
Input–Output Disjointness for Forward Expressions
in the Logic of Information Flows
Heba Aamer !

Hasselt University, Belgium

Jan Van den Bussche !

Hasselt University, Belgium

Abstract
Last year we introduced the logic FLIF (forward logic of information flows) as a declarative language
for specifying complex compositions of information sources with limited access patterns. The key
insight of this approach is to view a system of information sources as a graph, where the nodes
are valuations of variables, so that accesses to information sources can be modeled as edges in the
graph. This allows the use of XPath-like navigational graph query languages. Indeed, a well-behaved
fragment of FLIF, called io-disjoint FLIF, was shown to be equivalent to the executable fragment of
first-order logic. It remained open, however, how io-disjoint FLIF compares to general FLIF. In this
paper we close this gap by showing that general FLIF expressions can always be put into io-disjoint
form.

2012 ACM Subject Classification Software and its engineering → Semantics; Software and its
engineering → Data flow languages; Theory of computation → Database query languages (principles)

Keywords and phrases Composition, expressive power, variable substitution

Digital Object Identifier 10.4230/LIPIcs.ICDT.2021.8

Funding This work was partially supported by Artificial Intelligence Research Flanders.
Heba Aamer : Supported by the Special Research Fund (BOF) (BOF19OWB16).
Jan Van den Bussche: Partially supported by the National Natural Science Foundations of China
(61972455).

Acknowledgements Thanks to Eugenia Ternovska for introducing us to LIF and to Bart Bogaerts
for initial discussions on the topic of this paper.

1 Introduction

FLIF (Forward Logic of Information Flows) [1] is an algebraic language for accessing atomic
modules, and composing such modules into complex transition systems. Here, the term
“atomic module” can be interpreted liberally: it can be a software library function, a Web
service, a form on a website, or an information source.

Abstractly, an atomic module may be viewed as an n-ary relation where some of the
arguments are designated as input arguments, with the remaining arguments providing
output. For a simple example, a telephone directory may be viewed as a binary relation
Dir(name; phone) with name as input argument and phone as output argument. For another
example, the public bus company may provide its weekdays schedule as a relation Route(stop,

interval; time, line, next, duration) that, given a bus stop and a time interval, outputs bus
lines that stop there at a time within the interval, together with the duration to the next stop.
Note how we use a semicolon to separate the input arguments from the output arguments.

In database research, such relations are known as information sources with limited access
patterns, and the querying of such sources has received considerable attention. We refer to
the research monograph by Benedikt et al. for more background [7]. An elegant syntactic
fragment of first-order logic (FO) that takes into account the limitations imposed by the
access patterns, was proposed by Nash and Ludäscher in the form of so-called “executable”

© Heba Aamer and Jan Van den Bussche;
licensed under Creative Commons License CC-BY 4.0

24th International Conference on Database Theory (ICDT 2021).
Editors: Ke Yi and Zhewei Wei; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:heba.mohamed@uhasselt.be
https://orcid.org/0000-0003-0460-8534
mailto:jan.vandenbussche@uhasselt.be
https://orcid.org/0000-0003-0072-3252
https://doi.org/10.4230/LIPIcs.ICDT.2021.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Input–Output Disjointness for FLIF

FO formulas [14]. Executable FO queries can be evaluated by a form of relational algebra
expressions, called plans, in which database relations can only be accessed by joining them
on their input attributes with a relation that is either given as input or has already been
computed.

FLIF now offers an alternative language, which we think of as situated halfway between
executable FO and plans. In FLIF we take a novel graph-based perspective to information
sources with access patterns. The nodes of the graph are variable bindings; edges indicate
accesses to the sources. For example, consider a source Friend(pname; fname) that outputs
names of friends when given the name of a person as input. Then there is an edge labeled
Friend from binding ν1 to binding ν2 if ν2(fname) is a friend of ν1(pname). Moreover, ν2
should not differ from ν1 in other variables (a principle of “inertia”). FLIF then is a simple
XPath-like navigational query language over such graphs [15, 10, 5, 9, 16, 4].

For example, abbreviating Friend by F , the FLIF expression F (x; y);F (y; z);F (z; u);(u =
x) retrieves (in variable z) friends of friends of x who have x also as a direct friend. Here, the
operator ; denotes composition and the subexpression (u = x) serves as a test. Composition
is a crucial operator by which (bounded-length) paths can be traced in the graph. FLIF
also has union (to branch off), intersection (to merge branches) and difference (to exclude
branches), and variable assignments.

Simple as FLIF may seem, it is at least as expressive as executable FO, as we showed
together with Bogaerts, Surinx and Ternovska at ICDT 2020 [1]. Actually, executable FO
was shown to be already subsumed by a well-behaved fragment of FLIF, formed by the
expressions that are io-disjoint. IO-disjointness is a syntactic restriction which guarantees
that, during the transitions involved in evaluating the expression, the values of input variables
are never overwritten. IO-disjoint expressions can also be evaluated by a very transparent
translation to relational algebra plans, in which all joins are natural joins, and attribute
renaming is not needed. (The example expression above is io-disjoint.)

Conversely, in our previous work we also gave a translation from io-disjoint FLIF to
executable FO. It has remained open, however, whether every FLIF expression can actually
be put in an equivalent form that is io-disjoint. In the present paper we answer this question
affirmatively. Of course, we need to make precise for what kind of “equivalence” this can
work, and it is part of our contribution to clarify this. Intuitively, we show that it is always
possible to designate a fresh set of output variables disjoint from the set of input variables, in
such a way that intermediate variables (used in subexpressions) do not interfere with either
of the two sets. Proving this rigorously turned out to be a quite intricate task. Our result
shows that io-disjoint FLIF is equally powerful as the full FLIF language. As a corollary, we
obtain that full FLIF is not more powerful than executable FO.

This paper is organized as follows. Section 2 gives preliminaries. Section 3 gives examples
of queries expressed in FLIF and other languages. Section 4 presents and discusses our main
result. Section 5 formally proves the correctness of our method. Section 6 concludes.

2 Preliminaries

We begin by recalling from previous work the concepts and results needed for the present
paper.

2.1 Syntax of FLIF
A schema consists of a set of module names, which are seen as relation names. Accordingly,
the schema assigns to each module name M an arity ar(M), as well as an input arity iar(M)
with iar(M) ≤ ar(M). The idea is that the first iar(M) arguments are the input arguments;

H. Aamer and J. Van den Bussche 8:3

the remaining arguments are the output arguments. We use oar(M) (output arity) for
ar(M)− iar(M).

Assume countably infinite universes dom of data values, and V of variables. The
expressions α of FLIF over a schema S are generated by the following grammar:

α ::= M(x̄; ȳ) | (x := y) | (x := c) | (x = y) | (x = c) | α ; α | α ∪ α | α ∩ α | α− α

Here, M is a module name from S; x̄ and ȳ are tuples of variables of lengths iar(M) and
oar(M) respectively; x and y are variables; and c is a constant from dom. An expression of
the form M(x̄; ȳ) is called a module access; of the form x := y or x := c a variable assignment;
and x = y or x = c an equality test.
▶ Remark 1. In writing expressions, we omit parentheses around (sub)expressions involving
composition since it is an associative operator. Also we give precedence to composition over
the set operations.

2.2 Semantics of FLIF
Recall that a valuation is a mapping from V to dom. It is convenient to be able to apply
valuations also to constants, agreeing that ν(c) = c for any valuation ν and any c ∈ dom.
We use V for the set of all valuations.

The semantics of FLIF expressions are defined in the context of interpretations. An
interpretation D of a schema S assigns to each module name M an n-ary relation D(M) on
dom, with n = ar(M). Given an interpretation D, we define the semantics of an expression
α on D, denoted by JαKD, as a binary relation on V, as follows.

For module access:

JM(x̄; ȳ)KD = {(ν1, ν2) ∈ V × V | ν1(x̄) · ν2(ȳ) ∈ D(M) and ν2 agrees with ν1 outside ȳ}

where · denotes concatenation.
For variable assignment, where t is a variable or a constant:

Jx := tKD = {(ν1, ν2) ∈ V × V | ν2 = ν1[x := ν1(t)]}

where, in general, for a valuation ν, a variable x, and a data value c, we use ν[x := c] for the
valuation that is the same as ν except that x is mapped to c.

For equality test:

Jx = tKD = {(ν, ν) | ν ∈ V and ν(x) = ν(t)}.

Finally, the semantics of the operators ;, ∪, ∩ and − are given by composition of binary
relations, union, intersection and set difference, respectively.1

▶ Remark 2. For simplicity of exposition, we only include equality tests and simple assignments.
The definitions and results of this paper can however be extended to include arithmetical
comparisons and operations.

▶ Example 3. Suppose F is a binary relation of input arity one that is interpreted as a
symmetric “friends” relation of a social network. Suppose the value of input variable x is
some famous person, and we want to find persons z who are friend of a friend (say, y) of x.

1 Recall that the composition r ; s of two binary relations equals the binary relation {(ν1, ν3) | ∃ν2 :
(ν1, ν2) ∈ r and (ν2, ν3) ∈ s}.

ICDT 2021

8:4 Input–Output Disjointness for FLIF

Table 1 Input and output variables of FLIF expressions [1]. In the case of M(x̄; ȳ), the set X is
the set of variables in x̄, and the set Y is the set of variables in ȳ. The symbol △ denotes symmetric
difference.

α I(α) O(α)

M(x̄; ȳ) X Y

x = y {x, y} ∅

x := y {y} {x}

x = c {x} ∅

x := c ∅ {x}

α1 ; α2 I(α1) ∪ (I(α2) \ O(α1)) O(α1) ∪ O(α2)

α1 ∪ α2 I(α1) ∪ I(α2) ∪ (O(α1) △ O(α2)) O(α1) ∪ O(α2)

α1 ∩ α2 I(α1) ∪ I(α2) ∪ (O(α1) △ O(α2)) O(α1) ∩ O(α2)

α1 − α2 I(α1) ∪ I(α2) ∪ (O(α1) △ O(α2)) O(α1)

For this we can use the simple expression F (x; y) ; F (y; z). In order to find persons z with a
pair (say, y1 and y2) of friends of x, we can write the expression

(F (x; y1) ; F (x; y2) ; F (y1; z)) ∩ (F (x; y1) ; F (x; y2) ; F (y2; z)).

If we want to make sure that y1 and y2 are different, we can write α− (α ; (y1 = y2)) where
α is the previous expression. In view of Remark 2 above, we could easily extend FLIF with
nonequalities and then write α ; (y1 ̸= y2) instead.

2.3 Input and output variables
Intuitively, an output variable of an expression α is any variable whose value may change in
the course of evaluating α. The set of input variables may then be defined as the smallest
set of variables whose values determine the values of the output variables. These semantic
notions of input and output are undecidable, as they are related to satisfiability in the algebra
of binary relations [3]. Hence, we use syntactical overapproximations [1]. Thus Table 1
defines, for each expression α, the sets I(α) and O(α) of input and output variables.

The following inertia [12, 11] and input determinacy properties formally confirm that
Table 1 defines correct overapproximations, i.e., I(α) contains all semantic input variables,
and O(α) contains all semantic output variables. Elsewhere [2] we have shown that slight
variants of our definitions of I and O are optimal among all compositional definitions
satisfying the below two properties.

▶ Proposition 4 ([1]). Let α be an FLIF expression and let D be an interpretation.
Inertia: For any (ν1, ν2) ∈ JαKD, we have that ν2 agrees with ν1 outside O(α).
Input determinacy: Let (ν1, ν2) ∈ JαKD and let ν′

1 be a valuation that agrees with ν1 on I(α).
Then there exists a valuation ν′

2 that agrees with ν2 on O(α), such that (ν′
1, ν′

2) ∈ JαKD.

One can verify that every variable occurring in an expression according to the definitions
in Table 1 is either an input variable, an output variable, or both. Since FLIF lacks an
explicit quantification operator, we also refer to the variables occurring in an expression α as
the “free variables”, denoted by var(α), so var(α) = I(α) ∪ O(α). The following property

H. Aamer and J. Van den Bussche 8:5

formalizes, as expected, that the evaluation of an expression is oblivious to the values of
the non-free variables; they can take any values. (Of course by inertia, these values will not
change in the course of evaluating the expression.)

▶ Proposition 5 (Free variable property [1]). Let Y be the set of variables not in var(α), let
(ν1, ν2) ∈ JαKD, and let ν : Y → dom be arbitrary. Then also (ν1[ν], ν2[ν]) ∈ JαKD.

Here, we use νi[ν] for νi updated with ν, or formally, the valuation νi|var(α) ∪ ν.

▶ Example 6. Let us denote the expression R(x; y)∪S(x; z) by α. The definitions in Table 1
yield that O(α) = {y, z} and I(α) = {x, y, z}. Having y and z as input variables may at
first sight seem counterintuitive. To see semantically why, say, y is an input variable for
α, consider an interpretation D where S contains the pair (1, 3). Consider the valuation
ν1 = {(x, 1), (y, 2), (z, 0)}, and let ν2 = ν1[z := 3]. Clearly (ν1, ν2) ∈ JS(x; z)KD ⊆ JαKD.
However, if we change the value of y in ν1, letting ν′

1 = ν1[y := 4], then (ν′
1, ν2) neither

belongs to JS(x; z)KD nor to JR(x; y)KD (due to inertia). Thus, input determinacy would be
violated if y would not belong to I(α).

We mentioned that Table 1 overapproximates the undecidable semantic notions of inputs
and outputs. The following example provides a simple illustration.

▶ Example 7. Let α be the expression (x = y) ; R(x; y) ; (x = y). It is clear that α does not
have any ouputs, however O(α) = {y} according to the definitions of Table 1.

2.4 Input–output disjointness
An expression α is called io-disjoint if I(β) and O(β) are disjoint, for every subexpression β

of α (including α itself). While there is nothing really “wrong” with expressions that are not
io-disjoint, the io-disjoint expressions enjoy a particularly transparent evaluation process in
which input slots remain intact while output slots are being filled.

▶ Example 8. Continuing Example 3 (friends), the expression F (x; x) is obviously not
io-disjoint. Evaluating this expression will overwrite variable x with a friend of the person
originally stored in x. In contrast, the example expressions given in Example 3 are all
io-disjoint. ◀

Formally, we have the following useful property, which follows from Proposition 4:

▶ Proposition 9 (Identity property). Let α be an io-disjoint expression and let D be an
interpretation. If (ν1, ν2) ∈ JαKD, then also (ν2, ν2) ∈ JαKD.

Intuitively, the identity property holds because, if in ν1 the output slots would accidentally
already hold a correct combination of output values, then there will exist an evaluation of α

that merely confirms these values.

▶ Example 10. The identity property clearly need not hold for expressions that are not
io-disjoint. For example, continuing the friends example, for the expression F (x; x), a person
need not be a friend of themselves.

3 FLIF and other languages

In this Section we compare and contrast FLIF with other formalisms considered for querying
over limited access patterns, specifically, executable FO; plans; and executable Datalog. For
executable FO and plans we use the syntax introduced in our ICDT 2020 paper [1]. The
syntax for Datalog needs no introduction.

ICDT 2021

8:6 Input–Output Disjointness for FLIF

▶ Example 11. Recall the Friends relation from Example 3. We will consider the query
from that example in Example 12; here, we first consider a simpler query. Given a person x,
we want in variable z the friends of a friend of x that are not friend with x itself.

In FLIF, we can express this query using only the variables x and z with the following
simple expression:

F (x; z) ; F (z; z)− F (x; z)

The same query can be expressed with the following io-disjoint FLIF expression:

F (x; y) ; (F (y; z)− F (x; z))

The algebraic plan equivalent to this expression is:

πz((In ▷◁ F (x; y) ▷◁ F (y; z))− (In ▷◁ F (x; y) ▷◁ F (x; z)))

where In is a relation name over {x} providing input values.
In executable FO, the query will be expressed by the formula:

∃y F (x; y) ∧ F (y; z) ∧ ¬F (x; z)

Very similarly, in Datalog, the query can be expressed with the following program:

Q(z)← F (x; y), F (y; z),¬F (x; z).

▶ Example 12. Recall the query from Example 3 expressed in FLIF slightly differently as
follows:

F (x; y1) ; F (x; y2) ; (F (y1; z) ∩ F (y2; z)) ; (y1 ̸= y2)

This expression is already io-disjoint. The plan equivalent to this expression is:

πzσy1 ̸=y2((In ▷◁ F (x; y1) ▷◁ F (x; y2) ▷◁ F (y1; z))∩ (In ▷◁ F (x; y1) ▷◁ F (x; y2) ▷◁ F (y2; z)))

where In is a relation name over {x} providing input values.
In executable FO, the query will be expressed by the formula:

∃y1, y2 F (x; y1) ∧ F (x; y2) ∧ F (y1; z) ∧ F (y2; z) ∧ y1 ̸= y2

In Datalog, the program could be the following:

A(y1, y2, z)← F (x; y1), F (x; y2), F (y1; z), F (y2; z).

B(y1, y2)← A(y1, y2, z), y1 = y2.

Q(z)← A(y1, y2, z),¬B(y1, y2).

4 Putting FLIF expressions in io-disjoint form

The main result of this paper is that arbitrary FLIF expressions can be put in io-disjoint form.
We will first discuss the problem and its complications by means of illustrative examples.
After that we formulate the precise theorem and give a constructive method to rewrite FLIF
expressions into io-disjoint ones.

H. Aamer and J. Van den Bussche 8:7

4.1 Examples
An obvious approach to obtaining an io-disjoint expression is to rename output variables.
For example, we rewrite R(x; x) to R(x; y) and declare that the output value for x can now
be found in slot y instead.

When applying this approach to the composition of two expressions, we must be careful,
as an output of the first expression can be taken as input in the second expression. In that
case, when renaming the output variable of the first expression, we must apply the renaming
also to the second expression, but only on the input side. For example, R(x; x) ; S(x; x) is
rewritten to R(x; y) ; S(y; z). Thus, the output x of the overall expression is renamed to z;
the intermediate output x of the first expression is renamed to y, as is the input x of the
second expression.

Obviously, we must also avoid variable clashes. For example, in R(x; x) ; S(y; y), when
rewriting the subexpression R(x; x), we should not use y to rename the output x to, as this
variable is already in use in another subexpression.

Another subtlety arises in the rewriting of set operations. Consider, for example, the
union R(x; y) ∪ S(x; z). As discussed in Example 8, this expression is not io-disjoint: the
output variables are y and z, but these are also input variables, in addition to x. To make
the expression io-disjoint, it does not suffice to simply rename y and z, say, to y1 and z1. We
can, however, add assignments to both sides in such a way to obtain a formally io-disjoint
expression:

R(x; y1) ; (z1 := z) ∪ S(x; z1) ; (y1 := y).

The above trick must also be applied to intermediate variables. For example, consider
T (;) ∪ (S(; y) ; R(y; y)). Note that T is a nullary relation. This expression is not io-disjoint
with y being an input variable as well as an output variable. The second term is readily
rewritten to S(; y1);R(y1; y2) with y2 the new output variable. Note that y1 is an intermediate
variable. The io-disjoint form becomes

T (;) ; (y1 := y) ; (y2 := y) ∪ R(; y1) ; R(y1; y2).

In general, it is not obvious that one can always find a suitable variable to set intermediate
variables from the other subexpression to. In our proof of the theorem we prove formally
that this is always possible.

Expressions involving intersection can be rewritten with the aid of composition and
equality test. For example the expression R(x; y) ∩ S(y; y) becomes

R(x; y1) ; S(y; y2) ; (y1 = y2).

The overall output y is renamed to y1, but in the rewriting of the subexpression S(y; y)
we use an intermediate output variable y2, then test that the two outputs are the same
as required by the original expression. Note that this usage of intermediate variables is
different from that used in the treatment of composition expressions. There, the intermediate
variable was on the output side of the first subexpression and on the input side of the second
subexpression; here, it is on the output side of the second subexpression.

An additional complication with intersection is that outputs that are not common to the
lhs and rhs subexpressions of the intersection lose their status of output variable (Table 1),
so must remain inertial for the overall expression. Hence, for the rewriting to have the
desired semantics, we must add the appropriate equality tests. For example, the expression

ICDT 2021

8:8 Input–Output Disjointness for FLIF

R(x, y; x, y) ∩ S(x, z; x, z) has only x as an output, and x, y and z as inputs. Renaming the
output x to x1, it can be rewritten in io-disjoint form as

R(x, y; x1, y1) ; (y1 = y) ; S(x, z; x2, z1) ; (z1 = z) ; (x2 = x1).

A final complication occurs in the treatment of difference. Intermediate variables used in
the rewriting must be reset to the same value in both subexpressions, since the difference
operator is sensitive to the values of all variables. For example, let α be the expression
S(; x) ; R(x; u, x) − T (;). We have I(α) = O(α) = {x, u}. Suppose we want to rename the
outputs x and u to x1 and u1 respectively. As before, the subexpression on the lhs of the
difference operator is rewritten to S(; x2) ; R(x2; u1, x1) introducing an intermediate variable
x2. Also as before, x1 and u1 need to be added to the rewriting of T (;) which does not have
x and u as outputs. But the new complication is that x2 needs to be reset to a common
value (we use x here) for the difference of the rewritten subexpressions to have the desired
semantics. We thus obtain the overall rewriting

S(; x2) ; R(x2; u1, x1) ; (x2 := x) − T (;) ; (x2 := x) ; (u1 := u) ; (x1 := x).

4.2 Statement of the theorem

As the overall idea behind the above examples was to rename the output variables, our aim
is clearly the following theorem, with ρ playing the role of the renaming:2

▶ Theorem 13. Let α be an FLIF expression and let ρ be a bijection from O(α) to a set of
variables disjoint from var(α). There exists an io-disjoint FLIF expression β such that
1. I(β) = I(α);
2. O(β) ⊇ ρ(O(α)); and
3. for every interpretation D and every valuation ν1, we have

{ν2|O(α) | (ν1, ν2) ∈ JαKD} = {ν2 ◦ ρ | (ν1, ν2) ∈ JβKD}.

In the above theorem, we must allow O(β) to be a superset of ρ(O(α)) (rather than being
equal to it), because we must allow the introduction of auxiliary (intermediate) variables.
For example, let α be the expression S(x;)−R(x; x). Note that O(α) is empty. Interpret S

as holding bus stops and R as holding bus routes. Then α represents a module that takes as
input x, and tests if x is a bus stop to where the bus would not return if we would take the bus
at x. Assume, for the sake of contradiction, that there would exist an io-disjoint expression
β as in the theorem, but with O(β) = O(α) = ∅. Since I(β) must equal I(α) = {x}, the only
variable occurring in β is x. In particular, β can only mention R in atomic subexpressions of
the form R(x; x), which is not io-disjoint. We are forced to conclude that β cannot mention
R at all. Such an expression, however, can never be a correct rewriting of α. Indeed, let D

be an interpretation for which JαKD is nonempty. Hence JβKD is nonempty as well. Now let
D′ be the interpretation with D′(S) = D(S) but D′(R) = ∅. Then JαKD′ becomes clearly
empty, but JβKD′ = JβKD remains nonempty since β does not mention R.

2 We use g ◦ f for standard function composition (“g after f”). So, in the statement of the theorem,
ν2 ◦ ρ : O(α) → V : x 7→ ν2(ρ(x)).

H. Aamer and J. Van den Bussche 8:9

4.3 Variable renaming
In the proof of our main theorem we need a rigorous way of renaming variables in FLIF
expressions. The following lemma allows us to do this. It confirms that expressions behave
under variable renamings as expected. The proof by structural induction is straightforward.

As to the notation used in the lemma, recall that V is the universe of variables. For a
permutation θ of V, and an expression α, we use θ(α) for the expression obtained from α by
replacing every occurrence of any variable x by θ(x).

▶ Lemma 14 (Renaming Lemma). Let α be an FLIF expression and let θ be a permutation
of V. Then for every interpretation D, we have

(ν1, ν2) ∈ JαKD ⇔ (ν1 ◦ θ, ν2 ◦ θ) ∈ Jθ(α)KD.

4.4 Rewriting procedure
In order to be able to give a constructive proof of Theorem 13 by structural induction, a
stronger induction hypothesis is needed. Specifically, to avoid clashes, we introduce a set W

of forbidden variables. So we will actually prove the following statement:

▶ Lemma 15. Let α be an FLIF expression, let W be a set of variables, and let ρ be a
bijection from O(α) to a set of variables disjoint from var(α). There exists an io-disjoint
FLIF expression β such that
1. I(β) = I(α);
2. O(β) ⊇ ρ(O(α)) and O(β)− ρ(O(α)) is disjoint from W ;
3. for every interpretation D and every valuation ν1, we have

{ν2|O(α) | (ν1, ν2) ∈ JαKD} = {ν2 ◦ ρ | (ν1, ν2) ∈ JβKD}.

We proceed to formally describe an inductive rewriting procedure to produce β from α

as prescribed by the above lemma. The procedure formalizes and generalizes the situations
encountered in the examples discussed in the previous section. The correctness of the method
is proven in Section 5.

Terminology
A bijection from a set of variables X to another set of variables is henceforth called a renaming
of X.

Module access
If α is of the form M(x̄; ȳ), then β equals M(x̄; ρ(ȳ)).

Variable assignment
If α is of the form x := t, then β equals ρ(x) := t.

Equality test
If α is an equality test, we can take β equal to α.

ICDT 2021

8:10 Input–Output Disjointness for FLIF

Nullary expressions
An expression α is called nullary if it contains no variables, i.e., var(α) is empty. Trivially,
for nullary α, the desired β can be taken to be α itself. We will consider this to be an extra
base case for the induction.

Intersection
If α is of the form α1 ∩ α2 then β equals β1 ; γ1 ; β2 ; γ2 ; η, where the constituent expressions
are defined as follows.

Let W1 = W ∪ var(α) and let ρ1 be a renaming of O(α1) that is an extension of ρ such
that the image of ρ1 − ρ is disjoint from W1. By induction, there exists an io-disjoint
rewriting of α1 for W1 and ρ1; this yields β1.
Let W2 = W1 ∪O(β1) and let ρ2 be a bijection from O(α2) to a set of variables that is
disjoint from W2. By induction, there exists an io-disjoint rewriting of α2 for W2 and ρ2;
this yields β2.
γ1 is the composition of all (ρ1(y) = y) for y ∈ O(α1)−O(α2). If O(α1)−O(α2) is empty,
γ1 can be dropped from the expression; this qualification applies to similar situations
below.
γ2 is defined symmetrically.
η is the composition of all (ρ1(y) = ρ2(y)) for y ∈ O(α).

Composition
If α is of the form α1 ; α2 then β equals β1 ; θ(β2), where the constituents are defined as
follows.

Let W2 = W ∪var(α)∪ρ(O(α1)), and let ρ2 be the restriction of ρ to O(α2). By induction,
there exists an io-disjoint rewriting of α2 for W2 and ρ2; this yields β2.
Let W1 = W ∪ var(α), and let ρ1 be a renaming of O(α1) such that

on O(α1) ∩O(α2) ∩ I(α2), the image of ρ1 is disjoint from var(α) ∪O(β2) as well as
from the image of ρ;
elsewhere, ρ1 agrees with ρ.

By induction, there exists an io-disjoint renaming of α1 for W1 and ρ1; this yields β1.
θ is the permutation of V defined as follows. For every y ∈ I(α2) ∩O(α1), we have

θ(y) = ρ1(y) and θ(θ(y)) = y.

Elsewhere, θ is the identity.

Union
If α is of the form α1 ∪ α2 then β equals (β1 ; γ1 ; η1) ∪ (β2 ; γ2 ; η2) where the constituent
expressions are defined as follows.

Let W1 = W ∪var(α)∪ρ(O(α2)) and let ρ1 be the restriction of ρ on O(α1). By induction,
there exists an io-disjoint rewriting of α1 for W1 and ρ1; this yields β1.
Let W2 = W ∪ var(α) ∪O(β1) and let ρ2 be the restriction of ρ on O(α2). By induction,
there exists an io-disjoint rewriting of α2 for W2 and ρ2; this yields β2.
γ1 is the composition of all (ρ(y) := y) for y ∈ O(α2) − O(α1), and γ2 is defined
symmetrically.

H. Aamer and J. Van den Bussche 8:11

If O(β2) − ρ2(O(α2)) (the set of “intermediate” variables in β2) is empty, η1 can be
dropped from the expression. Otherwise, η1 is the composition of all (y := z) for
y ∈ O(β2)− ρ(O(α2)), with z a fixed variable chosen as follows.

(a) If O(β1) is nonempty, take z arbitrarily from there.
(b) Otherwise, take z arbitrarily from var(α2). We know var(α2) is nonempty, since

otherwise α2 would be nullary, so β2 would equal α2, and then O(β2) would be empty
as well (extra base case), which is not the case.

η2 is defined symmetrically.

Difference
If α is of the form α1 − α2 then β equals (β1 ; γ1 ; η1 ; η2) − (β2 ; γ2 ; η1 ; η2) where the
constituent expressions are defined as follows.

Let W1 = W ∪ var(α) and let ρ1 = ρ. By induction, there exists an io-disjoint rewriting
of α1 for W1 and ρ; this yields β1.
Let W2 = W1 ∪O(β1) and let ρ2 be a renaming of O(α2) that agrees with ρ on O(α1) ∩
O(α2), such that the image of ρ2 − ρ1 is disjoint from W2. By induction, there exists an
io-disjoint rewriting of α2 for W2 and ρ2; this yields β2.
γ1 is the composition of all (ρ2(y) := y) for y ∈ O(α2) − O(α1), and γ2 is defined
symmetrically.
If O(β2)− ρ2(O(α2)) is empty, η1 can be dropped from the expression. Otherwise, η1 is
the composition of all (y := z) for y ∈ O(β2)− ρ2(O(α2)), with z a fixed variable chosen
as follows.

(a) If O(α1) ∩O(α2) is nonempty, take z arbitrarily from ρ(O(α1) ∩O(α2)).
(b) Otherwise, take z arbitrarily from var(α2) (which is nonempty by the same reasoning

as given for the union case).
η2 is defined symmetrically.

4.5 Necessity of variable assignment
Our rewriting procedure intensively uses variable assignment. Is this really necessary? More
precisely, suppose α itself does not use variable assignment. Can we still always find an
io-disjoint rewriting β such that β does not use variable assignment either? Below, we answer
this question negatively; in other words, the ability to do variable assignment is crucial for
io-disjoint rewriting.

For our counterexample we work over the schema consisting of a nullary relation name S

and a binary relation name T of input arity one. Let α be the expression S(;) ∪ T (x; x) and
let ρ rename x to x1. Note that our rewriting procedure would produce the rewriting

S(;) ; (x1 := x) ∪ T (x; x1),

indeed using a variable assignment (x1 := x) to ensure an io-disjoint expression.
For the sake of contradiction, assume there exists an expression β according to Theorem 13

that does not use variable assignment. Fix D to the interpretation where S is nonempty but
T is empty. Then JαKD consists of all identical pairs of valuations. Take any valuation ν

with ν(x) ̸= ν(x1). Since (ν, ν) ∈ JαKD, there should exist a valuation ν′ with ν′(x1) = ν(x)
such that (ν, ν′) ∈ JβKD. Note that ν′ ̸= ν, since ν(x1) ̸= ν(x). However, this contradicts
the following two observations. Both observations are readily verified by induction. (Recall
that D is fixed as defined above.)

ICDT 2021

8:12 Input–Output Disjointness for FLIF

1. For every expression β without variable assignments, either JβKD is empty, or JβKD = JγKD

for some expression γ that does not mention T and that has no variable assignments.
2. For every expression γ that does not mention T and that has no variable assignments,

and any (ν1, ν2) ∈ JγKD, we have ν1 = ν2.

5 Correctness proof

We prove that β constructed by the method described in Section 4.4 satisfies the statement
of Lemma 15. The base cases are straightforwardly verified. For every inductive case, we
need to verify several things:
Inputs: I(β) = I(α).
io-disjointness: Every subexpression of β, including β itself, must have disjoint inputs and

outputs.
Outputs: O(β) ⊇ ρ(O(α)).
No clashes: O(β)− ρ(O(α)) is disjoint from W .
Completeness: For any interpretation D and (ν1, ν2) ∈ JαKD, we want to find ν such that

(ν1, ν) ∈ JβKD and ν(ρ(y)) = ν2(y) for y ∈ O(α).
Soundness: For any (ν1, ν2) ∈ JβKD, we want to find ν such that (ν1, ν) ∈ JαKD and

ν(y) = ν2(ρ(y)) for y ∈ O(α).

Below we present here the proofs for composition and union, as these are the clearest.
The proofs for intersection and difference are more intricate and will appear in the journal
version of this paper.

5.1 Composition

Henceforth, for any expression δ, we will use the notation ν1
δ−→ ν2 to indicate that (ν1, ν2) ∈

JδKD.

Inputs
We first analyze inputs and outputs for θ(β2). Inputs pose no difficulty (note that I(β2) =
I(α2)). As to outputs, θ only changes variables in I(α2) and β2 is io-disjoint by induction,
so θ has no effect on O(β2). Hence:

I(θ(β2)) = (I(α2)−O(α1)) ∪ ρ1(I(α2) ∩O(α1))
O(θ(β2)) = O(β2)

Calculating I(β), the part of I(θ(β2)) that is contained in ρ1(O(α1)) disappears as ρ1(O(α1))
is contained in O(β1). Also, I(β1) = I(α1) by induction. Thus I(β) = I(α1) ∪ (I(α2) −
O(α1)) = I(α) as desired.

Outputs
We verify:

ρ(O(α)) = ρ(O(α1)) ∪ ρ(O(α2)) = ρ(O(α1)−O(α2)) ∪ ρ(O(α2))
= ρ1(O(α1)−O(α2)) ∪ ρ2(O(α2)) ⊆ O(β1) ∪O(β2) = O(β).

H. Aamer and J. Van den Bussche 8:13

io-disjointness
Expression β is io-disjoint since O(β1) and O(β2) are disjoint from var(α) by construction.
For subexpression θ(β2), recall I(θ(β2)) and O(θ(β2)) as calculated above. The part contained
in I(α2) is disjoint from O(β2) since I(α2) = I(β2) and β2 is io-disjoint by induction. We
write the other part as ρ1(I(α2) ∩O(α1) ∩O(α2)) ∪ ρ((I(α2) ∩O(α1))−O(α2)). The first
term is disjoint from O(β2) by definition of ρ1.

The second term is dealt with by the more general claim that ρ(O(α1)−O(α2)) is disjoint
from O(β2). In proof, let y ∈ O(α1)−O(α2) and assume for the sake of contradiction that
ρ(y) ∈ O(β2). Then ρ(y) ∈ O(β2)− ρ(O(α2)), which by induction is disjoint from W2, which
includes ρ(O(α1)). However, since y ∈ O(α1), this is a contradiction.

No clashes
We have

O(β)− ρ(O(α)) = (O(β1) ∪O(β2))− ρ(O(α1) ∪O(α2))
⊆ (O(β1)− ρ(O(α1)) ∪ (O(β2)− ρ(O(α2)).

By induction, the latter two terms are disjoint from W1 ⊇W and W2 ⊇W , respectively.

Completeness
Since (ν1, ν2) ∈ JαKD, there exists ν such that ν1

α1−→ ν
α2−→ ν2. By induction, there exists

ν3 such that (ν1, ν3) ∈ Jβ1KD and ν3(ρ1(y)) = ν(y) for y ∈ O(α1). Also by induction, there
exists ν4 such that (ν, ν4) ∈ Jβ2KD and ν4(ρ2(y)) = ν2(y) for y ∈ O(α2). By the Renaming
Lemma (14), we have (ν ◦ θ, ν4 ◦ θ) ∈ Jθ(β2)KD.

We claim that ν3 agrees with ν ◦ θ on I(θ(β)). Recalling that the latter equals (I(α2)−
O(α1)) ∪ ρ1(I(α2) ∩O(α1)), we verify this claim as follows.

We begin by verifying that θ is the identity on I(α2)−O(α1). Indeed, let u ∈ I(α2)−O(α1).
Note that θ is the identity outside (I(α2) ∩O(α1)) ∪ ρ1(I(α2) ∩O(α1)). Clearly u does
not belong to the first term. Also u does not belong to the second term, since the image
of ρ1 is disjoint from var(α).
Now let u ∈ I(α2)−O(α1). Then θ(u) = u, so (ν ◦ θ)(u) = ν(u). Now since

ν
α1←− ν1

β1−→ ν3

and u belongs neither to O(α1) nor to O(β1) (as O(β1) is disjoint from var(α)), we get
ν(u) = ν3(u).
Let u ∈ I(α2) ∩ O(α1). Then (ν ◦ θ)(ρ1(u)) = ν(θ(θ(u))) = ν(u). The latter equals
ν3(ρ1(u)) by definition of ν3.

We can now apply input determinacy and obtain ν5 such that (ν3, ν5) ∈ Jθ(β2)KD and ν5
agrees with ν4 ◦ θ on O(β2). It follows that (ν1, ν5) ∈ JβKD, so we are done if we can show
that ν5(ρ(y)) = ν2(y) for y ∈ O(α). We distinguish two cases.

First, assume y ∈ O(α2). Then ν5(ρ(y)) = ν5(ρ2(y)) = (ν4 ◦ θ)(ρ2(y)) by definition of ν5.
Now observe that θ(ρ2(y)) = ρ2(y). Indeed, ρ2(y) belongs to O(β2), while θ is the identity
outside (I(α2) ∩ O(α1)) ∪ ρ1(I(α2) ∩ O(α1)). The first term is disjoint from O(β2) since
O(β2) is disjoint from var(α). The second term is disjoint from O(β2) as already shown in
the io-disjointness proof. So, we obtain ν4(ρ2(y)), which equals ν2(y) by definition of ν4.

ICDT 2021

8:14 Input–Output Disjointness for FLIF

Second, assume y ∈ O(α1) − O(α2). Since (ν3, ν5) ∈ Jθ(β2)KD and O(θ(β2)) = O(β2)
is disjoint from ρ(O(α1) − O(α2)) as seen in the disjointness proof, ν5(ρ(y)) = ν3(ρ(y)).
Since y /∈ O(α2), we have ν3(ρ(y)) = ν3(ρ1(y)), which equals ν(y) by definition of ν3. Now
ν(y) = ν2(y) since (ν, ν2) ∈ Jα2KD and y /∈ O(α2).

Soundness
The proof for soundness is remarkably symmetrical to that for completeness. Such symmetry
is not present in the proofs for the other operators. We cannot yet explain well why the
symmetry is so present for composition.

Since (ν1, ν2) ∈ JβKD, there exists ν such that

ν1
β1−→ ν

θ(β2)−−−→ ν2.

By induction, there exists ν3 such that (ν1, ν3) ∈ Jα1KD and ν3(y) = ν(ρ1(y)) for y ∈ O(α1).
By the Renaming Lemma, we have (ν ◦ θ, ν2 ◦ θ) ∈ Jβ2KD (note that θ−1 = θ). By induction,
there exists ν4 such that (ν ◦ θ, ν4) ∈ Jα2KD and ν4(y) = (ν2 ◦ θ)(ρ2(y)) for y ∈ O(α2).

Using analogous reasoning as in the completeness proof, it can be verified that ν3 agrees
with ν ◦ θ on I(α2). Hence, by input determinacy, there exists ν5 such that (ν3, ν5) ∈ Jα2KD

and ν5 agrees with ν4 on O(α2). It follows that (ν1, ν5) ∈ JαKD, so we are done if we can
show that ν5(y) = ν2(ρ(y)) for y ∈ O(α). This is shown by analogous reasoning as in the
completeness proof.

5.2 Union

Inputs
Let {i, j} = {1, 2}. We begin by noting:

I(γi) = O(αj)−O(αi)
O(γi) = ρ(O(αj)−O(αi))

Note that I(γi), being a subset of var(α), is disjoint from O(βi), so I(βi ; γi) is simply
I(βi) ∪ I(γi). By induction, I(βi) = I(αi) and O(βi) contains ρ(O(αi)). Hence:

I(βi ; γi) = I(αi) ∪ (O(αj)−O(αi))
O(βi ; γi) = O(βi) ∪ ρ(O(αj))

We next analyze ηi. Recall that this expression was defined by two cases.
(a) If O(βi) is nonempty, I(ηi) ⊆ O(βi).
(b) Otherwise, I(ηi) ⊆ var(αj). However, if O(βi) is empty then O(αi) is too, so that

I(α) = I(αi) ∪ I(αj) ∪O(αj) = I(αi) ∪ var(αj). Hence, in this case, I(ηi) ⊆ I(α).
The output is the same in both cases:

O(ηi) = O(βj)− ρ(O(αj))

Composing βi ; γi with ηi, we continue with the two above cases.
(a) In this case I(ηi) is contained in O(βi ; γi), so I(βi ; γi ; ηi) = I(βi ; γi).
(b) In this case I(ηi) is disjoint from O(βi ; γi), and I(βi ; γi ; ηi) equals I(βi ; γi) to which

some element of I(α) is added.

H. Aamer and J. Van den Bussche 8:15

In both cases, we can state that

I(αi) ∪ (O(αj)−O(αi)) ⊆ I(βi ; γi ; η1) ⊆ I(α).

For outputs, we have

O(βi ; γi ; ηi) = O(β1) ∪O(β2).

The set of inputs of the final expression β = (β1 ; γ1 ; η1) ∪ (β2 ; γ2 ; η2) equals the union
of inputs of the two top-level subexpressions, since these two subexpressions have the same
outputs (O(β1) ∪O(β2)). Hence

I(α1) ∪ I(α2) ∪ (O(α1)△O(α2)) ⊆ I(β) ⊆ I(α).

Since the left expression equals I(α) by definition, we obtain that I(β) = I(α) as desired.

Outputs
From the above we have O(β) = O(β1) ∪O(β2). Since O(βi) ⊇ ρ(O(αi)) by induction, we
obtain O(β) ⊇ ρ(O(α1) ∪O(α2)) = ρ(O(α)) as desired.

io-disjointness
Let i = 1, 2. Expression γi is io-disjoint since the image of ρ is disjoint from var(α). Then βi ;γi

is io-disjoint because both O(βi) and the image of ρ are disjoint from var(α). For the same
reason, βi ; γi ; ηi and β are io-disjoint. We still need to look at ηi. In case (b), I(ηi) ⊆ I(α)
so io-disjointness follows again because O(βj) is disjoint from var(α). In case (a), we look at
i = 1 and i = 2 separately. For i = 1 we observe that O(η1) = O(β2)− ρ(O(α2)) is disjoint
from W2, which includes O(β1). For i = 2 we write O(β2) = ρ(O(α2)) ∪ (O(β2)− ρ(O(α2))).
The first term is disjoint from O(η2) = O(β1)− ρ(O(α1)) since the latter is disjoint from W1
which includes ρ(O(α2)). The second term is disjoint from O(β1) as we have just seen.

No clashes
We verify:

O(β)− ρ(O(α)) = (O(β1) ∪O(β2))− ρ(O(α1) ∪O(α2))
⊆ (O(β1)− ρ(O(α1))) ∪ (O(β2)− ρ(O(α2))).

By induction, both of the latter terms are disjoint from W , which confirms that there are no
clashes.

Completeness
Assume (ν1, ν2) ∈ Jα1KD; the reasoning for α2 is analogous. By induction, there exists ν3
such that (ν1, ν3) ∈ Jβ1KD and ν3(ρ(y)) = ν2(y) for y ∈ O(α1).

Note that each of the expressions γi and ηi for i = 1, 2 is a composition of variable
assignments. For any such expression δ and any valuation ν there always exists a unique ν′

such that (ν, ν′) ∈ JδKD (even independently of D).
Now let

ν3
γ1−→ ν4

η1−→ ν5,

ICDT 2021

8:16 Input–Output Disjointness for FLIF

so that (ν1, ν5) ∈ JβKD. If we can show that ν5(ρ(y)) = ν2(y) for y ∈ O(α) we are done.
Thereto, first note that η1 does not change variables in ρ(O(α)). Indeed, for ρ(O(α2)) this
is obvious from O(η1) = O(β2)− ρ(O(α2)); for ρ(O(α1)) this follows because by induction,
O(β2)− ρ(O(α2)) is disjoint from W2, which includes O(β1), which includes ρ(O(α1)). So,
by ν4

η1−→ ν5 we are down to showing that ν4(ρ(y)) = ν2(y) for y ∈ O(α). We distinguish
two cases.

If y ∈ O(α1), since ν3
γ1−→ ν4 and γ1 does not change variables in ρ(O(α1)), we have

ν4(ρ(y)) = ν3(ρ(y)), which equals ν2(y) by definition of ν3.
If y ∈ O(α2)−O(α1), then ν4(ρ(y)) = ν3(y) by ν3

γ1−→ ν4. Now since

ν3
β1←− ν1

α1−→ ν2

and y /∈ O(β1) ∪O(α1), we get ν3(y) = ν2(y) as desired. (The reason for y /∈ O(β1) is that
by induction, O(β1) is disjoint from W1 which includes var(α).)

Soundness
Assume (ν1, ν2) ∈ Jβ1 ; γ1 ; η1KD; the reasoning for β2 ; γ2 ; η2 is analogous. Then there exist
ν3 and ν4 such that

ν1
β1−→ ν3

γ1−→ ν4
η1−→ ν2. (∗)

By induction, there exists ν such that (ν1, ν) ∈ Jα1KD ⊆ JαKD and ν(y) = ν3(ρ(y)) for
y ∈ O(α1). As observed in the completeness proof, γ1 and η1 do not touch variables in
ρ(O(α1)). Hence by (∗) also ν(y) = ν2(ρ(y)) for y ∈ O(α1).

If we can show the same for y ∈ O(α2)− O(α1), we have covered all y ∈ O(α) and we
are done. This is verified as follows. By inertia, we have ν(y) = ν1(y) = ν3(y), the latter
equality because O(β1) is disjoint from var(α). From ν3

γ1−→ ν4 we have ν3(y) = ν4(ρ(y)).
Now the latter equals ν2(ρ(y)) since ν4

η1−→ ν2 and η1 does not touch variables in ρ(O(α2)).

6 Conclusion

We have shown how to rewrite arbitrary FLIF expressions into io-disjoint ones. Our rewriting
procedure is polynomial, as is readily verified from the description given in Section 4.4.

While the problem of “making programs io-disjoint” was, in this paper, interpreted in
a specific manner according to the definitions of the FLIF language, there seems to be a
more general quality about the problem that we have not been able to articulate. Of course,
many examples of techniques that seem superficially similar can be cited, such as renaming
bound variables in logic, or alpha-conversion in lambda calculus. But input and output as
interpreted in this paper have a definite dynamic (one could say procedural) meaning which
is lacking in such examples. So, while we are not aware about known results in logic or the
foundations of programming languages that are technically related to our main result or our
proof techniques, we would love to find out about them if they exist.

There are many interesting topics for further research on FLIF, and on LIF (Logic of
Information Flows [17, 18, 1, 2]) in general. Some are already discussed in the cited papers;
in closing this paper we list some more.

1. In our rewriting technique, there are really three, not two, categories of variables into
play: inputs, outputs, and intermediate variables. It would be interesting to develop the
framework further so that intermediate variables get a full treatment alongside inputs
and outputs.

H. Aamer and J. Van den Bussche 8:17

2. Investigate io-disjointness when FLIF is extended with additional operators, notably
converse and transitive closure. We remark, however, that transitive closure seems to be
at odds with io-disjointness. Indeed, if α is io-disjoint then the transitive closure of JαKD

equals JαKD itself.
3. Delineate useful instances of LIF for which the problems of checking whether a variable

is a semantic input, or output, are decidable.
4. Apply FLIF in practice. In this regard, the language could be made more practical by

extending it with an explicit construct for hiding variables, as found, e.g., in process
calculi [13], graph expressions [6], and graph logic [8].

References
1 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche. Executable first-order

queries in the logic of information flows. In C. Lutz and J.C. Jung, editors, Proceedings 23rd
International Conference on Database Theory, volume 155 of Leibniz International Proceedings
in Informatics, pages 4:1–4:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

2 H. Aamer, B. Bogaerts, D. Surinx, E. Ternovska, and J. Van den Bussche. Inputs, outputs, and
composition in the logic of information flows. In D. Calvanese, E. Erdem, and M. Thielscher,
editors, Proceedings 17th International Conference on Principles of Knowledge Representation
and Reasoning. IJCAI Organization, 2020.

3 H. Andréka, S. Givant, and I. Németi. Decision problems for equational theories of relation al-
gebras, volume 126 of Memoirs of the American Mathematical Society. American Mathematical
Society, 1997.

4 R. Angles, M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč. Foundations of modern
query languages for graph databases. ACM Computing Surveys, 50(5):68:1–68:40, 2017.

5 R. Angles, P. Barceló, and G. Rios. A practical query language for graph DBs. In L. Bravo
and M. Lenzerini, editors, Proceedings 7th Alberto Mendelzon International Workshop on
Foundations of Data Management, volume 1087 of CEUR Workshop Proceedings, 2013.

6 M. Bauderon and B. Courcelle. Graph expressions and graph rewritings. Mathematical Systems
Theory, 20:83–127, 1987.

7 M. Benedikt, J. Leblay, B. ten Cate, and E. Tsamoura. Generating Plans from Proofs: The
Interpolation-based Approach to Query Reformulation. Morgan & Claypool, 2016.

8 L. Cardelli, Ph. Gardner, and G. Ghelli. A spatial logic for querying graphs. In P. Widmayer
et al., editors, Proceedings 29th International Colloquium on Automata, Languages and
Programming, volume 2380 of Lecture Notes in Computer Science, pages 597–610. Springer,
2002.

9 G.H.L. Fletcher, M. Gyssens, D. Leinders, D. Surinx, J. Van den Bussche, D. Van Gucht,
S. Vansummeren, and Y. Wu. Relative expressive power of navigational querying on graphs.
Information Sciences, 298:390–406, 2015.

10 L. Libkin, W. Martens, and D. Vrgoč. Quering graph databases with XPath. In W.-C. Tan
et al., editors, Proceedings 16th International Conference on Database Theory, pages 129–140.
ACM, 2013.

11 V. Lifschitz. Formal theories of action (preliminary report). In J.P. McDermott, editor,
Proceedings 10th International Joint Conference on Artificial Intelligence, pages 966–972.
Morgan Kaufmann, 1987.

12 J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors, Machine Intelligence 4, pages 463–502.
Edinburgh University Press, 1969.

13 R. Milner. Communicating and Mobile Systems: The π-calculus. Cambridge University Press,
1999.

14 A. Nash and B. Ludäscher. Processing first-order queries under limited access patterns. In
Proceedings 23th ACM Symposium on Principles of Database Systems, pages 307–318, 2004.

ICDT 2021

8:18 Input–Output Disjointness for FLIF

15 J. Pérez, M. Arenas, and C. Gutierrez. nSPARQL: A navigational language for RDF. Journal
of Web Semantics, 8(4):255–270, 2010.

16 D. Surinx, G.H.L. Fletcher, M. Gyssens, D. Leinders, J. Van den Bussche, D. Van Gucht,
S. Vansummeren, and Y. Wu. Relative expressive power of navigational querying on graphs
using transitive closure. Logic Journal of the IGPL, 23(5):759–788, 2015.

17 E. Ternovska. Recent progress on the algebra of modular systems. In J.L. Reutter and D. Sri-
vastava, editors, Proceedings 11th Alberto Mendelzon International Workshop on Foundations
of Data Management, volume 1912 of CEUR Workshop Proceedings, 2017.

18 E. Ternovska. An algebra of modular systems: static and dynamic perspectives. In A. Herzig
and A. Popescu, editors, Frontiers of Combining Systems: Proceedings 12th FroCos, volume
11715 of Lecture Notes in Artificial Intelligence, pages 94–111. Springer, 2019.

	1 Introduction
	2 Preliminaries
	2.1 Syntax of FLIF
	2.2 Semantics of FLIF
	2.3 Input and output variables
	2.4 Input–output disjointness

	3 FLIF and other languages
	4 Putting FLIF expressions in io-disjoint form
	4.1 Examples
	4.2 Statement of the theorem
	4.3 Variable renaming
	4.4 Rewriting procedure
	4.5 Necessity of variable assignment

	5 Correctness proof
	5.1 Composition
	5.2 Union

	6 Conclusion

