
José Correa
Departamento de Ingeniería Industrial, Universidad de Chile, Santiago, Chile
correa@uchile.cl

Paul Dütting
Department of Mathematics, London School of Economics, United Kingdom
p.d.duetting@lse.ac.uk

Felix Fischer
School of Mathematical Sciences, Queen Mary University of London, United Kingdom
felix.fischer@qmul.ac.uk

Kevin Schewior
Department Mathematik/Informatik, Universität zu Köln, Germany
kschewior@gmail.com

Bruno Ziliotto
CEREMADE, CNRS, PSL Research Institute, Université Paris Dauphine, Paris, France
ziliotto@math.cnrs.fr

Abstract

A prophet inequality states, for some $\alpha \in [0, 1]$, that the expected value achievable by a gambler who sequentially observes random variables X_1, \ldots, X_n and selects one of them is at least an α fraction of the maximum value in the sequence. We obtain three distinct improvements for a setting that was first studied by Correa et al. (EC, 2019) and is particularly relevant to modern applications in algorithmic pricing. In this setting, the random variables are i.i.d. from an unknown distribution and the gambler has access to an additional βn samples for some $\beta \geq 0$. We first give improved lower bounds on α for a wide range of values of β; specifically, $\alpha \geq (1 + \beta)/e$ when $\beta \leq 1/(e-1)$, which is tight, and $\alpha \geq 0.648$ when $\beta = 1$, which improves on a bound of around 0.635 due to Correa et al. (SODA, 2020). Adding to their practical appeal, specifically in the context of algorithmic pricing, we then show that the new bounds can be obtained even in a streaming model of computation and thus in situations where the use of relevant data is complicated by the sheer amount of data available. We finally establish that the upper bound of $1/e$ for the case without samples is robust to additional information about the distribution, and applies also to sequences of i.i.d. random variables whose distribution is itself drawn, according to a known distribution, from a finite set of known candidate distributions. This implies a tight prophet inequality for exchangeable sequences of random variables, answering a question of Hill and Kertz (Contemporary Mathematics, 1992), but leaves open the possibility of better guarantees when the number of candidate distributions is small, a setting we believe is of strong interest to applications.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases Prophet Inequalities, Stopping Theory, Unknown Distributions

Digital Object Identifier 10.4230/LIPIcs.ITCS.2021.86

Category Extended Abstract

Funding José Correa: Supported in part by ANID Chile through grant CMM-AFB 170001.
Paul Dütting: Work done in part while author was at Google Research, Zürich, Switzerland.
Felix Fischer: Supported in part by EPSRC grant EP/T015187/1.
Kevin Schewior: Supported in part by DAAD within the PRIME program.