
Ranked Enumeration of MSO Logic on Words
Pierre Bourhis !

CNRS Lille, CRIStAL UMR 9189, University of Lille, INRIA Lille, France

Alejandro Grez !

Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile

Louis Jachiet !

LTCI, IP Paris, France

Cristian Riveros !

Pontificia Universidad Católica de Chile, Santiago, Chile
Millennium Institute for Foundational Research on Data, Santiago, Chile

Abstract
In the last years, enumeration algorithms with bounded delay have attracted a lot of attention for
several data management tasks. Given a query and the data, the task is to preprocess the data and
then enumerate all the answers to the query one by one and without repetitions. This enumeration
scheme is typically useful when the solutions are treated on the fly or when we want to stop the
enumeration once the pertinent solutions have been found. However, with the current schemes, there
is no restriction on the order how the solutions are given and this order usually depends on the
techniques used and not on the relevance for the user.

In this paper we study the enumeration of monadic second order logic (MSO) over words when
the solutions are ranked. We present a framework based on MSO cost functions that allows to
express MSO formulae on words with a cost associated with each solution. We then demonstrate
the generality of our framework which subsumes, for instance, document spanners and adds ranking
to them. The main technical result of the paper is an algorithm for enumerating all the solutions
of formulae in increasing order of cost efficiently, namely, with a linear preprocessing phase and
logarithmic delay between solutions. The novelty of this algorithm is based on using functional data
structures, in particular, by extending functional Brodal queues to suit with the ranked enumeration
of MSO on words.

2012 ACM Subject Classification Theory of computation → Data structures and algorithms for
data management; Theory of computation → Complexity theory and logic; Theory of computation
→ Formal languages and automata theory

Keywords and phrases Persistent data structures, Query evaluation, Enumeration algorithms

Digital Object Identifier 10.4230/LIPIcs.ICDT.2021.20

Funding Pierre Bourhis: Partially funded by the DeLTA project (ANR-16-CE40-0007).
Alejandro Grez: Partially funded by the Millennium Institute for Foundational Research on Data.
Cristian Riveros: Partially funded by the Millennium Institute for Foundational Research on Data.

1 Introduction

Managing and querying word structures such as texts has been one of the classical problems of
different communities in computer science. In particular, this problem has been predominant
in information extraction where the goal is to extract some subparts of a text. A logical
approach that has brought a lot of attention in the database community is document
spanners [13]. This logical framework provides a language for extracting subparts of a
document. More specifically, regular spanners are based on regular expressions that fill
relations with tuples of the texts’ subparts. These relations can afterwards be queried by
conjunctive or datalog-like queries.

© Pierre Bourhis, Alejandro Grez, Louis Jachiet, and Cristian Riveros;
licensed under Creative Commons License CC-BY 4.0

24th International Conference on Database Theory (ICDT 2021).
Editors: Ke Yi and Zhewei Wei; Article No. 20; pp. 20:1–20:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.bourhis@univ-lille.fr
mailto:ajgrez@uc.cl
mailto:louis.jachiet@telecom-paris.fr
mailto:cristian.riveros@uc.cl
https://doi.org/10.4230/LIPIcs.ICDT.2021.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Ranked Enumeration of MSO Logic on Words

The document spanners’ main algorithmic problem is the efficient evaluation of a spanner
over a word. Recently, a novel approach has been to focus on the enumeration problem to
obtain efficient evaluation algorithms. The principle of an enumeration algorithm is to create
a representation of the set of answers efficiently depending only on the input word’s size and
the query, and not in the number of answers. This time is called the preprocessing time. The
second part of an enumeration algorithm is to enumerate the outputs one by one using the
previous representation. The time between two consecutive outputs is called the delay. As
for the preprocessing time, an efficient delay should not depend on the number of outputs,
but only on the input size (i.e., word and query). In general, the most efficient enumeration
algorithms have linear preprocessing time and constant delay, both in data complexity (i.e.
in the size of the input word).

Several people have studied the enumeration problem over words following different
formalisms. For example, [3, 6, 23] studied the enumeration problem for MSO logic, [14, 2]
for regular spanners (i.e., automata), and [18] for streaming evaluation in complex event
processing. For all these formalisms, it is shown that there exists an enumeration algorithm
with linear time preprocessing and delay constant both in data complexity (i.e. in the size of
the input word).

The interest of an efficient enumeration algorithm is to provide a process that can quickly
give the first answers. Unfortunately, these answers may not be relevant for the user; that
is, the enumeration process does not assume how the output will be ordered. A classical
manner of considering the user’s preferences is to associate a score to each solution and then
rank them following this score; for instance one could ask for the matches ranked by order of
length, or by the number of times a second pattern appears within the match. This approach
of “scoring” solutions has been used particularly in the context of information extraction.
Indeed, there have been several recent proposals [9, 8] to extend document spanners with
annotations from a semi-ring. The proposed annotations are typically useful to capture the
confidence of each solution [9]. For instance, [8] proves that the enumeration of the answers
following their scores’ order is possible with polynomial-time preprocessing and polynomial
delay.

In this paper, we are interested in establishing a framework for scoring outputs and
improve the bounds proved in [9]. We propose using what we called MSO cost functions,
which are formulas in weighted logics [11] extended with open variables. These formulas
provide a simple formalism for defining the output and scoring with MSO logic. We show
that one can translate each MSO cost function to a cost transducer. These machines are
a restricted form of weighted functional vset-automaton [9], for which there exists at most
one run for any word and any valuation. We use cost transducers to study the ranked
enumeration problem: enumerate all outputs in increasing rank order. Specifically, the main
result of the paper is an algorithm for enumerating all the solutions of a cost transducer in
increasing order efficiently; specifically, with a preprocessing phase linear in the input word
and a logarithmic delay between solutions.

Our approach generalizes an algorithm for enumerating solutions proposed in [18, 14].
The preprocessing part builds a heap containing the answers with their score, and one step of
the enumeration is simply a pop of the heap. For this, we use a general data structure that
we called Heap of Words (HoW), having the classical heap operations of finding/deleting the
minimal element, adding an element, and melding two heaps. We also need to add two new
operations that allow us to concatenate a letter to and increase the score of all elements of
the heap. Finally, we require that this structure is fully-persistent [10], i.e., that each of the
previous operations returns a new heap without changing the previous one. To obtain the

P. Bourhis, A. Grez, L. Jachiet, and C. Riveros 20:3

required efficiency, we rely on a classical persistent data structure called Brodal queue that
we extend in order to capture the new operations over the stored words and scores presented
above. We call this extension an incremental Brodal queue.

Finally, for ranked query evaluation, there has been recent progress in the context of
conjunctive queries: on the efficient computation of top-k queries [25] and the efficient ranked
enumeration [24, 7]. These advances consider relational data (which is more general than
words) and conjunctive queries (which is more restricted than MSO queries); they are thus
incomparable to our work. However, it is important to note some similarities with our work,
such as the need for an “advanced” priority queue (the Fibonacci heap [7]), which means
that our incremental queues might be of great interest there.

Contributions. The contributions of this paper are threefold: (i) we introduce MSO cost
functions, a framework to express MSO queries and scores, generalizing the proposals of
document spanners; (ii) we give a ranked enumeration scheme that has linear preprocessing
time and logarithmic delay in data complexity with a polynomial combined complexity;
(iii) we introduce two new data structures for our scheme: the Heaps of Words and the
incremental Brodal queues. Both of these structures might be of interest in other ranked
enumerations schemes.

Organization. Section 2 introduces the ranked enumeration problem for MSO queries on
words. Section 3 presents MSO cost functions and state the main result. In Section 4 we show
an application of the main result to the setting of document spanners. Section 5 describes
our enumeration scheme that rely on two data structures: the Heap of Words described in
Section 6 and the incremental Brodal queues presented in Section 7. We finish with some
conclusions in Section 8.

2 Preliminaries

Words. We denote by Σ a finite alphabet, Σ∗ all words over Σ, and ϵ the empty-word of
0 length. Give a word w = a1 . . . an, we write w[i] = ai. For two words u, v ∈ Σ∗ we write
u · v as the concatenation of u and v. We denote by [n] = {1, . . . , n}.

Ordered groups. A group is a pair (G,⊕,O) where G is a set of elements, ⊕ is a binary
operation over G that is associative, O ∈ G is a neutral element for ⊕ (i.e., O⊕g = g⊕O = g)
and every g ∈ G has an inverse with respect to ⊕ (i.e., g ⊕ g−1 = O for some g−1 ∈ G).
A group is abelian if, in addition, ⊕ is commutative (i.e., g1 ⊕ g2 = g2 ⊕ g1). From now
on, we assume that all groups are abelian. We say that (G,⊕,O,⪯) is an ordered group if
(G,⊕,O) is a group and ⪯ is a total order over G that respects ⊕, namely, if g1 ⪯ g2 then
g1 ⊕ g ⪯ g2 ⊕ g for every g, g1, g2 ∈ G. Examples of (abelian) ordered groups are (Z, +, 0,≤)
and (Zk, +, (0, . . . , 0),≤k) where ≤k represents the lexicographic order over Zk.

MSO. We use monadic second-order logic for defining properties over words. As usual, we
encode words as logical structures with an order predicate and unary predicates to represent
the order and the letters of each positions of the word, respectively. More formally, fix an
alphabet Σ and let w ∈ Σ∗ be a word of length n. We encode w as a structure ([n],≤, (Pa)a∈Σ)
where [n] is the domain, ≤ is the total order over [n], and Pa = {i | w[i] = a}. By some
abuse of notation, we also use w to denote its corresponding logical structure.

ICDT 2021

20:4 Ranked Enumeration of MSO Logic on Words

A MSO-formula φ over Σ is given by:

φ := x ≤ y | Pa(x) | x ∈ X | φ ∧ φ | ¬φ | ∃x. φ | ∃X. φ

where a ∈ Σ, x and y are first-order (FO) variables, and X is a monadic second order (MSO)
variable (i.e., a set variable). We write φ(x̄, X̄) where x̄ and X̄ are the sets of free FO and
MSO variables of φ, respectively. An assignment σ for w is a function σ : x̄ ∪ X̄ → 2[n] such
that |σ(x)| = 1 for every x ∈ x̄ (note that we treat FO variables as a special case of MSO
variables). As usual, we denote by dom(σ) = x̄ ∪ X̄ the domain of the function σ. Then we
write (w, σ) |= φ when σ is an assignment over w, dom(σ) = x̄ ∪ X̄, and w satisfies φ(x̄, X̄)
when each variable in x̄ ∪ X̄ is instantiated by σ (see [20]). Given a formula φ(x̄, X̄), we
define JφK(w) = {σ | (w, σ) |= φ(x̄, X̄)}. For the sake of simplification, from now on we will
only use X̄ to denote the free variables of φ(X̄) and use X ∈ X̄ for an FO or MSO variable.

For any assignment σ over w, we define the support of σ, denoted by supp(σ), as the set
of positions mentioned in σ; formally, supp(σ) = {i | ∃v ∈ dom(σ). i ∈ σ(v)}. Furthermore,
we encode assignments as sequences over the support as follows. Let supp(σ) = {i1, . . . , im}
such that ij < ij+1 for every j < m. Then we define the (word) encoding of σ as:

enc(σ) = (X̄1, i1)(X̄2, i2) . . . (X̄m, im)

such that X̄j = {X ∈ dom(σ) | ij ∈ σ(X)} for every j ≤ m. That is, we represent σ as an
increasing sequence of positions, where each position is labeled with the variables of σ where it
belongs. This is the standard encoding used to represent assignments for running algorithms
regarding MSO formulas [3, 6]. Finally, we define the size of σ as | enc(σ)| = |dom(σ)| ·m.

Enumeration algorithms. Given a formula φ and a word w, the main goal of the paper
is to study the enumeration of assignments in JφK(w). We give here a general definition of
enumeration algorithm and how we measure its delay. Later we use this to define the ranked
enumeration problem of MSO.

As it is standard in the literature [3, 6, 23], we consider algorithms on Random Access
Machines (RAM) with uniform cost measure [1] equipped with addition and subtraction as
basic operations. A RAM has read-only input registers (containing the input I), read-write
work memory registers and write-only output registers. We assume that group elements can
be stored in constant space and that all group-related operations (i.e., to evaluate g1 ⊕ g2,
g1 ⪯ g2 and g−1) take constant time. We say that an algorithm E is an enumeration algorithm
for MSO evaluation if E runs in two phases, for every MSO-formula φ and a word w.
1. The first phase, called the preprocessing phase, does not produce output, but may prepare

data structures for use in the next phase.
2. The second phase, called the enumeration phase, occurs immediately after the precompu-

tation phase. During this phase, the algorithm:
writes # enc(σ1)# enc(σ2)# . . . # enc(σk)# to the output registers where # is a distinct
separator symbol, and σ1, . . ., σk is an enumeration (without repetition) of the
assignments of JφK(w);
it writes the first # as soon as the enumeration phase starts,
it stops immediately after writing the last #.

The separation of E ’s operation into a preprocessing and enumeration phase is done to be
able to make an output-sensitive analysis of E ’s complexity. Formally, we say that E has
preprocessing time f : N2 → N if there exists a constant C such that the number of instructions
that E executes during the preprocessing phase on input (φ, w) is at most C × f(|φ|, |w|)
for every MSO-formula φ and word w. Furthermore, we measure the delay as follows. Let

P. Bourhis, A. Grez, L. Jachiet, and C. Riveros 20:5

timei(φ, w) denote the time in the enumeration phase when the algorithm writes the i-th #
(if it exists) when running on input (φ, w). Define delayi(φ, w) = timei+1(φ, w)− timei(φ, w).
Further, let outputi(φ, w) denote the i-th element that is output by E when running on input
(φ, w), if it exists. We say that E has delay g : N2 → N if there exists a constant D such that,
for all φ and w, it holds that:

delayi(φ, w) ≤ D × |outputi(φ, w)| × g(|φ|, |w|)

for every i ≤ |JφK(w)|. Furthermore, if JφK(w) is empty, then delay1(φ, w) ≤ k, namely,
it ends in constant time. Finally, we say that E has preprocessing time f : N → N and
delay g : N → N in data complexity, if there exists a function c : N → N such that E has
preprocessing time c(|φ|)× f(|w|) and has delay c(|φ|)× g(|w|) (i.e., f and g describe the
complexity once φ is considered as fixed).

It is important to notice that, although we fix a particular encoding for assignments
and we restrict the enumeration algorithms to this encoding, we can use any encoding for
the assignments whenever there exists a linear transformation between enc(·) and the new
encoding. Given the definition of delay, if we use an encoding enc′(σ) for σ, and there
exists a linear time transformation between enc(σ) and enc′(σ) for every σ, then the same
enumeration algorithm works for enc′(·). In particular, whenever the encoding depends
linearly over supp(σ) and |x̄ ∪ X̄|, then the aforementioned property holds.

Ranked enumeration. For an MSO formula φ and w ∈ Σ∗, we consider the ranked
enumeration of the set JφK(w). For this, we need to assign an order to the outputs and we do
this by mapping each element to a total order set. Fix a set C with a total order ⪯ over C.
A cost function is any partial function κ that maps words w ∈ Σ∗ and assignments σ to
elements in C. Without loss of generality, we assume that κ is defined only over pairs (w, σ)
such that σ is an assignment over w.

Let φ be an MSO formula and κ a cost function over (C,⪯). We define the ranked
enumeration problem of (φ, κ) as

Problem: RANK-ENUM[φ, κ]
Input: A word w ∈ Σ∗.

Output: Enumerate all σ1, . . . , σk ∈ JφK(w) without
repetitions and such that κ(w, σi) ⪯ κ(w, σi+1).

Note that we consider the version of the problem in data-complexity where φ and κ are fixed.
We say that RANK-ENUM[φ, κ] can be solved with preprocessing time f(n) and delay g(n)
if there exists an enumeration algorithm E that runs with preprocessing time f(n) and delay
g(n) and, for every w ∈ Σ∗, E enumerates JφK(w) in increasing ordered according to κ. In
the next section, we give a language to define cost functions and we state our main result.

3 MSO cost functions

To state our main result about ranked enumeration of MSO, first we need to choose a
formalism to define cost functions. We do this by staying in the same setting of MSO logic by
considering weighted logics over words [11, 12, 19]. Functions defined by extensions of MSO
has been studied by using weighted automata, but also people have found it counterparts by
extending MSO with a semiring. We use here a fragment of weighted MSO parametrized by
an ordered group to fit our purpose.

ICDT 2021

20:6 Ranked Enumeration of MSO Logic on Words

Fix an ordered group (G,⊕,O,⪯). A weighted MSO-formula α over Σ and G is given by
the following syntax:

α := [φ 7→ g] | α⊕ α | Σ x. α

where φ is an MSO-formula, g ∈ G, and x is an FO variable. Further, we assume that the
Σ x quantifier cannot be nested. For example, (Σ x.[φ 7→ g]) ⊕ (Σ y.[φ′ 7→ g′]) is a valid
formula but Σ x.Σ y.[φ 7→ g] is not. Similar than for MSO formulas, we write α(x̄, X̄) to
state explicitly the sets of FO-variables x̄ and of MSO variables X̄ that are free in α.

Let σ be an assignment. For any FO-variable x and i ∈ N we denote by σ[x → i] the
extension of σ with x assigned to i, namely, dom(σ[x → i]) = {x} ∪ dom(σ) such that
σ[x → i](x) = {i} and σ[x → i](y) = σ(y) for every y ∈ dom(σ) \ {x}. We define the
semantics of a weighted MSO formula α as a function from words and assignments to
elements in G. Formally, for every w ∈ Σ and every assignment σ over w we define the
output JαK(w, σ) recursively as follows:

J[φ 7→ g]K(w, σ) =
{

g if (w, σ) |= φ

O otherwise.

Jα⊕ α′K(w, σ) = JαK(w, σ)⊕ Jα′K(w, σ)

JΣ x. αK(w, σ) =
|w|⊕
i=1

JαK(w, σ[x→ i])

where φ is any MSO-formula, α and α′ are weighted MSO formulas, and g ∈ G. By some
abuse of notation, in the following we will not make distinction between α and JαK, that is,
the cost function over G defined by α.

▶ Example 1. Consider the alphabet {a, b} and suppose that we want to define a cost
function that counts the number of a-letters between two variables x and y. This can be
defined in weighted MSO over Z as follows:

α1 := Σ z.
[
(x ≤ z ∧ z ≤ y ∧ Pa(z)) 7→ 1

]
Here, α1 uses z to count over all positions of the word and we count 1 whenever z is labeled
with a and is between x and y, and we count 0, otherwise, which is the identity of Z.

▶ Example 2. Consider again the alphabet {a, b} and suppose that we want a cost function to
compare assignments over variables (x, y) lexicographically. For this, we can write a weighted
MSO-formula over Z2 that maps each assignment σ over x and y to a pair (σ(x), σ(y)). This
can be defined in weighted MSO over Z2 as follows:

α2 :=
(
Σ z1.

[
(z1 ≤ x) 7→ (1, 0)

])
+

(
Σ z2.

[
(z2 ≤ y) 7→ (0, 1)

])
Similar than for the previous example, we use the Σ -quantifier to add in the first and second
component the value of x and y, respectively. In fact, for every assignment σ = {x→ i, y → j}
over w ∈ Σ∗ it holds that Jα2K(w, σ) = (i, j).

Strictly speaking, the syntax and semantics of weighted MSO defined above is a restricted
version of weighted logics [11], in the sense that weighted logics is usually defined over a
semiring, which has two binary operations ⊕ and ⊙. Indeed, it will be interesting to have a
better understanding of the expressibility of MSO cost functions, or to extend our results for
weighted logics over semiring. We leave this for future work.

We are ready to state the main result of the paper about ranked enumeration of MSO.

▶ Theorem 3. Fix an alphabet Σ and an ordered group G. For every MSO formula φ over Σ
and every weighted MSO formula α over Σ and G the problem RANK-ENUM[φ, α] can be
solved with linear preprocessing time and logarithmic delay.

P. Bourhis, A. Grez, L. Jachiet, and C. Riveros 20:7

As it is common for MSO logic over words, we prove this result by developing an
enumeration algorithm using automata theory. Specifically, we define a weighted automata
model, that we called cost transducer, and show that its expressiveness is equivalent to the
combination of (boolean) MSO and weighted MSO logic.

From now on, fix an input alphabet Σ and an output alphabet Γ. Furthermore, fix an
ordered group (G,⊕,O,⪯). A cost transducer over G is a tuple T = (Q, ∆, κ, I, F), where
Q is the set of states, ∆ ⊆ Q × Σ × 2Γ × Q is the transition relation, κ : ∆ → G is a
function that associates a cost to every transition of ∆, and I : Q → G, F : Q → G are
partial functions that associate a cost in G to (some) states in Q. The functions I and
F are partial functions because they naturally define the set of initial and final states as
dom(I) and dom(F), respectively. A run of T over a word w = a1a2 . . . an is a sequence of
transitions ρ : q0

a1/X̄1−−→ q1
a2/X̄2−−→ . . . an/X̄n−−→ qn such that q0 ∈ dom(I) and (qi−1, ai, X̄i, qi) ∈ ∆ for

every i ≤ n. We say that ρ is accepting if qn ∈ dom(F).
For a run ρ as defined above, let {i1, . . . , im} ⊆ [n] be all the positions of ρ such that

X̄ij ̸= ∅ and ij < ij+1 for all j ≤ m. Then we define the output of ρ as the sequence:

out(ρ) = (X̄i1 , i1)(X̄i2 , i2) . . . (X̄im
, im)

Moreover, we extend κ over accepting runs ρ by adding the costs of all transitions of ρ plus
the initial and final cost, namely:

κ(ρ) = I(q0)⊕
|w|⊕
i=1

κ((qi−1, ai, X̄i, qi))⊕ F (qn).

Note that out(ρ) defines the encoding of some assignment σ over w with dom(σ) = Γ and
out(ρ) = enc(σ). Of course, the opposite direction is not true: for some assignment σ

there could be no run ρ that defines σ and, moreover, there could be two runs ρ1 and ρ2
such that out(ρ1) = out(ρ2) = enc(σ), but κ(ρ1) ̸= κ(ρ2). For this reason, we impose an
additional restriction to cost transducers: we assume that all cost transducers in this paper
are unambiguous, that is, for every w ∈ Σ∗ there does not exist two distinct runs ρ1 and ρ2
of w such that out(ρ1) = out(ρ2). In other words, a cost transducers satisfies that for every
w ∈ Σ∗ and assignment σ there exists at most one run ρ such that out(ρ) = enc(σ).

Given the unambiguous restriction of cost transducers, we can define a partial function
from pairs (w, σ) to G as costT (w, σ) = κ(ρ) whenever there exists a run ρ of w such that
out(ρ) = enc(σ). Otherwise costT (w, σ) is not defined. Given that for some pairs (w, σ) the
function costT is not defined, we can define the set JT K(w) = {σ | costT (w, σ) is defined} of
all outputs of T over w.

It is important to notice that, given w ∈ Σ∗, a cost transducer T is in charge of (1)
defining the set of assignments JT K(w) and (2) assigning a cost JT K(w, σ) for each output
σ ∈ JT K(w). These two tasks are separated in our setting of ranked MSO enumeration by
having a MSO formula φ that defines the outputs JφK and a weighted MSO formula α to
assign a cost to each pair (w, σ). In fact, one can show that cost transducers are equally
expressive than combining MSO plus weighted MSO.

▶ Proposition 4. For every cost transducer T , there exists a MSO formula φT and weighted
MSO formula αT such that JT K = JφT K and costT (w, σ) = JαT K(w, σ) for every σ ∈ JT K(w).
Moreover, for every MSO formula φ and weighted MSO formula α, there exists a cost
transducer Tφ,α such that JφK = JTφ,αK and JαK(w, σ) = costTφ,α

(w, σ) for every σ ∈ JφK(w).

By the previous result, we can represent pairs of formulas (φ, α) by using cost transducers
and vice-versa. Similar than for MSO [22], there exists a non-elementary blow-up for going
from (φ, α) to a cost transducer and this blow-up cannot be avoided [16].

ICDT 2021

20:8 Ranked Enumeration of MSO Logic on Words

To solve the problem RANK-ENUM[φ, α] we can use a cost transducer Tφ,α to enumerate
all its outputs following the cost assigned by this machine. More concretely, we study the
following rank enumeration problem for cost transducers:

Problem: RANK-ENUM-T
Input: A cost transducer T and a word w ∈ Σ∗.

Output: Enumerate all σ1, . . . , σk ∈ JT K(w) without repetitions and
such that costT (w, σi) ⪯ costT (w, σi+1).

Note that for RANK-ENUM-T we consider the cost transducer as part of the input1.
Indeed, for this case we can provide an enumeration algorithm with stronger guarantees
regarding the preprocessing time in terms of T . We now give the theorem formalizing the
main result of this paper, which will be proven in the next section:

▶ Theorem 5. The problem RANK-ENUM-T can be solved with |T | · |w| preprocessing
time and log(|T | · |w|)-delay.

In the rest of the paper, we present the above mentioned ranked enumeration algorithm.
We start by showing a general algorithm based on a novel data structure called a Heap of
Words. In Section 6, we provide the implementation of this structure. In Section 7, we show
how to implement the incremental Brodal queues, a technical data structure needed to obtain
the required efficiency. Before presenting the technical details of this algorithm, in the next
section we show an application of this result in the framework of document spanners [13, 9].

4 Application: document spanners

The framework of document spanners was proposed in [13] as a formalization of rule-based
information extraction and has attracted a lot of attention both in terms of the formalism [15,
21] and the enumeration problem associated to it [14]. Recently, an extension of document
spanners has been proposed to enhance the extraction process with annotations [9, 8]. These
annotations serve as auxiliary information of the extracted data such as confidence, support,
or confidentiality measures. To extend spanners, this framework follows the approach of
provenance semiring by annotating the output with elements from a semiring and propagating
the annotations by using the semiring operators. Next we give the core definitions of [9] and
we state the application of our main results to this setting.

We start by defining the central elements of document spanners: documents and spans.
Fix a finite alphabet Σ. A document over Σ (or just a document) is a string d = a1 . . . an ∈ Σ∗

and a span is a pair s = [i, j⟩ with 1 ≤ i ≤ j ≤ n + 1. A span represents a continuous region
of d, whose content is the substring from positions i to j − 1. Formally, the content of span
[i, j⟩ is defined as d[i, j⟩ = ai . . . aj−1; if i = j, then d[i, i⟩ = ϵ. Fix a finite set of variables X.
A mapping µ over d is a function from X to the spans of d. A document spanner (or just
spanner) is a function that maps each document d to a set of mappings over d.

To annotate mappings, we need to introduce semirings. A semiring (K,⊕,⊙, 0, 1) is
an algebraic structure where K is a non-empty set, ⊕ and ⊙ are binary operations over
K, and 0, 1 ∈ K. Furthermore, ⊕ and ⊙ are associative, 0 and 1 are the identities of
⊕ and ⊙ respectively, ⊕ is commutative, ⊙ distributes over ⊕, and 0 annihilates K (i.e.,

1 In Section 2 we introduce the setting of ranked enumeration for MSO formulas and cost functions. One
can easily extend this setting and the definiton of enumeration algorithms for cost transducer.

P. Bourhis, A. Grez, L. Jachiet, and C. Riveros 20:9

0⊙ k = k ⊙ 0 = 0 for all k ∈ K). We will use
⊕

X or
⊙

X for the ⊕- or ⊙-iteration over all
elements in some set X, respectively. An ordered semiring (K,⊕,⊙, 0, 1,⪯) is a semiring
extended with a total order ⪯ over K such that ⪯ preserves ⊕ and ⊙, namely, k1 ⪯ k2
implies k1 ∗ k ⪯ k2 ∗ k for ∗ ∈ {⊕,⊙}. From now on, we will assume that all semirings
are ordered. A semifield [17] is a semiring (K,⊕,⊙, 0, 1) where each k ∈ K \ {0} has a
multiplicative inverse (i.e., (K \ {0},⊙, 1) forms a group). Examples of ordered semifields are
the tropical semiring (Z ∪ {∞}, min, +,∞, 0,≤) and the semiring of non-negative rational
numbers (Q≥0, +,×, 0, 1,≤).

Fix a semiring (K,⊕,⊙, 0, 1). Let X be a set of variables and define C(X) as the set of
captures {x⊢,⊣x | x ∈ X}. To extend spanners with annotations, we use the formalism
of weighted variable set automata [9] which defines the class of all regular spanners with
annotations, also called regular annotators. A weighted variable set automaton (wVA) over
K is a tuple A = (X, Q, δ, I, F) such that X is a finite set of variables, Q is a finite set of
states, δ : Q× (Σ ∪ C(X))×Q→ K is a weighted transition function and I : Q→ K and
F : Q→ K are the initial and final weight functions, respectively. A run ρ over a document
d = a1 · · · an is a sequence of the form:

ρ := (q0, i0) o1−−→ (q1, i1) o2−−→ . . . om−−→ (qm, im)

where (1) 1 = i0 ≤ i1 ≤ · · · ≤ im = n + 1, (2) each qj ∈ Q with I(q0) ̸= 0 ̸= F (qm), (3)
δ(qj , oj+1, qj+1) ̸= 0, and (4) ij+1 = ij if oj+1 ∈ C(X) and ij+1 = ij + 1 otherwise. In
addition, we say that a run ρ is valid if for every x ∈ X there exist exactly one index i with
oi = x⊢, exactly one index j with oj =⊣x, and i < j. We denote by RunA(d) the set of
all valid runs of A over d. Note that for some wVA A and document d there could exist
runs of A over d that are not valid. For this reason, we say that A is functional if every
run ρ of A over d is valid for every document d. Given that some decision problems for
non-functional variable-set automata are NP-hard [15, 21], from now on we assume that all
wVA are functional.

A valid run ρ like above naturally defines a mapping µρ over X that maps each x to the
span [ij , ij′⟩ where oij = x⊢ and oij′ =⊣x. Furthermore, we associate a weight in K to ρ by
multiplying all the weights of the transitions as follows:

W (ρ) := I(q0)⊙
m⊙

j=1
δ(qj , oj+1, qj+1)⊙ F (qm).

We define the set of output mappings of A over d as JAK(d) = {µρ | ρ ∈ RunA(d)}. Given a
mapping µ ∈ JAK(d), we associate the weight WA,d(µ) =

⊕
ρ∈RunA(d):µ=µρ W (ρ). Intuitively,

each µ ∈ JAK(d) contains relevant data extracted by A from d, and WA,d(µ) is the annotation
attached to µ obtained during the extraction process, e.g. confidence or support.

In [9], the problem of ranked annotator enumeration was proposed, which for the sake of
completeness we present next2:

Problem: RA-ENUM
Input: A wVA A over an ordered semiring K and a document d.

Output: Enumerate all µ1, . . . , µk ∈ JAK(d)
without repetitions and such that WA,d(µ1) ⪯ WA,d(µi+1).

2 In [9] they considered positively ordered semiring, which is slightly more general that the notion of
ordered semiring used here.

ICDT 2021

20:10 Ranked Enumeration of MSO Logic on Words

RA-ENUM was studied in [9] and an enumeration algorithm was provided with polynomial
preprocessing and polynomial delay in terms of |A| and |d|. By using the framework of MSO
cost functions, we can give a better algorithm for a special case of RA-ENUM. We say that
a wVA A is unambiguous if, for every document d and µ ∈ JAK(d), there exists at most one
run ρ ∈ RunA(d) such that µ = µρ. The connection between cost transducers and wVA
is direct, although the former works over groups and wVA works over semirings. For this
reason, we restrict wVA to semifields and give the following result.

▶ Corollary 6. The problem RA-ENUM can be solved with |A| · |d| preprocessing time and
log(|A| · |d|)-delay when A is unambiguous and K is an ordered semifield.

Although the previous result is a restricted case of RA-ENUM and a direct consequence
of Theorem 5, to the best of our knowledge this is the first non-trivial ranked enumeration
algorithm proposed for the framework of document spanner.

5 Ranked enumeration algorithm

In this section, we will see how novel data structures can solve the ranked enumeration
problem for cost transducers on words. We provide an algorithm for the RANK-ENUM-T
problem, which uses a structure called Heap of Words (HoW) as a black box. We specify the
interface of the HoW, to then present the full algorithm. The HoW structure is addressed in
detail in the next section. This structure has the property of being fully-persistent. Given
that this is a crucial property, we start with a brief introduction to this concept.

Fully-persistent data structures. A data structure is said fully-persistent [10] when no
operation can modify the data structure. In a fully-persistent data structure, all the operations
return new data structures, without changing the original ones. While this seems to be a
restriction on the possible operations, it allows “sharing”. For instance, with a fully-persistent
linked list data structure, we can keep two lists l1, l2 with l1 being some value followed by
the content of l2 and since no operation modifies the content of l1 or l2 there is no risk
that an access to l1 modifies indirectly l2. In contrast, if we had allowed an operation that
modifies the first value of a list in place (i.e., without returning a new list containing the
modification), the applying this new operation on l2 would have modified both l1 and l2.

All data structures that we use in this paper are fully-persistent. We use these data
structures to store and enumerate the outputs of the cost transducer while, at the same
time, share and modify the outputs without any risk of losing them. For more information
of fully-persistent data structures, we refer the reader to [10].

The HoW data structure. A Heap of Words (HoW) over an ordered group (G,⊕,O,⪯)
is a data structure h that stores a finite set {[w1 :g1], . . . , [wn :gn]} where each [wi :gi] is a
pair composed by a word wi ∈ Σ∗ and a priority gi ∈ G. Further, we assume that wi ̸= wj

for every i ̸= j, namely, the stored words form a set too. We define JhK = {w1, . . . , wn} as
the content of h and, given the previous restriction, there is a one-to-one correspondence
between [wi : gi] and wi. Notice that we will usually write h = {[w1 : g1], . . . , [wn : gn]} to
denote that h stores [w1 :g1], . . . , [wn :gn] but, strictly speaking, h is a data structure (i.e., a
heap). Finally, we denote by ∅ the empty HoW.

The purpose of a HoW h is to store words and retrieve quickly the pair [w : g] with
minimum priority with respect to the order ⪯ of the group. We also want to manage h

by deleting the word with minimum priority, adding new words, increasing the priority of

P. Bourhis, A. Grez, L. Jachiet, and C. Riveros 20:11

Algorithm 1 Preprocessing and enumeration phases for RANK-ENUM-T.
input: T = (Q, ∆, κ, I, F) and w = a1 . . . an.

1: procedure Preprocessing(T , w)
2: for each q ∈ dom(I) do
3: h0

q ← Add(∅, [ϵ :I(q)])
4: for i from 1 to n do
5: for each t = (p, ai, X̄, q) ∈ ∆ do
6: h← hi−1

p

7: if X̄ ̸= ∅ then
8: h← ExtendBy(h, (X̄, i))
9: h← IncreaseBy(h, κ(t))

10: hi
q ←Meld(hi

q, h)
11: for each q ∈ dom(F) do
12: h← IncreaseBy(hn

q , F (q))
13: hout ←Meld(hout, h)
14: return hout

input: A heap of words h.
1: procedure Enumeration(h)
2: write #
3: while h ̸= ∅ do
4: write FindMin(h)
5: h← DeleteMin(h)
6: write #

all elements by some g ∈ G, or extending all words with a new letter a ∈ Σ. Furthermore,
we want to build the union of two HoWs. More formally, we consider the following set of
functions to manage HoWs. For HoWs h, h1, and h2, w ∈ Σ∗, g ∈ G, and a ∈ Σ we define:

w′ := FindMin(h)
h′ := DeleteMin(h)
h′ := IncreaseBy(h, g)

h′ := Meld(h1, h2) s.t. Jh1K ∩ Jh2K = ∅
h′ := Add(h, [w :g]) s.t. w /∈ JhK
h′ := ExtendBy(h, a)

where h′ is a new HoW and w′ ∈ Σ∗. In general, each of such functions receives a HoW and
outputs a HoW h′. As it was explained before, this data structure is fully-persistent and,
therefore, after applying any of these functions, both the output h′ and its previous version h

are available. Now, we define the semantics of each operation. Let h = {[w1 :g1], . . . , [wn :gn]}.
The FindMin of h returns a word w′ such that [w′ :g′] is stored in h and g′ is minimal among
all the priorities stored, formally, [w′ : g′] ∈ h and g′ = min{g | [w : g] ∈ h}. If there are
several w′ satisfying this property, one is picked arbitrarily. Operation DeleteMin returns
a new HoW h′ that stores the set represented by h without the pair of the word returned by
FindMin(h), that is, h′ = h\{[w′ :g′]} where w′ = FindMin(h) and g′ = min{g | [w :g] ∈ h}.
Finally, the functions Add, IncreaseBy, ExtendBy, and Meld are formally defined as:

Meld(h1, h2):= h1 ∪ h2

Add(h, [w :g]):= h ∪ {[w :g]}

IncreaseBy(h, g):= {[w1 : (g1 ⊕ g)], . . . , [wn : (gn ⊕ g)]}

ExtendBy(h, a):= {[(w1 · a) :g1], . . . , [(wn · a) :gn]}

We assume that Add, IncreaseBy, ExtendBy and Meld take constant time and
FindMin takes O(|w′|) where w′ = FindMin(h). For DeleteMin(h), if h was built
using n operations Add, IncreaseBy, ExtendBy and Meld followed by some number
of operations DeleteMin then computing DeleteMin(h) takes O(|w′| · log(n)) where
w′ = FindMin(h). In the next section we show how to implement HoWs in order to satisfy
these requirements. For now, we assume the existence of this data structure and use it to
solve RANK-ENUM-T.

The algorithm. In Algorithm 1, we show the preprocessing phase and the enumeration
phase to solve RANK-ENUM-T. On one hand, the Preprocessing procedure receives

ICDT 2021

20:12 Ranked Enumeration of MSO Logic on Words

a cost transducer T = (Q, ∆, κ, I, F) and a word w ∈ Σ∗, and computes a HoW hout. On
the other hand, the Enumeration procedure receives a HoW (i.e., hout) and enumerates
enc(σ1), . . . , enc(σk) such that {σ1, . . . , σk} = JT K(w) and costT (w, σi) ⪯ costT (w, σi+1).

In both procedures we use HoW to compute the set of answers. Indeed, for each q ∈ Q

and each i ∈ {0, . . . , |w|} we compute a HoW hi
q, and also compute a hout to store the final

results. We assume that all HoWs are empty (i.e., hout = ∅ and hi
q = ∅) when the algorithm

starts. For each i, we call the set {hi
q | q ∈ Q} the i-level of HoW. Starting from the 0-level

(lines 2-3), the preprocessing phase goes level by level, updating the i-level with the previous
(i− 1)-level (lines 4-10). It is important to note here that the Meld(hi

q, h) call (line 10) is
well-defined since T is unambiguous (i.e., Jhi

qK ∩ JhK = ∅). After reaching the last n-level,
the algorithm joins all HoWs {hn

q | q ∈ dom(F)} into hout, by incrementing first their cost
with F (q) and melding them into hout (lines 11-13). Finally, the preprocessing phase return
hout as output (line 14).

In order to understand the preprocessing algorithm, one has to notice that all the
evaluation is based on a very simple fact. Let wi = a1 . . . ai and define the set RunT (q, wi) of
all partial runs of T over wi that end in state q. For any of such runs ρ = q0

a1/X̄1−−→ . . . ai/X̄i−−→qi ∈
RunT (q, wi), define the partial cost of ρ as κ∗(ρ) = I(q0)⊕

⊕i
j=1 κ((qj−1, aj , X̄j , qj)). After

executing Preprocessing, it will hold that: hi
q =

{
[out(ρ) :κ∗(ρ)] | ρ ∈ RunT (q, wi)

}
.

This is certainly true for h0
q after lines 2-3 are executed. Then, if this is true for (i− 1)-level,

after the i-th iteration of lines 5-10 we will have that hi
q contains all pairs of the form

[out(ρ) · (X̄, i) :κ∗(ρ)⊕ κ(t)] for each t = (p, ai, X̄, q) ∈ ∆, plus all pairs [out(ρ) :κ∗(ρ)⊕ κ(t)]
for each t = (p, ai, ∅, q) ∈ ∆ and ρ ∈ RunT (p, wi−1). Given that each line takes constant
time, we can conclude that the preprocessing phase takes time O(|T | · |w|) as expected.

For the enumeration phase, we extract each output from hout, one by one, by alternating
between the FindMin and DeleteMin procedures. Since with DeleteMin we remove
the minimum element of h after printing it, the correctness of the enumeration phase is
straightforward. Notice that this enumeration will print all outputs in increasing order
of priority. Furthermore, it will not print any output twice given that hout contains no
repetitions. To bound the time, notice that the number of Add, IncreaseBy, ExtendBy
and Meld functions used during the pre-processing is at most O(|T | · |w|). For this reason,
the delay between each output w′ is bounded by O(log(|T | · |w|) · |w′|), satisfying the promised
delay between outputs.

We want to finish this section by emphasizing that the ranked enumeration problem
of cost transducers reduces to computing efficiently the HoW’s methods. Moreover, it is
crucial in this algorithm that this data structure is fully-persistent, and each operation takes
constant time. Indeed, this allows us to pass the outputs between levels very efficiently and
without losing the outputs of the previous levels.

6 The implementation of HoW data structure

In this section we focus on the HoW data structure and explain its implementation using
yet another structure called incremental Brodal queue. We begin by explaining the general
technique we use to store sets of strings with priorities, and end by giving a full implementation
of the functions to manage HoWs.

Let Σ be a possibly infinite alphabet and G = (G,⊕,O,⪯) an order group. A string-DAG
over Σ and G is a DAG D = (V, E) where the edges are annotated with symbols in Σ∪{ϵ} and
priorities in G. Formally, each edge has the form e = (u, a, g, v), where u, v ∈ V , a ∈ Σ ∪ {ϵ}
and g ∈ G. Given a path ρ = v1

a1,g1−−−→ . . .
ak,gk−−−→ vk, let [wρ : gρ] be the pair defined by

P. Bourhis, A. Grez, L. Jachiet, and C. Riveros 20:13

n0 n1 n2

⊥

a, 0

ϵ, 5

e, 4

b, 1
d, 3

c, 2

(a) A string-DAG D.

n0 n1 n2

⊥

a, 3

ϵ, 5

e, 6

b, 3
d, 3

c, 2

(b) The string-DAG prioritize(D).

Figure 1 A string-DAG D and the result of prioritize(D).

ρ, where wρ = a1 . . . ak and gρ = g1 ⊕ . . . ⊕ gk. We make two more assumptions that any
string-DAG must satisfy. First, we assume that there is a special sink vertex ⊥ ∈ V that is
reachable from any v ∈ V , has no outgoing edges, and that all edges with ϵ must point to ⊥.
Second, we assume that, for every v ∈ V and every two different paths ρ and ρ′ from v to ⊥,
it holds that wρ ̸= wρ′ . Given these two assumptions, we say that each v ∈ V encodes a set
of pairs JDK(v): for v = ⊥ this set is the empty set, while for all v ̸= ⊥ this set is defined by
all the paths from v to ⊥, i.e., JDK(v) = {[wρ :gρ] | ρ is a path from v to ⊥}. By these two
assumptions, there is a correspondence between the words in JDK(v) and the paths from v

to ⊥. For instance, the strings associated with n0 in the string-DAG depicted in Figure 1a
are ad with priority 0 + 3 = 3, abc with priority 0 + 1 + 2 = 3, aec with priority 0 + 4 + 2 = 6
and ϵ with priority 5.

This structure is useful to store a big number of strings in a compressed manner. Further,
since ϵ can only appear at the last edge of a path, by doing a DFS it can be used to retrieve
all of them without repetitions and taking time linear in the length of each string. However,
one can see that it is not very useful when we want to enumerate them by rank order. This
motivates the following string-DAG construction. We define a function prioritize(D) that
receives a string-DAG D = (V, E) and returns a string-DAG D′ = (V, E′) where each edge
(u, a, g, v) of E is replaced by an edge (u, a, g⊕ g′, v) in E′, where g′ is the minimum priority
in JDK(v). For instance, Figure 1b shows the string-DAG resulting after applying prioritize
to D of Figure 1a. Having prioritize(D) makes finding the string with minimum priority of a
vertex much easier: we simply need to follow recursively the edge with minimum priority. In
n0 of Figure 1b we make the path n0

a,3−−→ n1
b,3−−→ n2

c,2−−→ ⊥ and compute the minimum pair
[abc, 3] (the priority is retrieved from the first edge).

Before presenting the HoW implementation, we need to introduce another fully-persistent
data structure. This structure is based on the Brodal queue [4], a known worst-case efficient
priority queue, which we extend with the new function increaseBy. Formally, an incremental
Brodal queue, or just a queue, is a fully-persistent data structure Q which stores a set
P = {[E1 :g1] . . . [Ek :gk]}, where each Ei is a stored element and gi is its priority. As an abuse
of notation, we often write Q = P . The functions to manage incremental Brodal queues
include all functions for HoW except ExtendBy, namely findMin, deleteMin, add, increaseBy
and meld; their definition also remains the same as for HoW. Note that we use different
fonts to distinguish the operations over HoWs versus the operations over incremental Brodal
queues. For example, we write FindMin for HoWs and findMin for queues. Further, this
queue has two additional functions: isEmpty, that checks if the queue is the empty queue ∅;
and minPrio, that returns the value g of the minimal priority among all the priorities stored.
For the rest of this section we assume the existence of an incremental Brodal queue structure
such that all functions run in time O(1) except for deleteMin, which runs in O(log(n)), where

ICDT 2021

20:14 Ranked Enumeration of MSO Logic on Words

Algorithm 2 HoW’s implementation of Add, ExtendBy, FindMin and DeleteMin.
1: procedure Add(⟨Q⟩, [a :g])
2: return ⟨add(Q, [(a, ⟨∅⟩) :g])⟩

3: procedure ExtendBy(⟨Q⟩, a)
4: if isEmpty(Q) then
5: return ⟨∅⟩
6: return ⟨add(∅, [(a, ⟨Q⟩) :minPrio(Q)])⟩

7: procedure FindMin(⟨Q⟩)
8: (a, ⟨Q′⟩)← findMin(Q)
9: if isEmpty(Q′) then

10: return a

11: return FindMin(⟨Q′⟩) · a

12: procedure DeleteMin(⟨Q⟩)
13: if isEmpty(Q) then
14: return ⟨∅⟩
15: (a, ⟨R⟩)← findMin(Q)
16: Q′ ← deleteMin(Q)
17: ⟨R′⟩ ← DeleteMin(⟨R⟩)
18: if isEmpty(R′) then
19: return ⟨Q′⟩
20: δ ← minPrio(R′)⊕(minPrio(R))−1

21: g ← minPrio(Q)⊕ δ

22: return ⟨add(Q′, [(a, ⟨R′⟩) :g])⟩

n is the number of pairs stored in the queue. Finally, all these operations are fully-persistent.
The in-detail explanation of this structure is derived to the next section.

With the previous intuition and the structure above, we can now present the implementa-
tion for Heap of Words. A HoW h is implemented as an incremental Brodal queue Q that
stores a set {[(a1, h1) : g1], . . . , [(ak, hk) : gk]}, where each ai ∈ Σ ∪ {ϵ}, each hi is a HoW
and each gk ∈ G. We write h = ⟨Q⟩ to make clear that we are talking about a HoW and
not the queue. The empty HoW is simply the empty queue ⟨∅⟩. Intuitively, the recursive
references to HoWs are used to encode a string-DAG D; more specifically, we use it to encode
prioritize(D) = (V, E) and store the edges using the queue structure. For every u ∈ V ,
we define a HoW hu = ⟨Q⟩ such that each pair [(a, hv) : g] stored in Q represents an edge
(u, a, g, v) ∈ E. For instance, continuing with the example of Figure 1b, we have a HoW for
each vertex: h⊥ = ⟨∅⟩, hn2 = ⟨{[(c, h⊥) :2]}⟩, hn1 = ⟨{[(e, hn2) :6], [(b, hn2) :3], [(d, h⊥) :3]}⟩
and hn0 = ⟨{[(a, hn1) :3], [(ϵ, h⊥) :5]}⟩.

We now explain the implementation of the functions defined in Section 5 to manage HoW.
Consider a HoW h = ⟨Q⟩. For each op ∈ {Meld, IncreaseBy}, the function is just applied
directly to the queue, i.e., op(⟨Q⟩) = ⟨op(Q)⟩. The implementation of Add and the other
functions is now described and presented in Algorithm 2.

In the case of Add(h, a), an edge is added that points to ⟨∅⟩; this can be extended to add
a word w instead by allowing that edges keep words instead of single letters. To implement
ExtendBy(⟨Q⟩, a), we simply need to create a new queue containing the element [(a, ⟨Q⟩) :
minPrio(Q)]. Note that the appended letter is added not at the end, but at the beginning,
meaning that the strings are actually being stored in inverted order. This is managed in
FindMin(⟨Q⟩), where the output string is inverted back. For FindMin(⟨Q⟩), to get the
minimum element we recursively use findMin(Q) to find the outgoing edge with minimum
priority, as we explained when the prioritize function was introduced. For DeleteMin, in
order to delete the string with minimum priority, we use the fact that the set of all paths,
minus the one with minimal priority, is composed by: (1) all the paths that do not start with
the minimal edge, and (2) all the paths starting with the minimal edge that are followed
by any path minus the one with minimal priority. For instance, in Figure 1b, the minimal
path from n0 is π = n0

a−→ n1
d−→ ⊥. Then, the set of paths minus π is composed by (1)

n0
ϵ−→ ⊥, and (2) n0

a−→ n1
e−→ n2

c−→ ⊥, n0
a−→ n1

b−→ n2
c−→ ⊥. In procedure DeleteMin, ⟨Q′⟩

stores the paths of (1), while ⟨R′⟩ stores the paths from (2) minus the first edge (lines 16-17).

P. Bourhis, A. Grez, L. Jachiet, and C. Riveros 20:15

Further, since the minimal path was removed, a new priority needs to be computed for this
edge, which is computed and stored as g (line 20-21). This priority is used to create an edge
to R′, i.e., [(a, ⟨R′⟩) :g], which together represent the paths of (2). This is connected with
the paths of (1), i.e., ⟨Q′⟩, and the result is returned in line 22. The border case case where
(2) is empty is managed by lines 18-19, in which case it simply returns ⟨Q′⟩.

It is straightforward to check that this data structure achieves the time and space bounds
given in Section 5. We end this section by arguing that the implementation of HoW is
fully-persistent. For this, note that the performance of HoW relies on the implementation of
incremental Brodal queues. Indeed, given that these queues are fully-persistent and each
method in Algorithm 2 creates new queues without modifying the previous ones, the whole
data structure is fully-persistent. Therefore, it is left to prove that we can extend Brodal
queues as we already mentioned. We will show this in the last section.

7 Incremental brodal queues

In this section, we discuss how to implement an incremental Brodal queue, the last ingredient
of our ranked enumeration algorithms for MSO cost functions. This data structure extends
Brodal queues [4] by including the increaseBy procedure. Indeed, our construction of incre-
mental Brodal queues follows the same approach as in [4]. We start by defining what we
call an incremental binomial heap, for which most operations take logarithmic time, to then
show how to extend it to lower the cost to constant time, except for deleteMin that takes
logarithmic time. The relevant aspects for this extension (i.e., to support increaseBy) appear
in the definition of the incremental binomial heap. For this reason, in this section we present
only the implementation of the incremental binomial heap. The details of how to extend it
to an incremental Brodal queue can be found in [4]. We start by introducing some notation.

A multitree structure is a pair M = (V, first, next, v0) where V is a set of nodes, first : V →
V ∪{⊥} and next : V → V ∪{⊥} are functions such that ⊥ /∈ V and v0 ∈ V is a special node.
Further, we assume that the directed graph GM = (V, {(u, v) | first(u) = v or next(u) = v})
is a multitree, namely, it is a directed acyclic graph (DAG) in which the set of vertices
reachable from any vertex induces a tree. Let Vv0 denotes the reachable nodes from v0

and Gv0 = (Vv0 , {(u, v) | first(u) = v or next(u) = v}) the graph induced by Vv0 , which is a
tree by definition. Note that Gv0 is using the first-child next-sibling encoding to form an
ordered forest. To see this, let next∗(v) be the smallest subset of V such that v ∈ next∗(v)
and next(u) ∈ next∗(v) whenever u ∈ next∗(v). Then the set roots = next∗(v0) represents the
roots of the forest and for each v ∈ Vv0 the set children(v) = next∗(first(v)) are the children of
the node v in the forest where children(v) = ∅ when first(v) = ⊥. Here both sets are ordered
by the next function, then we will usually write roots = v1, . . . , vj or children(v) = u1, . . . , uk

to denote both the elements of the set and its order. Also, we write parent(v) = u if
v ∈ children(u) and we say that v is a leaf if first(v) = ⊥. Note that in M a node could have
different “parents” (i.e., GM is a DAG) depending on the node v0 that we start. We say that
M forms a tree if next(v0) = ⊥. Furthermore, for v ∈ V we denote by Mv the tree hanging
from v, namely, Mv is equal to M with the exception that v0

Mv
= v and nextMv

(v) = ⊥. As
it will clear below, this encoding will be helpful to build the data structure and assure the
persistent requirement.

A binomial tree of rank k is recursively defined as follows. A binomial tree of rank 0 is a
leaf and a binomial tree of rank k + 1 is a multitree structure M that forms a tree such that
children(v0) = uk, . . . , u0 and Mui is a binomial tree of rank i. If M is a binomial tree we
denote its rank by rank(M). One can easily show by induction over the rank (see [5]) that for

ICDT 2021

20:16 Ranked Enumeration of MSO Logic on Words

every binomial tree M of ranked k, it holds that |Vv0 | = 2k and, thus, the number of children
of each node is of logarithmic size with respect to the size of T , i.e., |children(v)| ≤ log(|Vv0 |)
for every v ∈ Vv0 . We use this property several times throughout this section.

Fix an ordered group (G,⊕,O,⪯). An incremental binomial heap over G is defined
as a pair H = (V, first, next, v0, ∆, elem, δ0) where (V, first, next, v0) is a multitree structure,
∆ : V → G is the delta-priority function, elem : V → E is the element function where E is
the set of elements that are stored, and δ0 ∈ G is an initial delta value. Further, if M is
the multitree structure defined by (V, first, next, v0) and roots = v1, . . . , vn are its roots, then
each Mvi is a binomial tree with rank(Mvi) < rank(Mvi+1) for each i < n. In other words,
an incremental binomial heap has the same underlying structure than a standard binomial
heap [5]. Usually in the literature [4], a binomial heap is imposed a min-heap property,
meaning that a node always has lower priority than its children, which is crucial for dequeuing
elements in order. Instead, we give to our heap a different semantics by keeping the difference
between nodes with the ∆-function and computing the real priority function prv0 : Vv0 → G
as follows: prv0(v) := δ0 ⊕∆(v) whenever v is a root of the underlying multitree structure,
and prv0(v) := prv0(u)⊕∆(v) whenever parent(v) = u. Given that parent(v) depends on the
starting node v0, then prv0 also depends on v0. In addition, we assume that a min-heap
property is satisfied over the real priority function, namely, prv0(u) ⪯ prv0(v) whenever
parent(v) = u. Then H is a heap where each node v ∈ V keeps a pair (elem(v), prv0(v))
where elem(v) is the stored element and prv0(v) its priority in the heap. This principle of
storing the deltas between nodes instead of the real priority is crucial for supporting the
increased-by operation of the data structure.

Next, we show how to implement the operations of an incremental Brodal queue stated
in Section 6, namely, isEmpty, increaseBy, findMin minPrio, deleteMin, add, and meld. We
implement this with an incremental binomial heap where the only difference is that isEmpty
and increaseBy will take constant time, and findMin minPrio, deleteMin, add, and meld will
take logarithmic time. To extend incremental binomial heaps to lower the complexity of
findMin minPrio, deleteMin, and add to constant time, one can use the same techniques as
in [4]. Most operations of incremental binomial heaps are similar to the operations on
binomial heaps (see [5]), however, for the sake of completeness we explain each one in detail,
highlighting the main differences to manage the delta priorities.

From now on, fix an incremental binomial heap H = (V, first, next, v0, ∆, elem, δ0). Given
that all operations must be persistent, we will usually create a copy H ′ of H by extending H

with new fresh nodes. More precisely, we will say that H ′ is an extension of H (denoted by
H ⊆ H ′) iff VH ⊆ VH′ and opH′(v) = opH(v) for every v ∈ VH and op ∈ {first, next, ∆, elem}
(note that v0 and δ0 may change). Furthermore, for H ⊆ H ′ we will say that a node
v′ ∈ VH′ \ VH is a fresh copy of v ∈ VH if v′ in H ′ has the same structure as v in H where
only the differences are defined explicitly, namely, we omit the functions that are the same
as for v. For example, if we say that “v′ is a fresh copy of v such that nextH′(v′) := ⊥”, this
means that nextH′(v′) := ⊥ and opH′(v′) = opH(v) for every op ̸= next.

The first operation, isEmpty(H), can easily be implemented in constant time, by just
checking whether v0 = ⊥ or not. Similarly, increaseBy(H, δ) can be implemented in constant
time by just updating δ0 to δ0 ⊕ δ, which is the purpose of having δ0. For findMin(H) or
minPrio(H), a bit more of work is needed. Recall that a k-rank binomial tree with |V | nodes
satisfies |V | = 2k. Given that roots = v1, . . . , vn is a sequence of binomial trees ordered by
rank, one can easily see that n ∈ O(log(|Vv0 |). Therefore, we need at most a logarithmic
number of steps to find the node vi with the minimum priority and return elem(vi) or prv0(vi)
whenever findMin(H) or minPrio(H) is asked, respectively.

P. Bourhis, A. Grez, L. Jachiet, and C. Riveros 20:17

For add(H, e, g) or deleteMin(H), we reduce them to melding two heaps. For the first
operation, we create a heap H ′ whose multitree structure has one node, call it v, ∆H′(v) := g,
elemH′(v) := e, and δ0

H′ := O. Then we apply meld(H, H ′) obtaining a heap where the new
node (e, g) is added to H. For the second operation, we remove the minimum element by
creating two heaps and then apply the meld operation. Specifically, let roots = v1, . . . , vn

be the roots of H and vi be the root with the minimum priority. Then we build two heaps
H1 and H2 such that H ⊆ Hi for i ∈ {1, 2}. For H1, we extend H by creating fresh copies
of all vj , j ≠ i. Formally, define VH1 = VH ∪ {v′

1, . . . , v′
n} where each v′

j is a fresh copy of
vj with the exception of v′

i−1 that we set nextH1(v′
i−1) := v′

i+1. Finally, define v0
H1

= v′
1

as the starting node of H1. Now, for H2 we extend H by creating a copy of the children
of vi in H in reverse order and updating δ0

H to δ0
H ⊕∆H(vi) (recall that the children of a

binomial tree are ordered by decreasing rank). Formally, if childrenH(vi) = u1, . . . , uk, then
VH2 = VH ∪ {u′

1, . . . , u′
k} where each u′

j is a fresh copy of uj such that nextH2(u′
j) := u′

j−1
for j > 1 and nextH2(u′

1) := ⊥. Finally, define v0
H2

:= u′
k and δ0

H2
:= δ0

H ⊕∆H(vi). The
reader can check that H1 and H2 are valid incremental binomial heaps and, furthermore,
H1 is H without vi and H2 contains only the children of vi in reverse order. Therefore, to
compute deleteMin(H) we return meld(H1, H2). Given that the construction of H1 and H2
takes at most logarithmic time in the size of H (i.e., there is at most a log number of roots
or children), then the procedure takes logarithmic time. Furthermore, H was never touched
and then the operation is fully-persistent.

For meld(H1, H2), we use the same algorithm as for melding two binomial heaps with two
modifications that are presented here. For melding two binomial heaps, we point the reader
to [5] in which this operation is well explained. For the first change, we need to update the
link operation [5] of two binomial trees to support the use of the delta priorities. Given a
incremental binomial heap H and its underlying multitree structure M , let v1 and v2 be
two nodes in H such that ∆(v1) ⪯ ∆(v2) and Mv1 and Mv2 has the same rank k. Then
the link of v1 and v2, denoted by link(H, v1, v2), outputs a pair (H ′, v′

1) such that H ′ is
an extension of H and M ′

v′
1

is a binomial tree of rank k + 1 containing the nodes of Mv1

and Mv2 . Formally, VH′ := VH ∪ {v′
1, v′

2} and v′
1 and v′

2 are fresh copies of v1 and v2 such
that firstH′(v′

1) := v′
2, nextH′(v′

2) := firstH(v1) and ∆H′(v′
2) := ∆H(v1)−1 ⊕∆H(v2). Note

that the new node v′
1 defines a binomial tree M ′

v′
1

of rank k + 1 containing all nodes of
Mv1 and Mv2 , maintaining the priorities of H and such that prH′(u) ⪯ prH′(u′) whenever
u = parent(u′). The second change of the algorithm in [5] is that, before melding H1 and
H2, we push each initial delta value to the roots of the corresponding data structures. For
this, given an incremental binomial heap H we construct H↓ with H ⊆ H↓ as follows. Let
rootsH = v1, . . . , vk. Then VH↓ = VH ∪ {v′

1, . . . , v′
k} where v′

1, . . . , v′
k are fresh copies of

v1, . . . , vk and ∆H↓(v′
i) := δ0

H ⊕∆H(vi). Furthermore, we define v0
H↓ := v′

1 and δ0
H↓ := O.

Note that in H↓ we can forget about the initial delta value given that this is included in the
root of each binomial tree. Finally, to meld H1 and H2 we construct H↓

1 and H↓
2 and then apply

the melding algorithm of [5] with the updated version of the link function, link(H, v1, v2).
Overall, the operation takes logarithmic time to build H↓

1 and H↓
2 , and logarithmic time to

meld both heaps. Moreover, given that link(H, v1, v2) and the construction of H↓
1 and H↓

2
do not modify the initial heap H, then the meld operation is persistent as well.

To finish this section, we recall that the next step is to extend the incremental binomial
heap to an incremental Brodal queue. For this, we follow the same approach as [4] to lower
the time complexity of find-min, add, and meld operation from logarithmic to constant time.

ICDT 2021

20:18 Ranked Enumeration of MSO Logic on Words

8 Conclusions

This paper presented an algorithm to enumerate the answers of queries over words, in an
order defined by a cost function, that has a linear preprocessing and a logarithmic delay in
the size of the words. We first introduced the notion of MSO cost functions, to then present
a ranked enumeration scheme. This scheme relies on a particular data structure called HoW.
The complexity of our algorithms depends mainly on the performance of the operations of
HoW. To implement them, we extend a well known persistent data structure called Brodal
queue. Thanks to this data structure, we obtain the bounds of our algorithm.

For future work, we would like to find a lower bound that justifies the logarithmic delay
or whether one can achieve a better delay. We also plan to study how the introduced
data structures and algorithms could be used in other enumeration schemes (e.g., relational
databases). Finally, we would also like to validate our approach in practical settings.

References
1 Alfred V Aho and John E Hopcroft. The design and analysis of computer algorithms. Pearson

Education India, 1974.
2 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-delay

enumeration for nondeterministic document spanners. In ICDT, pages 22:1–22:19, 2019.
3 Guillaume Bagan. Mso queries on tree decomposable structures are computable with linear

delay. In International Workshop on Computer Science Logic, pages 167–181. Springer, 2006.
4 Gerth Stølting Brodal and Chris Okasaki. Optimal purely functional priority queues. Journal

of Functional Programming, 6(6):839–857, 1996.
5 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to

algorithms. MIT press, 2009.
6 Bruno Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied

Mathematics, 157(12):2675–2700, 2009.
7 Shaleen Deep and Paraschos Koutris. Ranked enumeration of conjunctive query results. CoRR,

abs/1902.02698, 2019.
8 Johannes Doleschal, Noa Bratman, Benny Kimelfeld, and Wim Martens. The complexity of

aggregates over extractions by regular expressions. In ICDT, 2021.
9 Johannes Doleschal, Benny Kimelfeld, Wim Martens, and Liat Peterfreund. Weight annotation

in information extraction. In ICDT, volume 155, pages 8:1–8:18, 2020.
10 James R Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making

data structures persistent. In STOC, pages 109–121, 1986.
11 Manfred Droste and Paul Gastin. Weighted automata and weighted logics. In ICALP, volume

3580, pages 513–525, 2005.
12 Manfred Droste, Werner Kuich, and Heiko Vogler. Handbook of weighted automata. Springer

Science & Business Media, 2009.
13 Ronald Fagin, Benny Kimelfeld, Frederick Reiss, and Stijn Vansummeren. Document spanners:

A formal approach to information extraction. J. ACM, 62(2):12:1–12:51, 2015.
14 Fernando Florenzano, Cristian Riveros, Martín Ugarte, Stijn Vansummeren, and Domagoj

Vrgoc. Efficient enumeration algorithms for regular document spanners. ACM Trans. Database
Syst., 45(1):3:1–3:42, 2020.

15 Dominik D Freydenberger, Benny Kimelfeld, and Liat Peterfreund. Joining extractions of
regular expressions. In Proceedings of PODS, pages 137–149, 2018.

16 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order
logic revisited. Ann. Pure Appl. Log., 130(1-3):3–31, 2004.

17 Jonathan S Golan. Semirings and their Applications. Springer Science & Business Media,
2013.

P. Bourhis, A. Grez, L. Jachiet, and C. Riveros 20:19

18 Alejandro Grez, Cristian Riveros, and Martín Ugarte. A Formal Framework for Complex
Event Processing. In ICDT, pages 5:1–5:18, 2019.

19 Stephan Kreutzer and Cristian Riveros. Quantitative monadic second-order logic. In LICS,
pages 113–122, 2013.

20 Leonid Libkin. Elements of finite model theory. Springer Science & Business Media, 2013.
21 Francisco Maturana, Cristian Riveros, and Domagoj Vrgoc. Document spanners for extracting

incomplete information: Expressiveness and complexity. In Proceedings of PODS, pages
125–136. ACM, 2018.

22 Klaus Reinhardt. The complexity of translating logic to finite automata. In Automata logics,
and infinite games, pages 231–238. Springer, 2002.

23 Luc Segoufin. Enumerating with constant delay the answers to a query. In Proceedings of the
16th International Conference on Database Theory, pages 10–20, 2013.

24 Nikolaos Tziavelis, Deepak Ajwani, Wolfgang Gatterbauer, Mirek Riedewald, and Xiaofeng
Yang. Optimal algorithms for ranked enumeration of answers to full conjunctive queries.
VLDB, 13(9):1582–1597, 2020.

25 Nikolaos Tziavelis, Wolfgang Gatterbauer, and Mirek Riedewald. Optimal join algorithms
meet top-k. In SIGMOD, pages 2659–2665. ACM, 2020.

ICDT 2021

	1 Introduction
	2 Preliminaries
	3 MSO cost functions
	4 Application: document spanners
	5 Ranked enumeration algorithm
	6 The implementation of HoW data structure
	7 Incremental brodal queues
	8 Conclusions

