ensure that it is executing instances in timestamp order, and
a second message delay for that process to send the newly-claimed element back (line 35).
The slowDeq instance can then return either the newly claimed element or one its invoking
process claimed in the background execution of another operation instance while it was
waiting. This delay is managed by the timer set in line 18, which starts after the d − u
delay for a message from the invoking process to reach itself. Thus, the total worst-case time
complexity for Dequeue is 2d+ u+ ε. J

This worst-case cost is higher than the d + ε achievable in unrelaxed queues [11], but
slow Dequeue instances are relatively infrequent, so we still obtain a low amortized cost.
More concerning is the fact that we have more than doubled the worst-case cost from the
algorithm for queues with out-of-order k-relaxed Dequeue in [9]. This is the tradeoff for
reducing space complexity, and is unavoidable since at least some Dequeue instance must
retrieve its return value from another process, taking minimum of 2d time.

For amortized response time, consider a heavily-loaded run, defined as a run which starts
with at least k Enqueue instances, after which there are never fewer than k unmatched
Enqueue instances. Because there have been no Dequeue instances so far, when processes
locally execute each of the initial k Enqueue instances, the check in line 29 will pass, and one
process will the enqueued element. Thus, there will be k claimed elements, evenly distributed
among the processes, when the first Dequeue is invoked. Since we assume k ≥ n, this means
that the first Dequeue will be fast, as will subsequent Dequeue instances until some process
fast Dequeues ` elements and empties its claimed queue. If that process invokes another
Dequeue before restocking, it will be a slow Dequeue instance, and take the worst-case time
of 2d+u+ ε. By the time that slow Dequeue instance returns, all restocking for previous fast
Dequeue instances will be complete, and the process will again have ` claimed elements. In
a heavily-loaded run, this pattern is the worst-case for every process, since there will always
be elements to restock processes’ claimed queues. Thus, at most one in every ` Dequeue
instances will be slow (recall ` = bk/nc) and the amortized time complexity of Dequeue is
at most 2d+u+ε+(`−1)ε

` = 2d+u
` + ε.

I Theorem 12. The amortized time complexity of Dequeue in Algorithm 1 in a heavily-loaded
run is 2d+u

` + ε.

[9] gives a lower bound of d(1− 1/n) for the amortized complexity of unrelaxed Dequeue,
so for ` > 3, our algorithm is faster than an unrelaxed queue, while using a factor of n less
space. We also note that existing algorithms for more complex relaxations already have a
similar 2d term in their amortized cost and expect that we will be able to extend the benefits
of this paper’s work to such relaxations without significantly increasing the time cost.

OPODIS 2020

14:14 Space-Efficient Relaxed Queues

4.3.2 Space

For space complexity, because we use a round-robin method to evenly distribute stored
elements across the various processes, each process only has to hold (1/n)th of the elements
stored at any time. To present this in a way useful for building a system or determining
whether one has the capability necessary to participate in this algorithm, we can phrase this
in terms of the maximum size of the queue at any point in a run, T .

I Theorem 13. Our algorithm requires memory for at most T/n+ k/n+O(1) elements at
any process at a time, excluding message buffers.

Proof. No more than k elements are in the union of all processes’ claimed queues at a
time, by Lemma 6. These elements are evenly distributed by the round-robin procedure for
claiming elements at enqueue time, or restocking elements removed from that balanced state.
Thus, each process stores up to bk/nc+ 1 claimed elements. The restocking procedure for
Dequeue instances attempts to keep each process at this level, but in the event of many
Dequeue invocations in close succession, the claimed elements could be depleted, leaving
all elements in storage. Because elements are stored and removed from storage in a FIFO,
round-robin fashion, the number of elements stored at each process will differ by at most
1. This follows from the fact that if there have been E Enqueue instances and D Dequeue

instances, each process will have stored at most bE/nc+ 1 elements and removed at least
bD/nc of those, leaving it with less than or equal to E−D

n + 1 elements in stored. Since
T = E−D, we have at most bT/nc+ 1 stored elements at each process for a total of at most
T/n+ k/n+ 2 elements in memory.

This analysis is slightly oversimplified since processes, while they locally execute all
operation instances in the same order, may not do so at the same time. It is thus possible
that some process has not yet locally executed a Dequeue instance and removed an element
from storage at the real time when an Enqueue instance with later timestamp adds its
argument to another process’ storage. This leads to at most a constant number of additional
stored elements per process, however, as any one process cannot store elements from Enqueues
with later timestamps until it has completed locally executing all previous operations. Thus,
there can be at most n− 1 of these extra elements, each stored at a different process, before
the delayed local execution of a Dequeue removes an element from storage. This is less than
1 extra element stored at each process, preserving the bound. J

This reduction by a factor of n makes shared queues far more practical for computing
devices with limited memory, as well as much more attractive to users of larger systems since
a process needs only store elements which it expects to return and a share of elements which
it may yet use. In a particular system, it may be possible to use a more finely-tuned storage
strategy to demand more storage from processes with more resources, but we here treat the
general case by balancing the load evenly.

Extending this algorithm to keep more than one copy of each data element, which would
be an important component of fault-tolerance, would be simple, as we would just alter the
logic in line 28 so that more than one process stored each element and in line 35 to make
sure that all copies were removed from storage. The logic could be tuned to provide as much
or little replication as desired, but we leave the details to ongoing work that treats all the
concerns of failure tolerance.

D. Wade and E. Talmage 14:15

5 Conclusion and Ongoing Work

We have shown that relaxing a data type can not only enable faster implementations of
that type, but also reduce the type’s space complexity. This is a large step towards making
these data types practical in real-world systems. Now that we have shown the possibility
of reducing the space complexity to a single stored copy of each data element, we know we
have the flexibility to replicate them as many times as we may need for fault tolerance or
resilience to poor message delays.

One other approach which could provide this level of space efficiency is a system with a
centralized storage server, which coordinates requests and allocates elements to all processes.
Traditionally, the two primary drawbacks to such an approach are increased communication
time, since a round trip is required, and lack of fault tolerance, as a loss of the central server is
a loss of all data. The first complaint does not apply, since we also require a round-trip delay
for slow Dequeues. Since we assume no failures, we do not directly need fault tolerance. This
work is not our end goal, though, as we are working towards fault-tolerant implementations,
so we want to avoid structures which will make that extension more difficult.

Our end goal is to obviate all of the model assumptions that are unrealistic, eventually
yielding a practical implementation of our shared queue implementation. This will involve
not only space efficiency, but fault-tolerance, independence from exact knowledge of message
bounds, and accounting for local computation time, at a minimum. We have addressed
one of these dimensions here, and are working on the others independently. We also hope
to generalize and extend results to more relaxations of more data types, creating a large
collection of efficient shared data structures to aid developers of distributed systems.

Specifically, the lateness and restricted Out-of-Order relaxations of Dequeue are natural
targets. Lateness corrects the issue with Out-of-Order relaxations that a single element
at the head of the queue may be starved indefinitely by requiring that one in every k

Dequeue instances returns the oldest element in the queue, but places no restrictions on the
return values of other Dequeue instances. Restricted Out-of-Order combines the lateness
and Out-of-Order relaxations, requiring that every Dequeue returns one of the k elements
which were oldest when the queue’s head was last returned, which means every removed
element is near the head and at least one in every k Dequeue instances returns the head. A
space-efficient implementation of a queue with a lateness k-relaxed Dequeue does not need
to claim elements, only to coordinate removal of the head. An implementation of a queue
with restricted Out-of-Order k-relaxed Dequeue would combine that coordination system
with the claiming system of this paper’s algorithm. Both implementations should be possible
with the same time complexity as we achieve for the Out-of-Order relaxation.

References
1 Yehuda Afek, Guy Korland, and Eitan Yanovsky. Quasi-linearizability: Relaxed consistency

for improved concurrency. In Chenyang Lu, Toshimitsu Masuzawa, and Mohamed Mosbah,
editors, Principles of Distributed Systems - 14th International Conference, OPODIS 2010,
Tozeur, Tunisia, December 14-17, 2010. Proceedings, volume 6490 of Lecture Notes in Computer
Science, pages 395–410. Springer, 2010. doi:10.1007/978-3-642-17653-1_29.

2 Hagit Attiya and Jennifer L. Welch. Sequential consistency versus linearizability. ACM
Transactions on Computer Systems, 12(2):91–122, 1994. doi:10.1145/176575.176576.

3 Iwan Briquemont, Manuel Bravo, Zhongmiao Li, and Peter Van Roy. Conflict-free partially
replicated data types. In 7th IEEE International Conference on Cloud Computing Technology
and Science, CloudCom 2015, Vancouver, BC, Canada, November 30 - December 3, 2015,
pages 282–289. IEEE Computer Society, 2015. doi:10.1109/CloudCom.2015.81.

OPODIS 2020

https://doi.org/10.1007/978-3-642-17653-1_29
https://doi.org/10.1145/176575.176576
https://doi.org/10.1109/CloudCom.2015.81

14:16 Space-Efficient Relaxed Queues

4 Jean-Michel Hélary and Alessia Milani. About the efficiency of partial replication to implement
distributed shared memory. In 2006 International Conference on Parallel Processing (ICPP
2006), 14-18 August 2006, Columbus, Ohio, USA, pages 263–270. IEEE Computer Society,
2006. doi:10.1109/ICPP.2006.15.

5 Thomas A. Henzinger, Christoph M. Kirsch, Hannes Payer, Ali Sezgin, and Ana Sokolova.
Quantitative relaxation of concurrent data structures. In Roberto Giacobazzi and Radhia
Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 317–328.
ACM, 2013. doi:10.1145/2429069.2429109.

6 Martha J. Kosa. Time bounds for strong and hybrid consistency for arbitrary abstract
data types. Chicago Journal of Theoretical Computer Science, 1999, 1999. URL: http:
//cjtcs.cs.uchicago.edu/articles/1999/9/contents.html.

7 Jennifer Lundelius and Nancy A. Lynch. An upper and lower bound for clock synchronization.
Information and Control, 62(2/3):190–204, 1984. doi:10.1016/S0019-9958(84)80033-9.

8 Marios Mavronicolas and Dan Roth. Linearizable read/write objects. Theoretical Computer
Science, 220(1):267–319, 1999. doi:10.1016/S0304-3975(98)90244-4.

9 Edward Talmage and Jennifer L. Welch. Improving average performance by relaxing distributed
data structures. In Fabian Kuhn, editor, Distributed Computing - 28th International Symposium,
DISC 2014, Austin, TX, USA, October 12-15, 2014. Proceedings, volume 8784 of Lecture Notes
in Computer Science, pages 421–438. Springer, 2014. doi:10.1007/978-3-662-45174-8_29.

10 Werner Vogels. Eventually consistent. Communications of the ACM, 52(1):40–44, 2009.
doi:10.1145/1435417.1435432.

11 Jiaqi Wang, Edward Talmage, Hyunyoung Lee, and Jennifer L. Welch. Improved time
bounds for linearizable implementations of abstract data types. Information and Computation,
263:1–30, 2018. doi:10.1016/j.ic.2018.08.004.

12 Zhuolun Xiang and Nitin H. Vaidya. Partially replicated causally consistent shared memory:
Lower bounds and an algorithm. In Peter Robinson and Faith Ellen, editors, Proceedings of
the 2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 425–434. ACM, 2019. doi:10.1145/3293611.3331600.

https://doi.org/10.1109/ICPP.2006.15
https://doi.org/10.1145/2429069.2429109
http://cjtcs.cs.uchicago.edu/articles/1999/9/contents.html
http://cjtcs.cs.uchicago.edu/articles/1999/9/contents.html
https://doi.org/10.1016/S0019-9958(84)80033-9
https://doi.org/10.1016/S0304-3975(98)90244-4
https://doi.org/10.1007/978-3-662-45174-8_29
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1016/j.ic.2018.08.004
https://doi.org/10.1145/3293611.3331600

	Introduction & Related Work
	Model & Definitions
	Lower Bound on Unrelaxed Queues
	Algorithm
	Description
	Correctness
	Complexity
	Time
	Space

	Conclusion and Ongoing Work

