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Abstract
We prove general complexity lower bounds on automata networks, in the style of Rice’s theorem,
but in the computable world. Our main result is that testing any fixed first-order property on the
dynamics of an automata network is either trivial, or NP-hard, or coNP-hard. Moreover, there
exist such properties that are arbitrarily high in the polynomial-time hierarchy. We also prove
that testing a first-order property given as input on an automata network (also part of the input)
is PSPACE-hard. Besides, we show that, under a natural effectiveness condition, any nontrivial
property of the limit set of a nondeterministic network is PSPACE-hard. We also show that it
is PSPACE-hard to separate deterministic networks with a very high and a very low number of
limit configurations; however, the problem of deciding whether the number of limit configurations is
maximal up to a polynomial quantity belongs to the polynomial-time hierarchy.
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1 Introduction

An automata network is a digraph where each node holds a state (among a finite set) that
evolves in function of the states of its inbound neighbors. All the nodes evolve at the same
time, in parallel. In other terms, the main difference between an automata network and a
cellular automaton is that the “grid” may be an arbitrary finite digraph, and that different
cells (nodes) may have different local functions. Since this definition is very general, any
finite dynamical system may be encoded into an automata network in a reasonable fashion.

Initially, Boolean automata networks, where the set of states is required to be {0, 1}
for all nodes, were introduced in the 1940’s as a formal model of neural networks [16].
Subsequently, linear automata networks, where the evolution function of each node is a linear
combination of its inputs, were investigated [3, 6, 9, 15], still motivated by neural networks.
General automata networks were then introduced in theoretical biology, in order to study the
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32:2 Rice-Like Theorems for Automata Networks

dynamics of gene expression and inhibition [14, 24]. They have since been further considered,
mostly from the standpoint of applications [7, 13, 17, 23], although theoretical results also
appeared [1, 4, 8, 19, 20].

In the literature, many questions about automata networks deal with the dynamics of the
system, i.e., the global function that it computes. For instance: does a given network have a
fixed point (i.e. a stable configuration)? How many of them does it have? Does it have a
cycle of exactly two configurations evolving one to the other? Does it have a configuration
with at least three predecessors? As one may suspect, such questions are computationally
hard to solve in general. The reason why one may have this intuition is that automata
networks can be viewed as a model of computation, so they probably are subject to some
kind of theorem in the flavor of Rice’s [18]:

▶ Theorem 1.1. Any nontrivial property of the function computed by a Turing machine is
undecidable.

One may object that automata networks are strictly less powerful than Turing machines,
for they lack unbounded memory. Any question about the function computed by an automata
network may be answered by exhaustive search, i.e., by enumerating all possible configurations
of the network (among finitely many), and testing each of them for the desired property.
That objection stands but the brute-force approach is not practical, for the number of
configurations is exponential in the size of network. On the other hand, most applications of
automata networks amount to answering questions about the functions that they compute.
We therefore endeavor to prove results along the lines of [2]:

▶ Metatheorem 1.2. Any nontrivial property of the function computed by an automata
network has high computational complexity.

Typically, “high computational complexity” means something like “NP-hard”, “co-NP-hard”
or even “PSPACE-hard”. As a consequence, there is probably no approach significantly
faster than brute-force for those questions, which makes them out of reach for our current
computational power. Thus, our results show that any application of automata networks
requiring fast testing of some dynamical property will have to rely on specific aspects of the
practical situation under consideration.

In order to make the statement of the metatheorem precise, we need to specify the
concepts of “property” and “nontriviality”. We obtained several different results that fit the
pattern of Metatheorem 1.2, with various tradeoffs on “property” and “nontriviality”, as
explained in the contributions and organization of the paper paragraph below.

Let F denote an automata network and X its set of configurations. The dynamics of F
may refer to two equivalent objects: either the function f : X → X given by the action of F ;
or the transition digraph (X,E) where E is the set {(x, f(x)) | x ∈ X}.

Specifying an automata network – say, by giving a Boolean circuit for the local function
of each node – is a way to specify its transition digraph in a concise way. Thus, some of our
results may be interpreted as statements about succinct graphs. However, in this paper we
mostly consider deterministic automata networks, i.e., networks whose transition digraph has
out-degree one. This restriction is not common in graph theory nor in finite model theory.
Still, some generalizations of our results might be of interest for those communities.

As usual with dynamical systems, the long-term behavior of an automata network is
of special interest. For pumping reasons, a deterministic automata network is always
ultimately periodic. Many practical questions can be asked about both the transient and
the periodic regimes of the system; therefore, it is interesting to know that such questions
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are computationally hard. The periodic regime of an automata network is called its limit
dynamics. It is the dynamics spanned by the configurations that are always visited infinitely
many times whenever they are visited once. We have two kinds of results: some are about
the limit dynamics of a given automata network, and some are about the full dynamics.

Contributions and organization of the paper

In Section 2, we set up the formalism: definitions, first remarks, etc.
In Section 3, we prove that a large class of properties over the set of limit configurations
of networks are PSPACE-complete. This echoes a result from [12] on cellular automata.
In Section 4, we show that it is PSPACE-complete to distinguish automata networks with
a very small and a very high number of limit configurations. However, we show that the
problem of deciding whether this number is maximal up to a polynomial quantity (in the
number of states and the number of nodes) belongs to the arithmetical hierarchy.
In Section 5, we prove that if a property on the dynamics of automata networks is
expressible by a first-order formula over a simple signature, then its complexity is either
bounded, NP-hard, or co-NP-hard. In this setting, the formula is considered fixed, not
part of the input. We also observe that this result still holds when restricted to bijective
automata networks, or to limit dynamics instead of full dynamics.
In Section 6, we show that if the first-order formula is considered as part of the input,
then the previous problem becomes PSPACE-complete.

2 Definitions and terminology

Let {Ai}i∈I denote a finite family of finite sets and A =
∏

i∈I Ai. An automata network
(AN) is a function f from A to itself. We think of it as a system of finite automata linked to
each other, where the input of one automaton is the current state of the other automata
(thus there is no external input word). More precisely, Ai is the set of states of the ith

automaton (or node); an element of A is a configuration of the system (it assigns one state
to each automaton); and f : A → A gives the evolution of the system after one step of time.

We can split f into a family of local functions {fi}i∈I , where fi goes from A to Ai and
returns the state of the ith automaton at the next step. In other terms, if I = {1, . . . , n}
and a = (a1, . . . , an) is an element of A, then we have f(a) = (f1(a), f2(a), . . . , fn(a)). For a
given i, it might happen that fi(a) does not depend on all the components of a. For instance,
fi(a) might depend only on ai and ai−1 (where a0 stands for an). The interaction digraph
Gf of f is the graph (I, I) where I is the set of pairs (i, j) such that, for some a, b with
ak = bk for every k ̸= i, we have fj(a) ̸= fj(b). A configuration of an automata network may
be viewed as a labeling of the interaction digraph. The label of each node evolves under f ,
but the new label depends only on the labels of the inbound neighbours of the node.

The dynamics, or transition digraph, of a network f , denoted by Gf , is the graph of the
function f : it is given by (A,F), where F is the set of pairs (a, f(a)), for a ranging over A.
The limit set of an automata network f is denoted Ωf and defined as Ωf =

⋂
n∈N f

n(A). Its
elements are the limit configurations, which are those that are met infinitely often in at least
one execution of the system. The limit dynamics or the limit digraph of f is denoted Gω

f and
is the subgraph of Gf induced by Ωf . Figure 1 illustrates the definitions so far.

When all the Ai’s are equal, we say that f is an automata network with uniform alphabet,
or ANU for short.

All these definitions generalize immediately if f is a relation instead of a function; the
fi’s are then local relations. Such an object is called a nondeterministic automata network.
Unless explicitly mentioned, automata networks are supposed to be deterministic.
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32:4 Rice-Like Theorems for Automata Networks

f1(x) =
{
x1 + 1 if x1 ̸= 2
x1 − 1 otherwise

f2(x) =
{
x2 + 1 if x1 ̸= 2
x2 − 1 otherwise

1

2

00 10 20

01 11 21

02 12 22

Figure 1 Example of automata network f for A1 = A2 = {0, 1, 2} (left), its interaction digraph
Gf (middle), and its transition digraph Gf (right). Ωf = {10, 11, 12, 20, 21, 22}.

When we need to give an automata network as input for an algorithm, we provide the
interaction digraph and one Boolean circuit for each local function (or relation). Circuit sizes
are assumed to be at most |Ai||A| (or 2|Ai|·|A|), because those are the sizes of the corresponding
truth tables. The nodes of the interaction digraph are assumed to be numbered 1, . . . , n
and each Ai is assumed to be of the form {0, . . . , |Ai| − 1}.

If P is a property that automata networks may or may not satisfy, and f is an automata
network, then we write f |= P if f satisfies P , and f ̸|= P otherwise. This is an abuse of
notation, and its precise meaning depends on the exact nature of P .

Unless otherwise stated, our reductions are polynomial-time many-one, and ≤p
tt denotes

polynomial-time truth-table reduction. For every integer k, the symbol Σp
k denotes the level

Σk of the polynomial hierarchy. For a decision problem P where an ANU is given as input, it
is natural to consider the Q-variant where the inputs are restricted to ANU having alphabet
Q. In the following, we will say that P is hard with fixed alphabet if there exists some Q such
that the Q-variant of the problem is hard. It will be the case of most of our hardness results
on ANU.

3 Abstract properties of limit sets

In this section, we focus on properties of the limit set and establish a Rice-like theorem
similar to the well-known result for limit sets of cellular automata [12].

A property P is a limit set property if, whenever two AN f and g have the same limit
sets (Ωf = Ωg), the following holds: f |= P ⇐⇒ g |= P . The simplest possible limit set is a
singleton, and the following lemma already shows that separating between singleton limit
sets and exponentially large ones can depend on arbitrary linear space Turing computations.

▶ Lemma 3.1. For any Turing machine M , any k ∈ N, any n ∈ N and any input u for M
of size at most n, there is an alphabet Q depending only on M and k and a deterministic
ANU fM,k,n,u : Qn → Qn and q0 ∈ Q such that:

if M accepts input u in at most kn −1 steps, using space at most n, then ΩfM,k,n,u
= {qn

0 };
otherwise, there is a configuration c ∈ ΩfM,k,n,u

belonging to a cyclic orbit of length kn

where state q0 never appears: ∀t ∈ N,∀i ∈ {1, . . . , n} : f t
M,k,n,u(c)i ̸= q0.

Moreover, circuits for the local functions of fM,k,n,u can be computed in time poly(M,k, n, u).

Proof. Let Σ be the alphabet, S the state set of M , and ⊥, q0 fresh symbols. Define
H = S ⊔ {⊥} and Q = (Σ ×H × {0, . . . , k − 1}) ⊔ {q0}. Any configuration c ∈ Qn not
containing state q0 (i.e. ci ̸= q0 for all i) can be seen as a triple (cΣ, cH , ck) of configurations
in Σn, Hn and {1, . . . , k}n respectively. We say that configuration c is valid if it does not
contain state q0 and there is exactly one position i such that cH

i ∈ S. If c is valid, cΣ encodes
the content of the tape (limited to n cells), cH encodes the position and the state of the
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Turing head, and ck encodes a counter between 0 and kn − 1 in base k. We call c0 the
valid configuration where cΣ represents the tape containing input u starting on the leftmost
position of the (finite) tape, cH represents the head in the initial state on the leftmost
position of the tape, and ck represents the number 0. The behavior of fM,k,n,u is as follows:
1. send any invalid configuration to qn

0 ;
2. send any valid configuration c such that ck represents value kn − 1 to configuration c0;
3. send any valid c such that cH represents a head in an accepting state to qn

0 ;
4. for any valid configuration c from which one step of M does not make the head move

outside the n-cell tape, fM,k,n,u performs this step and increments the value in ck;
5. for any other valid configuration c, leave cΣ and cH unchanged but increment ck.
It should be clear enough from the above description that circuits computing local maps of
fM,k,n,u can be produced in polynomial time given M , k, n and u.

Suppose first that M halts on input u in at most kn − 1 steps and using space at most n
and suppose for the sake of contradiction that there is a configuration c ∈ ΩfM,k,n,u

which is
not qn

0 . Then qn
0 cannot be in the orbit of c, so only cases 2, 4 and 5 are used in the orbit of

c. The counter is always incremented, until reaching kn − 1, so that c0 must appear in the
(periodic) orbit of c, and therefore c is in the orbit of c0. We get a contradiction because M
halts on input u in at most kn − 1 steps and using space at most n, so that case 3 must be
triggered at the corresponding step in the orbit of c0.

Suppose now that M does not halt within time kn − 1 and space n starting from input u.
We claim that c0 belongs to a cyclic orbit of length kn and that state q0 cannot appear in
this orbit. Indeed, validity of configurations is preserved under iteration of fM,k,n,u except in
case 3, which is discarded by hypothesis, and after kn − 1 applications of case 4 or 5, during
which the counter component ck is constantly incremented, we reach case 2 and the orbits
cycles back to c0. ◀

▶ Corollary 3.2. The following problem is PSPACE-complete, even with fixed alphabet:

Nilpotency
Input: a deterministic ANU f : {0, . . . , q − 1}n → {0, . . . , q − 1}n.
Question: does

∣∣Ωf

∣∣ = 1?

Proof. First, the problem is in PSPACE because checking that an AN on {q}n has a singleton
limit set can be done by checking that fqn(x) is the same configuration for all x ∈ {q}n.
Second, we can make a reduction from quantified Boolean satisfiability (QBF) problem [22]
as follows: let M be any Turing machine that solves the QBF problem in linear space by a
brute force algorithm and let k be large enough so that M works in less than kn time steps
on instances of QBF of size at most n. By Lemma 3.1, given an instance u of size at most n
of QBF to be solved by M , the AN fM,k,n,u can be produced in polynomial time and has a
singleton limit set if and only if u is true. The alphabet of fM,k,n,u only depends on machine
M , so we have a reduction working with fixed alphabet ANU. ◀

Next, we present another theorem, whose proof is inspired by [12]. Intuitively, the firing
squad from [12] is replaced by nondeterminism, and the nilpotency problem is replaced by the
problem of having an orbit completely avoiding a given state (whose hardness is established
by Lemma 3.1).

Given a collection of AN (deterministic or not, ANU or not, etc), we say that a property
is effectively nontrivial in the collection if there is a polynomial-time algorithm that, given
n in unary, produces two AN with n nodes belonging in this collection, one that satisfies

STACS 2021



32:6 Rice-Like Theorems for Automata Networks

the property and another one that does not. This condition of effectiveness is natural since,
if one wants to make some reduction to prove that a property is hard, then the reduction
usually induces an algorithm to produce models and counter-models of the property.

▶ Theorem 3.3. Effectively nontrivial limit set properties of nondeterministic AN are the
same as effectively nontrivial limit set properties of nondeterministic ANU. If P is an
effectively nontrivial limit set property of nondeterministic ANU, then the following problem
is PSPACE-hard for the ≤p

tt reduction:

P-limit-set
Input: a nondeterministic ANU f : {0, . . . , q − 1}n → {0, . . . , q − 1}n.
Question: does f |= P?

Proof. Every effectively nontrivial limit set property for nondeterministic ANU is also
effectively nontrivial for nondeterministic AN. Conversely, if P is effectively nontrivial for
nondeterministic AN, then there is a polynomial-time algorithm which, given n, produces a
model f1 and a counter-model f2 of P that may have nonuniform alphabets, but we can extend
them to larger alphabets while preserving the limit set by sending (deterministically) any
extra configuration to a fixed one that uses only the original alphabet. This transformation
is effective (a description by circuits of the new rule can be computed in polynomial time
from the description of the original rule). This proves the first claim of the theorem and
allows us to focus on ANU.

Given two (possibly nondeterministic) ANU f1 and f2 both acting on Qn
f , and a determin-

istic one h on Qn
h with some distinguished state q0 ∈ Qh, we define two nondeterministic ANU

g1 and g2 both acting on (Qf ∪ (Qf ×Qh))n as follows. We fix some q ∈ Qf . Intuitively, gi

mimics fi on Qn
f , and either mimics h on (Qf ×Qh)n or projects onto the Qf component

provided state q0 is not present in the Qh component of states. In any other case, the behavior
is go to configuration qn deterministically. To simplify notation we see any configuration
x ∈ (Qf ×Qh)n as a pair x = (xf , xh) ∈ Qn

f ×Qn
h. Then gi is defined as follows:

gi(x)v =


fi(x)v if x ∈ Qn

f ,

{(xf
v , h(xh)v), xf

v} if x = (xf , xh) ∈ Qn
f ×Qn

h and xh
j ̸= q0 for all j ∈ [n],

q otherwise,

for v ∈ {n} and i = 1, 2. It is straightforward to check that if state q0 appears in all orbits of
h, then Ωgi

= Ωfi
because, in this case, any orbit of gi must end up in Qn

f . In particular,
in this case, Ωg1 ̸= Ωg2 because f1 and f2 are respectively a model and a counter-model of
the limit-set property P . On the other hand, if h has some orbit that completely avoids
state q0, then for any x ∈ Qn

f we have x ∈ Ωgi because x can be reached arbitrarily late
from (x, y) in the dynamics of gi where y is any configuration of the considered orbit of
h. Moreover in this case Ωg1 = Ωg2 holds because, by definition, for any y ̸∈ Qn

f we have
y ∈ Ωg1 ⇔ y ∈ Ωg2 . Thus we have a ≤p

tt reduction from the problem of deciding whether h
has an orbit completely avoiding state q0 to the property P : the former can be decided by
checking whether Ωg1 = Ωg2 .

To conclude the proof, it is sufficient to invoke Lemma 3.1 and use an argument similar
to the proof of Corollary 3.2, in order to show that deciding whether a given AN h has an
orbit completely avoiding state q0 is PSPACE-hard. ◀
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4 Size of limit sets

In this section, we are interested in problems about the size of limit sets. First, if we take
the settings of nondeterministic AN as in the previous section, Theorem 3.3 already tells us
that any effectively nontrivial problem about the size of the limit set will be PSPACE-hard,
as a particular limit set property. We now focus on deterministic ANU, and the following
canonical problems on the size of limit sets.

Given a map λ : N × N → N such that λ(q, n) ≤ qn, we define the problem Pλ as follows:

Problem Pλ

Input: a deterministic ANU f : {0, . . . , q − 1}n → {0, . . . , q − 1}n.
Question: does

∣∣Ωf

∣∣ ≥ λ(q, n)?

The goal of this section is to show that problem Pλ jumps from PSPACE-hardness down
to the polynomial-time hierarchy depending on λ. First, when λ stays far enough from the
total number of configurations, we already have the tools to conclude PSPACE-hardness.

Using Lemma 3.1 as in the proof of Corollary 3.2 we obtain the following theorem.

▶ Theorem 4.1. Let λ : N × N → N be a map such that for some k > 1 and for any n ∈ N
it holds 2 ≤ λ(q, n) ≤ kn. Then the problem Pλ is PSPACE-hard, even with fixed alphabet.

However, the problem whether the size of the limit set is maximal up to a polynomial
quantity belongs in the polynomial-time hierarchy. The intuition is that if the limit set is
close to maximal, then it is reached quickly under iterations of the AN.

▶ Proposition 4.2. Let δ : N×N → N be a polynomial map, and define λ(n, q) = qn − δ(n, q).
Then problem Pλ is Σp

3 and co-NP-hard, even with fixed alphabet.

Proof. Let us denote [q] = {0, . . . , q − 1}. Consider any deterministic ANU f : [q]n → [q]n.
We claim that if

∣∣Ωf

∣∣ ≥ λ(q, n) then Ωf = fδ(q,n)([q]n) = fδ(q,n)+1([q]n). Indeed, by induc-
tion, we have that fk([q]n) = fk+1([q]n) for some k implies that fk([q]n) = Ωf . Therefore
Ωf ⊊ fδ(q,n)([q]n) would imply

∣∣Ωf

∣∣ < qn − δ(q, n). The claim follows. Conversely, the same
argument shows that fδ(q,n)([q]n) ̸= fδ(q,n)+1([q]n) implies

∣∣Ωf

∣∣ < λ(q, n).
We deduce that the problem Pλ is equivalent to: “fδ(q,n)([q]n) = fδ(q,n)+1([q]n) and∣∣[q]n \ fδ(q,n)([q]n)

∣∣ ≤ δ(q, n).” This can be rephrased as the conjunction:
∀x ∈ [q]n,∃y ∈ [q]n such that fδ(q,n)(x) = fδ(q,n)+1(y), and
there is a set L ⊆ [q]n of δ(q, n) distinct configurations such that ∀x ∈ [q]n, fδ(q,n)(x) ̸∈ L

and ∀x ∈ [q]n, x ̸∈ L ⇒ ∃y ∈ [q]n, fδ(q,n)(y) = x

This shows that the problem Pλ is Σp
3.

To show co-NP-hardness of problem Pλ we make a reduction from UNSAT. First note
that δ(4, n) < 2n − 1 for large enough n because δ(4, n) is a polynomial in n. Then, given
any instance ϕ of UNSAT with n variables, build the ANU f : [4]n → [4]n as follows:

f(x) =
{

0n if π(x) represents a statisfying assignment of variables for ϕ,
x otherwise.

where π(x1, . . . , xn) = (t1, . . . , tn) with ti true if and only if xi = 0 mod 2. It is clear that
for any assignment of variables (t1, . . . , tn) there are 2n possible choices of x such that
π(x) = (t1, . . . , tn). Moreover, if x ̸= 0n, then x ̸∈ Ωf when π(x) is a satisfying assignment
for ϕ. Therefore if ϕ is satisfiable then

∣∣Ωf

∣∣ ≤ 4n − 2n + 1 < λ(4, n). On the contrary, if ϕ is
not satisfiable, then f(x) = x for all x ∈ [4]n so we have

∣∣Ωf

∣∣ ≥ λ(4, n). co-NP-hardness of
problem Pλ follows. ◀
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5 First-order properties of transition digraphs are hard

In this section, a graph is the transition digraph of some deterministic automata network,
i.e., a simple digraph where all vertices have out-degree 1 and where self-loops are allowed. A
formula means a closed first-order logic formula over the signature {=,→} (binary relations).
Formulas will be evaluated in graphs, so “∀x” is understood as “for all vertex x” and “x → y”
is understood as “there is an edge from x to y”. For all formula ψ, define:

ψ-Dynamics
Input: an automata network f .
Question: does Gf |= ψ?

Note that the formula ψ is not part of the input, but rather a parameter of the problem.

▶ Definition 5.1. A formula ψ is ω-nontrivial if there are infinitely many models and
infinitely many countermodels.

▶ Theorem 5.2. If ψ is ω-nontrivial, then ψ-Dynamics is either NP- or co-NP-hard.

The condition of ω-nontriviality is optimal: indeed, if ψ is ω-trivial, then solving ψ-
Dynamics amounts to testing whether the given AN belongs to a finite fixed list of objects,
which can be done in time O(1). (Recall from Section 2 that the circuits sizes are bounded
by |Ai||A|.) Whether the problem is NP- or co-NP-hard varies with ψ. The proof consists of
the next three subsections.

5.1 Encoding SAT instances into the dynamics of AN
The results in this subsection provide a general tool to deduce hardness from pumping
constructions. We recommend that first-time readers skip the definitions of ⊔2 and ⊔3 and
fix z = 1 everywhere, because the cases z = 2, 3 will not be needed until much later in the
paper. In the next definition, “pointed” nodes are simply distinguished vertices in a graph.

▶ Definition 5.1.1. Let G, G′ denote graphs; we define three operators ⊔1,⊔2,⊔3.

The graph G ⊔1 G
′ (or G ⊔G′) is the disjoint union of a copy of G and a copy of G′.

If G has a pointed node v and G′ has any number of pointed nodes (possibly zero), then
the graph G ⊔2 G

′ is G ⊔1 G
′ except that each edge going out of a pointed node of G′

points to v instead. The result has one pointed node, v.
If G has a pair of pointed nodes (u, v) and G′ has a pair of pointed nodes (u′, v′), then
G ⊔3 G

′ is G ⊔1 G
′ except that: the edge going out of v points to u′; and the edge going

out of v′ points to u. Besides, G ⊔3 G
′ has pointed nodes (u′, v).

If G is a graph, k is an integer, and z is in {1, 2, 3}, then
⊔k

z G denotes G ⊔z · · · ⊔z G,
with k copies of G. Now let n be an integer, Γ = (G1, . . . , Gn) a n-tuple of graphs, and w a
word over alphabet {1, . . . , n}. Define UG,Γ

z (w) by induction as follows: UG,Γ
z (ε) = G, and

UG,Γ
z (w1 . . . wk) = UG,Γ

z (w1 . . . wk−1) ⊔z Gwk
(where ε is the empty word). See Figure 2.

▶ Proposition 5.1.2. Let ψ be a formula and z be an element of {1, 2, 3}. If there exist
nonempty graphs G, J , D such that for all integers k and k′, we have G ⊔z (

⊔k
z J) ̸|= ψ and

G ⊔z (
⊔k

z J) ⊔z (
⊔k′

z D) |= ψ, then ψ-Dynamics is NP-hard.
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UG,Γ
1 (w) = . . .

G Gw1 Gw2 Gw3 Gwk

UG,Γ
2 (w) = . . .

G Gw1 Gw2 Gw3 Gwk

UG,Γ
3 (w) = . . .

G Gw1 Gw2 Gwk G
u u1 u2 ukv1 v2 vk v

Figure 2 Illustration of UG,Γ
z (w). In the illustration of UG,Γ

3 (w), G is not connected.

▶ Definition 5.1.3. Let S denote an instance of SAT with s variables. Then S is the word of
length 2s over alphabet {1, 2} whose ith letter is 1 if S(i) is false, and 2 if it is true (viewing
the binary expansion of i as an assignment for S).

▶ Lemma 5.1.4. Let S be an instance of SAT, z ∈ {1, 2, 3} and G, J,D be graphs such that 1 <
|G| < |J | = |D|. There are an AN f and an integer k such that Gf = UG,(J,D)

z (S) ⊔z (
⊔k

z J).
Moreover, f is computable in polynomial time from S if G, J , D are constant.

Proof. Let δ = gcd(|G|, |J |), and write |G| = g · δ and |J | = j · δ for some coprime integers
g, j. Call s the number of variables in S. First, find an integer t such that g ≤ 2t and
gcd(s+ t, φ(j)) = 1, where φ denotes Euler’s totient. To do so, let t′ = s/ gcd(s, φ(j)), so
that t′ and φ(j) have no common prime factors. Then let t′′ denote a power of t′ that exceeds
s+ ⌈log2 g⌉ (compute it by successive squarings). Finally, take t = t′′ − s. Since gcd(g, j) = 1,
we can use Algorithm 17.1 of [21] to find an integer x ≥ 1 such that xs+t ≡ g mod j. For
the rest of the proof, assume that x ≥ 2: indeed, if x = 1, then g ≡ 1 mod j, so we can
choose x = gφ(j) instead by Euler’s formula. Since Algorithm 17.1 runs in polynomial time
and g, j are constants, we can find x and t in polynomial time.

Assume that V (G) = {0, . . . , |G| − 1} and V (J) = V (D) = {0, . . . , |J | − 1} (recall that
|J | = |D|). For all relevant integer n, write G(n) (resp. J(n), D(n)) the unique successor of
n in G (resp. J , D). The automata network f has 1 + s+ t nodes: one node with alphabet
{0, . . . , δ− 1} and s+ t nodes with alphabet {0, . . . , x− 1}. It reads its current configuration
as an integer N (with 0 ≤ N ≤ δ · xs+t − 1) and transitions as follows:

If N < |G|, then f(N) = G(N).
If 0 ≤ N − |G| < 2s · |J |, then by Euclidean division let q, r be the integers such that
N − |G| = |J | · q + r and 0 ≤ r < |J |. View q in binary as a valuation for S.
If S(q) is true, then f(N) = |J | · q +D(r). If S(q) is false, then f(N) = |J | · q + J(r).
If 2s · |J | ≤ N − |G|, then let q, r be as in the previous case, and f(N) = |J | · q + J(r).

If z = 1, the description of f is complete. If z = 2, the pointed nodes of each copy of J and
D transition to the pointed node of G instead. If z = 3, order all the graphs (G, J ’s, and
D’s) according to the configuration number N that encodes their first vertex. Encode the
pointed nodes of each graph in their vertices 0 and 1. Make the first pointed node of each
graph transition to the second pointed node of the next graph, looping around δ · xs+t.

Since 2 ≤ x, we have g ≤ 2t ≤ xt, so one copy of G and at least 2s copies of J or D fit
in the dynamics of f . Besides, since xs+t ≡ g mod j, there are no leftover configurations.
The circuits encoding f can be produced in polynomial time: the only part depending on S

merely requires to evaluate S. ◀
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Proof of Proposition 5.1.2. Let J̃ =
⊔|D|

z J and D̃ =
⊔|J|

z D, so that |J̃ | = |D̃|. The
statement follows from Lemma 5.1.4, as the graphs G, J̃ and D̃ can be padded with copies
of J̃ to meet the other size constraints. ◀

5.2 From transition digraphs to disjoint unions of labeled cycles
Recall that all our graphs have out-degree 1, so each connected component of a graph is a
cycle, in which each vertex is the root of an upward tree (a rooted tree where arcs point
towards the root). Define T as the set of finite, nonempty upward trees. Any graph may be
seen as a multiset of cyclic words over alphabet T .

If G and G′ are graphs, we write G ≡m G′ if and only if they satisfy the same formulas
of quantifier rank m. Let Em denote the set of equivalence classes of ≡m over T .

▶ Lemma 5.2.1. For all m, the set Em is finite.

Proof. Without loss of generality, all formulas are in prenex form (quantifiers are at the
beginning). Thus, a formula ϕ is of the form Q1x1 . . . Qmxm ϕ′(x1, . . . , xm), where Qi

belongs to {∃,∀} for all i and ϕ′ is a quantifier-free formula. There are 2m ways to assign
quantifiers to the Qi’s. A quantifier-free formula ϕ′(x0, . . . , xm−1) is a Boolean formula over
2m2 variables: “xi → xj” and “xi = xj”, for 0 ≤ i, j < m. Two Boolean formulas are
equivalent if and only if they have the same truth table. There are 22m2 possible assignments
for the “variables”, thus 222m2

possible truth tables. Consequently, there are at most 2m+22m2

nonequivalent formulas of quantifier rank m. Any structure satisfying (resp. falsifying) a
formula has to satisfy (resp. falsify) all formulas equivalent to it. Therefore, there are finitely
many possible sets of formulas of quantifier rank m that a given structure may satisfy. ◀

For all T in T , let Em(T ) denote the equivalence class of T for ≡m. We extend the
map Em to finite words, cyclic or not: if w = w1w2 . . . wk is a word over T , then Em(w)
is the word Em(w1)Em(w2) . . . Em(wk). We further extend Em to sets and multisets of
words: if Y = {y1, . . . , yn} is a (multi)set of finite words over T , then Em(Y ) denotes
{Em(y1), . . . , Em(yn)}. Since any graph may be viewed as a multiset of cyclic words over T ,
it makes sense to write Em(G) for all graph G.

▶ Definition 5.2.2. A DULC is a finite digraph that is a vertex-Disjoint Union of Labeled
Cycles, where the labels are in Em.

All graphs of the form Em(G) are DULC. Now define a new signature, with two binary
relation synbols = and → as before, and one unary relation symbol per element of Em.
Formulas ϕ with this signature talk about graphs where vertices are Em-labeled (possibly
with some multiply-labeled vertices, but this does not matter), such as DULC.

▶ Theorem 5.2.3. For all m and all graphs G, G′, if Em(G) ≡m Em(G′) then G ≡m G′.

Proof. By Lemma 5.2.1, the set Em is finite. Assume that Em(G) ≡m Em(G′); we show
that G ≡m G′ with the Ehrenfeucht-Fraïssé method (see for instance [5, Theorem 2.2.8]
or [11, Theorem 6.10]), by giving a winning strategy for Duplicator. Suppose that Spoiler
plays somewhere in a tree t of G (the case of G′ is symmetric). Let u be the node of Em(G)
corresponding to t. Imagine a game in Em(G)/Em(G′) where Spoiler just picked u in Em(G)
and let u′ be the node picked by Duplicator in Em(G′) as a response (since Em(G) ≡m Em(G′),
Duplicator has a winning strategy there). Let t′ denote the tree of G′ corresponding to u′
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in Em(G′). Since u and u′ have the same label (otherwise Duplicator would not win in the
Em(G)/Em(G′) game), by definition of Em we have t ≡m t′, so Duplicator has a winning
strategy in the game t/t′. Therefore, in order to choose which node of t′ to pick, Duplicator
applies her t/t′ winning strategy. The next turns go on similarly: Duplicator maintains a
virtual game in Em(G)/Em(G′), and one more virtual game for each tree touched in the main
game. In that manner, she can always retort to Spoiler in a way that maintains a local
isomorphism. ◀

▶ Theorem 5.2.4. For all integer m and all formula ψ of rank m, there is a formula E(ψ)
such that for all graph G, we have G |= ψ if and only if Em(G) |= E(ψ).

Theorem 5.2.4 does not imply the converse of Theorem 5.2.3 because the rank of E(ψ)
may be higher than m. We do not know whether the converse of Theorem 5.2.3 is true. To
prove Theorem 5.2.4, we first rephrase Hanf’s lemma for DULC.

▶ Definition 5.2.5. An r-ball in a graph, where r is an integer, is a subgraph induced by
vertices linked to a given vertex by a path of length at most r. An r-ball type occuring in a
graph is the graph-isomorphism class for a ball (for isomorphisms preserving the center).

▶ Remark 5.2.6. The possible 3m-ball types in DULC are the pointed cycles of length at
most 2 · 3m + 1 and the path of length exactly 2 · 3m + 1, pointed in its center.

▶ Definition 5.2.7. Let m be an integer, e = 2 · 3m + 1 the maximum number of vertices in
a 3m-ball of a DULC, and Bm the (finite) set of possible 3m-balls types in DULC. Given
a DULC H, its profile is the function πH,m : Bm → {0, . . . ,m · e} ⊔ {ω} defined as follows:
πH,m(b) is the number of balls in H that are isomorphic to b in the case that it does not
exceed m · e, and ω otherwise.

We extend the usual order ≤ to {0, . . . ,m · e} ⊔ {ω} by making ω a global maximum.
This yields a partial order over profiles: π ≤ π′ if for all b, we have π(b) ≤ π′(b).

▶ Lemma 5.2.8 (Hanf’s lemma [10, Lemma 2.3] along with Remark 5.2.6). Let m be an integer,
and H and H ′ be DULC. If πH,m = πH′,m, then H ≡m H ′.

We call a profile ϕ-positive if its graphs are models of ϕ, and ϕ-negative otherwise (or
simply positive and negative when no confusion ensues). We might write πH for πH,m when
m is clear from the context.

Proof of Theorem 5.2.4. Fix an integer m, and a formula ψ of quantifier rank m. Since
there are finitely many possible DULC m-profiles, we can denote {π0, . . . , πk−1}, for some
integer k, the set of profiles of Em(G), where G ranges over graphs satisfying ψ. Now let
Em(ψ) be the formula expressing “this graph has profile either π0, or π1, . . . , or πk−1.”

The property “having profile π” is indeed expressible by a first-order formula: for all ball
b, if π(b) ̸= ω (respectively, π(b) = ω), make a formula saying “there exist exactly π(b) nodes
(respectively, at least m · e+ 1 nodes) that are the center of a ball of type b.” For a given
ball type b, “being the center of a copy of b” is expressible as well: require that there exist
|b| distinct nodes, forming a cycle or a path (depending on b), with the right labels.

Now, if G |= ψ, by definition, {π0, . . . , πk−1} contains the profile of Em(G); thus Em(G) |=
E(ψ). Conversely, if Em(G) |= E(ψ), then the profile of Em(G) is the profile of some Em(G′),
where G′ |= ψ. By Lemma 5.2.8, Em(G) ≡m Em(G′), and by Theorem 5.2.3, G ≡m G′, so
that G |= ψ. ◀

▶ Proposition 5.2.9. If ϕ is an ω-nontrivial formula over DULC, then there is a nonempty
DULC H and nonempty labeled cycles J ′ and D′ such that either:
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(i) for all k ≥ 0 and k′ ≥ 1, we have H ⊔ (
⊔k

J ′) |= ϕ and H ⊔ (
⊔k

J ′) ⊔ (
⊔k′

D′) ̸|= ϕ; or
(ii) for all k ≥ 0 and k′ ≥ 1, we have H ⊔ (

⊔k
J ′) ̸|= ϕ and H ⊔ (

⊔k
J ′) ⊔ (

⊔k′
D′) |= ϕ.

Proof. Let m be the quantifier rank of ϕ. Since the profile of the disjoint union of two
DULC is greater than either profile, there is a maximal DULC m-profile ρ. Assume that ρ is
ϕ-negative (otherwise replace ϕ by ¬ϕ). Since there are finitely many possible profiles and
ϕ is ω-nontrivial, there is a positive profile having infinitely many models. Let π denote a
maximal profile for this property.

If there is a cycle J ′ whose number of occurrences is unbounded among the models with
profile π, then there is such a model H such that πG′(J ′) = ω, and H ⊔k J ′ has the same
profile as H for all k. If not, then the models with profile π have unbounded cycle lengths;
so there is a model H and a word u over alphabet Em of length |Em|e + 1 such that u, as a
path, occurs more than m · e times in H. For counting reasons, there is a word v of length e
that occurs at least twice in u. So there is a cycle J ′ of length at least e+ 1 whose label (as
a word) is a factor of u. The graph H ⊔k J ′ has the same profile as H for all k.

Observe that there is no profile greater than π = πH with finitely many models, so by
construction, any profile greater than π is negative. Let D′′ be a ball such that π(D′′) < ρ(D′′)
and D′ any cycle containing D′′. For all k > 0, we have πH < πH⊔kD′ , so the DULC H ⊔kD′

is a countermodel of ϕ. Since πH⊔kJ′ = πH , we have πH⊔kJ′⊔k′ D′ = πH⊔k′ D′ for all k, k′. ◀

5.3 Proof of Theorem 5.2
We proceed to a case disjunction. In a graph G, a hanging trees is a connected component
of the graph obtained from G by removing all the edges in cycles. A subtree of a tree T is
always complete, i.e., spanned by the set of nodes coaccessible from a given node (the root of
the subtree). An immediate subtree is a tree whose root has depth 1 in the ambient tree.

Unbounded cycles

▶ Proposition 5.3.1. Let ψ denote a formula such that ψ and ¬ψ both have models with
unbounded cycles. Then ψ-Dynamics is either NP-hard or co-NP-hard.

Proof. Since both ψ and ¬ψ have models with unbounded cycles, the projection ϕ = E(ψ)
is ω-nontrivial. Apply Proposition 5.2.9 to get a nonempty DULC H and nonempty cycles
D′ and J ′ with either the property (i) or (ii) from the proposition. Let m be the quantifier
rank of ϕ, and G, D, J be nonempty graphs such that Em(G) = H, that Em(D) = D′ and
that Em(J) = J ′. By Theorem 5.2.4, G, J , D satisfy the corresponding property (i) or (ii)
(with G, J , D, ψ instead of H, J ′, D′, ϕ), because Em behaves correctly with respect to ⊔:
Em(G) ⊔Em(G′) = Em(G⊔G′). The statement follows from Proposition 5.1.2 with z = 1. ◀

Unbounded degrees

By Lemma 5.2.1, the set Em of equivalence classes of ≡m for trees is finite. If T is a tree and
α ∈ Em, write |T |α for the number of immediate subtrees of T of type α.

▶ Lemma 5.3.2. Let T and T ′ be trees such that, for each α ∈ Em, we have either |T |α = |T ′|α
or |T |α, |T ′|α ≥ m. Then T ≡m T ′.

Proof. We give a winning strategy for Duplicator. If Spoiler plays in a subtree t of T that
was never touched before (the case of T ′ is symmetric), then Duplicator chooses a subtree
t′ of T ′ such that t ≡m t′. By the Ehrenfeucht-Fraïssé theorem, Duplicator has a winning
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strategy for the game t/t′, so she uses it to play her turn. If Spoiler plays subsequent turns
in t or t′, then Duplicator continues the game in t/t′ with her winning strategy. Since the
global game lasts m turns, by the condition on T and T ′, it is always possible for Duplicator
to find a t′ such that t ≡m t′ as needed. Thus this is indeed a winning strategy. ◀

▶ Proposition 5.3.3. Let ψ denote a formula whose models have bounded cycles but unbounded
degrees. Then ψ-Dynamics is NP-hard.

Proof. Let ψ be a formula of quantifier rank m, whose models have unbounded degrees and
bounded cycles, say of length at most ℓ.

By assumption, ψ admits a model with a hanging tree having a node v of degree at least
m · |Em|. Hence, the node v has at least m equivalent immediate subtrees J1 ≡m · · · ≡m Jm.
Lemma 5.3.2 implies that, if we add more copies of J1 as immediate subtrees of v in G,
resulting in a graph G′, then G ≡m G′. So, in particular, G′ also satisfies ψ. Let J denote⊔ℓ+1

J1, with the pointed nodes of J being the roots of the copies of J1. Let D be a cycle
of length |J |, without pointed nodes. We have |D| = |J | > ℓ. For all k, k′, with v the
pointed node of G, the graph G⊔2 (

⊔k
2 J) is a model of ψ, while G⊔2 (

⊔k
2 J) ⊔2 (

⊔k′

2 D) is a
countermodel by assumption on l. The statement follows from Proposition 5.1.2, with G, J ,
D as defined above and z = 2. ◀

Unbounded subtree depths

▶ Lemma 5.3.4. Let ψ denote a formula whose models have bounded cycles, degrees, but
unbounded hanging tree depths. Then there are a model G of ψ and two subtrees T, T ′ of a
hanging tree of G such that T ′ ⊂ T and T ≡m T ′.

Proof. Suppose that the models have bounded cycles. By Lemma 5.2.1, Em is finite. For
any graph G, call Em(G) the Em-labeled copy of G where each node v is labeled by the
equivalence class of the subtree rooted in v – the ambient trees being the hanging ones. By
assumption, the graphs Em(G), for G |= ψ, contain arbitrarily deep subtrees, whilst the
number of colors in Em is fixed and finite. By the pigeonhole principle, one of those subtrees
in one of those models admits two nodes with the same label, the first one being an ancestor
of the other one. The lemma then follows from the definition of the labels. ◀

▶ Lemma 5.3.5. Let T be a tree, t a subtree of T and t′ a tree such that t ≡m t′. If T ′ is
the tree T where the occurences of t have been replaced with t′, then T ≡m T ′.

The proof goes by induction on the depth of the root of t in T , and Lemma 5.3.2.

▶ Proposition 5.3.6. Let ψ denote a formula whose models have bounded degrees, but
unbounded hanging tree depths. Then ψ-Dynamics is NP-hard.

Proof. Let ψ be a formula of quantifier rank m, whose models have unbounded hanging tree
depths, and bounded degrees, say by d.

By Lemma 5.3.4, there is a model G̃ of ψ that contains a tree T (i.e. a subtree of a
hanging tree), which in turn has a subtree T ′, such that T ′ ≡m T , and such that the only
vertices of T and T ′ linked to the rest of the graph are their roots. Call T ′′ the tree T \ T ′.
Let G denote (G̃ \ T ′) ⊔ T ′: it is a disconnected graph. We equip it with two pointed nodes,
u and v, like in Definition 5.1.1 (case ⊔3). The pointed node u of G is the leaf of T that
should have been the parent of the root of T ′. The pointed node v of G is the root of the
disconnected copy of T ′. See Figure 3 for an illustration.
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Now let T ′′
0 = T ′′, and T ′′

n+1 denote the tree T where T ′ have been replaced by a copy
of T ′′

n . For all n, equip the graph T ′′
n with two pointed nodes: the node u is the leaf where

another copy of T ′′ would be inserted to build T ′′
n+1; the node v is the root. See again

Figure 3 for an illustration.
Let J be the graph T ′′

d+2, so that |J | > d+1. By Lemma 5.3.5, we have G⊔3 (
⊔k

3 J) ≡m G̃

for all integer k. Let D be a tree of depth 1 having |J | nodes, i.e., it consists only of a root
and its direct children; its pointed node u is any leaf, and its pointed node v is the root. The
tree D has degree at least d+ 1. Therefore, for all k, k′, the graph G ⊔3 (

⊔k
3 J) is a model

of ψ, while the graph G ⊔3 (
⊔k

3 J) ⊔3 (
⊔k′

3 D) is a countermodel. The statement follows by
Proposition 5.1.2 with z = 3. ◀

•

T ′′

•
T ′

T

G̃
•

•u
T ′′

•v
T ′

G

•v

T ′′

T ′′

...

T ′′

•u

T ′′
n

Figure 3 Illustration of the construction in the proof of Proposition 5.3.6. The node v of each
graph transitions to the node u of another one.

Unbounded number of occurrences of each connected component

Here, connected means strongly connected. The number of occurrences of a connected
component C in a graph G is the number of connected components of G isomorphic to C.

▶ Lemma 5.3.7. Let G and J be graphs and m an integer. For all integers k, k′ ≥ m, we
have G ⊔ (

⊔k
J) ≡m G ⊔ (

⊔k′
J).

Proof of Lemma 5.3.7. We give a winning strategy for Duplicator. If Spoiler plays in either
copy of G, then Duplicator picks the same node in the other copy of G. If Spoiler plays in a
copy of J that was never touched before, then Duplicator chooses a fresh copy of J in the
other graph and picks the same node there. If Spoiler plays in a copy of J that was already
touched before, then Duplicator chooses the same copy of J as in the previous moves and
picks the same node there. Since there are at least m copies of J on both graphs and only m
turns in the game, this is indeed a winning strategy. ◀

▶ Proposition 5.3.8. Let ψ is a formula whose models have bounded cycles, but unbounded
number of occurrences of each connected component. Then ψ-Dynamics is NP-hard.

Proof. Let ψ be a formula of quantifier rank m, whose models have unbounded number of
occurrences of each connected component, and bounded cycles, say of length at most ℓ. By
our assumptions on ψ, there are graphs G and J ′ such that G ⊔ (

⊔m
J ′) is a model. Let J
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denote
⊔max(ℓ+1,m)

J ′, and D a cycle of length |J |. For all k, k′, by Lemma 5.3.7, the graph
G ⊔ (

⊔k
J) = G ⊔ (

⊔k·max(ℓ+1,m)
J ′) is a model of ψ. On the other hand, by assumption on

ℓ < |J |, the graph G ⊔ (
⊔k

J) ⊔ (
⊔k′

D) is a countermodel.
The statement follows from Proposition 5.1.2 with G, J , D defined above and z = 1. ◀

Combining the cases

▶ Lemma 5.3.9. Every formula with infinitely many models has models with either unbounded
cycles, unbounded degrees, unbounded hanging tree depths, or an unbounded number of
occurrences of each connected component.

Proof. The number of nonisomorphic connected graphs with a cycle of length at most ℓ,
degree at most d and hanging tree depth at most h is bounded by ł · dh+1. Thus there
are only finitely many graphs with bounded cycles, degrees, subtree depths and number of
occurrences of connected components. ◀

Lemma 5.3.9 concludes the proof of Theorem 5.2: if the formula and its negation
both have unbounded cycles, then Proposition 5.3.1 applies; otherwise one among Proposi-
tions 5.3.3, 5.3.6 and 5.3.8 applies to either the formula or its negation.

▶ Remark 5.3.10. The machinery developed to prove Theorem 5.2 is rather flexible.
In particular, it remains true if restricted to deterministic automata networks, and also

to the limit subgraphs (Gω
f ) instead of transition digraphs (Gf ). However, the meaning of “ω-

nontrivial” changes: it respectively means “having infinitely many bijective (counter)models”
and “having infinitely many networks whose limit graph is a (counter)model.”

Both transition digraphs of bijective networks and limit graphs are merely disjoint unions
of unlabeled cycles. Thus, Proposition 5.2.9 and Proposition 5.1.2 may be reused and the
proof is similar.

6 First-order dynamical properties are arbitrarily high in PH

The previous section gave a lower bound for the ψ-Dynamics problem. Here, we give tighter
bounds. As a consequence of those bounds, the AN-Dynamics problem, which is similar to
ψ-Dynamics except that ψ is part of the input, is hard.

▶ Theorem 6.1. For all even integer N , there is a formula ψN such that ψN -Dynamics
ΣN+1-complete.

▶ Theorem 6.2. The following problem is PSPACE-complete:

AN-Dynamics
Input: an automata network f and a first-order formula ψ.
Question: does Gf |= ψ?

The proofs rely on the following constructions. Let N ≥ 1, and S be a QBF formula of
the form ∃b1,∀b2, . . . ,∃bN+1R(b1, . . . , bN+1). Call C the set {⊤,⊥} ⊔

⊔N+1
i=1 {0, 1}i, where

⊤,⊥ are fresh symbols. Observe that |C| = 2N+2 and define fS the ANU with N + 2 nodes
over alphabet {0, 1} that realizes the function fS : C → C defined as follows. For arbitrary
bits b1, . . . , bN+1, set fS(⊥) = ⊥, fS(⊤) = ⊤, fS((b1)) = ⊤, and:

fS((b1, . . . , bi))=(b1, . . . , bi−1) fS((b1, . . . , bN+1))=
{

(b1, . . . , bN ) if R(b1, . . . , bN+1)
⊥ otherwise.
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Intuitively, the dynamics of fS consists of two upward trees: one rooted in ⊤, of depth N + 1,
whose leaves are the Boolean tuples (b1, . . . , bN+1) that satisfy R; and one rooted in ⊥, of
depth 1, whose leaves are the Boolean tuples (b1, . . . , bN+1) that falsify R. The only part
of fS that depend on S merely evaluates R, so circuits encoding fS can be produced in
polynomial time given S.

Now define the formula ψN as follows (observe that ψN depends only on N):

ψN =∃x0, x1, x
′
2 : x0 ̸= x1 ∧ x′

2 → x1 → x0 → x0

∧ ∀x2 → x1 : ∃x3 → x2 : . . . ∀xN → xN−1 : ∃xN+1 → xN : true,

where “∃x → y : ϕ” and “∀x → y : ϕ” stand for “∃x : (x → y)∧ϕ”and “∀x : (x → y) =⇒ ϕ”;
and where “x → y → z” stands for “x → y ∧ y → z”. Observe that ψN is a ΣN+1-formula.
Besides, when evaluating ψN in GfS

, the first line ensures that x0 is a fixed point with
an ingoing path of length 2, so it has to be ⊤. The rest of the formula straightforwardly
implements S, by linking Booleans into a configuration (b1, . . . , bN+1) where the “xN+1 → xN ”
part ensures that R(b1, . . . , bN+1), by definition of fS . Hence we have the following lemma,
that implies both Theorem 6.1 and 6.2.

▶ Lemma 6.3. (a) The network fS satisfies Gf |= ψN if and only if S is a true QBF.
(b) Given a QBF(ΣN+1) formula S, the network fS can be produced in polynomial time.

7 Conclusion

Our goal was to obtain broad complexity lower bounds for dynamical properties of automata
networks. However, as explained in the introduction, there is a large degree of freedom in
the formalization of Metatheorem 1.2. We do not claim that the results above are the only
Rice-like theorems on automata networks worth investigating.

It would be interesting to know how various restrictions on the AN may lessen the
complexity of those problems. For instance, if we restrict ourselves to AN whose interaction
graph has bounded degree, then the question “does this AN compute a constant function?”
becomes testable in polynomial time, while it is first-order expressible and nontrivial.

Another restriction pertains to the set of states of the nodes. If we restrict ourselves to
ANU, i.e., automata networks where all nodes have the same alphabet Q = {0, . . . , q − 1}
for some positive integer q, then the concept of “ω-nontriviality” changes. Indeed, some
first-order formulas have infinitely many models and countermodels, but no model with
uniform alphabet. The proof of Lemma 5.1.4 does not seem to generalize easily to that case,
because finding x and δ becomes an open challenge.
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