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Abstract
We study the problem of enumerating answers of Conjunctive Queries ranked according to a given
ranking function. Our main contribution is a novel algorithm with small preprocessing time,
logarithmic delay, and non-trivial space usage during execution. To allow for efficient enumeration,
we exploit certain properties of ranking functions that frequently occur in practice. To this end,
we introduce the notions of decomposable and compatible (w.r.t. a query decomposition) ranking
functions, which allow for partial aggregation of tuple scores in order to efficiently enumerate the
output. We complement the algorithmic results with lower bounds that justify why restrictions on
the structure of ranking functions are necessary. Our results extend and improve upon a long line of
work that has studied ranked enumeration from both a theoretical and practical perspective.
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1 Introduction

For many data processing applications, enumerating query results according to an order
given by a ranking function is a fundamental task. For example, [44, 10] consider a setting
where users want to extract the top patterns from an edge-weighted graph, where the rank
of each pattern is the sum of the weights of the edges in the pattern. Ranked enumeration
also occurs in SQL queries with an ORDER BY clause [37, 26]. In the above scenarios, the user
often wants to see the first k results in the query as quickly as possible, but the value of k

may not be predetermined. Hence, it is critical to construct algorithms that can output the
first tuple of the result as fast as possible, and then output the next tuple in the order with a
very small delay. In this paper, we study the algorithmic problem of enumerating the result
of a Conjunctive Query (CQ, for short) against a relational database where the tuples must
be output in order given by a ranking function.

The simplest way to enumerate the output is to materialize the result Q(D) and sort the
tuples based on the score of each tuple. Although this approach is conceptually simple, it
requires that |Q(D)| tuples are materialized; moreover, the time from when the user submits
the query to when she receives the first output tuples is Ω(|Q(D)| · log |Q(D)|). Further, the
space and delay guarantees do not depend on the number of tuples that the user wants to
actually see. More sophisticated approaches to this problem construct optimizers that exploit
properties such as the monotonicity of the ranking function, allowing for join evaluation on
a subset of the input relations (see [25] and references within). In spite of the significant
progress, all of the known techniques suffer from large worst-case space requirements, no
dependence on k, and provide no formal guarantees on the delay during enumeration, with
the exception of a few cases where the ranking function is of a special form. Fagin et al. [21]
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5:2 Ranked Enumeration of Conjunctive Query Results

initiated a long line of study related to aggregation over sorted lists. However, [21] and
subsequent works also suffer from the above mentioned limitations as we do not have the
materialized output Q(D) that can be used as sorted lists.

In this paper, we construct algorithms that remedy some of these issues. Our algorithms
are divided into two phases: the preprocessing phase, where the system constructs a data
structure that can be used later and the enumeration phase, when the results are generated.
All of our algorithms aim to minimize the time of the preprocessing phase, and guarantee
a logarithmic delay O(log |D|) during enumeration. Although we cannot hope to perform
efficient ranked enumeration for an arbitrary ranking function, we show that our techniques
apply for most ranking functions of practical interest, including lexicographic ordering, and
sum (also product or max) of weights of input tuples among others.

▶ Example 1. Consider a weighted graph G, where an edge (a, b) with weight w is represented
by the relation R(a, b, w). Suppose that the user is interested in finding the (directed) paths of
length 3 in the graph with the lowest score, where the score is a (weighted) sum of the weights
of the edges. The user query in this case can be specified as: Q(x, y, z, u, w1, w2, w3, ) =
R(x, y, w1), R(y, z, w2), R(z, u, w3) where the ranking of the output tuples is specified for
example by the score 5w1 + 2w2 + 4w3. If the graph has N edges, the naïve algorithm that
computes and ranks all tuples needs Ω(N2 log N) preprocessing time. We show that it is
possible to design an algorithm with O(N) preprocessing time, such that the delay during
enumeration is O(log N). This algorithm outputs the first k tuples by materializing O(N + k)
data, even if the full output is much larger.

The problem of ranked enumeration for CQs has been studied both theoretically [28, 12, 36]
and practically [44, 10, 5]. Theoretically, [28] establishes the tractability of enumerating
answers in sorted order with polynomial delay (combined complexity), albeit with suboptimal
space and delay factors for two classes of ranking functions. [44] presents an anytime
enumeration algorithm restricted to acyclic queries on graphs that uses Θ(|Q(D)| + |D|)
space in the worst case, has a Θ(|D|) delay guarantee, and supports only simple ranking
functions. As we will see, both of these guarantees are suboptimal and can be improved
upon.

Ranked enumeration has also been studied for the class of lexicographic orderings. In [3],
the authors show that free-connex acyclic CQs can be enumerated in constant delay after
only linear time preprocessing. Here, the lexicographic order is chosen by the algorithm
and not the user. Factorized databases [5, 36] can also support constant delay ranked
enumeration, but only when the lexicographic ordering agrees with the order of the query
decomposition. In contrast, our results imply that we can achieve a logarithmic delay with
the same preprocessing time for any lexicographic order.

Our Contribution. In this work, we show how to obtain logarithmic delay guarantees with
small preprocessing time for ranking results of full (projection free) CQs. We summarize our
technical contributions below:

1. Our main contribution (Theorem 12) is a novel algorithm that uses query decomposition
techniques in conjunction with structure of the ranking function. The preprocessing phase
sets up priority queues that maintain partial tuples at each node of the decomposition.
During the enumeration phase, the algorithm materializes the output of the subquery
formed by the subtree rooted at each node of the decomposition on-the-fly, in sorted
order according to the ranking function. In order to define the rank of the partial tuples,
we require that the ranking function can be decomposed with respect to the particular
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decomposition at hand. Theorem 12 then shows that with O(|D|fhw) preprocessing time,
where fhw is the fractional hypertree width of the decomposition, we can enumerate
with delay O(log |D|). We then discuss how to apply our main result to commonly used
classes of ranking functions. Our work thoroughly resolves an open problem stated at the
Dagstuhl Seminar 19211 [8] on ranked enumeration (see Question 4.6).

2. We propose two extensions of Theorem 12 that improve the preprocessing time to
O(|D|subw), polynomial improvement over Theorem 12 where subw is the submodular
width of the query Q. The result is based on a simple but powerful corollary of the
main result that can be applied to any full UCQ Q combined with the PANDA algorithm
proposed by Abo Khamis et al. [1].

3. Finally, we show lower bounds (conditional and unconditional) for our algorithmic results.
In particular, we show that subject to a popular conjecture, the logarithmic factor in
delay cannot be removed. Additionally, we show that for two particular classes of ranking
functions, we can characterize for which acyclic queries it is possible to achieve logarithmic
delay with linear preprocessing time, and for which it is not.

2 Problem Setting

In this section we present the basic notions and terminology, and then discuss our framework.

2.1 Conjunctive Queries

In this paper we will focus on the class of Conjunctive Queries (CQs), which are expressed
as Q(y) = R1(x1), R2(x2), . . . , Rn(xn) Here, the symbols y, x1, . . . , xn are vectors that
contain variables or constants, the atom Q(y) is the head of the query, and the atoms
R1(x1), R2(x2), . . . , Rn(xn) form the body. The variables in the head are a subset of the
variables that appear in the body. A CQ is full if every variable in the body appears also in
the head, and it is boolean if the head contains no variables, i.e. it is of the form Q(). We will
typically use the symbols x, y, z, . . . to denote variables, and a, b, c, . . . to denote constants.
We use Q(D) to denote the result of the query Q over input database D. A valuation θ over
a set V of variables is a total function that maps each variable x ∈ V to a value θ(x) ∈ dom,
where dom is a domain of constants. We will often use dom(x) to denote the constants
that the valuations over variable x can take. It is implicitly understood that a valuation is
the identity function on constants. If U ⊆ V , then θ[U ] denotes the restriction of θ to U . A
Union of Conjunctive Queries φ =

⋃
i∈{1,...,ℓ} φi is a set of CQs where head(φi1) = head(φi2)

for all 1 ≤ i1, i2 ≤ ℓ. Semantically, φ(D) =
⋃

i∈{1,...,ℓ} φi(D). A UCQ is said to be full if
each φi is full.

Natural Joins. If a CQ is full, has no constants and no repeated variables in the same
atom, then we say it is a natural join query. For instance, the 3-path query Q(x, y, z, w) =
R(x, y), S(y, z), T (z, w) is a natural join query. A natural join can be represented equivalently
as a hypergraph HQ = (VQ, EQ), where VQ is the set of variables, and for each hyperedge
F ∈ EQ there exists a relation RF with variables F . We will write the join as ⋊⋉F ∈EQ

RF .
We denote the size of relation RF by |RF |. Given two tuples t1 and t2 over a set of variables
V1 and V2 where V1 ∩V2 = ∅, we will use t1 ◦ t2 to denote the tuple formed over the variables
V1 ∪ V2. If V1 ∩ V2 ̸= ∅, then t1 ◦ t2 will perform a join over the common variables.

ICDT 2021



5:4 Ranked Enumeration of Conjunctive Query Results

Join Size Bounds. Let H = (V, E) be a hypergraph, and S ⊆ V. A weight assignment
u = (uF )F ∈E is called a fractional edge cover of S if (i) for every F ∈ E , uF ≥ 0 and (ii) for
every x ∈ S,

∑
F :x∈F uF ≥ 1. The fractional edge cover number of S, denoted by ρ∗

H(S) is
the minimum of

∑
F ∈E uF over all fractional edge covers of S. We write ρ∗(H) = ρ∗

H(V).
In a celebrated result, Atserias, Grohe and Marx [2] proved that for every fractional edge

cover u of V, the size of a natural join is bounded using the AGM inequality: | ⋊⋉F ∈E RF | ≤∏
F ∈E |RF |uF The above bound is constructive [34, 33]: there exist worst-case algorithms

that compute the join ⋊⋉F ∈E RF in time O(
∏

F ∈E |RF |uF ) for every fractional edge cover u
of V.

Tree Decompositions. Let H = (V, E) be a hypergraph of a natural join query Q. A tree
decomposition of H is a tuple (T, (Bt)t∈V (T)) where T is a tree, and every Bt is a subset of V ,
called the bag of t, such that
1. each edge in E is contained in some bag; and
2. for each variable x ∈ V, the set of nodes {t | x ∈ Bt} is connected in T.

Given a rooted tree decomposition, we use p(t) to denote the (unique) parent of node
t ∈ V (T). Then, we define key(t) = Bt ∩ Bp(t) to be the common variables that occur in the
bag Bt and its parent, and value(t) = Bt \ key(t) the remaining variables of the bag. We
also use B≺

t to denote the union of all bags in the subtree rooted at t (including Bt).
The fractional hypertree width of a decomposition is defined as maxt∈V (T) ρ∗(Bt), where

ρ∗(Bt) is the minimum fractional edge cover of the vertices in Bt. The fractional hypertree
width of a query Q, denoted fhw(Q), is the minimum fractional hypertree width among all
tree decompositions of its hypergraph. We say that a query is acyclic if fhw(Q) = 1. The
depth of a rooted tree decomposition is the largest distance over all root to leaf paths in T.

Computational Model. To measure the running time of our algorithms, we use the uniform-
cost RAM model [24], where data values as well as pointers to databases are of constant size.
Throughout the paper, all complexity results are with respect to data complexity (unless
explicitly mentioned), where the query is assumed fixed.

2.2 Ranking Functions
Consider a natural join query Q and a database D. Our goal is to enumerate all the tuples of
Q(D) according to an order that is specified by a ranking function. In practice, this ordering
could be specified, for instance, in the ORDER BY clause of a SQL query.

Formally, we assume a total order ⪰ of the valuations θ over the variables of Q. The
total order is induced by a ranking function rank that maps each valuation θ to a number
rank(θ) ∈ R. In particular, for two valuations θ1, θ2, we have θ1 ⪰ θ2 if and only if
rank(θ1) ≥ rank(θ2). Throughout the paper, we will assume that rank is a computable
function that takes times linear in the input size to the function . We present below two
concrete examples of ranking functions.

▶ Example 2. For every constant c ∈ dom, we associate a weight w(c) ∈ R. Then, for each
valuation θ, we can define rank(θ) :=

∑
x∈V w(θ(x)). This ranking function sums the weights

of each value in the tuple.

▶ Example 3. For every input tuple t ∈ RF , we associate a weight wF (t) ∈ R. Then, for
each valuation θ, we can define rank(θ) =

∑
F ∈E wF (θ[xF ]) where xF is the set of variables

in F . In this case, the ranking function sums the weights of each contributing input tuple to
the output tuple t (we can extend the ranking function to all valuations by associating a
weight of 0 to tuples that are not contained in a relation).
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Decomposable Rankings. As we will see later, not all ranking functions are amenable to
efficient evaluation. Intuitively, an arbitrary ranking function will require that we look across
all tuples to even find the smallest or largest element. We next present several restrictions
which are satisfied by ranking functions seen in practical settings.

▶ Definition 4 (Decomposable Ranking). Let rank be a ranking function over V and S ⊆ V.
We say that rank is S-decomposable if there exists a total order for all valuations over S,
such that for every valuation φ over V \ S, and any two valuations θ1, θ2 over S we have:

θ1 ⪰ θ2 ⇒ rank(φ ◦ θ1) ≥ rank(φ ◦ θ2).

We say that a ranking function is totally decomposable if it is S-decomposable for every
subset S ⊆ V , and that it is coordinate decomposable if it is S-decomposable for any singleton
set. Additionally, we say that it is edge decomposable for a query Q if it is S-decomposable
for every set S that is a hyperedge in the query hypergraph. We point out here that totally
decomposable functions are equivalent to monotonic orders as defined in [28].

▶ Example 5. The ranking function rank(θ) =
∑

x∈V w(θ(x)) defined in Example 2 is
totally decomposable, and hence also coordinate decomposable. Indeed, pick any set S ⊆ V.
We construct a total order on valuations θ over S by using the value

∑
x∈S w(θ(x)). Now,

consider valuations θ1, θ2 over S such that
∑

x∈S w(θ1(x)) ≥
∑

x∈S w(θ2(x)). Then, for any
valuation φ over V \ S we have:

rank(φ ◦ θ1) =
∑

x∈V\S

w(φ(x)) +
∑
x∈S

w(θ1(x)) ≥
∑

x∈V\S

w(φ(x)) +
∑
x∈S

w(θ2(x))

= rank(φ ◦ θ2)

Next, we construct a function that is coordinate-decomposable but it is not totally decom-
posable. Consider the query

Q(x1 . . . , xd, y1, . . . , yd) = R(x1, . . . , xd), S(y1, . . . , yd)

where dom = {−1, 1}, and define rank(θ) :=
∑d

i=1 θ(xi) · θ(yi). This ranking function
corresponds to taking the inner product of the input tuples if viewed as binary vectors. The
total order for dom is −1 ≺ 1. It can be shown that for d = 2, the function is not {x1, x2}-
decomposable. For instance, if we define (1, 1) ⪰ (1,−1), then inner product ranking function
over x1, x2, y1, y2 for φ = (1,−1) is rank(1, 1, 1,−1) < rank(1,−1, 1,−1) but if we define
(1,−1) ⪰ (1, 1), then for φ = (−1,−1) we get rank(1,−1,−1,−1) < rank(1, 1,−1,−1). This
shows that there exists no total ordering over the valuations of variables {x1, x2}.

▶ Definition 6. Let rank be a ranking function over a set of variables V, and S, T ⊆ V such
that S ∩ T = ∅. We say that rank is T -decomposable conditioned on S if for every valuation
θ over S, the function rankθ(φ) := rank(θ ◦ φ) defined over V \ S is T -decomposable.

The next lemma connects the notion of conditioned decomposability with decomposability.

▶ Lemma 7. Let rank be a ranking function over a set of variables V, and T ⊆ V. If rank
is T -decomposable, then it is also T -decomposable conditioned on S for any S ⊆ V \ T .

It is also easy to check that if a function is (S ∪ T )-decomposable, then it is also
T -decomposable conditioned on S.

▶ Definition 8 (Compatible Ranking). Let T be a rooted tree decomposition of hypergraph H
of a natural join query. We say that a ranking function is compatible with T if for every
node t it is (B≺

t \ key(t))-decomposable conditioned on key(t).

ICDT 2021



5:6 Ranked Enumeration of Conjunctive Query Results

▶ Example 9. Consider the join query Q(x, y, z) = R(x, y), S(y, z), and the ranking function
from Example 3, rank(θ) = wR(θ(x), θ(y)) + wS(θ(y), θ(z)). This function is not {z}-
decomposable, but it is {z}-decomposable conditioned on {y}.

Consider a decomposition of the hypergraph of Q that has two nodes: the root node
r with Br = {x, y}, and its child t with Bt = {y, z}. Since B≺

t = {y, z} and key(t) = {y},
the condition of compatibility holds for node t. Similarly, for the root node B≺

t = {x, y, z}
and key(t) = {}, hence the condition is trivially true as well. Thus, the ranking function is
compatible with the decomposition.

2.3 Problem Parameters

Given a natural join query Q and a database D, we want to enumerate the tuples of Q(D)
according to the order specified by rank. We will study this problem in the enumeration
framework similar to that of [41], where an algorithm can be decomposed into two phases:

a preprocessing phase that takes time Tp and computes a data structure of size Sp,
an enumeration phase that outputs Q(D) with no repetitions. The enumeration phase
has full access to any data structures constructed in the preprocessing phase and can also
use additional space of size Se. The delay δ is defined as the maximum time to output
any two consecutive tuples (and also the time to output the first tuple, and the time to
notify that the enumeration has completed).

It is straightforward to perform ranked enumeration for any ranking function by computing
Q(D), storing the tuples in an ordered list, and finally enumerating by scanning the ordered
list with constant delay. This simple strategy implies the following result.

▶ Proposition 10. Let Q be a natural join query with hypergraph H = (V, E). Let T be a tree
decomposition with fractional hypertree-width fhw, and rank be a ranking function. Then,
for any input database D, we can preprocess D in time Tp = O(log D · |D|fhw + |Q(D)|) and
space Sp = O(|Q(D)|), such that for any k, we can enumerate the top-k results of Q(D) with
delay δ = O(1) and space Se = O(1)

The drawback of Proposition 10 is that the user will have to wait Ω(|Q(D)| · log |Q(D)|)
time to even obtain the first tuple in the output. Moreover, even when we are interested
in a few tuples, the whole output result will have to be materialized. Instead, we want to
design algorithms that minimize the preprocessing time and space, while guaranteeing a
small delay δ. Interestingly, as we will see in Section 5, the above result is essentially the
best we can do if the ranking function is completely arbitrary; thus, we need to consider
reasonable restrictions of rank.

To see what it is possible to achieve in this framework, it will be useful to keep in mind
what we can do in the case where there is no ordering of the output.

▶ Theorem 11 (due to [36]). Let Q be a natural join query with hypergraph H = (V, E). Let
T be a tree decomposition with fractional hypertree-width fhw. Then, for any input database
D, we can pre-process D in time Tp = O(|D|fhw) and space Sp = O(|D|fhw) such that we can
enumerate the results of Q(D) with delay δ = O(1) and space Se = O(1)

For acyclic queries, fhw = 1, and hence the preprocessing phase takes only linear time
and space in the size of the input.
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3 Main Result

In this section, we present our first main result.

▶ Theorem 12 (Main Theorem). Let Q be a natural join query with hypergraph H = (V, E).
Let T be a fixed tree decomposition with fractional hypertree-width fhw, and rank be a ranking
function that is compatible with T. Then, for any database D, we can preprocess D with

Tp = O(|D|fhw) Sp = O(|D|fhw)

such that for any k, we can enumerate the top-k tuples of Q(D) with

delay δ = O(log |D|) space Se = O(min{k, |Q(D)|})

In the above theorem, the preprocessing step is independent of the value of k: we perform
exactly the same preprocessing if the user only wants to obtain the first tuple, or all tuples in
the result. However, if the user decides to stop after having obtained the first k results, the
space used during enumeration will be bound by O(k). We should also note that all of our
algorithms work in the case where the ordering of the tuples/valuations is instead expressed
through a comparable function that, given two valuations, returns the largest one.

It is instructive to compare Theorem 12 with Theorem 11, where no ranking is used when
enumerating the results. There are two major differences. First, the delay δ has an additional
logarithmic factor. As we will discuss later in Section 5, this logarithmic factor is a result
of doing ranked enumeration, and it is most likely unavoidable. The second difference is
that the space Se used during enumeration blows up from constant O(1) to O(|Q(D)|) in
the worst case (when all results are enumerated).

In the remainder of this section, we will present a few applications of Theorem 12, and
then sketch the construction for the proof of the theorem.

3.1 Applications
We show here how to apply Theorem 12 to obtain algorithms for different ranking functions.

Vertex-Based Ranking. A vertex-based ranking function over V is of the form: rank(θ) :=⊕
x∈V fx(θ(x)) where fx maps values from dom to some set U ⊆ R, and ⟨U,⊕⟩ forms a

commutative monoid. Recall that this means that ⊕ is a binary operator that is commutative,
associative, and has an identity element in U . We say that the function is monotone if a ≥ b

implies that a⊕ c ≥ b⊕ c for every c. Such examples are ⟨R, +⟩, ⟨R, ∗⟩, and ⟨U, max⟩, where
U is bounded.

▶ Lemma 13. Let rank be a monotone vertex-based ranking function over V. Then, rank is
totally decomposable, and hence compatible with any tree decomposition of a hypergraph with
vertices V.

Tuple-Based Ranking. Given a query hypergraph H, a tuple-based ranking function assigns
for every valuation θ over the variables xF of relation RF a weight wF (θ) ∈ U ⊆ R. Then, it
takes the following form: rank(θ) :=

⊕
F ∈E wF (θ[xF ]) where ⟨U,⊕⟩ forms a commutative

monoid. In other words, a tuple-based ranking function assigns a weight to each input tuple,
and then combines the weights through ⊕.

▶ Lemma 14. Let rank be a monotone tuple-based ranking function over V. Then, rank is
compatible with any tree decomposition of a hypergraph with vertices V.

ICDT 2021



5:8 Ranked Enumeration of Conjunctive Query Results

Since both monotone tuple-based and vertex-based ranking functions are compatible with
any tree decomposition we choose, the following result is immediate.

▶ Proposition 15. Let Q be a natural join query with optimal fractional hypertree-width fhw.
Let rank be a ranking function that can be either (i) monotone vertex-based, (ii) monotone
tuple-based. Then, for any input D, we can pre-process D in time Tp = O(|D|fhw) and
space Sp = O(|D|fhw) such that for any k, we can enumerate the top-k results of Q(D) with
δ = O(log |D|) and Se = O(min{k, |Q(D)|})

For instance, if the query is acyclic, hence fhw = 1, the above theorem gives an algorithm
with linear preprocessing time O(|D|) and O(log |D|) delay.

Lexicographic Ranking. A typical ordering of the output valuations is according to a
lexicographic order. In this case, each dom(x) is equipped with a total order. If V =
{x1, . . . , xk}, a lexicographic order ⟨xi1 , . . . , xiℓ

⟩ for ℓ ≤ k means that two valuations θ1, θ2
are first ranked on xi1 , and if they have the same rank on xi1 , then they are ranked on xi2 , and
so on. This ordering can be naturally encoded by first taking a function fx : dom(x)→ R
that captures the total order for variable x, and then defining rank(θ) :=

∑
x wxfx(θ(x)),

where wx are appropriately chosen constants. Since this ranking function is a monotone
vertex-based ranking, Proposition 15 applies here as well.

We should note here that lexicographic ordering has been previously considered in the
context of factorized databases.

▶ Proposition 16 (due to [36, 5]). Let Q be a natural join query with hypergraph H = (V, E),
and ⟨xi1 , . . . , xiℓ

⟩ a lexicographic ordering of the variables in V.
Let T be a tree decomposition with fractional hypertree-width fhw-lex such that

⟨xi1 , . . . , xiℓ
⟩ forms a prefix in the topological ordering of the variables in the decompos-

ition. Then, for any input database D, we can pre-process D with Tp = O(|D|fhw-lex) and
Sp = O(|D|fhw-lex) such that results of Q(D) can be enumerated with delay δ = O(1) and
space Se = O(1).

In other words, if the lexicographic order “agrees” with the tree decomposition (in
the sense that whenever xi is before xj in the lexicographic order, xj can never be in
a bag higher than the bag where xi is), then it is possible to get an even better result
than Theorem 12, by achieving constant delay O(1), and constant space Se. However,
given a tree decomposition, Theorem 12 applies for any lexicographic ordering - in contrast
to Proposition 16. As an example, consider the join query Q(x, y, z) = R(x, y), S(y, z) and
the lexicographic ordering ⟨z, x, y⟩. Since fhw = 1, our result implies that we can achieve
O(|D|) time preprocessing with delay O(log |D|). On the other hand, the optimal width of a
tree decomposition that agrees with ⟨z, x, y⟩ is fhw-lex = 2; hence, Proposition 16 implies
O(|D|2) preprocessing time and space. Thus, variable orderings in a decomposition fail to
capture the additional challenge of user chosen lexicographic orderings. It is also not clear
whether further restrictions on variable orderings in Proposition 16 are sufficient to capture
ordered enumeration for other ranking functions (such as sum).

Bounded Ranking. A ranking function is c-bounded if there exists a subset S ⊆ V of size
|S| = c, such that the value of rank depends only on the variables from S. A c-bounded
ranking is related to c-determined ranking functions [28]: c-determined implies c-bounded,
but not vice versa. For c-bounded ranking functions, we can show the following result:
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▶ Proposition 17. Let Q be a natural join query with optimal fractional hypertree-width fhw.
If rank is a c-bounded ranking function, then for any input D, we can pre-process D in time
Tp = O(|D|fhw+c) and space Sp = O(|D|fhw+c) such that for any k, we can enumerate the
top-k results of Q(D) with δ = O(log |D|) and Se = O(min{k, |Q(D)|})

3.2 The Algorithm for the Main Theorem

At a high level, each node t in the tree decomposition will materialize in an incremental
fashion all valuations over B≺

t that satisfy the query that corresponds to the subtree rooted
at t. We do not store explicitly each valuation θ over B≺

t at every node t, but instead we
use a simple recursive structure C(v) that we call a cell. If t is a leaf, then C(θ) = ⟨θ, [],⊥⟩,
where ⊥ is used to denote a null pointer. Otherwise, suppose that t has n children t1, . . . , tn.
Then, C(θ) = ⟨θ[Bt], [p1, . . . , pn], q⟩, where pi is a pointer to the cell C(θ[B≺

ti
]) stored at node

ti, and q is a pointer to a cell stored at node t (intuitively representing the “next” valuation
in the order). It is easy to see that, given a cell C(θ), one can reconstruct θ in constant time
(dependent only on the query). Additionally, each node t maintains one hash map Qt, which
maps each valuation u over key(Bt) to a priority queue Qt[u]. The elements of Qt are cells
C(θ), where θ is a valuation over B≺

t such that u = θ[key(Bt)]. The priority queues will be
the data structure that performs the comparison and ordering between different tuples. We
will use an implementation of a priority queue (e.g., a Fibonacci heap [13]) with the following
properties: (i) we can insert an element in constant time O(1), (ii) we can obtain the min
element (top) in time O(1), and (iii) we can delete the min element (pop) in time O(log n).

Notice that it is not straightforward to rank the cells according to the valuations, since
the ranking function is defined over all variables V. However, here we can use the fact
that the ranking function is compatible with the decomposition at hand. Indeed, given a
fixed valuation u over key(Bt), we will order the valuations θ over B≺

t that agree with u

according to the score: rank(v⋆
t ◦ θ) where v⋆

t is a valuation over V \ B≺
t chosen according to

the definition of decomposability. The key intuition is that the compatibility of the ranking
function with the decomposition implies that the ordering of the tuples in the priority queue
Qt[u] will not change if we replace v⋆

t with any other valuation. Thus, the comparator can
use v⋆

t to calculate the score which is used by the priority queue internally. We next discuss
the preprocessing and enumeration phase of the algorithm.

Preprocessing. Algorithm 1 consists of two steps. The first step works exactly as in the
case where there is no ranking function: each bag Bt is computed and materialized, and then
we apply a full reducer pass to remove all tuples from the materialized bags that will not join
in the final result. The second step initializes the hash map with the priority queues for every
bag in the tree. We traverse the decomposition in a bottom up fashion (post-order traversal),
and do the following. For a leaf node t, notice that the algorithm does not enter the loop in
line 10, so each valuation θ over Bt is added to the corresponding queue as the triple ⟨θ, [],⊥⟩.
For each non-leaf node t, we take each valuation v over Bt and form a valuation (in the form
of a cell) over B≺

t by using the valuations with the largest rank from its children (we do this
by accessing the top of the corresponding queues in line 10). The cell is then added to the
corresponding priority queue of the bag. Observe that the root node r has only one priority
queue, since key(r) = {}.
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x, y

y, z

z, w z, u

⟨1, [],⊥⟩ 1
⟨2, [],⊥⟩ 5

⟨1, [],⊥⟩ 1
⟨2, [],⊥⟩ 4

⟨1, [ ],⊥⟩ 3

⟨1, [ ],⊥⟩ 4
⟨2, [ ],⊥⟩ 5

QB4 [1]QB3 [1]

QB2 [1]

QB1 [()]

(a) Priority queue state (mirroring the decomposition) after preprocessing phase.

first popped tuple

⟨1, [ ], ⟩ 3

⟨1, [ ],⊥⟩ 4

⟨1, [], ⟩ 1
⟨2, [],⊥⟩ 5

⟨1, [], ⟩ 1
⟨2, [],⊥⟩ 4

⟨1, [ ],⊥⟩ 6
⟨1, [ ],⊥⟩ 7

⟨2, [ ],⊥⟩ 5
⟨1, [ ],⊥⟩ 7

QB4 [1]QB3 [1]

QB2 [1]

QB1 [()]

(b) Priority queue state after one iteration of loop in procedure ENUM().

⟨1, [ ], ⟩ 3 ⟨1, [ ], ⟩ 6 ⟨1, [ ], ⟩ 7 ⟨1, [ ],⊥⟩ 10

⟨1, [], ⟩ 1
⟨2, [],⊥⟩ 5

⟨1, [], ⟩ 1
⟨2, [],⊥⟩ 4

(c) The materialized output stored at subtree rooted at B2 after enumeration is complete.

Figure 1 Preprocessing and enumeration phase for Example 1. Each memory location is shown
with a different color. Pointers in cells are denoted using which means that the it points to a
memory location with the corresponding color (shown using pointed arrows). Root bag priority
queue cells are not color coded as nobody points to them.
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Algorithm 1 Preprocessing Phase.
1 foreach t ∈ V (T) do
2 materialize the bag Bt

3 full reducer pass on materialized bags in T

4 forall t ∈ V (T) in post-order traversal do
5 foreach valuation θ in bag Bt do
6 u← θ[key(Bt)]
7 if Qt[u] is NULL then
8 Qt[u]← new priority queue
9 ℓ← []

/* ℓ is a list of pointers */
10 foreach child s of t do
11 ℓ.insert(Qs[θ[key(Bs)]].top())
12 Qt[u].insert(⟨θ, ℓ,⊥⟩) /* ranking function uses θ, ℓ, v⋆

t to calculate score used
by priority queue */

Algorithm 2 Enumeration Phase.
1 procedure enum()
2 while Qr[()] is not empty do
3 output Qr[()].top()
4 topdown(Qr[()].top(), r)

5 procedure topdown(c, t)
6 /* c = ⟨θ, [p1, . . . , pk], next⟩ */
7 u← θ[key(Bt)]
8 if next = ⊥ then
9 Qt[u].pop()

10 foreach child ti of t do
11 p′

i ← topdown(∗pi, ti)
12 if p′

i ̸= ⊥ then
13 Qt[u].insert(⟨θ, [p1, . . . , p′

i, . . . pk],⊥⟩) /* insert new candidate(s) */
14 if t is not the root then
15 next← Qt[u].top()
16 return next

▶ Example 18. As a running example, we consider the natural join query Q(x, y, z, w) =
R1(x, y), R2(y, z), R3(z, w), R4(z, u) where the ranking function is the sum of the weights of
each input tuple. Consider the following instance D and decomposition T for our running
example.

id w1 x y
1 1 1 1
2 2 2 1

R1
id w2 y z
1 1 1 1
2 1 3 1

R2
id w3 z w
1 1 1 1
2 4 1 2

R3
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id w3 z u
1 1 1 1
2 5 1 2

R4
x, y

y, z

z, w z, u

Broot = B1

B2

B3 B4

For the instance shown above and the query decomposition that we have fixed, relation
Ri covers bag Bi, i ∈ [4]. Each relation has size N = 2. Since the relations are already
materialized, we only need to perform a full reducer pass, which can be done in linear time.
This step removes tuple (3, 1) from relation R2 as it does not join with any tuple in R1.

Figure 1a shows the state of priority queues after the pre-processing step. For convenience,
θ in each cell ⟨θ, [p1, . . . , pk], next⟩ is shown using the primary key of the tuple and pointers
pi and next are shown using colored dots representing the memory location it points to.
The cell in a memory location is followed by the partial aggregated score of the tuple formed
by creating the tuple from the pointers in the cell recursively. For instance, the score of the
tuple formed by joining (y = 1, z = 1) ∈ R2 with (z = 1, w = 1) from R3 and (z = 1, u = 1)
in R4 is 1 + 1 + 1 = 3 (shown as ⟨1, [ ], ⊥⟩ 3 in the figure). Each cell in every priority queue
points to the top element of the priority queue of child nodes that are joinable. Note that
since both tuples in R1 join with the sole tuple from R2, they point to the same cell.

Enumeration. Algorithm 2 presents the algorithm for the enumeration phase. The heart of
the algorithm is the procedure TOPDOWN(c, t). The key idea of the procedure is that whenever
we want to output a new tuple, we can simply obtain it from the top of the priority queue in
the root node (node r is the root node of the tree decomposition). Once we do that, we need
to update the priority queue by popping the top, and inserting (if necessary) new valuations
in the priority queue. This will be recursively propagated in the tree until it reaches the
leaf nodes. Observe that once the new candidates have been inserted, the next pointer of
cell c is updated by pointing to the topmost element in the priority queue. This chaining
materializes the answers for the particular bag that can be reused.

▶ Example 19. Figure 1b shows the state of the data structure after one iteration in ENUM().
The first answer returned to the user is the topmost tuple from QB1 [()] (shown in top left of
the figure). Cell ⟨1, [ ], ⊥⟩ 4 is popped from QB1 [()] (after satisfying if condition on line 8 as
next is ⊥). Since nothing is pointing to this cell, it is garbage collected (denoted by greying
out the cell). We recursively call TOPDOWN for child node B2 and cell ⟨1, [ ], ⊥⟩ 3 . The next
for this cell is also ⊥ and we pop it from QB2 [1]. At this point, QB2 [1] is empty. The next
recursive call is for B3 with ⟨1, [], ⊥⟩ 1 . The least ranked tuple but larger than ⟨1, [], ⊥⟩ 1

in QB3 [1] is the cell at address . Thus, next for ⟨1, [], ⊥⟩ 1 is updated to and cell at
is returned which leads to creation and insertion of ⟨1, [ ], ⊥⟩ 6 cell in QB2 [1]. Similarly,
we get the other cell in QB2 [1] by recursive call for B4. After both the calls are over for
node B2, the topmost cell at QB2 [1] is ,which is set as the next for ⟨1, [ ], ⊥⟩ 3 (changing
into ⟨1, [ ], ⟩ 3 ), terminating one full iteration. ⟨1, [ ], ⟩ 3 is not garbage collected as

⟨2, [ ], ⊥⟩ 5 is pointing to it.
Let us now look at the second iteration of ENUM(). The tuple returned is top element of

QB1 [()] which is ⟨2, [ ], ⊥⟩ 5 . However, the function TOPDOWN() with ⟨2, [ ], ⊥⟩ 5 does not
recursively go all the way down to leaf nodes. Since ⟨1, [ ], ⟩ 3 already has next populated,
we insert ⟨2, [ ], ⊥⟩ 5 in QB1 [()] completing the iteration. This demonstrates the benefit of
materializing ranked answers at each node in the tree. As the enumeration continues, we are
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materializing the output of each subtree on-the-fly that can be reused by other tuples in the
root bag. Figure 1c shows the eventual sequence of pointers at node B2 which is the ranked
materialized output of the subtree rooted at B2. ⟨2, [ ], ⊥⟩ 5 is garbage collected.

4 Extensions

In this section, we describe two extensions of Theorem 12 and how it can be used to further
improve the main result.

4.1 Ranked Enumeration of UCQs
We begin by discussing how ranked enumeration of full UCQs can be done. The first
observation is that given a full UCQ φ = φ1 ∪ . . . φℓ, if the ranked enumeration of each
φi can be performed efficiently, then we can perform ranked enumeration for the union of
query results. This can be achieved by applying Theorem 12 to each φi and introducing
another priority queue that compares the score of the answer tuples of each φi, pops the
smallest result, and fetches the next smallest tuple from the data structure of φi accordingly.
Although each φi(D) does not contain duplicates, it may be the case that the same tuple
is generated by multiple φi. Thus, we need to introduce a mechanism to ensure that all
tuples with the same weight are enumerated in a specific order. Fortunately, this is easy
to accomplish by modifying Algorithm 2 to enumerate all tuples with the same score in
lexicographic increasing order. This ensures that tuples from each φi also arrive in the same
order. Since each φi is enumerable in ranked order with delay O(log |D|) and the overhead of
the priority queue is O(ℓ) (priority queue contains at most one tuple from each φi), the total
delay guarantee is bounded by O(ℓ · log |D|) = O(log |D|) as the query size is a constant. The
space usage is determined by the largest fractional hypertree-width across all decompositions
of subqueries in φ. This immediately leads to the following corollary of the main result.

▶ Corollary 20. Let φ = φ1 ∪ . . . φℓ be a full UCQ. Let fhw denote the fractional hypertree-
width of all decompositions across all CQs φi, and rank be a ranking function that is
compatible with the decomposition of each φi. Then, for any input database D, we can
pre-process D in time and space,

Tp = O(|D|fhw) Sp = O(|D|fhw)

such that for any k, we can enumerate the top-k tuples of φ(D) with

delay δ = O(log |D|) space Se = O(min{k, |φ(D)|})

4.2 Improving The Main Result
Although Corollary 20 is a straightforward extension of Theorem 12, it is powerful enough to
improve the pre-processing time and space of Theorem 12 by using Corollary 20 in conjunction
with data-dependent tree decompositions. It is well known that the query result for any
CQ can be answered in time O(|D|fhw + |Q(D)|) time and this is asymptotically tight [2].
However, there exists another notion of width known as the submodular width (denoted
subw) [31]. It is also known that for any CQ, it holds that subw ≤ fhw. Recent work by
Abo Khamis et al. [1] presented an elegant algorithm called PANDA that constructs multiple
decompositions by partitioning the input database to minimize the intermediate join size
result. PANDA computes the output of any full CQ in time O(|D|subw · log |D|+ |Q(D)|). In
other words, PANDA takes a CQ query Q and a database D as input and produces multiple
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tree decompositions in time O(|D|subw · log |D|) such that each answer tuple is generated
by at least one decomposition. The number of decompositions depends only on size of the
query and not on D. Thus, when the query size is a constant, the number of decompositions
constructed is also a constant. We can now apply Corollary 20 by setting φi as the tree
decompositions produced by PANDA to get the following result. [17] describes the details of
the enumeration algorithm and the tie-breaking comparison function.

▶ Theorem 21. Let φ be a natural join query with hypergraph H = (V, E), submodular width
subw, and rank be a ranking function that is compatible with each tree decomposition of φ.
Then, for any input database D, we can pre-process D in time and space,

Tp = O(|D|subw · log |D|) Sp = O(|D|subw)

such that for any k, we can enumerate the top-k tuples of φ(D) with

delay δ = O(log |D|) space Se = O(min{k, |φ(D)|})

5 Lower Bounds

In this section, we provide evidence for the near optimality of our results.

5.1 The Choice of Ranking Function
We first consider the impact of the ranking function on the performance of ranked enumeration.
We start with a simple observation that deals with the case where rank has no structure,
and can be accessed only through a blackbox that, given a tuple/valuation, returns its score:
we call this a blackbox 1 ranking function. Note that all of our algorithms work under the
blackbox assumption.

▶ Proposition 22. Let Q be a natural join query, and rank a blackbox ranking function.
Then, any enumeration algorithm on a database D needs Ω(|Q(D)|) calls to rank– and worst
case Ω(|D|ρ∗) calls – in order to output the smallest tuple.

Indeed, if the algorithm does not examine the rank of an output tuple, then we can always
assign a value to the ranking function such that the tuple is the smallest one. Hence, in the
case where there is no restriction on the ranking function, the simple result in Proposition 10
that materializes and sorts the output is essentially optimal. Thus, it is necessary to exploit
properties of the ranking function in order to construct better algorithms. Unfortunately,
even for natural restrictions of ranking functions, it is not possible to do much better than
the |D|ρ∗ bound for certain queries.

Such a natural restriction is that of coordinate decomposable functions, where we can
show the following lower bound result:

▶ Lemma 23. Consider the query Q(x1, y1, x2, y2) = R(x1, y1), S(x2, y2) and let rank be a
blackbox coordinate decomposable ranking function. Then, there exists an instance of size N

such that the time required to find the smallest tuple is Ω(N2).

Lemma 23 shows that for coordinate decomposable functions, there exist queries where
obtaining constant (or almost constant) delay requires the algorithm to spend superlinear
time during the preprocessing step. Given this result, the immediate question is to see
whether we can extend the lower bound to other CQs.

1 Blackbox implies that the score rank(θ) is revealed only upon querying the function.
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Dichotomy for coordinate decomposable. We first show a dichotomy result for coordinate
decomposable functions.

▶ Theorem 24. Consider a full acyclic query Q and a coordinate decomposable blackbox
ranking function. There exists an algorithm that enumerates the result of Q in ranked order
with O(log |D|) delay guarantee and Tp = O(|D|) preprocessing time if and only if there are
no atoms R and S in Q such that vars(R) \ vars(S) ≥ 2 and vars(S) \ vars(R) ≥ 2.

For example, the query Q(x, y, z) = R(x, y), S(y, z) satisfies the condition of Theorem 24,
while the Cartesian product query defined in Lemma 23 does not.

Dichotomy for edge decomposable. We will show a dichotomy result for edge decomposable
ranking functions: these are functions that are S-decomposable for any S that is a hyperedge
in the query hypergraph. Before we present the result, we need to formally define the notion
of path and diameter in a hypergraph.

▶ Definition 25. Given a connected hypergraph H = (V, E), a path P in H from vertex x1 to
xs+1 is a vertex-edge alternate set x1E1x2E2 . . . xsEsxs+1 such that {xi, xi+1} ⊆ Ei(i ∈ [s])
and xi ̸= xj , Ei ≠ Ej for i ̸= j. Here, s is the length of the path P . The distance between any
two vertices u and v, denoted d(u, v), is the length of the shortest path connecting u and v.
The diameter of a hypergraph, dia(H), is the maximum distance between all pairs of vertices.

▶ Theorem 26. Consider a full connected acyclic join query Q and a blackbox edge decom-
posable ranking function. Then, there exists an algorithm that enumerates the result of Q

in ranked order with O(log |D|) delay and Tp = O(|D|) preprocessing time if and only if
dia(Q) ≤ 3.

For example, Q(x, y, z, w) = R(x, y), S(y, z), T (z, w) has diameter 3, and thus we can
enumerate the result with linear preprocessing time and logarithmic delay for any edge
decomposable ranking function. On the other hand, for the 4-path query Q(x, y, z, w, t) =
R(x, y), S(y, z), T (z, w), U(w, t), it is not possible to achieve this.

When the query is not connected, the characterization must be slightly modified: an
acyclic query can be enumerated with O(log |D|) delay and Tp = O(|D|) if and only if each
connected subquery has diameter at most 3.

5.2 Beyond Logarithmic Delay
Next, we examine whether the logarithmic factor that we obtain in the delay of Theorem 12
can be removed for ranked enumeration. In other words, is it possible to achieve constant
delay enumeration while keeping the preprocessing time small, even for simple ranking
functions? To reason about this, we need to describe the X + Y sorting problem.

Given two lists of n numbers, X = ⟨x1, x2, . . . , xn⟩ and Y = ⟨y1, y2, . . . , yn⟩, we want to
enumerate all n2 pairs (xi, yj) in ascending order of their sum xi + yj . This classic problem
has a trivial O(n2 log n) algorithm that materializes all n2 pairs and sorts them. However, it
remains an open problem whether the pairs can be enumerated faster in the RAM model.
Fredman [22] showed that O(n2) comparisons suffice in the nonuniform linear decision tree
model, but it remains open whether this can be converted into an O(n2)-time algorithm in
the real RAM model. Steiger and Streinu [43] gave a simple algorithm that takes O(n2 log n)
time while using only O(n2) comparisons.
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▶ Conjecture 27 ([9, 18]). X + Y sorting does not admit an O(n2) time algorithm.

In our setting, X + Y sorting can be expressed as enumerating the output of the cartesian
product Q(x, y) = R(x), S(y), where relations R and S correspond to the sets X and Y

respectively. The ranking function is rank(x, y) = x + y. Conjecture 27 implies that it is
not possible to achieve constant delay for the cartesian product query and the sum ranking
function; otherwise, a full enumeration would produce a sorted order in time O(n2).

6 Related Work

Top-k ranked enumeration of join queries has been studied extensively by the database
community for both certain [29, 37, 26, 30] and uncertain databases [38, 45]. Most of these
works exploit the monotonicity property of scoring functions, building offline indexes and
integrate the function into the cost model of the query optimizer in order to bound the number
of operations required per answer tuple. We refer the reader to [25] for a comprehensive
survey of top-k processing techniques. More recent work [10, 23] has focused on enumerating
twig-pattern queries over graphs. Our work departs from this line of work in two aspects: (i)
use of novel techniques that use query decompositions and clever tricks to achieve strictly
better space requirement and formal delay guarantees; (ii) our algorithms are applicable to
arbitrary hypergraphs as compared to simple graph patterns over binary relations. Most
closely related to our setting are [28] and [44]. Algorithm in [28] is fundamentally different
from ours. It uses an adaptation of Lawler-Murty’s procedure to generate candidate output
tuples which is also a source of inefficiency given that it ignores query structure. [44] presented
a novel anytime algorithm for enumerating homomorphic tree patterns with worst case delay
and space guarantees where the ranking function is sum of weights of input tuples that
contribute to an output tuple. Their algorithm also generates candidate output tuples with
different scores and sorts them via a priority queue. However, the candidate generation phase
is expensive and can be improved substantially, as we show in this paper. Our algorithm
also generalizes the approach of prior work that showed how to find k shortest paths in a
graph [19] and may be useful to other problems in DP [39] and DGM [11] where ranked
enumeration is useful.

Rank aggregation algorithms. Top-k processing over ranked lists of objects has a rich
history. The problem was first studied by Fagin et al. [20, 21] where the database consists of
N objects and m ranked streams, each containing a ranking of the N objects with the goal
of finding the top-k results for coordinate monotone functions. The authors proposed Fagin’s
algorithm (FA) and Threshold algorithm (TA), both of which were shown to be instance
optimal for database access cost under sorted list access and random access model. This
model would be applicable to our setting only if Q(D) is already computed and materialized.
More importantly, TA can only give O(N) delay guarantee using O(N) space. [32] extended
the problem setting to the case where we want to enumerate top-k answers for t-path query.
The first proposed algorithm J∗ uses an iterative deepening mechanism that pushes the most
promising candidates into a priority queue. Unfortunately, even though the algorithm is
instance optimal with respect to number of sorted access over each list, the delay guarantee
is Ω(|Q(D)|) with space requirement S = Ω(|Q(D)|). A second proposed algorithm J∗

P A

allows random access over each sorted list. J∗
P A uses a dynamic threshold to decide when to

use random access over other lists to find joining tuples versus sorted access but does not
improve formal guarantees.
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Query enumeration. The notion of constant delay query enumeration was introduced by
Bagan, Durand and Grandjean in [3]. In this setting, preprocessing time is supposed to be
much smaller than the time needed to evaluate the query (usually, linear in the size of the
database), and the delay between two output tuples may depend on the query, but not on the
database. This notion captures the intrinsic hardness of query structure. For an introduction
to this topic and an overview of the state-of-the-art we refer the reader to the survey [40, 42].
Most of the results in existing works focus only on lexicographic enumeration of query results
where the ordering of variables cannot be arbitrarily chosen. Transferring the static setting
enumeration results to under updates has also been a subject of recent interest [7, 6].

Factorized databases. Following the landmark result of [36] which introduced the notion
of using the logical structure of the query for efficient join evaluation, a long line of research
has benefited from its application to learning problems and broader classes of queries [5, 4,
35, 16, 27, 14, 15]. The core idea of factorized databases is to convert an arbitrary query into
an acyclic query by finding a query decomposition of small width. This width parameter
controls the space and pre-processing time required in order to build indexes allowing for
constant delay enumeration. We build on top of factorized representations and integrate
ranking functions in the framework to enable enumeration beyond lexicographic orders.

7 Conclusion

In this paper, we study the problem of CQ result enumeration in ranked order. We combine
the notion of query decompositions with certain desirable properties of ranking functions
to enable logarithmic delay enumeration with small preprocessing time. The most natural
open problem is to prove space lower bounds to see if our algorithms are optimal at least for
certain classes of CQs. An intriguing question is to explore the full continuum of time-space
tradeoffs. For instance, for any compatible ranking function with the 4-path query and
TP = O(N), we can achieve δ = O(N3/2) with space Se = O(N) and δ = O(log N) with
space Se = O(N2). The precise tradeoff between these two points and its generalization
to arbitrary CQs is unknown. There also remain several open question regarding how the
structure of ranking functions influences the efficiency of the algorithms. In particular, it
would be interesting to find fine-grained classes of ranking functions which are more expressive
than totally decomposable, but less expressive than coordinate decomposable. For instance,
the ranking function f(x, y) = |x − y| is not coordinate decomposable, but it is piecewise
coordinate decomposable on either side of the global minimum critical point for each x

valuation.
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