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Abstract
Modern CPUs provide single instruction-multiple data (SIMD) instructions. SIMD instructions
process several elements of a primitive data type simultaneously in fixed-size vectors. Classical
sorting algorithms are not directly expressible in SIMD instructions. Accelerating sorting algorithms
with SIMD instruction is therefore a creative endeavor. A promising approach for sorting with SIMD
instructions is to use sorting networks for small arrays and Quicksort for large arrays. In this paper
we improve vectorization techniques for sorting networks and Quicksort. In particular, we show how
to use the full capacity of vector registers in sorting networks and how to make vectorized Quicksort
robust with respect to different key distributions. To demonstrate the performance of our techniques
we implement an in-place hybrid sorting algorithm for the data type int with AVX2 intrinsics. Our
implementation is at least 30% faster than state-of-the-art high-performance sorting alternatives.
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1 Introduction

Sorting is a fundamental problem in computer science, since sorting algorithms are part
of numerous applications in both commercial and scientific environments. Among others,
sorting plays an important role in combinatorial optimization [28], astrophysics [29], molecular
dynamics [15], linguistics [39], genomics [33] and, weather forecasting [36]. Sorting is used in
databases for building indices [30], in statistics software for estimating distributions [13], and
in object recognition for computing convex hulls [2]. Sorting enables binary search, simplifies
problems such as checking the uniqueness of elements in an array, or finding the closest pair
of points in the plane [10]. Faster sorting implementations can thus reduce the computing
time in a wide area of applications.

Some of the performance-critical applications mentioned above extensively sort arrays of
numbers [36], that is, primitive types like int or float. High-performance libraries like Intel
Performance Primitives (IPP) [21] or Boost.Sort [35] therefore offer fast sorting procedures
for primitive types. But, these implementations do not take advantage of the available vector
instruction sets, which are an integral part of modern CPUs. In computational domains such
as linear algebra [4, 14], image processing [25], or cryptography [23] vector instructions are
ubiquitous, however, vector instructions are rarely used in practice for sorting. One reason is
that the vectorization of sorting algorithms is cumbersome, since existing sorting algorithms
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cannot be directly expressed in SIMD instructions. Another reason is that current vectorized
sorting algorithms often cannot outperform an optimized radix sort. Furthermore, current
vectorized Quicksort implementations [5, 16] are not robust to different key distributions.

The idea of using vector instructions for sorting is not new. The field of vectorized sorting
has been explored since the 1970s, first on vector supercomputers with their specialized
instruction sets and later on modern architectures (see our discussion of related work below).
A large part of the work on vectorized sorting algorithms has been done on old hardware
from today’s point of view. Since then, SIMD instruction sets continued to evolve and
vector registers became wider. Also, new vectorization techniques such as vectorized in-place
partitioning in Quicksort [5] have been discovered. Due to these changes, a new look at
vectorized sorting algorithms seems worthwhile.

Related Work. Vectorized sorting is a topic that has been extensively researched on vector
supercomputers [31, 37, 38, 41]. However, the knowledge gained there cannot be transferred
uncritically to modern hardware. For example, Zagha and Blelloch [41] vectorize Radix Sort
on the vector supercomputer CRAY Y-MP. Compared to a vectorized hybrid algorithm of
Quicksort and Odd-Even Transposition Sort [31], they achieve speedup factors of three to
five with their Radix Sort. The speedup is partly due to the fact that the CRAY Y-MP has
no hardware prefetcher, which means accessing data elements in RAM in random order takes
the same time as accessing them sequentially.

Studies on vectorized sorting, which take into account modern hardware, that is, vector
instructions, instruction-level parallelism, CPU caches, and multicore parallelism, focus
primarily on the vectorization of Mergesort [8, 19, 20]. Essentially, a vectorized Mergesort is
a hybrid of merging networks and the usual Mergesort or some multiway variant of it. Despite
efficient utilization of the underlying hardware, single-threaded vectorized Mergesort variants
on mainstream CPUs do not achieve the speed of a hardware optimized Radix Sort such as
Intel’s platform-aware Radix Sort (IPP Radix Sort) [21]. For special hardware like the Xeon
Phi 7210 processor, which features AVX-512 instructions and high bandwidth memory, a
fast vectorized Mergesort variant exists, but unfortunately without publicly available source
code for testing [40].

Gueron and Krasnov [16] show that Quicksort can be vectorized on modern hardware using
the AVX and AVX2 instruction sets. Their partitioning function requires O(n) additional
memory. The pivot value is always the last element of the partition. After the vectorized
compare operation with the pivot value, the elements in the vector register are shuffled using
shuffle masks that are stored in a lookup table. Gueron and Krasnov miss the opportunity
to sort even small arrays with vector instructions. For sub-partitions with fewer than 32
elements, they use insertion sort, similarly to the C++ Standard Template Library (STL).
The running times of their vectorized Quicksort are higher than those of IPP radix sort when
sorting randomly distributed 32-bit integers.

Using AVX-512 instructions, Bramas [5] designs a vectorized hybrid algorithm based
on Quicksort and Bitonic Sort that outperforms IPP radix sort on random input data by
a factor of 1.4. Using the new compress instructions in AVX-512, Bramas implements
Quicksort’s partitioning function without the use of pre-computed permutation masks.
Compress instructions arrange elements contiguously in a vector according to a bitmask.
Compress instructions are not new per se. Both Stone [38] and Levin [31] have already
used compress instructions on vector supercomputers to implement Quicksort’s partitioning
function. The true contribution of Bramas is that he implements the partitioning function
without additional memory. He does this by buffering the two SIMD vectors at the outer ends



M. Blacher, J. Giesen, and L. Kühne 3:3

of the array. The pivot value for partitioning the array is determined with the median-of-three
strategy. For sorting small sub-partitions with less than or equal to 256 integers Bramas
uses a branch-free vectorized Bitonic Sort.

Practically Important Features for Sorting. Among the sorting implementations mentioned
above, the fastest are sort AVX-512 [5] and Intel’s IPP radix sort [21]. In addition to
speed, the following features are often equally important in practice: low memory usage,
robustness against different key distributions, portability, and efficient parallelization. Table 1
summarizes the features of our and other sorting implementations for primitive types. In this
paper we consider only the single-threaded case, since our goal is to show that pure vectorized
sorting is indeed the fastest available option for sorting primitive types. Vectorization
and parallelization are orthogonal concepts. Parallelization would make the results highly
dependent on the parallelization technique. The efficient combination of our vectorization
techniques with parallelization is a topic that we plan to explore in future work.

Table 1 Features of various high performance sorting implementations for primitive types. The
state-of-the-art general purpose sorting algorithm IPS4o [1] is included here for comparison, although
it is not optimized for sorting primitive types. We use the term in-place if the sorting algorithm
requires no more than O(log n) additional non-constant memory on average.

this paper sort AVX-512 [5] IPP radix sort [21] IPS4o [1]

in-place ✓ ✓ ✗ ✓

robust (distributions) ✓ ✗ ✓ ✓

robust (duplicate keys) ✓ ✗ ✓ ✓

portable (≤ AVX2) ✓ ✗ ✓ ✓a

fast (n ≤ 1000) ✓ ✓ ✗ ✗

fast (n > 1000) ✓ ✓ ✓ ✗

parallelized efficiently ✗ ✗ ✗ ✓

a Code does not compile on Windows.

Our Contributions. The main contributions of this paper are vectorization techniques for
sorting networks and Quicksort that allow to design faster, more robust and memory efficient
sorting algorithms for primitive types. In particular, we introduce the following techniques:

For sorting small to medium-sized arrays we show how to use the full capacity of vector
registers in sorting networks.
To implement the vectorized partitioning function of Quicksort in-place with AVX2
instructions, we combine the lookup table strategy of Gueron and Krasnov [16] with the
in-place partitioning of Bramas [5].
To make vectorized Quicksort robust to different key distributions, we design an alternative
pivot selection strategy that is used for unbalanced sub-arrays during partitioning. With
this strategy, which is related to Radix Exchange Sort [7, 11], the worst case running
time of our Quicksort is O(kn), where k is the number of bits in the primitive type.

Based on these techniques we implement a sorting algorithm with AVX2 vector instructions
that outperforms general purpose and competing high-performance sorting implementations
for primitive types. The source code of our implementation is available at https://github.
com/simd-sorting/fast-and-robust. Additionaly, we provide an efficiently vectorized
implementation of Quickselect [36], which uses the same vectorization techniques to find the
kth smallest element in an unordered array.
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2 Preliminaries

Vector Instructions. Vector instructions (SIMD instructions) in the x86 instruction set
exist since 1997 [6]. The register width was steadily increased since then. Larger registers
allow more elements of a primitive type to be processed simultaneously. Starting with 64
bits in MMX (Multi Media Extension), the register width increased to 128 bits for SSE
(Streaming SIMD Extensions) and again doubled to 256 bits in AVX (Advanced Vector
Extensions). Current CPUs for high-performance computing have 512-bit registers and
support the AVX-512 instruction set [22]. Modern mainstream CPUs, however, support at
most AVX2. Like its predecessor AVX, AVX2 uses vectors of up to 256 bits, but has a larger
instruction set. Since we want our implementation to run on a large variety of available CPUs
we use AVX2 and not AVX-512 to implement our ideas. Instead of writing the vectorized
part of the algorithms in assembly language, we use intrinsic functions. Intrinsic functions
have the advantage that explicit assignments of registers are omitted. Intrinsic functions are
also more portable between different compilers and operating systems.

Latency and Throughput. Besides the vector width, the two metrics latency and throughput
provide further information about the performance of an instruction. Latency is the number of
cycles that an instruction takes until its result is available for another instruction. Throughput,
on the other hand, indicates how many cycles it takes on average until an identical independent
instruction can begin its execution [12]. If the throughput of an instruction is smaller than
the latency, executing several identical independent instructions in sequence can lower the
accumulated latency of the computation, because instructions can begin before the results of
previous instructions are available. We exploit this heavily by simulating larger vectors to
increase instruction-level parallelism of our implementation.

3 The Algorithm

In this section we describe the design and implementation of our algorithm for sorting arrays
of data type int (32-bit signed integer). Most state-of-the-art sorting implementations
combine several sorting algorithms for achieving good performance on different array sizes
and key distributions. Here, we also take this approach and combine vectorized Quicksort
with vectorized sorting networks into a fast and robust in-place sorting algorithm. The
overall design of our algorithm is shown in the simplified C++ Listing 1.

The remainder of this section is organized as follows: In Subsection 3.1 we discuss
our techniques to vectorize sorting networks for sorting small and medium-sized arrays,
respectively. In Subsections 3.2 and 3.3 we describe our combined pivot strategy that makes
Quicksort robust with respect to different key distributions and also makes it robust with
respect to duplicate keys. As will be discussed in Subsection 3.4, our algorithm is in-place in
the sense that the only non-constant memory overhead comes from the recursive function calls.
This Section finishes with a brief worst and average running time analysis in Subsection 3.5.

3.1 Sorting Networks
The building blocks of sorting networks are Compare-and-exchange (COEX) modules.
A COEX module consists of two inputs and two outputs. Each input receives a value. The
two values are sorted in the module and transferred to the two outputs. In our representation
of a COEX module, the upper output track contains the smaller and the lower output track
the larger value. See Figure 1 for different options of visualizing a COEX module.
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Listing 1 Our vectorized Quicksort algorithm partitions arrays with vector instructions until
the sub-arrays become small enough (≤ 512 elements) and then switches to vectorized sorting
networks. For achieving higher performance, two different techniques are used to vectorize sorting
networks (not shown in Listing 1). One for small arrays (n < 128) and one for medium-sized arrays
(128 ≤ n ≤ 512). To detect sub-arrays in which all elements are equal, the smallest and largest
values in the array are computed during the partitioning phase. We combine two pivot strategies to
make our Quicksort robust with respect to various distributions. After partitioning, we do not set
the pivot element to its correct position in the sorted array. This allows us to use values as pivots
that are not contained in the array.
void qs_core(int *arr, int left, int right, bool choose_avg = false, int avg = 0) {

if (right - left <= 512) { // sorting networks for array sizes <= 512
sort_with_sorting_networks(arr + left, right - left + 1);
return;

}
int pivot = choose_avg ? avg : get_pivot_median_medians(arr, left, right);
int smallest = INT32_MAX; // smallest value in the array after partitioning
int largest = INT32_MIN; // largest value in the array after partitioning
int bound = partition(arr, left, right + 1, pivot, &smallest, &largest);
// the ratio of the size of the smaller partition to the size of the array
double ratio = min(right - (bound - 1), bound - left) / double(right - left + 1);
if (ratio < 0.2) // if unbalanced sub-arrays, change pivot strategy

choose_avg = !choose_avg;
if (pivot != smallest) // if values not identical in left sub-array, recurse

qs_core(arr, left, bound - 1, choose_avg, average(smallest, pivot));
if (pivot + 1 != largest) // if values not identical in right sub-array, recurse

qs_core(arr, bound, right, choose_avg, average(largest, pivot));
}

In a sorting network, the COEX modules are combined in such a way that they always
sort a fixed-length sequence of values. The amount of modules and their execution order are
fixed for a network and do not depend on the input values. Sorting networks are therefore
data-oblivious algorithms. A sorting network for eight elements is shown in Figure 2. The
number of parallel steps and the number of COEX modules are the two key parameters
that are used to optimize sorting networks. A sorting network with the minimum number of
COEX modules does not necessarily have the fewest parallel steps and vice versa [9].

There are regular [3, 34] and irregular sorting networks [9, 27]. For a regular
sorting network, an algorithmic rule exists that generates the network and can also generate
larger networks of the same type. For irregular sorting networks it is not known how the
construction of these networks can be generalized to create larger networks [26].

min

max

3

3 7

7

(a) Detailed.

7 3

3 7

(b) Simplified.

Figure 1 Compare-and-exchange module visualizations. To represent modules in sorting networks
we use the simplified visualization depicted in (b).
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Figure 2 Bitonic sorting network for eight elements (24 modules, six parallel steps). The input
comes from the left and runs to the right through the network. The numbers above the gray
boxes index the parallel steps. Each parallel step is characterized by the fact that there are
no dependencies between individual modules. All COEX modules within a gray box can thus be
executed simultaneously.

In the following two paragraphs we show how to efficiently vectorize sorting networks for
sorting small (n < 128) and medium-sized (128 ≤ n ≤ 512) arrays. We define n = 128 as the
boundary between small and medium-sized arrays, since we use different types of sorting
networks. The technique we use for sorting small arrays is especially efficient for Bitonic
Sort. Therefore, we apply it to small Bitonic sorting networks. In contrast, the technique we
use for sorting medium-sized arrays can efficiently vectorize irregular sorting networks that
have a minimum amount of COEX modules.

Sorting Small Arrays With Sorting Networks. To efficiently vectorize small Bitonic sorting
networks, it is important to distinguish between modules and nodes. A COEX module
schematically consists of two nodes and a vertical connecting line between them. (see
Figure 1b). The elements passing through the two nodes are compared within a module.
Here, we represent a COEX module as a tuple of two comma separated numbers. For
example, (1, 2) stands for a module in which the element at the first node is compared to the
second. The numbers in brackets represent the nodes to be compared and not the values to
be sorted. Nodes correspond only to the positions of elements in a sorting network.

The aim of vectorizing sorting networks is to execute as many modules as possible at
once. To perform a vectorized COEX operation, the two nodes of a module must be at the
same index in two different vectors. By computing the pairwise minimum and maximum
between these two vectors, the vectorized COEX operation is executed. Before we perform a
vectorized COEX operation, we use shuffle instructions to place the two nodes of a module
under the same index in the two vectors. We use two different shuffle instructions. The first
shuffles the elements only within one vector. The second called shuffle*, receives two vectors
as input and mixes them according to a mask to create a new vector.

In our approach nodes are considered only virtually, while the values to be sorted are
actually stored in the vector registers. When a COEX operation is executed, two types
of exchanges are possible. On the one hand, values can be exchanged between the vector
registers, on the other hand, nodes within a module can also be swapped. Since the nodes
are virtual, the swaps of the nodes are also only virtual, and thus do not consume CPU
cycles. Here, in order to simplify the presentation of our approach, the capacity of vectors is
limited to four elements. Figure 3 shows our technique for sorting eight elements with the
bitonic sorting network from Figure 2.

Our technique distributes nodes within modules to different vectors and thus uses the full
capacity of vector registers. Bramas [5] uses, unlike our approach, only half the capacity of a
vector register because the two nodes of a module are held within one vector. Furthermore,
Bramas uses only permutation instructions for implementing sorting networks. We use shuffle
instructions with lower latency wherever possible.
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Figure 3 Bitonic Sort of 8 elements with two vectors. Each vector has a capacity of 4 elements.
We call the six parallel steps in which the COEX operations are executed Step 1, . . . , Step 6. In
the first parallel step, Bitonic Sort has the four COEX modules {(1, 2), (3, 4), (5, 6), (7, 8)}. The
association of the nodes and indices in the vectors at the beginning of the sorting operation is freely
selectable. We start under the assumption that the upper vector represents the Nodes 1, 3, 5, 7 and
the lower vector represents the Nodes 2, 4, 6, 8. This initial distribution of nodes prevents unnecessary
shuffles of elements before executing the first parallel step because the nodes within modules are
at the same index in the two vectors. In the vectorized COEX operation of the first parallel step
only the values 29 and 17 are exchanged, which is indicated by the gray box in Step 1. The second
parallel step requires the modules {(1, 4), (2, 3), (5, 8), (6, 7)}. Before executing Step 2, the lower
vector is shuffled so that the nodes to be compared face each other. The COEX operation in Step 2
exchanges the values 23 and 19. The nodes within two modules must also be swapped (3 with 2,
and 7 with 6). These swaps are necessary, because the minimum of two nodes after executing the
vectorized COEX operation is always in the upper vector and the minimum is assigned to the node
with the smaller index. The next four parallel steps are performed in a similar way. After executing
Step 6, the upper vector always contains the elements at the Nodes 1, 5, 3 and 7, and, the lower
vector contains the elements at the Nodes 2, 6, 4 and 8, respectively. The elements are sorted, but
must be rearranged according to the indices of the nodes. After rearranging the elements with two
shuffle and two blend instructions, the eight elements are properly sorted.

Sorting Medium-Sized Arrays With Sorting Networks. For sorting medium-sized arrays
(128 ≤ n ≤ 512) we interpret the array as a matrix in row-major order, where the number of
columns corresponds to the number of elements that can be placed in a vector. In an AVX2
vector there is space for eight values of data type int. An array with 128 values of datatype
int thus corresponds to a matrix with eight columns and 16 rows.

To sort column-wise, the vectorized COEX operation is sufficient. Only pairwise minima
and maxima between the vectors are computed, and no permutations or shuffles of the
elements within the vectors are required for sorting the columns of a matrix. During a
vectorized COEX operation, the same COEX module is executed in all columns. The number
of vectorized COEX operations therefore depends on the number of modules in a sorting
network. The advantage of sorting the elements inside columns is that even sorting networks
with an irregular distribution of modules can be used, since each vectorized COEX operation
uses only one module of the sorting network.

Sorting networks with a minimum number of COEX modules are particularly suitable
for sorting the values in columns. To sort eight columns each containing 16 values of data
type int, we use Green’s irregular sorting network [27], which consists of only 60 COEX
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Figure 4 Sorting medium-sized arrays. We interpret the array as a matrix in row-major order.
For sorting columns we use sorting networks with a minimum number of COEX modules. To merge
the sorted columns, we apply Bitonic Merge directly, without transposing the columns first.

modules. To fully sort the 128 values, the eight sorted columns must be merged. Instead of
transposing the 16 × 8 matrix and merging the sorted rows with a Bitonic Merge network, we
apply Bitonic Merge directly to the sorted columns of the matrix. The technique for merging
sorted columns is similar to the technique we use for sorting small arrays. Before we execute
a COEX operation, we shuffle or permute elements of vectors such that the nodes of each
module are placed in different vectors at the same index. Figure 4 summarizes our approach
for sorting medium-sized arrays with vector instructions.

3.2 Pivot Selection
To make our vectorized Quicksort robust with respect to various distributions, we combine
two different pivot selection strategies and switch between them when one strategy leads to
unbalanced sub-arrays (see Listing 1).

First Strategy. The first strategy determines the pivot with a heuristic similar to the
median of medians. Without the necessity to place the pivot to its final position in the
array, determining the median of medians becomes faster since the index of the pivot is not
needed. With AVX2 vector instructions we can compute eight medians simultaneously. To
compute eight times the median-of-nine, we gather 72 random elements from the array to
be partitioned and store them in nine vectors. The 72 random indices for the nine gather
instructions are computed with the random number generator xoroshiro128+ [26]. We
implement xoroshiro128+ with vector instructions to speed up the computation of random
numbers. The nine vectors with its 72 elements are interpreted as a 9×8 matrix in row-major
order. We compute the medians column-wise with a median network [32], which we implement
with min and max vector instructions. After applying a median network to the columns of
the matrix, the fifth vector contains all eight medians. We sort the eight medians with vector
instructions and choose as pivot the average of the fourth and fifth largest medians. If the
resulting average is not an integer, we round down to the next smaller integer.

Second Strategy. If the vectorized median of medians heuristic leads to unbalanced sub-
arrays, we switch to the second pivot strategy, where we choose the average of the smallest
value and the current pivot as the pivot in the left sub-array, and, in the right sub-array, the
average of the largest value and the current pivot as the pivot. The quadratic worst case
of Quicksort is avoided, since choosing the average of the lower and upper bounds of the
sub-array as pivot guarantees that the range of possible values is halved with each recursive
call. The difference to Radix Exchange Sort [7, 11] in our second pivot strategy is that
instead of bits, actual values are used to halve the range of possible values at each recursive
call. If the second pivot strategy leads to unbalanced sub-arrays, the first pivot selection
strategy is used in the next recursive call.
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To realize the second pivot strategy, we always compute the smallest and the largest
values in the array with min and max vector instructions when partitioning the array. We
take advantage of instruction-level parallelism of modern processors to hide the execution
time of the minimum and maximum computations. The latency of min and max vector
instructions is only one cycle and the throughput is half a cycle [24], which means that their
execution time can almost be hidden if they are called while waiting for the results of high
latency instructions.

3.3 Many Duplicate Keys
The knowledge about the smallest and the largest values in an array also allows us to detect
sub-arrays where all values are equal. If the smallest value in an array and the current
pivot are identical, no further partitioning of the left sub-array is required, or, if the largest
value and the current pivot + 1 in an array are identical, no further partitioning of the
right sub-array is necessary. Applying these checks before partitioning sub-arrays makes our
vectorized Quicksort robust against arrays with many duplicate keys.

3.4 In-place Partitioning
We start partitioning the array without vector instructions until the number of unpartitioned
elements corresponds to a multiple of the number of elements in a vector. Next, we cache
two vectors with unpartitioned elements from the outer ends of the array. This creates space
to perform the partitioning in-place with Bramas’ [5] technique. To partition a single vector
we use, similar to Gueron and Krasnov [16], permutation masks that are stored in a lookup
table. Only one permutation instruction is sufficient for partitioning a vector, since we fill,
like Bramas, the array from left to right with values smaller than or equal to the pivot, and,
from right to left with values greater than the pivot. After storing a partitioned vector on
the left and right side of the array we choose the next vector to partition from the side of
the array with fewer already partitioned elements. Overwriting of not yet partitioned values
of the array is impossible, because there is space for storing a partitioned vector on each side
of the array due to the two initially cached vectors. This space is only used up as soon as
the vectors cached at the beginning are partitioned and stored in the array. See Appendix A
for a worked example of our vectorized in-place partitioning algorithm.

To reduce the total latency of partitioning big arrays and thus increase instruction-level
parallelism, we load 64 elements into eight vector registers, partition the eight vectors
individually and save them back to the array. In order to realize the partitioning of big
arrays in-place we cache 16 vectors instead of two, at the beginning of the partitioning.

3.5 Running Time Analysis
The running time of our vectorized sorting algorithm is determined by the two employed pivot
strategies, namely, the (vectorized) median of the medians strategy and the strategy that
is inspired by Radix Exchange Sort. While we can control the worst case behaviour of our
vectorized sorting algorithm with the latter strategy, the median of medians strategy allows
to control the average case behaviour. In particular, we can give the following guarantees.

▶ Lemma 1. The worst case running time of our vectorized sorting algorithm is O(kn) where
n is the number of keys and k is the number of bits per key.
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Proof. (Sketch) The claim follows since we always switch from the median of the medians
pivot strategy to the second pivot strategy whenever the first strategy leads to unbalanced
sub-arrays. The second pivot strategy uses the average of the smallest and the largest values
in the array as pivot element. This is similar to Radix Exchange Sort that uses the most
significant bit to subdivide the keys in an array. It follows that the worst case complexity
of our algorithm when using the second pivot strategy is the same as for Radix Exchange
Sort, namely O(kn). Hence, our algorithm runs in worst case time O(kn) if k ≥ log n. If
k < log n, then the array needs to contain duplicate keys that our algorithm detects such
that the worst case running time still is in O(kn). ◀

▶ Lemma 2. The average case running time of our vectorized sorting algorithm is O(n log n),
where the average is with respect to the uniform distribution over the set of permutations of
n different keys.

Proof. (Sketch) This follows immediately from the analogous results for Quicksort with
median of the medians pivot strategy. Remember that we only switch to the second pivot
strategy when the median of medians strategy leads to unbalanced sub-arrays. Hence,
switching the pivot strategy cannot degrade the asymptotic average running time. ◀

For putting our running time analysis into perspective, note that our vectorized sorting
algorithm is not a comparison based algorithm, since we use an arithmetic operation in the
pivot strategy that is inspired by Radix Exchange Sort.

4 Experiments

Single-Threaded Performance. We compare the single-threaded performance of our imple-
mentation with its high-speed competitors, sort AVX-512 [5], Intel’s platform-aware radix
sort (IPP radix sort) [21], and IPS4o [1]. IPP radix sort is generally accepted as a benchmark
for high-performance sorting of primitive data types [5, 16, 40]. IPS4o is one of the fastest
general purpose sorting algorithms. We report the performance of each algorithm in terms of
speedup factors over std::sort from the C++ STL for different array sizes and distributions
of integers. For computing a single speedup factor we divide the running time of std::sort by
the running time of the respective algorithm. In our measurements we consider array sizes in
the range of 101 to 109, whereby the next larger array size contains ten times more elements
than the previous one. To evaluate the speed and robustness of our sorting algorithm, we fill
the arrays with integers according to the following four distributions:

(a) Uniform. Random integers in the range [−231, 231 − 1].
(b) Gaussian. Normally distributed random numbers with expected value µ = 0 and standard

deviation σ = 100. We round the numbers to the nearest integer, resulting in many
duplicate values in large arrays.

(c) Zero. Every value is set to a constant: an input distribution with zero entropy [17].
(d) Almost Sorted. Array of size n with ⌊ 1

2 · 2log10 n⌋ misplaced numbers. For example, an
array of the size 106 that contains 32 integers in wrong positions.

For our experiments, we use a machine with an Intel i9-10980XE 18-core processor running
Ubuntu 20.04.1 LTS with 128 GB of RAM. Each core has a base frequency of 3.0 GHz and
a max turbo frequency of 4.6 GHz and supports the AVX-512 vector instruction set. We
compile our experiments with the Intel C++ compiler version 19.1.2.254 for 64 bit using the
optimization flags -Ofast and -march=native.
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Figure 5 shows how the speedup factors of our implementation over std::sort compared
to speedup factors of state-of-the-art high-speed sorting algorithms. Starting from an
array length of 104 our implementation is always significantly faster for the considered
distributions of integers. We are on par with sort AVX-512, when sorting small arrays.
Both our implementation and sort AVX-512 use vectorized sorting networks for small arrays,
but our implementation only uses the more portable AVX2 vector instructions, but not
AVX-512. In the AVX-512 instruction set the vectors are twice as wide than in AVX2, and in
AVX-512 there are more suitable instructions for sorting available. Furthermore, Figure 5b
and Figure 5c show the in general poor performance of Sort AVX-512, when sorting arrays
with many duplicate keys, while our vectorized Quicksort implementation can handle this
case efficiently. It also becomes apparent that a general purpose sorting algorithm like IPS4o
cannot keep up with the performance of an efficient vectorized sorting algorithm when sorting
primitive data types, at least for the single-threaded case. For the multi-threaded case, the
results may not be as clear-cut, since memory bandwidth becomes the ultimate performance
limit for sorting algorithms.
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(a) Uniform over the range [−231, 231 − 1].
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(b) Gaussian (µ = 0, σ = 100).
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(c) Zero (all values are equal).
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(d) Almost Sorted (⌊ 1
2 · 2log10 n⌋ misplaced numbers).

Figure 5 Speedup factors of our implementation, sort AVX-512 [5], IPP radix sort [21], and,
IPS4o [1] over std::sort for four different distributions of 32-bit signed integers. In addition, the
graphs also contain the absolute running times of our implementation.

Performance Indicators. For finding out the reasons why our implementation performs
better than state-of-the-art high-speed sorting algorithms, we look at performance indicators
such as cycles required per sorted integer, cache misses, and instructions per cycle of the
various implementations. Table 2 contains performance indicators for the evaluated sorting
algorithms. Additionally, we also show performance indicators for std::sort. Each algorithm
sorts an array of 109 random integers. Our implementation needs on average 73 instructions
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per integer, while IPP radix sort requires only about 44 instructions. Also sort AVX-512
requires on average fewer instructions per integer (≈ 46) than our implementation. But
both IPP radix sort and sort AVX-512 need more cycles to execute these fewer instructions
than our implementation. This means the CPU utilization (instruction-level parallelism) of
our implementation is higher than that of IPP radix sort or sort AVX-512. At the same
wall-clock time, our implementation sorts more than 30% more integers than IPP radix sort
or sort AVX-512. In addition, it should be noted that our implementation is in-place, while
IPP radix sort uses O(n) extra memory.

Table 2 Performance indicators per sorted integer. Each algorithm sorts an array of length 109

populated with random integers from the range [−231, 231 − 1]. For example, sorting an integer
with std::sort, on average, takes 377.14 CPU cycles and requires 226.25 instructions. The number of
instructions per cycle (IPC) is defined as the quotient of the number of instructions and the number
of cycles. A high IPC indicates efficient CPU utilization in terms of instruction-level parallelism.
GHz denotes the average clock speed while sorting. When the integer is not in the cache, a cache
miss occurs. The average number of cache misses per sorted integer is shown for the first level cache
(L1) and the last level cache (LLC). The performance indicator branch-misses denotes the average
number of mispredictions of the CPU branch-predictor per sorted integer.

cycles instructions L1-misses LLC-misses branch-misses IPC GHz

std::sort 377.14 226.25 1.41 0.75 13.04 0.60 4.76
this paper 34.44 72.68 1.25 0.59 0.06 2.11 4.76

sort AVX-512 43.32 46.44 1.42 0.71 0.34 1.07 3.97
IPP radix sort 48.83 43.68 5.53 0.46 0.00 0.89 4.71

IPS4o 137.96 273.83 1.78 0.28 1.46 1.98 4.76

5 Conclusions

In this paper we presented a highly efficient single-threaded in-place sorting algorithm that we
implemented for the data type int with AVX2 intrinsics in C++. To make our implementation
fast and robust, we improved vectorization techniques for sorting networks and Quicksort.
In particular, we showed how to utilize the full capacity of vector registers for executing
the modules of sorting networks and developed a pivot selection technique to efficiently
sort arrays of different key distributions. Furthermore, we presented a vectorized in-place
partitioning technique for vectorized Quicksort that has a high degree of instruction-level
parallelism. With our implementation we achieve a speedup of at least 30% over state-of-
the-art high-performance sorting algorithms. The worst case running time of our sorting
algorithm is O(kn), where k is the number of bits in the primitive type. Our implementation
is easily extensible to other primitive types like unsigned int or float, and can also be
adapted to sort primitive 64-bit types. Actually, there is no need to consider the sorting of
floating-point numbers separately, since the IEEE format was designed in such a way that
with some additional bit-twiddling floating-point numbers can be sorted with integer sorting
routines [6, 18]. On future processors with larger vector registers and more diverse vector
instructions, the speed difference in favor of vectorized sorting algorithms for primitive types
is likely to increase further. Hence, we see a vectorized in-place hybrid algorithm based on
sorting networks and Quicksort as a possible replacement for current sorting implementations
in high-performance libraries.
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Figure 6 Vectorized partitioning example.

left_store and right_store are updated. The indices left_store and right_store indicate the
store points in the array for a partitioned vector. The left and right indices, on the other
hand, are used to determine the next elements to load for partitioning. Already partitioned
elements are printed in bold. Elements that can be overwritten are grayed out. The details
of the procedure in Figure 6 are as follows:
1 At the beginning of partitioning, the first four elements of the array are stored in the

vector v_left and the last four elements in the vector v_right. The vectors v_left and
v_right are partitioned only after all the other elements of the array have been processed.

2 The four elements at the index left are loaded to v_current. The vector v_current is
partitioned and stored at the outer ends of the array. The store point left_store moves
three index positions to the right, because in v_current three elements are smaller than
or equal to the pivot. Equivalently, right_store moves one index position to the left, since
in v_current one element is greater than the pivot.
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3 Since the array contains fewer partitioned elements on the right side than on the left
(one element on the right side and three on the left), the four elements are loaded into
v_current from the right side of the array. After the partitioning of v_current and its
storage on both sides of the array according to the store points left_store and right_store
a total of five elements are partitioned to the left and three to the right side of the array.
The store points left_store and right_store are updated and right is moved four index
positions to the left.

4 The vector v_current is again loaded from the index right, since the right side of the
array contains fewer partitioned elements than the left side. The vector v_current is
partitioned and stored according to the store points left_store and right_store. The index
right and the store points are updated. The indices left and right are the same, which
means that the vectors v_left and v_right must be partitioned before the complete array
is fully partitioned.

5 The initially created vector v_left is partitioned and stored on both sides of the array
according to left_store and right_store. Three elements are smaller than the pivot, so
left_store is moved three index positions to the right. The store point right_store can be
ignored because it is no longer needed.

6 The initially created vector v_right is partitioned and stored according to left_store.
Three elements are smaller than the pivot, so left_store is moved three index positions to
the right.
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