
O’Reach:
Even Faster Reachability in Large Graphs
Kathrin Hanauer !

University of Vienna, Faculty of Computer Science, Austria

Christian Schulz !

Heidelberg University, Germany

Jonathan Trummer !

University of Vienna, Faculty of Computer Science, Austria

Abstract
One of the most fundamental problems in computer science is the reachability problem: Given a
directed graph and two vertices s and t, can s reach t via a path? We revisit existing techniques and
combine them with new approaches to support a large portion of reachability queries in constant
time using a linear-sized reachability index. Our new algorithm O’Reach can be easily combined
with previously developed solutions for the problem or run standalone.

In a detailed experimental study, we compare a variety of algorithms with respect to their
index-building and query times as well as their memory footprint on a diverse set of instances.
Our experiments indicate that the query performance often depends strongly not only on the
type of graph, but also on the result, i.e., reachable or unreachable. Furthermore, we show that
previous algorithms are significantly sped up when combined with our new approach in almost all
scenarios. Surprisingly, due to cache effects, a higher investment in space doesn’t necessarily pay off:
Reachability queries can often be answered even faster than single memory accesses in a precomputed
full reachability matrix.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms

Keywords and phrases Reachability, Static Graphs, Graph Algorithms, Reachability Index, Algo-
rithm Engineering

Digital Object Identifier 10.4230/LIPIcs.SEA.2021.13

Related Version Full Version: https://arxiv.org/abs/2008.10932 [12]

Supplementary Material Software (Code Repository): https://github.com/o-reach/O-Reach
archived at swh:1:dir:55d23a5b940f1ead285729c8dbd82c71e28d504a

Funding The research leading to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant
Agreement no. 340506.

1 Introduction

Graphs are used to model problem settings of various different disciplines. A natural question
that arises frequently is whether one vertex of the graph can reach another vertex via a
path of directed edges. Reachability finds application in a wide variety of fields, such as
program and dataflow analysis [24, 25], user-input dependence analysis [27], XML query
processing [34], and more [40]. Another prominent example is the Semantic Web which is
composed of RDF/OWL data. These are often very huge graphs with rich content. Here,
reachability queries are often necessary to deduce relationships among the objects.

There are two straightforward solutions to the reachability problem: The first is to answer
each query individually with a graph traversal algorithm, such as breadth-first search (BFS)
or depth-first search (DFS), in worst-case O(m + n) time and O(n) space. Secondly, we can

© Kathrin Hanauer, Christian Schulz, and Jonathan Trummer;
licensed under Creative Commons License CC-BY 4.0

19th International Symposium on Experimental Algorithms (SEA 2021).
Editors: David Coudert and Emanuele Natale; Article No. 13; pp. 13:1–13:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kathrin.hanauer@univie.ac.at
https://orcid.org/0000-0002-5945-837X
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-2823-3506
mailto:jonathan.trummer@univie.ac.at
https://orcid.org/0000-0002-1086-4756
https://doi.org/10.4230/LIPIcs.SEA.2021.13
https://arxiv.org/abs/2008.10932
https://github.com/o-reach/O-Reach
https://archive.softwareheritage.org/swh:1:dir:55d23a5b940f1ead285729c8dbd82c71e28d504a
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 O’Reach: Even Faster Reachability in Large Graphs

precompute a full all-pairs reachability matrix in an initialization step and answer all ensuing
queries in worst-case constant time. In return, this approach suffers from a space complexity
of O(n2) and an initialization time of O(n · m) using the Floyd-Warshall algorithm [7, 35, 6]
or starting a graph traversal at each vertex in turn. Alternatively, the initialization step
can be performed in O(nω) via fast matrix multiplication, where O(nω) is the time required
to multiply two n × n matrices (2 ≤ ω < 2.38 [20]). With increasing graph size, however,
both the initialization time and space complexity of this approach become impractical. We
therefore strive for alternative algorithms which decrease these complexities whilst still
providing fast query lookups.

Contribution. In this paper, we study a variety of approaches that are able to support fast
reachability queries. All of these algorithms perform some kind of preprocessing on the graph
and then use the collected data to answer reachability queries in a timely manner. Based
on simple observations, we provide a new algorithm, O’Reach, that can improve the query
time for a wide range of cases over state-of-the-art reachability algorithms at the expense of
some additional precomputation time and space or be run standalone. Furthermore, we show
that previous algorithms are significantly sped up when combined with our new approach in
almost all scenarios. In addition, we show that the expected query performance of various
algorithms does not only depend on the type of graph, but also on the ratio of successful
queries, i.e., with result reachable. Surprisingly, through cache effects and a significantly
smaller memory footprint, especially unsuccessful reachability queries can be answered faster
than single memory accesses in a precomputed reachability matrix.

2 Preliminaries

Terms and Definitions. Let G = (V, E) be a simple directed graph with vertex set V and
edge set E ⊆ V × V . As usual, n = |V | and m = |E|. An edge (u, v) is said to be outgoing
at u and incoming at v, and u and v are called adjacent. The out-degree deg+(u) (in-degree
deg−(u)) of a vertex u is its number of outgoing (incoming) edges. A vertex without incoming
(outgoing) edges is called a source (sink). The out-neighborhood N+(v) (in-neighborhood
N−(v)) of a vertex u is the set of all vertices v such that (u, v) ∈ E ((v, u) ∈ E). The
reverse of an edge (u, v) is an edge (v, u) = (u, v)R. The reverse GR of a graph G is obtained
by keeping the vertices of G, but substituting each edge (u, v) ∈ E by its reverse, i.e.,
GR = (V, ER).

A sequence of vertices s = v0 → · · · → vk = t, k ≥ 0, such that for each pair of
consecutive vertices vi → vi+1, (vi, vi+1) ∈ E, is called an s-t path. If such a path exists, s is
said to reach t and we write s →∗ t for short, and s ̸→∗ t otherwise. The out-reachability
R+(u) = {v | u →∗ v} (in-reachability R−(u) = {v | v →∗ u}) of a vertex u ∈ V is the set of
all vertices that u can reach (that can reach u).

A weakly connected component (WCC) of G is a maximal set of vertices C ⊆ V such
that ∀u, v ∈ C : u →∗ v in G = (V, E ∪ ER), i.e., also using the reverse of edges. Note
that if two vertices u, v reside in different WCCs, then u ̸→∗ v and v ̸→∗ u. A strongly
connected component (SCC) of G denotes a maximal set of vertices S ⊆ V such that
∀u, v ∈ S : u →∗ v ∧ v →∗ u in G. Contracting each SCC S of G to a single vertex vS ,
called its representative, while preserving edges between different SCCs as edges between
their corresponding representatives, yields the condensation GC of G. We denote the SCC a
vertex v ∈ V belongs to by S(v). A directed graph G is strongly connected if it only has a
single SCC and acyclic if each SCC is a singleton, i.e., if G has n SCCs. Observe that G and

K. Hanauer, C. Schulz, and J. Trummer 13:3

GR have exactly the same WCCs and SCCs and that GC is a directed acyclic graph (DAG).
Weakly connected components of a graph can be computed in O(n + m) time, e.g., via a
breadth-first search that ignores edge directions. The strongly connected components of a
graph can be computed in linear time [29] as well.

A topological ordering τ : V → N0 of a DAG G is a total ordering of its vertices such that
∀(u, v) ∈ E : τ(u) < τ(v). Note that the topological ordering of G isn’t necessarily unique,
i.e., there can be multiple different topological orderings. For a vertex u ∈ V , the forward
topological level F(u) = minτ τ(u), i.e., the minimum value of τ(u) among all topological
orderings τ of G. Consequently, F(u) = 0 if and only if u is a source. The backward topological
level B(u) of u ∈ V is the topological level of u with respect to GR and B(u) = 0 if and only
if u is a sink. A topological ordering as well as the forward and backward topological levels
can be computed in linear time [19, 30, 6], see also Sect. 4.

A reachability query Query(s, t) for a pair of vertices s, t ∈ V is called positive and
answered with true if s →∗ t, and otherwise negative and answered with false. Trivially,
Query(v, v) is always true, which is why we only consider non-trivial queries between
distinct vertices s ̸= t ∈ V from here on. Let P (N) denote the set of all positive (negative)
non-trivial queries of G, i.e., the set of all (s, t) ∈ V × V , s ≠ t, such that Query(s, t)
is positive (negative). The reachability ρ in G is the ratio of positive queries among all
non-trivial queries, i.e., ρ = |P|

n(n−1) . Note, that due to the restriction to non-trivial queries1,
0 ≤ ρ ≤ 1. The Reachability problem, studied in this paper, consists in answering a sequence
of reachability queries for arbitrary pairs of vertices on a given input graph G.

Basic Observations. With respect to processing a reachability Query(s, t) in a graph G

for an arbitrary pair of vertices s ̸= t ∈ V , the following basic observations are immediate
and have partially also been noted elsewhere [22]:

(B1) If s is a sink or t is a source, then s ̸→∗ t.
(B2) If s and t belong to different WCCs of G, then s ̸→∗ t.
(B3) If s and t belong to the same SCC of G, then s →∗ t.
(B4) If τ(S(t)) < τ(S(s)) for any topological ordering τ of GC, then s ̸→∗ t.

As mentioned above, the precomputations necessary for Observations (B2) and (B3) can
be performed in O(n + m) time. Note, however, that Observations (B3) and (B4) together
are equivalent to asking whether s →∗ t: If s →∗ t and S(s) ̸= S(t), then for every
topological ordering τ , τ(S(s)) < τ(S(t)). Otherwise, if s ̸→∗ t, a topological ordering τ

with τ(S(t)) < τ(S(s)) can be computed by topologically sorting GC ∪ {(S(t), S(s))}. Hence,
the precomputations necessary for Observation (B4) would require solving the Reachability
problem for all pairs of vertices already. Furthermore, a DAG can have exponentially many
different topological orderings. In consequence, weaker forms are employed, such as the
following [38, 39, 22] (see also Sect. 4):

(B5) If F(S(t)) < F(S(s)) w. r. t. GC, then s ̸→∗ t.
(B6) If B(S(s) < B(S(t)) w. r. t. GC, then s ̸→∗ t.

Assumptions. Following the convention introduced in preceding work [38, 39, 3, 22]
(cf. Sect. 3), we only consider Reachability on DAGs from here on and implicitly assume
that the condensation, if necessary, has already been computed and Observation (B3) has
been applied. For better readability, we also drop the use of S(·).

1 Otherwise, 1
n ≤ ρ.

SEA 2021

13:4 O’Reach: Even Faster Reachability in Large Graphs

Table 1 Time and space complexity of reachability algorithms. Parameters: kIP: #permutations,
hIP: #vertices with precomputed R+(·), sBFL: size of Bloom filter (bits), ρ: reachability in G, d:
#topological orderings, k: #supportive vertices, p: #candidates per supportive vertex.

Algorithm Initialization Time Index Size (Byte) Queries: Time Space
BFS/DFS O(1) 0 O(n + m) O(n)
Full matrix O(n · (n + m)) n2/8 O(1) O(1)
PPL [37] O(n log n + m) O(n log n) O(log n) O(log n)
PReaCH [22] O(m + n log n) 56n O(1) / O(n + m) O(n)
IP(kIP, hIP) [36] O((kIP + hIP)(n + m)) O((kIP + hIP)n) O(kIP) / O(kIP · n · ρ2) O(n)
BFL(sBFL) [28] O(sBFL · (n + m)) 2⌈ sBFL

8 ⌉n O(sBFL) / O(sBFL · n + m) O(n)
O’Reach(d, k, p) (Sect. 4) O((d + kp)(n + m)) (12 + 12d + 2⌈ k

8 ⌉)n O(k + d + 1) / O(n + m) O(n)

3 Related Work

A large amount of research on reachability indices has been conducted. Existing approaches
can roughly be put into three categories: compression of transitive closure [14, 13, 2, 34, 15, 32],
hop-labeling-based algorithms [5, 4, 26, 37, 16], as well as pruned search [18, 31, 38, 39, 22,
33, 36, 28]. As Merz and Sanders [22] noted, the first category gives very good query times
for small networks, but doesn’t scale very well to large networks (which is the focus of this
work). Therefore, we do not consider approaches based on this technique more closely. Hop
labeling algorithms typically build paths from labels that are stored for each vertex. For
example in 2-hop labeling, each vertex stores two sets containing vertices it can reach in
the given graph as well as in the reverse graph. A query can then be reduced to the set
intersection problem. Pruned-search-based approaches precompute information to speed up
queries by pruning the search.

Due to its volume, it is impossible to compare against all previous work. We mostly
follow the methodology of Merz and Sanders [22] and focus on five recent techniques. The
two most recent hop-labeling-based approaches are TF [3] and PPL [37]. In the pruned search
category, the three most recent approaches are PReaCH [22], IP [36], and BFL [28]. We now
go into more detail:

TF. The work by Cheng et al. [3] uses a data structure called topological folding. On the
condensation DAG, the authors define a topological structure that is obtained by recursively
folding the structure in half each time. Using this topological structure, the authors create
labels that help to quickly answer reachability queries.

PPL. Yano et al. [37] use pruned landmark labeling and pruned path labeling as labels
for their reachability queries. In general, the method follows the 2-hop labeling technique
mentioned above, which stores sets of vertices for each vertex v and reduces queries to the
set intersection problem. Their techniques are able to reduce the size of the stored labels
and hence to improve query time and space consumption.

PReaCH. Merz and Sanders [22] apply the approach of contraction hierarchies (CHs) [9, 10]
known from shortest-path queries to the reachability problem. The method first tries to
answer queries by using pruning and precomputed information such as topological levels
(Observation (B5) and (B6)). It adopts and improves techniques from GRAIL [38, 39] for that
task, which is distinctly outperformed by PReaCH in the subsequent experiments. Should
these techniques not answer the query, PReaCH instead performs a bidirectional breadth-first
search (BFS) using the computed hierarchy, i.e., for a Query(s, t) the BFS only considers
neighboring vertices with larger topological level and along the CH. The overall approach is
simple and guarantees linear space and near linear preprocessing time.

K. Hanauer, C. Schulz, and J. Trummer 13:5

IP. Wei et al. [36] use a randomized labeling approach by applying independent permuta-
tions on the labels. Contrary to other labeling approaches, IP checks for set-containment
instead of set-intersection. Therefore, IP tries to answer negative queries by checking for at
least one vertex that it is contained in only one of the two sets, where each set can consist of
at most kIP vertices. If this test fails, IP checks another label, which contains precomputed
reachability information from the hIP vertices with largest out-degree, and otherwise falls
back to depth-first-search (DFS).

BFL. Su et al. [28] propose a labeling method which is based on IP, but additionally
uses Bloom filters for storing and comparing labels, which are then used to answer negative
queries. As parameters, BFL accepts sBFL and dBFL, where sBFL denotes the length of the
Bloom filters stored for each vertex and dBFL controls the false positive rate. By default,
dBFL = 10 · sBFL.

Table 1 subsumes the time and space complexities of the new algorithm O’Reach that we
introduce in Sect. 4 as well as all algorithms mentioned in this paper except for TF, where the
expressions describing the theoretical complexities are bulky and quite complex themselves.

4 O’Reach: Faster Reachability via Observations

In this section we propose our new algorithm O’Reach, which is based on a set of simple,
yet powerful observations that enable us to answer a large proportion of reachability queries
in constant time and brings together techniques from both hop labeling and pruned search.
Unlike regular hop-labeling-approaches, however, its initialization time is linear. As a further
plus, our algorithm is configurable via multiple parameters and extremely space-efficient
with an index of only 38n Byte in the most space-saving configuration that could handle all
instances used in Sect. 5 and uses all features.

Overview. The hop labeling technique used in our algorithm is inspired by a recent result
for experimentally faster reachability queries in a dynamic graph by Hanauer et al. [11]. The
idea here is to speed up reachability queries based on a selected set of so-called supportive
vertices, for which complete out- and in-reachability is maintained explicitly. This information
is used in three simple observations, which allow to answer matching queries in constant time.
In our algorithm, we transfer this idea to the static setting. We further increase the ratio of
queries answerable in constant time by a new perspective on topological orderings and their
conflation with depth-first search, which provides additional reachability information and
further increases the ratio of queries answerable in constant time. In case that we cannot
answer a query via an observation, we fall back to either a pruning bidirectional breadth-first
search or one of the existing algorithms.

In the following, we switch the order and first discuss topological orderings in depth,
followed by our adaptation of supportive vertices. For both parts, consider a reachability
Query(s, t) for two vertices s, t ∈ V with s ̸= t.

4.1 Extended Topological Orderings
Taking up on the observation that topological orderings can be used to answer a reachability
query decisively negative, we first investigate how Observation (B4) can be used most
effectively in practice. Before we dive deeper into this subject, let us briefly review some
facts concerning topological orderings and reachability in general.

SEA 2021

13:6 O’Reach: Even Faster Reachability in Large Graphs

▶ Theorem 1. Let N (τ) ⊆ N denote the set of negative queries a topological ordering τ can
answer, i.e., the set of all (s, t) ∈ N such that τ(t) < τ(s), and let ρ−(τ) = N (τ)/N be the
answerable negative query ratio.
(i) The reachability in any DAG is at most 50%. In this case, the topological ordering is

unique.
(ii) Any topological ordering τ witnesses the non-reachability between exactly 50% of all pairs

of distinct vertices. Therefore, ρ−(τ) ≥ 50%.
(iii) Every topological ordering of the same DAG can answer the same ratio of all negative

queries via Observation (B4), i.e., for two topological orderings τ , τ ′: ρ−(τ) = ρ−(τ ′).
(iv) For two different topological orderings τ ̸= τ ′ of a DAG, N (τ) ̸= N (τ ′).

Proof. Let G be a directed acyclic graph (DAG).
(i) As G is acyclic, there is at least one topological ordering τ of G. Then, for every edge

(u, v) of G, τ(u) < τ(v), which implies that each vertex u can reach at most all those
vertices w ̸= u with τ(u) < τ(w). Consequently, a vertex u with τ(u) = i can reach at
most n − i − 1 other vertices (note that i ≥ 0). Thus, the reachability in G is at most

1
n(n−1)

∑n−1
i=0 (n − i − 1) = 1

n(n−1)
∑n−1

j=0 j = n(n−1)
n(n−1)·2 = 1

2 . Conversely, assume that the
reachability in G is 1

2 . Then, each vertex u with τ(u) = i reaches exactly all n− i−1 other
vertices ordered after it, which implies that there exists no other topological ordering τ ′

with τ ′(u) > τ(u). By induction on i, the topological ordering of G is unique.
(ii) Let τ be an arbitrary topological ordering of G. Then, each vertex u with τ(u) = i can

certainly reach those vertices v with τ(v) < τ(u). Hence, τ witnesses the non-reachability
of exactly

∑n−1
i=1 i = n(n−1)

2 pairs of distinct vertices.
(iii) As Observation (B4) corresponds exactly to the non-reachability between those pairs of

vertices witnessed by the topological ordering, the claim follows directly from (ii).
(iv) As τ ̸= τ ′, there is at least one i ∈ N0 such that τ(u) = i = τ ′(v) and u ̸= v. Let j = τ(v).

If j > i, the number of non-reachabilities from v to another vertex witnessed by τ exceeds
the number of those witnessed by τ ′, and falls behind it otherwise. In both cases, the
difference in numbers immediately implies a difference in the set of vertex pairs, which
proves the claim. ◀

In consequence, it is pointless to look for one particularly good topological ordering. Instead,
to get the most out of Observation (B4), we need topological orderings whose sets of
answerable negative queries differ greatly, such that their union covers a large fraction of N .
Note that both forward and backward topological levels each represent the set of topological
orderings that can be obtained by ordering the vertices in blocks grouped by their level
and arbitrarily permuting the vertices in each block. Different algorithms [19, 29, 6] for
computing a topological ordering in linear time have been proposed over the years, with
Kahn’s algorithm [19] in combination with a queue being one that always yields a topological
ordering represented by forward topological levels. We therefore complement the forward
and backward topological levels by stack-based approaches, as in Kahn’s algorithm [19] in
combination with a stack or Tarjan’s DFS-based algorithm [29] for computing the SCCs of
a graph, which as a by-product also yields a topological ordering of the condensation. To
diversify the set of answerable negative queries further, we additionally randomize the order
in which vertices are processed in case of ties and also compute topological orderings on the
reverse graph, in analogy to backward topological levels.

We next show how, with a small extension, the stack-based topological orderings mentioned
above can be used to additionally answer positive queries. To keep the description concise,
we concentrate on Tarjan’s algorithm [29] in the following and reduce it to the part relevant
for obtaining a topological ordering of a DAG. In short, the algorithm starts a depth-first

K. Hanauer, C. Schulz, and J. Trummer 13:7

1: procedure ExtendedTopSort(G = (V,E), S)
2: for all v ∈ V do v.visited ← false
3: i← n− 1 ; initialize τ , τH , τX empty
4: for all s ∈ S in random order do Visit(s)
5: procedure Visit(v)
6: if v.visited then return
7: v.visited ← true; τH(v)← i; τX(v)← i
8: for u ∈ N+(v) in random order do
9: Visit(u); τX(v)← max(τX(v), τX(u))

10: τ(v)← i ; i← i− 1

11: return τ , τH , τX

5

4

3

2

1

0

0 1

0

(a) (b)

Figure 1 (a): Extended Topological Sorting. (b): Three extended topological orderings of two
graphs: The labels correspond to the order in the start set S. If the label is empty, the vertex need
not be in S or can have any larger number. The brackets to the left show the range [τ(v), τH(v)],
the braces to the right the range [τ(v), τX(v)].

search at an arbitrary vertex s ∈ S, where S ⊆ V is a given set of vertices to start from.
Whenever it visits a vertex v, it marks v as visited and recursively visits all unvisited vertices
in its out-neighborhood. On return, it prepends v to the topological ordering. A loop over
S = V ensures that all vertices are visited. Note that although the vertices are visited in
DFS order, the topological ordering is different from a DFS numbering as it is constructed
“from back to front” and corresponds to a reverse sorting according to what is also called
finishing time of each vertex.

To answer positive queries, we exploit the invariant that when visiting a vertex v, all yet
unvisited vertices reachable from v will be prepended to the topological ordering prior to v

being prepended. Consequently, v can certainly reach all vertices in the topological ordering
between v and, exclusively, the vertex w that was at the front of the topological ordering
when v was visited. Let x denote the vertex preceding w in the final topological ordering,
i.e., the vertex with the largest index that was reached recursively from v. For a topological
ordering τ constructed in this way, we call τ(x) the high index of v and denote it with τH(v).
Furthermore, v may be able to also reach w and vertices beyond, which occurs if v →∗ y for
some vertex y, but y had already been visited earlier. We therefore additionally track the max
index, the largest index of any vertex that v can reach, and denote it with τX(v). Figure 1a
shows how to compute an extended topological ordering with both high and max indices in
pseudo code and highlights our extensions. Compared to Tarjan’s original version [29], the
running time remains unaffected by our modifications and is still in O(n + m).

Note that neither max nor high indices yield an ordering of V : Every vertex that is
visited recursively starting from v and before vertex x with τ(x) = τH(v), inclusively, has
the same high index as v, and the high index of each vertex in a graph consisting of a single
path, e.g., would be n − 1. In particular, neither max nor high index form a DFS numbering
and also differ in definition and use from the DFS finishing times ϕ̂ used in PReaCH, where a
vertex v can certainly reach vertices with DFS number up to ϕ̂ and certainly none beyond.
Conversely, v may be able to also reach vertices with smaller DFS number than its own,
which cannot occur in a topological ordering.

If ExtendedTopSort is run on the reverse graph, it yields a topological ordering τ ′ and
high and max indices τ ′

H and τ ′
X , such that reversing τ ′ yields again a topological ordering τ

of the original graph. Furthermore, τL(v) := n − 1 − τ ′
H(v) is a low index for each vertex

v, which denotes the smallest index of a vertex in τ that can certainly reach v, i.e., the
out-reachability of v is replaced by in-reachability. Analogously, τN (v) := n − 1 − τ ′

X(v) is a
min index in τ and no vertex u with τ(u) < τN (v) can reach v.

SEA 2021

13:8 O’Reach: Even Faster Reachability in Large Graphs

The following observations show how such an extended topological ordering τ can be
used to answer both positive and negative reachability queries:

(T1) If τ(s) ≤ τ(t) ≤ τH(s), then s →∗ t.
(T2) If τ(t) > τX(s), then s ̸→∗ t.
(T3) If τ(t) = τX(s), then s →∗ t.

(T4) If τL(t) ≤ τ(s) ≤ τ(t), then s →∗ t.
(T5) If τ(s) < τN (t), then s ̸→∗ t.
(T6) If τ(s) = τN (t), then s →∗ t.

Recall that by definition, τ(s) ≤ τH(s) ≤ τX(s) and τN (t) ≤ τL(t) ≤ τ(t). Figure 1b depicts
three examples for extended topological orderings. In contrast to negative queries, not every
extended topological ordering is equally effective in answering positive queries, and it can
be arbitrarily bad, as shown in the extremes on the left (worst) and at the center (best) of
Figure 1b:

▶ Theorem 2. Let P(τ) ⊆ P be the set of positive queries an extended topological ordering
τ can answer and let ρ+(τ) = P(τ)/P be the answerable positive query ratio. Then, 0 ≤
ρ+(τ) ≤ 1.

Instead, the effectiveness of an extended topological ordering depends positively on the size of
the ranges [τ(v), τH(v)] and [τL(v), τ(v)], and negatively on [τH(v), τX(v)] and [τN (v), τL(v)]
which in turn depend on the recursion depths during construction and the order of recursive
calls. The former two can be maximized if the first, non-recursive call to Visit in line 4 in
ExtendedTopSort always has a source as its argument, i.e., if the algorithm’s parameter
S corresponds to the set of all sources. Clearly, this still guarantees that every vertex is
visited.

In addition to the forward and backward topological levels, O’Reach thus computes a set
of d extended topological orderings starting from sources, where d is a tuning parameter,
and d/2 of them are obtained via the reverse graph. It then applies Observation (B4) as well
as Observations (T1)–(T6) to all extended topological orderings.

4.2 Supportive Vertices
We now show how to apply and improve the idea of supportive vertices in the static setting.
A vertex v is supportive if the set of vertices that v can reach and that can reach v, R+(v)
and R−(v), respectively, have been precomputed and membership queries can be performed
in sublinear time. We can then answer reachability queries using the following simple
observations [11]:

(S1) If s ∈ R−(v) and t ∈ R+(v) for any v ∈ V , then s →∗ t.
(S2) If s ∈ R+(v) and t ̸∈ R+(v) for any v ∈ V , then s ̸→∗ t.
(S3) If s ̸∈ R−(v) and t ∈ R−(v) for any v ∈ V , then s ̸→∗ t.

To apply these observations, our algorithm selects a set of k supportive vertices during the
initialization phase. In contrast to the original use scenario in the dynamic setting, where the
graph changes over time and it is difficult to choose “good” supportive vertices that can help
to answer many queries, the static setting leaves room for further optimizations here: With
respect to Observation (S1), we consider a supportive vertex v “good” if |R+(v)| · |R−(v)|
is large as it maximizes the possibility that s ∈ R−(v) ∧ t ∈ R+(v). With respect to
Observation (S2) and (S3), we expect a “good” supportive vertex to have out- or in-reachability
sets, respectively, of size close to n

2 , i.e., when |R+(v)| · |V \ R+(v)| or |R−(v)| · |V \ R−(v)|,
respectively, are maximal. Furthermore, to increase total coverage and avoid redundancy,
the set of queries Query(s, t) covered by two different supportive vertices should ideally
overlap as little as possible.

O’Reach takes a parameter k specifying the number of supportive vertices to pick.
Intuitively speaking, we expect vertices in the topological “mid-levels” to be better candidates
than those at the ends, as their out- and in-reachabilities (or non-reachabilities) are likely

K. Hanauer, C. Schulz, and J. Trummer 13:9

to be more balanced. Furthermore, if all vertices on one forward (backward) level i were
supportive, then every Query(s, t) with F(s) < i < F(t) (B(t) < i < B(s)) could be
answered using only Observation (S1). As finding a “perfect” set of supportive vertices is
computationally expensive and we strive for linear preprocessing time, we experimentally
evaluated different strategies for the selection process. Due to page limits, we only describe
the most successful one: A forward (backward) level i is called central, if 1

5 Lmax ≤ i ≤ 4
5 Lmax,

where Lmax is the maximum topological level. A level i is called slim if there at most h

vertices having this level, where h is a parameter to O’Reach. We first compute a set of
candidates of size at most k · p that contains all vertices on slim forward or backward levels,
arbitrarily discarding vertices as soon as the threshold k · p is reached. p is another parameter
to O’Reach and together with k controls the size of the candidate set. If the threshold
is not reached, we fill up the set of candidates by picking the missing number of vertices
uniformly at random from all other vertices whose forward level is central. In the next
step, the out- and in-reachabilities of all candidates are obtained and the k vertices v with
largest |R+(v)| · |R−(v)| are chosen as supportive vertices. This strategy primarily optimizes
for Observation (S1), but worked better in experiments than strategies that additionally
tried to optimize for Observation (S2) and (S3). The time complexity of this process is in
O(kp(n + m) + kp log(kp)).

We remark that this is a general-purpose approach that has shown to work well across
different types of instance, albeit possibly at the expense of an increased initialization time.
It seems natural that more specialized routines for different graph classes can improve both
running time and coverage.

4.3 The Complete Algorithm
Given a graph G and a sequence of queries Q, we summarize in the following how O’Reach
proceeds. During initialization, it performs the following steps:

Step 1: Compute the WCCs
Step 2: Compute forward/backward topological levels
Step 3: Obtain d random extended topological orderings
Step 4: Pick k supportive vertices, compute R+(·) and R−(·)

Steps 1 and 2 run in linear time. As shown in Sect. 4.1 and Sect. 4.2, the same applies to
Steps 3 and 4, assuming that all parameters are constants. The required space is linear for
all steps. The reachability index consists of the following information for each vertex v: one
integer for the WCC, one integer each for F(v) and B(v), three integers for each of the d

extended topological orderings τ (τ(v), τH(v)/τL(v), τX(v)/τN (v)), two bits for each of the k

supportive vertices, indicating its reachability to/from v. For graphs with n ≤ 232, 4 Byte
per integer suffice. Furthermore, we group the bits encoding the reachabilities to and from
the supportive vertices, respectively, and represent them each by one suitably sized integer,
e.g., using uint8_t (8 bit), for k ≤ 8 supportive vertices. As the smallest integer has at least
8 bit on most architectures, we store 12 + 12d + 2 · ⌈ k

8 ⌉ Byte per vertex.
For each query Query(s, t), O’Reach tries to answer it using one of the observations

in the order given below, which on the one hand has been optimized by some preliminary
experiments on a small subset of benchmark instances (see Sect. 5 for details) and on the
other hand strives for a fair alternation between “positive” and “negative” observations to
avoid overfitting. Note that all observation-based tests run in constant time. As soon as
one of them can answer the query affirmatively, the result is returned immediately. A test
leading to a positive or negative answer is marked as or , respectively.

SEA 2021

13:10 O’Reach: Even Faster Reachability in Large Graphs

Test 1: s = t?
Test 2: topological levels (B5), (B6)
Test 3: k supportive vertices, positive (S1)
Test 4: first topological ordering (B4), (T1), (T2), (T3)
Test 5: k supportive vertices, negative (S2), (S3)
Test 6: remaining d − 1 topological orderings (B4), (T1)/(T4), (T2)/(T5),

(T3)/(T6)
Test 7: different WCCs (B2)

Observe that the tests for Observation (S1), (S2), and (S3) can each be implemented easily
using boolean logic, which allows for a concurrent test of all supports whose reachability
information is encoded in one accordingly-sized integer: For Observation (S1), it suffices
to test whether r−(s) ∧ r+(t) > 0, and r+(s) ∧ ¬r+(t) > 0 and ¬r−(s) ∧ r−(t) > 0 for
Observations (S2) and (S3), where r+ and r− hold the respective forward and backward
reachability information in the same order for all supports. Each test hence requires at
most one comparison of two integers plus at most two elementary bit operations. Also note
that Observation (B1) is implicitly tested by Observations (B5) and (B6). Using the data
structure described above, our algorithm requires at most one memory transfer for s and one
for t for each Query(s, t) that is answerable by one of the observations. Note that there are
more observations that allow to identify a negative query than a positive query, which is why
we expect a more pronounced speedup for the former. However, as stated in Theorem 1, the
reachability in DAGs is always less than 50 %, which justifies a bias towards an optimization
for negative queries.

If the query can not be answered using any of these tests, we instead fall back to either
another algorithm or a bidirectional BFS with pruning, which uses these tests for each newly
encountered vertex v in a subquery Query(v, t) (forward step) or Query(s, v) (backward
step). If a subquery can be answered decisively positive by a test, the bidirectional BFS can
immediately answer Query(s, t) positively. Otherwise, if a subquery is answered decisively
negative by a test, the encountered vertex v is no longer considered (pruning step). If the
subquery could not be answered by a test, the vertex v is added to the queue as in a regular
(bidirectional) BFS.

5 Experimental Evaluation

We evaluated our new algorithm O’Reach as a preprocessor to various recent state-of-the-art
algorithms listed below against running these algorithms on their own. Furthermore, we use as
an additional fallback solution the pruned bidirectional BFS (pBiBFS). Our experimental study
follows the methodology in [22] and comprises the algorithms PPL [37], TF [3], PReaCH [22],
IP [36], and BFL [28]. Moreover, our evaluation is the first that directly relates IP and BFL
to PReaCH and studies the performance of IP and BFL separately for successful (positive)
and unsuccessful (negative) reachability queries. For reasons of comparison, we also assess
the query performance of a full reachability matrix by computing the transitive closure of
the input graph entirely during initialization, storing it in a matrix using 1 bit per pair of
vertices, and answering each query by a single memory lookup. We refer to this algorithm
simply as Matrix. As the reachability in DAGs is small and cache locality can influence
lookup times, we also experimented with various hash set implementations. However, none
was faster or more memory-efficient than Matrix.

K. Hanauer, C. Schulz, and J. Trummer 13:11

Setup and Methodology. We implemented O’Reach in C++142 with pBiBFS as built-in
fallback strategy. For PPL3, TF3, PReaCH4, IP5, and BFL6 we used the original C++ implemen-
tation in each case. All source code was compiled with GCC 7.5.0 and full optimization (-O3).
The experiments were run on a Linux machine under Ubuntu 18.04 with kernel 4.15 on
four AMD Opteron 6174 CPUs clocked at 2.2 GHz with 512 kB and 6 MB L2 and L3 cache,
respectively and 12 cores per CPU. Overall, the machine has 48 cores and a total of 256 GB
of RAM. Unless indicated otherwise, each experiment was run sequentially and exclusively
on one processor and its local memory. As non-local memory accesses incur a much higher
cost, an exception to this rule was only made for Matrix, where we would otherwise have
been able to only run twelve instead of 29 instances. We also parallelized the initialization
phase for Matrix, where the transitive closure is computed, using 48 threads. However, all
queries were processed sequentially.

To counteract artifacts of measurement and accuracy, we ran each algorithm five times
on each instance and in general use the median for the evaluation. As O’Reach uses
randomization during initialization, we instead report the average running time over five
different seeds. For IP and BFL, which are randomized in the same way, but don’t accept a
seed, we just give the average over five repetitions. We note that also taking the median
instead or increasing the number of repetitions or seeds does not change the overall picture.

Instances. To facilitate comparability, we adopt the instances used in the papers introducing
PReaCH [22] and TF [3], which overlap with those used to evaluate IP [36] and BFL [28], and
which are available either from the GRAIL code repository7 or the Stanford Network Analysis
Platform SNAP [21]. Furthermore, we extended the set of benchmark graphs by further
instance sizes and Delaunay graphs. Table 2 provides a short overview on the left side, more
details are available in the full version [12]. As we only consider DAGs, all instances are
condensations of their respective originals, if they were not acyclic already. We also adopt the
grouping of the instances as in [39, 22] and provide only a short description of the different
sets in the following.

Kronecker: These instances were generated by the RMAT generator for the Graph500
benchmark [23] and oriented acyclically from smaller to larger node ID. The name encodes
the number of vertices 2i as kron_logni. Random: Graphs generated according to the
Erdős-Renyí model G(n, m) and oriented acyclically from smaller to larger node ID. The
name encodes n = 2i and m = 2j as randni-j. Delaunay: Delaunay graphs from the 10th
DIMACS Challenge [1, 8]. delaunay_ni is a Delaunay triangulation of 2i random points in
the unit square. Large real: Introduced in [39], these instances represent citation networks
(citeseer.scc, citeseerx, cit-Patents), a taxonomy graph (go-uniprot), as well as excerpts from
the RDF graph of a protein database (uniprotm22, uniprotm100, uniprotm150). Small
real dense: Among these instances, introduced in [17], are again citation networks (arXiv,
pubmed_sub, citeseer_sub), a taxonomy graph (go_sub), as well as one obtained from a
semantic knowledge database (yago_sub). Small real sparse: These instances were introduced
in [18] and represent XML documents (xmark, nasa), metabolic networks (amaze, kegg) or
originate from pathway and genome databases (all others). SNAP: The e-mail network graph

2 Source code and instances are available from https://oreach.taa.univie.ac.at.
3 Provided directly by the authors.
4 https://github.com/fiji-flo/preach2014/tree/master/original_code
5 https://github.com/datourat/IP-label-for-graph-reachability
6 https://github.com/BoleynSu/bfl
7 https://code.google.com/archive/p/grail/

SEA 2021

https://oreach.taa.univie.ac.at
https://github.com/fiji-flo/preach2014/tree/master/original_code
https://github.com/datourat/IP-label-for-graph-reachability
https://github.com/BoleynSu/bfl
https://code.google.com/archive/p/grail/

13:12 O’Reach: Even Faster Reachability in Large Graphs

Table 2 Left: Instance sizes (read /103: in thousands), density, and reachability. Right: Median
initialization time in ms over five repetitions. Highlighted results are the overall best.

Instance n/103 m/103 m
n

ρ% O’Reach PReaCH PPL TF IP(s) IP(d) BFL(s) BFL(d)

kron_logn12 4.1 117.0 28.55 27.4760 451.0 13.5 56.5 46 555.2 22.6 53.0 2.0 4.0
kron_logn16 65.5 2 456.1 37.48 21.2187 13 045.7 602.4 1 869.5 685.5 1 283.0 88.8 118.3
kron_logn17 131.1 5 114.0 39.02 19.4544 31 835.0 1 425.8 4 268.9 1 611.7 2 897.9 228.1 288.1
kron_logn20 1 048.6 44 619.4 42.55 5.8195 380 698.0 20 791.9 62 836.0 22 788.2 37 103.7 3 301.1 3 999.0
kron_logn21 2 097.2 91 040.9 43.41 1.2150 812 416.0 46 559.0 151 870.0 49 988.1 79 226.0 7 513.1 9 014.9

randn20-21 1 048.6 2 097.2 2.00 0.0012 4 272.7 2 878.3 11 579.3 11 615.8 2 434.7 2 635.1 626.1 677.2
randn20-22 1 048.6 4 194.3 4.00 0.0352 5 706.9 4 459.6 43 761.5 47 679.2 3 364.6 3 704.3 892.0 976.9
randn20-23 1 048.6 8 388.6 8.00 1.9067 13 724.7 7 128.3 9 348 510.0 4 830.2 5 311.5 1 287.7 1 449.3
randn23-24 8 388.6 16 777.2 2.00 0.0001 46 043.5 28 959.1 132 570.0 122 270.0 24 566.7 25 906.9 6 094.8 6 580.6
randn23-25 8 388.6 33 554.4 4.00 0.0044 61 206.2 45 573.7 413 684.0 465 300.0 34 145.7 36 815.0 8 964.7 9 715.1

delaunay_n15 32.8 98.3 3.00 0.4380 104.4 38.9 174.2 602.1 42.5 55.3 7.0 9.0
delaunay_n20 1 048.6 3 145.7 3.00 0.0093 2 816.5 1 788.4 9 350.5 24 563.9 2 339.1 2 785.1 299.8 351.5
delaunay_n22 4 194.3 12 582.9 3.00 0.0020 11 402.7 7 363.9 38 674.1 108 297.0 10 106.6 11 911.6 1 203.1 1 394.5

citeseer.scc 693.9 312.3 0.45 0.0002 865.9 503.4 1 185.3 1 579.7 602.5 613.4 107.0 122.5
citeseerx 6 540.4 15 011.3 2.30 0.1367 90 695.8 12 545.7 73 061.0 145 773.0 11 208.0 11 807.4 2 349.2 2 700.0
cit-Patents 3 774.8 16 518.9 4.38 0.0409 22 358.6 15 989.7 393 412.0 342 680.0 13 098.4 14 384.0 2 905.4 3 210.1
go_uniprot 6 968.0 34 769.3 4.99 0.0004 28 270.0 11 858.8 34 660.6 90 942.4 11 935.8 13 381.6 3 137.0 3 701.2
uniprotenc_22m 1 595.4 1 595.4 1.00 0.0001 2 802.5 714.8 2 762.0 3 446.0 1 322.6 1 313.7 147.8 189.3
uniprotenc_100m 16 087.3 16 087.3 1.00 0.0000 39 539.9 10 420.6 30 967.4 59 660.2 16 089.1 16 194.7 2 169.6 2 639.2
uniprotenc_150m 25 037.6 25 037.6 1.00 0.0000 65 983.9 17 612.9 50 254.7 86 052.0 26 453.4 26 730.9 3 830.4 4 548.6

go_sub 6.8 13.4 1.97 0.2258 10.4 4.0 16.6 37.6 5.0 6.2 1.0 1.0
pubmed_sub 9.0 40.0 4.45 0.6458 19.4 9.1 31.3 101.5 8.9 10.8 2.0 3.0
yago_sub 6.6 42.4 6.38 0.1506 12.5 6.0 18.9 61.5 7.5 10.4 1.1 2.0
citeseer_sub 10.7 44.3 4.13 0.3672 25.3 11.3 48.4 131.9 11.8 15.3 2.3 3.0
arXiv 6.0 66.7 11.12 15.4643 223.2 9.7 60.8 10 008.7 14.9 26.3 2.0 3.0

amaze 3.7 3.6 0.97 17.2337 12.0 1.2 5.3 25.9 2.2 2.4 0.0 0.4
kegg 3.6 4.4 1.22 20.1636 16.3 1.4 6.8 18.3 2.7 2.8 0.3 0.5
nasa 5.6 6.5 1.17 0.5284 7.0 2.4 11.6 27.3 3.3 3.8 1.0 1.0
xmark 6.1 7.1 1.16 1.4513 10.7 2.3 12.9 24.2 3.9 4.3 1.0 1.0
vchocyc 9.5 10.3 1.09 0.1517 12.0 2.9 13.4 53.7 5.4 5.9 1.0 1.0
mtbrv 9.6 10.4 1.09 0.1511 11.1 3.0 13.7 24.0 5.4 6.0 1.0 1.0
anthra 12.5 13.1 1.05 0.0951 15.4 3.8 18.3 62.5 7.1 7.8 1.0 1.0
ecoo 12.6 13.4 1.06 0.1088 15.9 3.9 18.8 41.4 7.4 8.0 1.0 1.0
agrocyc 12.7 13.4 1.06 0.1060 16.1 3.9 19.1 48.1 7.4 8.1 1.0 1.0
human 38.8 39.6 1.02 0.0231 49.1 13.5 56.5 104.1 23.7 25.8 3.0 4.0

p2p-Gnutella31 48.4 55.3 1.14 0.7725 120.6 28.4 89.2 52.3 43.8 44.5 5.0 7.0
email-EuAll 230.8 223.0 0.97 5.0732 945.2 115.3 340.5 241.3 170.1 171.4 24.8 32.0
web-Google 371.8 517.8 1.39 14.8090 5 783.6 369.3 928.1 918.4 452.6 472.0 73.8 88.0
soc-LiveJournal1 970.3 1 024.1 1.06 5.3781 3 663.5 739.6 2 086.3 1 827.9 1 160.5 1 181.4 142.3 173.0
wiki-Talk 2 281.9 2 311.6 1.01 0.8117 6 347.0 1 492.1 4 317.8 2 715.4 2 597.7 2 620.7 269.9 343.5

(email-EuAll), peer-to-peer network (p2p-Gnutella31), social network (soc-LiveJournal1),
web graph (web-Google), as well as the communication network (wiki-Talk) are part of SNAP
and were first used in [3].

Queries. Following the methodology of [22], we generated three sets of 100 000 queries each:
positive, negative, and random. Each set consists of random queries, which were generated
by picking two vertices uniformly at random and filtering out negative or positive queries for
the positive and negative query sets, respectively. The fourth query set, mixed, is a randomly
shuffled union of all queries from positive and negative and hence contains 200 000 pairs of
vertices. As the order of the queries within each set had an observable effect on the running
time due to caching effects and memory layout, we randomly shuffled every query set five
times and used a different permutation for each repetition of an experiment to ensure equal
conditions for all algorithms.

5.1 Experimental Results
We ran O’Reach with k = 16 supportive vertices, picked from 1 200 candidates (p = 75,
h = 8) and d = 4 extended topological orderings. We ran IP with the two configurations used
also by the authors [36] and refer to the resulting algorithms as IP(s) (sparse, hIP = kIP = 2)

K. Hanauer, C. Schulz, and J. Trummer 13:13

Table 3 Average query time per algorithm and query set.

O’R + O’R + O’R + O’R + O’R + O’R + O’R +
Query set pBiBFS PReaCH PReaCH PPL PPL IP(s) IP(s) IP(d) IP(d) BFL(s) BFL(s) BFL(d) BFL(d)

random 3.523 1.596 1.483 0.271 0.149 12.865 11.193 9.778 8.516 6.645 5.073 5.063 3.361
mixed 19.964 6.351 6.102 0.352 0.258 80.572 73.625 60.352 56.433 32.456 28.496 22.002 17.541
positive 37.554 11.508 11.069 0.399 0.345 156.016 145.532 118.835 109.014 62.338 54.329 42.632 33.699
negative 2.382 1.188 1.154 0.260 0.149 5.342 5.059 3.727 3.793 2.496 2.506 1.345 1.358

and IP(d) (dense, hIP = kIP = 5). Similarly, we evaluated BFL [28] with configuration sparse
as BFL(s) (sBFL = 64) and dense as BFL(d) (sBFL = 160), following the presets given by the
authors.

Average query times. Table A.6 lists the average time per query for the query sets negative
and positive. All missing values are due to a memory requirement of more than 32 GB (TF)
and Matrix (256 GB). For each instance and query set, the running time of the fastest
algorithm is printed in bold. If Matrix was fastest, also the running time of the second-best
algorithm is highlighted. Besides Matrix, the table shows the running times of PReaCH,
PPL, IP(d), and BFL(d) alone as well as multiple versions for O’Reach: one with a pruned
bidirectional BFS (O’R +pBiBFS) as fallback as well as one per competitor (O’R +. . .), where
O’Reach was run without fallback and the queries left unanswered were fed to the competitor.
Analogously, the running times for IP(s), BFL(s), and TF alone and as fallback for O’Reach
are given in Table A.9.

Our results by and large confirm the performance comparison of PReaCH, PPL, and TF
conducted by Merz and Sanders [22]. PReaCH was the fastest on three out of five Kronecker
graphs for the negative query set, once beaten by O’R +PReaCH and O’R +PPL each, whereas
PPL and O’R +PPL dominated all others on the positive query set in this class as well as
on three of the five random graphs, while O’R +TF was slightly faster on the other two.
PReaCH was also the dominating approach on the small real sparse and SNAP instances in
the aforementioned study [22]. By contrast, it was outperformed on these classes here by
O’Reach with almost any fallback on all instances for the positive query set, and by either
IP(d) or BFL(s) on almost all instances for the negative query set. On the Delaunay and
large real instances, BFL(s) often was the fastest algorithm on the set of negative queries.
The results also reveal that BFL and in particular IP have a weak spot in answering positive
queries. On average over all instances, O’R +PPL had the fastest average query time both for
negative and positive queries.

Notably, Matrix was outperformed quite often, especially for queries in the set negative,
which correlates with the fact that a large portion of these queries could be answered by
constant-time observations (see also the detailed analysis of observation effectiveness below)
and is due to its larger memory footprint. Across all instances and seeds, more than 95 % of
all queries in this set could be answered by O’Reach directly. On the set positive, the average
query time for Matrix was in almost all cases less than on the negative query set, which is
explained by the small reachability of the instances and a resulting higher spatial locality and
better cacheability of the few and naturally clustered one-entries in the matrix. Consequently,
this effect was distinctly reduced for the mixed query set, as shown in Table A.7.

There are some instances where O’Reach had a fallback rate of over 90 % for the positive
query set, e.g., on cit-Patents, which is clearly reflected in the running time. Except for PPL,
all algorithms had difficulties with positive queries on this instance. Conversely, the fallback
rate on all uniprotenc_∗ instances and citeseer.scc, e.g., was 0 %. On average across all
instances and seeds, O’Reach could answer over 70 % of all positive queries by constant-time
observations.

SEA 2021

13:14 O’Reach: Even Faster Reachability in Large Graphs

Table 4 Mean speedups with O’Reach plus fallback over pure fallback algorithm. Values greater
1.00 are highlighted.

negative positive random mixed
Instance PReaCH PPL IP(d) BFL(d) PReaCH PPL IP(d) BFL(d) PReaCH PPL IP(d) BFL(d) PReaCH PPL IP(d) BFL(d)

Geometric Mean 1.10 2.22 0.92 1.06 1.33 1.90 3.98 3.14 1.29 2.53 1.26 2.40 1.29 2.04 2.77 2.31
Ratio Runtime Avgs 1.03 1.75 0.98 0.99 1.04 1.16 1.09 1.27 1.08 1.82 1.15 1.51 1.04 1.36 1.07 1.25
Average 1.13 2.32 0.98 1.35 1.41 2.25 5.87 6.25 1.33 2.69 1.41 8.22 1.33 2.23 3.37 3.63

The results on the query sets random and mixed are similar and listed in Table A.7
and Table A.10. Once again, O’R +PPL showed the fastest query time on average across
all instances for both query sets. As the reachability in a DAG is low in general (see also
Theorem 1) and particularly in the benchmark instances, the average query times for random
resemble those for negative. On the other hand, the results for the mixed query set are more
similar to those for the positive query set, as the relative differences in performance among
the algorithms are more pronounced there. Table 3 compactly shows the average query time
over all instances for each query set. Only PPL and O’R +PPL achieved an average query time
of less than 1 µs (and even less than 0.35 µs).

Speedups by O’Reach. We next investigate the relative speedup of O’Reach with different
fallback solutions over running only the fallback algorithms. Table A.8 lists the ratios of the
average query time of each competitor algorithm run standalone divided by the average query
time of O’Reach plus that algorithm as fallback, for all four query sets. A compact version is
also given in Table 4. In the large majority of cases, using O’Reach as a preprocessor resulted
in a speedup, except in case of negative or random queries for BFL and partially IP on the
large real instances as well as for PReaCH and partially again IP on the small real sparse and
SNAP instances. The largest speedup of around 105 could be achieved for BFL on kegg for
random queries. The mean speedup (geometric) is at least 1.29 for all fallback algorithms on
the query sets positive, random, and mixed, where the maximum was reached for IP(s) on
positive queries with a factor of 4.21. Only for purely negative queries, IP(d) and BFL(s)
were a bit faster alone in the mean values. In summary, given that the algorithms are often
already faster than single memory lookups, the speedups achieved by O’Reach are quite high.

Initialization Times (Table 2, right). On all graphs, BFL(s) had the fastest initialization
time, followed by BFL(d) and PReaCH. For O’Reach, the overhead of computing the compara-
tively large out- and in-reachabilities of all 1 200 candidates for k = 16 supportive vertices is
clearly reflected in the running time on denser instances and can be reduced greatly if lower
parameters are chosen, albeit at the expense of a slightly reduced query performance, e.g.,
for k = 8. PPL often consumed a lot of time in this step, especially on denser instances, with
a maximum of 2.6 h on randn20-23.

Based on the average query time per instance, the minimum number of random queries
necessary to amortize the additional investment in initialization time if O’Reach is run
as preprocessor is between 9.6 thousand (O’R +BFL(d)) and 499 thousand (O’R +PReaCH).
Counting cases where O’Reach could not achieve a speedup in the average query time as
infinity, the median number of random queries required for amortization is between 2.5 million
(O’R +BFL(d)) and 101 million (O’R +IP(d)). For the on average fastest algorithm, O’R +PPL,
the initialization cost is recovered after 210 thousand (nasa) to 6.15 billion (kron_logn21)
random queries, which equals about 0.77 % (nasa) and 0.14 % (kron_logn21) of all vertex
pairs, respectively.

K. Hanauer, C. Schulz, and J. Trummer 13:15

Effectiveness of Observations. We collected a vast amount of statistical data to perform
an analysis of the effectiveness of the different observations used in O’Reach. To make the
analysis more robust, we increased the number of seeds to 25 here.

First, we look only at fast queries, i.e., those queries that could be answered without
a fallback. Across all query sets, the most effective observation was the negative basic
observation on topological orderings, (B4), which answered around 30 % of all fast queries.
As the average reachability in the random query set is very low, negative queries predominate
in the overall picture. It thus does not come as a surprise that the most effective observation
is a negative one. On the negative query set, (B4) could answer 45 % of all fast queries.
After lowering the number of topological orderings to d = 2, (B4) was still the most effective
and could answer 23 % of all fast queries and 33 % of those in the negative query set. The
negative observations second to (B4) in effectiveness were those looking at the forward and
backward topological levels, Observation (B5) and (B6), which could answer around 15 %
each on the negative query set and around 10 % of all fast queries. Note that we increased
the counter for all observations that could answer a query for this analysis, not just the
first in order, which is why there may be overlaps. The observations using the max and min
indices of extended topological orderings, (T2) and (T5), could answer 9 % and 6 % of the
fast queries in the negative query set, and the observations based on supportive vertices, (S2)
and (S3), around 3 % each. Reducing the number of topological orderings to d = 2 decreased
the effectiveness of (T2) and (T5) to around 5 %.

The most effective positive observation and the second-best among all query sets, was
the supportive-vertices-based Observation (S1), which could answer almost 16 % of all fast
queries and almost 55 % in the positive query set. Follow-up observations were the ones using
high and low indices, (T1) and (T4), with 18 % and 16 % effectiveness for the positive query
set. The remaining two, (T2) and (T5), could answer 6 % and 4 % in this set. Reducing the
number of topological orderings to d = 2 led to a slight deterioration in case of (T1) and
(T4) to 14 %, and to 5 % and 3 % in case of (T2) and (T5), each with respect to the positive
query set.

Among all fast queries that could be answered by only one observation, the most effective
observation was the positive supportive-vertices-based Observation (S1) with over 40 % for
all query sets and 68 % for the positive query set, followed by the negative basic observation
using topological orderings, (B4), with a bit over 20 % for all query sets and 52 % for the
negative query set.

Looking now at the entire query sets, our statistics show that 95 % of all queries could
be answered via an observation on the negative set. In 70 % of all cases, (B5) in the second
test, which uses topological forward levels, could already answer the query. In further 16 %
of all cases, the observation based on topological backward levels, (B6), was successful. On
the positive query set, the fallback rate was 28 % and hence higher than on the negative
query set. 52 % of all queries in this set could be answered by the supportive-vertices-based
observation (S1), and the high and low indices of extended topological orderings (T1) and
(T4) were responsible for another 7 % each. Observe that here, the first observation in the
order that can answer a query “wins the point”, i.e., there are no overlaps in the reported
effectiveness.

Memory Consumption. Table 5 lists the memory each algorithm used for their reachability
index. As O’Reach was configured with k = 16 and d = 4, its index size is 64n Byte.
Consequently, the reachability indices of O’Reach, PReaCH, PPL, IP, BFL, and, with one
exception for TF, fit in the L3 cache of 6 MB for all small real instances. For Matrix, this

SEA 2021

13:16 O’Reach: Even Faster Reachability in Large Graphs

Table 5 Real index size in memory (in MB).

Instance O’Reach PReaCH PPL TF IP(s) IP(d) BFL(s) BFL(d) Matrix

kron_logn12 0.3 0.2 0.1 19.2 0.1 0.2 0.1 0.2 2.0
kron_logn16 4.0 3.5 1.5 0.0 1.5 3.1 1.3 2.3 512.0
kron_logn17 8.0 7.0 3.0 0.0 2.9 6.1 2.5 4.6 2 047.9
kron_logn20 64.0 56.0 25.1 0.0 22.1 44.8 18.9 34.1 131 070
kron_logn21 128.0 112.0 50.4 0.0 43.5 87.3 37.1 66.4 0.0

randn20-21 64.0 56.0 24.2 64.8 18.0 31.5 20.6 38.7 131 070
randn20-22 64.0 56.0 136.8 482.3 19.0 37.6 22.3 43.3 131 070
randn20-23 64.0 56.0 4 380.3 0.0 19.5 40.8 23.1 45.6 131 070
randn23-24 512.0 448.0 193.7 518.2 144.3 252.3 164.5 309.4 0.0
randn23-25 512.0 448.0 1 073.3 3 844.1 152.0 300.7 178.0 346.0 0.0

delaunay_n15 2.0 1.7 0.8 4.7 0.6 1.2 0.7 1.4 128.0
delaunay_n20 64.0 56.0 33.0 126.7 19.1 38.1 22.5 43.9 131 070
delaunay_n22 256.0 224.0 135.0 497.9 76.6 152.5 90.0 175.8 0.0

citeseer.scc 42.4 37.1 7.1 28.3 9.4 11.3 9.2 13.7 57 406.5
citeseerx 399.2 349.3 120.9 1 773.0 111.8 151.0 107.6 185.1 0.0
cit-Patents 230.4 201.6 659.2 780.0 72.9 138.0 71.7 132.9 0.0
go_uniprot 425.3 372.1 261.0 680.2 106.4 184.7 113.1 193.1 0.0
uniprotenc_22m 97.4 85.2 18.5 67.2 24.5 24.7 26.1 44.8 0.0
uniprotenc_100m 981.9 859.2 197.2 690.4 251.2 269.1 270.8 471.9 0.0
uniprotenc_150m 1 528.2 1 337.1 318.5 1 087.0 395.0 439.6 428.5 753.8 0.0

go_sub 0.4 0.4 0.2 0.4 0.1 0.2 0.1 0.3 5.5
pubmed_sub 0.5 0.5 0.3 1.1 0.1 0.2 0.2 0.3 9.7
yago_sub 0.4 0.4 0.2 0.5 0.1 0.2 0.1 0.2 5.3
citeseer_sub 0.7 0.6 0.3 1.2 0.2 0.3 0.2 0.4 13.7
arXiv 0.4 0.7 0.3 14.9 0.1 0.3 0.1 0.2 4.3

amaze 0.2 0.2 0.0 0.2 0.1 0.1 0.1 0.1 1.6
kegg 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.1 1.6
nasa 0.3 0.3 0.1 0.3 0.1 0.2 0.1 0.2 3.7
xmark 0.4 0.3 0.2 0.4 0.1 0.2 0.1 0.2 4.4
vchocyc 0.6 0.5 0.2 0.7 0.2 0.3 0.2 0.3 10.7
mtbrv 0.6 0.5 0.2 0.4 0.2 0.3 0.2 0.3 11.0
anthra 0.8 0.7 0.2 0.8 0.2 0.4 0.2 0.4 18.6
ecoo 0.8 0.7 0.2 0.9 0.2 0.4 0.2 0.4 19.0
agrocyc 0.8 0.7 0.2 0.9 0.2 0.4 0.2 0.4 19.2
human 2.4 2.1 0.6 2.1 0.7 1.2 0.6 1.1 179.6

p2p-Gnutella31 3.0 2.6 0.7 2.1 0.9 1.5 0.8 1.4 279.7
email-EuAll 14.1 12.3 2.6 9.7 3.7 5.8 3.7 6.4 6 349.8
web-Google 22.7 19.9 5.4 16.7 7.0 11.2 6.5 11.5 16 475.5
soc-LiveJournal1 59.2 51.8 13.0 41.0 19.1 31.8 15.9 27.2 112 225
wiki-Talk 139.3 121.9 26.2 95.9 52.0 103.5 37.1 63.3 0.0

was only the case for the four smallest instances from the small real sparse set, three of
the small real dense ones, and the smallest Kronecker graph, which is clearly reflected in
its average query time for the negative, random, and, to a slightly lesser extent, mixed
query sets. Whereas for O’Reach, PReaCH, and Matrix, the index size depends solely on the
number of vertices, IP, BFL, PPL and TF consumed more memory the larger the density m

n .
IP(s) usually was the most space-efficient and never used more than 395 MB, followed by
BFL(s) (429 MB), IP(d) (440 MB), BFL(d) (754 MB), PReaCH (1.3 GB), O’Reach (1.5 GB),
and PPL (4.4 GB). All these algorithms are hence suitable to handle graphs with several
millions of vertices even on hardware with relatively little memory (with respect to current
standards). TF used up to 3.8 GB (randn23-25), but required even more than 64 GB at least
during initialization on all instances where the data is missing in the table.

6 Conclusion

In this paper, we revisited existing techniques for the static reachability problem and combined
them with new approaches to support a large portion of reachability queries in constant time
using a linear-sized reachability index. Our extensive experimental evaluation shows that

K. Hanauer, C. Schulz, and J. Trummer 13:17

in almost all scenarios, combining any of the existing algorithms with our new techniques
implemented in O’Reach can speed up the query time by several factors. In particular
supportive vertices have proven to be effective to answer positive queries quickly. As a further
plus, O’Reach is flexible: memory usage, initialization time, and expected query time can be
influenced directly by three parameters, which allow to trade space for time or initialization
time for query time. Moreover, our study demonstrates that, due to cache effects, a high
investment in space does not necessarily pay off: Reachability queries can often be answered
even significantly faster than single memory accesses in a precomputed full reachability
matrix.

The on average fastest algorithm across all instances and types of queries was a combination
of O’Reach and PPL with an average query time of less than 0.35 µs. As the initialization
time of PPL is relatively high, we also recommend O’Reach combined with PReaCH as a less
expensive alternative solution with respect to initialization time and partially also memory,
which still achieved an average query time of at most 11.1 µs on all query sets.

References
1 D. Bader, A. Kappes, H. Meyerhenke, P. Sanders, C. Schulz, and D. Wagner. Benchmarking

for Graph Clustering and Partitioning. In Encyclopedia of Social Network Analysis and Mining.
Springer, 2014.

2 Yangjun Chen and Yibin Chen. An efficient algorithm for answering graph reachability queries.
In Gustavo Alonso, José A. Blakeley, and Arbee L. P. Chen, editors, Proceedings of the 24th
International Conference on Data Engineering, ICDE 2008, April 7-12, 2008, Cancún, Mexico,
pages 893–902. IEEE Computer Society, 2008. doi:10.1109/ICDE.2008.4497498.

3 James Cheng, Silu Huang, Huanhuan Wu, and Ada Wai-Chee Fu. TF-label: a topological-
folding labeling scheme for reachability querying in a large graph. In Kenneth A. Ross, Divesh
Srivastava, and Dimitris Papadias, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013,
pages 193–204. ACM, 2013. doi:10.1145/2463676.2465286.

4 Jiefeng Cheng, Jeffrey Xu Yu, Xuemin Lin, Haixun Wang, and Philip S. Yu. Fast computation
of reachability labeling for large graphs. In Yannis E. Ioannidis, Marc H. Scholl, Joachim W.
Schmidt, Florian Matthes, Michael Hatzopoulos, Klemens Böhm, Alfons Kemper, Torsten
Grust, and Christian Böhm, editors, Advances in Database Technology - EDBT 2006, 10th
International Conference on Extending Database Technology, Munich, Germany, March 26-31,
2006, Proceedings, volume 3896 of Lecture Notes in Computer Science, pages 961–979. Springer,
2006. doi:10.1007/11687238_56.

5 Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and distance queries
via 2-hop labels. SIAM J. Comput., 32(5):1338–1355, 2003. doi:10.1137/S0097539702403098.

6 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms, 2009.
7 R. W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345, June 1962. doi:

10.1145/367766.368168.
8 Daniel Funke, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Moritz von

Looz. Communication-free massively distributed graph generation. In 2018 IEEE International
Parallel and Distributed Processing Symposium, IPDPS 2018, Vancouver, BC, Canada, May
21 – May 25, 2018, 2018.

9 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction hierar-
chies: Faster and simpler hierarchical routing in road networks. In International Workshop on
Experimental and Efficient Algorithms, pages 319–333. Springer, 2008.

10 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact routing
in large road networks using contraction hierarchies. Transportation Science, 46(3):388–404,
2012.

SEA 2021

https://doi.org/10.1109/ICDE.2008.4497498
https://doi.org/10.1145/2463676.2465286
https://doi.org/10.1007/11687238_56
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168

13:18 O’Reach: Even Faster Reachability in Large Graphs

11 Kathrin Hanauer, Monika Henzinger, and Christian Schulz. Faster Fully Dynamic Transitive
Closure in Practice. In Simone Faro and Domenico Cantone, editors, 18th International
Symposium on Experimental Algorithms (SEA 2020), volume 160 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 14:1–14:14, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SEA.2020.14.

12 Kathrin Hanauer, Christian Schulz, and Jonathan Trummer. O’Reach: Even faster reachability
in static graphs. CoRR, abs/2008.10932, 2021. arXiv:2008.10932.

13 H. V. Jagadish. A compression technique to materialize transitive closure. ACM Trans.
Database Syst., 15(4):558–598, 1990. doi:10.1145/99935.99944.

14 Ruoming Jin, Ning Ruan, Saikat Dey, and Jeffrey Xu Yu. SCARAB: scaling reachability com-
putation on large graphs. In K. Selçuk Candan, Yi Chen, Richard T. Snodgrass, Luis Gravano,
and Ariel Fuxman, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 169–180.
ACM, 2012. doi:10.1145/2213836.2213856.

15 Ruoming Jin, Ning Ruan, Yang Xiang, and Haixun Wang. Path-tree: An efficient reachability
indexing scheme for large directed graphs. ACM Trans. Database Syst., 36(1):7:1–7:44, 2011.
doi:10.1145/1929934.1929941.

16 Ruoming Jin and Guan Wang. Simple, fast, and scalable reachability oracle. Proc. VLDB
Endow., 6(14):1978–1989, 2013. doi:10.14778/2556549.2556578.

17 Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-hop: A high-compression indexing
scheme for reachability query. In Proceedings of the 2009 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’09, page 813–826, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1559845.1559930.

18 Ruoming Jin, Yang Xiang, Ning Ruan, and Haixun Wang. Efficiently answering reachability
queries on very large directed graphs. In Jason Tsong-Li Wang, editor, Proceedings of the
ACM SIGMOD International Conference on Management of Data, SIGMOD 2008, Vancouver,
BC, Canada, June 10-12, 2008, pages 595–608. ACM, 2008. doi:10.1145/1376616.1376677.

19 A. B. Kahn. Topological sorting of large networks. Commun. ACM, 5(11):558–562, 1962.
doi:10.1145/368996.369025.

20 F. Le Gall. Powers of tensors and fast matrix multiplication. In K. Nabeshima, K. Nagasaka,
F. Winkler, and Á. Szántó, editors, International Symposium on Symbolic and Algebraic
Computation, ISSAC ’14, Kobe, Japan, July 23-25, 2014, pages 296–303. ACM, 2014. doi:
10.1145/2608628.2608664.

21 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

22 F. Merz and P. Sanders. Preach: A fast lightweight reachability index using pruning and
contraction hierarchies. In A. S. Schulz and D. Wagner, editors, European Symposium on
Algorithms, pages 701–712, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

23 Richard C. Murphy, Kyle B. Wheeler, Brian W. Barrett, and James A. Ang. Introducing the
graph 500. Cray Users Group (CUG), 19:45–74, 2010.

24 Thomas Reps. Program analysis via graph reachability. Information and software technology,
40(11-12):701–726, 1998.

25 Thomas Reps, Susan Horwitz, and Mooly Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 49–61, 1995.

26 Ralf Schenkel, Anja Theobald, and Gerhard Weikum. HOPI: an efficient connection index
for complex XML document collections. In Elisa Bertino, Stavros Christodoulakis, Dimitris
Plexousakis, Vassilis Christophides, Manolis Koubarakis, Klemens Böhm, and Elena Ferrari,
editors, Advances in Database Technology - EDBT 2004, 9th International Conference on
Extending Database Technology, Heraklion, Crete, Greece, March 14-18, 2004, Proceedings,
volume 2992 of Lecture Notes in Computer Science, pages 237–255. Springer, 2004. doi:
10.1007/978-3-540-24741-8_15.

https://doi.org/10.4230/LIPIcs.SEA.2020.14
http://arxiv.org/abs/2008.10932
https://doi.org/10.1145/99935.99944
https://doi.org/10.1145/2213836.2213856
https://doi.org/10.1145/1929934.1929941
https://doi.org/10.14778/2556549.2556578
https://doi.org/10.1145/1559845.1559930
https://doi.org/10.1145/1376616.1376677
https://doi.org/10.1145/368996.369025
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
http://snap.stanford.edu/data
https://doi.org/10.1007/978-3-540-24741-8_15
https://doi.org/10.1007/978-3-540-24741-8_15

K. Hanauer, C. Schulz, and J. Trummer 13:19

27 B. Scholz, C. Zhang, and C. Cifuentes. User-input dependence analysis via graph reachabil-
ity. In 2008 Eighth IEEE International Working Conference on Source Code Analysis and
Manipulation, pages 25–34, 2008.

28 Jiao Su, Qing Zhu, Hao Wei, and Jeffrey Xu Yu. Reachability querying: Can it be even faster?
IEEE Trans. Knowl. Data Eng., 29(3):683–697, 2017. doi:10.1109/TKDE.2016.2631160.

29 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

30 Robert Endre Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica,
6(2):171–185, 1976.

31 Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very large graphs. In
Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors, Proceedings of the ACM SIGMOD
International Conference on Management of Data, Beijing, China, June 12-14, 2007, pages
845–856. ACM, 2007. doi:10.1145/1247480.1247573.

32 Sebastiaan J. van Schaik and Oege de Moor. A memory efficient reachability data structure
through bit vector compression. In Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis,
and Yannis Velegrakis, editors, Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 913–924.
ACM, 2011. doi:10.1145/1989323.1989419.

33 Renê Rodrigues Veloso, Loïc Cerf, Wagner Meira, and Mohammed J. Zaki. Reachability
queries in very large graphs: A fast refined online search approach. In EDBT, pages 511–522,
2014.

34 Haixun Wang, Hao He, Jun Yang, Philip S. Yu, and Jeffrey Xu Yu. Dual labeling: Answering
graph reachability queries in constant time. In Ling Liu, Andreas Reuter, Kyu-Young
Whang, and Jianjun Zhang, editors, Proceedings of the 22nd International Conference on
Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, page 75. IEEE Computer
Society, 2006. doi:10.1109/ICDE.2006.53.

35 S. Warshall. A theorem on boolean matrices. J. ACM, 9(1):11–12, 1962. doi:10.1145/321105.
321107.

36 Hao Wei, Jeffrey Xu Yu, Can Lu, and Ruoming Jin. Reachability querying: an independent per-
mutation labeling approach. VLDB J., 27(1):1–26, 2018. doi:10.1007/s00778-017-0468-3.

37 Yosuke Yano, Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast and scalable reachability
queries on graphs by pruned labeling with landmarks and paths. In Qi He, Arun Iyengar,
Wolfgang Nejdl, Jian Pei, and Rajeev Rastogi, editors, 22nd ACM International Conference
on Information and Knowledge Management, CIKM’13, San Francisco, CA, USA, October 27
- November 1, 2013, pages 1601–1606. ACM, 2013. doi:10.1145/2505515.2505724.

38 Hilmi Yildirim, Vineet Chaoji, and Mohammed J. Zaki. Grail: Scalable reachability index for
large graphs. Proc. VLDB Endow., 3(1–2):276–284, 2010. doi:10.14778/1920841.1920879.

39 Hilmi Yıldırım, Vineet Chaoji, and Mohammed J Zaki. GRAIL: a scalable index for reachability
queries in very large graphs. The VLDB Journal, 21(4):509–534, 2012.

40 Jeffrey Xu Yu and Jiefeng Cheng. Graph reachability queries: A survey. In Charu C. Aggarwal
and Haixun Wang, editors, Managing and Mining Graph Data, volume 40 of Advances in
Database Systems, pages 181–215. Springer, 2010. doi:10.1007/978-1-4419-6045-0_6.

A Appendix

SEA 2021

https://doi.org/10.1109/TKDE.2016.2631160
https://doi.org/10.1137/0201010
https://doi.org/10.1145/1247480.1247573
https://doi.org/10.1145/1989323.1989419
https://doi.org/10.1109/ICDE.2006.53
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107
https://doi.org/10.1007/s00778-017-0468-3
https://doi.org/10.1145/2505515.2505724
https://doi.org/10.14778/1920841.1920879
https://doi.org/10.1007/978-1-4419-6045-0_6

13:20 O’Reach: Even Faster Reachability in Large Graphs

Ta
bl

e
A

.6
Av

er
ag

e
qu

er
y

tim
es

in
µs

fo
r

10
00

00
ne

ga
tiv

e
(le

ft
)

an
d

po
sit

iv
e

qu
er

ie
s

(r
ig

ht
).

H
ig

hl
ig

ht
ed

re
su

lts
ar

e
th

e
ov

er
al

lb
es

t/
se

co
nd

-b
es

t
af

te
r

Ma
tr

ix
pe

r
qu

er
y

se
t

ov
er

al
lt

es
te

d
al

go
rit

hm
s.

←
ne

ga
ti

ve
po

si
ti

ve
→

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

In
st

an
ce

pB
iB

FS
PR

ea
CH

PR
ea

CH
PP

L
PP

L
IP

(d
)

IP
(d

)
BF

L(
d)

BF
L(

d)
Ma

tr
ix

pB
iB

FS
PR

ea
CH

PR
ea

CH
PP

L
PP

L
IP

(d
)

IP
(d

)
BF

L(
d)

BF
L(

d)
Ma

tr
ix

kr
on

_
lo

gn
12

0
.0
3
1

0
.0
2
0

0
.0
1
7

0
.0
3
0

0
.0
1
8

0
.0
2
8

0
.0
2
8

0
.0
9
7

0
.0
4
6

0
.0
1
7

0
.3
4
7

0
.3
6
1

0
.2
5
1

0
.0
3
5

0
.0
3
2

2
.2
1
3

0
.8
2
4

3
.2
7
8

0
.9
8
4

0
.0
1
4

kr
on

_
lo

gn
16

0
.0
9
4

0
.0
5
7

0
.0
6
9

0
.1
0
9

0
.0
7
5

0
.0
7
8

0
.1
1
3

0
.1
6
1

0
.1
5
3

0
.5
3
3

3
.2
4
6

3
.4
6
7

2
.6
3
7

0
.1
1
5

0
.1
0
6

2
5
.6
9
0

1
0
.5
3
0

2
5
.0
0
7

9
.7
2
5

0
.2
6
2

kr
on

_
lo

gn
17

0
.1
2
2

0
.0
7
2

0
.0
7
8

0
.1
3
5

0
.0
8
6

0
.0
9
5

0
.1
3
1

0
.1
1
7

0
.1
1
7

1
.1
1
1

2
.3
6
5

2
.5
3
7

0
.6
9
2

0
.1
5
2

0
.1
0
0

2
0
.5
4
8

4
.5
9
7

9
.9
2
9

1
.7
3
4

0
.8
8
1

kr
on

_
lo

gn
20

0
.1
8
4

0
.1
1
7

0
.1
2
8

0
.2
2
1

0
.1
1
9

0
.1
6
7

0
.2
0
1

0
.3
2
5

0
.3
5
3

2
.4
1
3

4
6
.1
8
6

2
5
.0
9
2

2
3
.3
3
1

0
.2
7
4

0
.2
6
5

3
4
2
.8
8
7

1
6
3
.9
0
2

3
7
3
.8
4
8
1
6
2
.4
0
5

1
.7
7
8

kr
on

_
lo

gn
21

0
.2
2
4

0
.1
4
6

0
.1
6
2

0
.2
5
0

0
.1
3
9

0
.2
0
7

0
.2
5
7

0
.2
3
7

0
.2
8
6

6
7
.1
8
4

1
5
.4
1
6

5
.9
9
8

0
.3
1
3

0
.3
5
5

3
0
6
.8
2
8

1
9
3
.2
1
2

2
0
3
.6
9
5
1
1
3
.5
0
2

ra
nd

n2
0-

21
0
.2
5
5

0
.3
4
2

0
.2
3
4

0
.2
7
8

0
.1
5
4

0
.2
1
8

0
.1
9
1

0
.0
5
6

0
.1
2
2

1
.6
9
2

1
.2
9
8

1
.0
4
4

0
.8
5
8

0
.4
8
2

0
.4
0
4

2
.5
1
3

1
.7
9
2

0
.8
5
6

0
.6
9
3

0
.8
4
4

ra
nd

n2
0-

22
3
.0
1
6

2
.4
7
3

2
.2
9
8

0
.4
2
4

0
.3
3
5

2
.5
6
9

2
.5
1
9

0
.3
5
7

0
.4
2
9

1
.0
5
6

3
5
.7
4
7

2
1
.8
7
3

2
1
.8
3
2

1
.1
5
3

1
.2
7
8

5
3
.5
9
1

5
3
.4
3
1

9
.3
6
9

9
.3
4
5

0
.3
6
1

ra
nd

n2
0-

23
8
2
.9
6
0

3
6
.1
9
3

3
6
.1
3
9

3
.0
9
2

2
.4
4
9

1
3
9
.5
4
4

1
4
2
.7
3
1

5
1
.1
2
5

5
1
.0
4
6

4
.9
9
3

8
7
0
.7
8
7

2
4
7
.7
0
0
2
4
6
.2
1
8

4
.6
2
5

4
.7
7
5

3
5
2
4
.7
3
4

3
4
6
2
.7
9
0

9
7
1
.8
0
7
9
4
4
.5
2
6

1
.8
2
2

ra
nd

n2
3-

24
0
.3
5
6

0
.4
9
4

0
.4
2
6

0
.4
0
2

0
.2
1
6

0
.3
1
0

0
.2
6
4

0
.0
5
5

0
.1
6
8

1
.7
4
7

1
.3
6
6

1
.1
6
9

0
.6
8
0

0
.5
5
7

3
.2
7
2

2
.3
4
5

1
.0
7
4

0
.8
9
2

ra
nd

n2
3-

25
4
.1
3
0

3
.2
4
4

3
.0
1
1

0
.5
4
6

0
.4
2
6

3
.2
3
7

3
.1
4
3

0
.4
0
9

0
.5
2
9

5
1
.7
1
3

2
9
.0
9
8

2
9
.1
0
8

1
.2
1
2

1
.3
7
9

7
0
.3
2
7

7
0
.4
2
5

1
1
.7
8
1

1
1
.8
2
5

de
la

un
ay

_
n1

5
0
.1
2
5

0
.1
7
2

0
.0
7
6

0
.1
1
8

0
.0
5
5

0
.1
8
9

0
.0
8
8

0
.0
5
3

0
.0
4
5

0
.0
6
3

1
.2
2
7

0
.1
5
0

0
.1
5
6

0
.1
0
2

0
.1
0
8

5
.2
0
7

2
.6
9
3

0
.7
6
2

0
.5
6
9

0
.0
5
0

de
la

un
ay

_
n2

0
0
.2
3
7

0
.3
5
0

0
.1
8
7

0
.2
8
8

0
.1
4
2

0
.3
5
5

0
.1
8
3

0
.0
5
5

0
.1
2
4

0
.9
2
4

2
.9
8
4

0
.3
3
4

0
.3
9
7

0
.4
1
7

0
.4
1
9

9
.1
8
0

6
.4
0
7

2
.1
7
3

1
.8
1
7

0
.5
0
5

de
la

un
ay

_
n2

2
0
.2
8
0

0
.4
1
8

0
.2
7
4

0
.3
6
3

0
.1
7
7

0
.4
1
5

0
.2
2
1

0
.0
5
4

0
.1
5
4

3
.3
5
4

0
.4
2
5

0
.5
9
0

0
.5
6
0

0
.5
6
1

9
.2
4
9

7
.2
1
9

2
.9
4
5

2
.5
3
2

ci
te

se
er

.s
cc

0
.0
5
6

0
.0
7
5

0
.0
5
6

0
.2
2
9

0
.0
5
6

0
.0
5
0

0
.0
5
6

0
.0
4
3

0
.0
5
6

1
.3
1
2

0
.1
1
3

0
.0
8
9

0
.1
1
2

0
.3
0
3

0
.1
1
2

0
.3
8
4

0
.1
1
2

0
.1
7
9

0
.1
1
2

0
.6
5
3

ci
te

se
er

x
0
.2
1
1

0
.2
1
2

0
.2
1
4

0
.3
5
8

0
.1
4
1

0
.1
6
0

0
.1
7
2

0
.0
5
8

0
.1
4
1

0
.5
4
4

0
.2
4
8

0
.2
2
2

0
.2
9
6

0
.0
8
5

2
.5
1
1

0
.4
2
6

1
.6
8
6

0
.2
9
1

ci
t-

P
at

en
ts

3
.9
6
5

2
.7
3
2

2
.5
6
2

0
.5
2
6

0
.3
2
9

3
.9
1
5

3
.7
9
7

0
.6
5
8

0
.7
3
7

2
3
8
.9
1
3

1
1
8
.4
2
7
1
1
7
.2
4
0

1
.9
6
1

2
.1
2
3

4
7
3
.0
8
3

4
8
2
.6
6
8

1
1
8
.0
9
7
1
1
6
.7
9
1

go
_

un
ip

ro
t

0
.0
9
8

0
.1
2
1

0
.0
9
9

0
.3
8
5

0
.0
9
8

0
.0
6
8

0
.0
9
8

0
.0
4
2

0
.0
9
8

2
0
8
.4
9
4

1
.0
2
6

0
.9
0
2

0
.5
3
4

0
.4
3
5

1
.0
5
4

0
.7
1
2

0
.6
8
8

0
.5
1
9

un
ip

ro
te

nc
_

22
m

0
.0
6
7

0
.0
6
8

0
.0
6
6

0
.2
5
4

0
.0
6
6

0
.0
4
5

0
.0
6
6

0
.0
4
3

0
.0
6
6

0
.0
7
2

0
.0
7
6

0
.0
7
2

0
.2
7
4

0
.0
7
2

0
.3
3
4

0
.0
7
2

0
.1
9
6

0
.0
7
2

un
ip

ro
te

nc
_

10
0m

0
.1
3
0

0
.1
6
3

0
.1
3
1

0
.4
1
0

0
.1
3
1

0
.0
9
8

0
.1
3
1

0
.0
4
3

0
.1
3
1

0
.1
1
8

0
.1
0
8

0
.1
1
8

0
.4
5
2

0
.1
1
8

0
.5
0
4

0
.1
1
8

0
.2
3
3

0
.1
1
8

un
ip

ro
te

nc
_

15
0m

0
.1
5
2

0
.2
0
6

0
.1
5
3

0
.4
4
4

0
.1
5
3

0
.1
1
6

0
.1
5
3

0
.0
4
4

0
.1
5
3

0
.1
3
9

0
.1
2
1

0
.1
3
9

0
.5
0
9

0
.1
3
9

0
.5
6
5

0
.1
3
9

0
.2
3
9

0
.1
3
9

go
_

su
b

0
.0
3
3

0
.0
4
6

0
.0
2
8

0
.0
5
8

0
.0
2
6

0
.0
5
0

0
.0
3
1

0
.0
5
7

0
.0
2
4

0
.0
2
5

0
.1
9
8

0
.1
3
9

0
.0
8
8

0
.0
9
2

0
.0
5
5

2
.4
4
7

0
.4
4
8

0
.3
5
5

0
.1
5
4

0
.0
1
2

pu
bm

ed
_

su
b

0
.0
7
8

0
.0
7
6

0
.0
6
6

0
.0
6
8

0
.0
4
4

0
.0
5
8

0
.0
5
7

0
.0
6
1

0
.0
3
9

0
.0
2
9

0
.5
4
6

0
.4
9
1

0
.3
4
0

0
.0
9
0

0
.0
7
3

1
.4
4
1

0
.5
7
7

0
.9
2
2

0
.3
9
9

0
.0
1
9

ya
go

_
su

b
0
.0
2
5

0
.0
3
0

0
.0
2
3

0
.0
5
8

0
.0
2
3

0
.0
2
2

0
.0
2
3

0
.0
4
8

0
.0
2
2

0
.0
2
6

0
.1
4
6

0
.0
9
7

0
.0
7
4

0
.0
8
6

0
.0
5
7

0
.3
4
2

0
.1
3
7

0
.2
2
5

0
.1
0
2

0
.0
2
0

ci
te

se
er

_
su

b
0
.0
8
3

0
.0
8
9

0
.0
5
9

0
.0
7
1

0
.0
3
8

0
.0
7
2

0
.0
5
4

0
.0
5
5

0
.0
2
9

0
.0
3
2

0
.5
8
0

0
.2
8
5

0
.2
2
3

0
.0
9
5

0
.0
8
7

1
.1
8
7

0
.6
4
2

0
.5
7
4

0
.3
1
8

0
.0
2
6

ar
X

iv
0
.2
4
7

0
.2
5
8

0
.2
2
3

0
.0
7
6

0
.0
4
7

0
.2
9
9

0
.2
4
2

0
.1
3
0

0
.0
9
1

0
.0
2
4

1
.2
0
9

1
.2
1
6

0
.6
3
7

0
.0
4
6

0
.0
4
7

6
.4
4
5

2
.7
9
0

3
.4
6
4

1
.6
5
7

0
.0
1
8

am
az

e
0
.0
1
2

0
.0
1
4

0
.0
1
3

0
.0
3
0

0
.0
1
3

0
.0
1
1

0
.0
1
3

0
.0
4
8

0
.0
1
3

0
.0
1
6

0
.0
1
0

0
.0
1
5

0
.0
0
9

0
.0
3
1

0
.0
0
9

0
.0
8
9

0
.0
0
9

0
.1
0
2

0
.0
0
9

0
.0
0
9

ke
gg

0
.0
1
4

0
.0
1
5

0
.0
1
5

0
.0
3
3

0
.0
1
5

0
.0
1
4

0
.0
1
5

0
.0
5
3

0
.0
1
5

0
.0
3
2

0
.0
1
0

0
.0
1
6

0
.0
0
9

0
.0
3
1

0
.0
0
9

0
.0
9
4

0
.0
0
9

0
.1
0
2

0
.0
0
9

0
.0
1
0

na
sa

0
.0
2
6

0
.0
3
1

0
.0
2
9

0
.0
4
8

0
.0
2
7

0
.0
3
2

0
.0
3
1

0
.0
5
4

0
.0
2
6

0
.0
2
2

0
.0
6
1

0
.0
5
8

0
.0
4
4

0
.0
4
4

0
.0
2
2

1
.6
2
7

0
.1
4
8

0
.3
5
1

0
.0
4
4

0
.0
0
8

xm
ar

k
0
.0
3
1

0
.0
3
2

0
.0
2
7

0
.0
5
2

0
.0
2
6

0
.0
4
2

0
.0
3
1

0
.0
5
5

0
.0
2
3

0
.0
2
4

0
.0
3
6

0
.0
4
9

0
.0
2
6

0
.0
3
2

0
.0
1
4

0
.4
3
2

0
.0
4
5

2
.1
6
3

0
.0
2
1

0
.0
0
8

vc
ho

cy
c

0
.0
1
6

0
.0
1
6

0
.0
1
7

0
.0
5
0

0
.0
1
7

0
.0
1
3

0
.0
1
7

0
.0
4
7

0
.0
1
7

0
.0
2
9

0
.0
1
5

0
.0
2
4

0
.0
1
4

0
.0
3
9

0
.0
1
4

0
.2
4
1

0
.0
1
5

0
.0
9
6

0
.0
1
5

0
.0
0
7

m
tb

rv
0
.0
1
7

0
.0
1
6

0
.0
1
8

0
.0
5
0

0
.0
1
8

0
.0
1
3

0
.0
1
8

0
.0
4
7

0
.0
1
8

0
.0
2
9

0
.0
1
7

0
.0
2
5

0
.0
1
7

0
.0
3
9

0
.0
1
6

0
.2
3
3

0
.0
1
9

0
.1
0
5

0
.0
1
7

0
.0
0
6

an
th

ra
0
.0
1
7

0
.0
1
8

0
.0
1
9

0
.0
5
4

0
.0
1
9

0
.0
1
3

0
.0
1
9

0
.0
4
7

0
.0
2
0

0
.0
3
3

0
.0
1
4

0
.0
2
5

0
.0
1
4

0
.0
4
3

0
.0
1
4

0
.2
8
3

0
.0
1
5

0
.0
8
7

0
.0
1
4

0
.0
0
5

ec
oo

0
.0
1
7

0
.0
1
7

0
.0
1
9

0
.0
5
3

0
.0
1
9

0
.0
1
3

0
.0
1
9

0
.0
4
7

0
.0
1
9

0
.0
5
5

0
.0
1
5

0
.0
2
7

0
.0
1
4

0
.0
4
0

0
.0
1
4

0
.2
6
6

0
.0
1
5

0
.1
1
1

0
.0
1
4

0
.0
0
6

ag
ro

cy
c

0
.0
1
8

0
.0
1
7

0
.0
2
1

0
.0
5
4

0
.0
2
1

0
.0
1
3

0
.0
2
1

0
.0
4
6

0
.0
2
1

0
.0
3
3

0
.0
1
4

0
.0
2
7

0
.0
1
4

0
.0
4
2

0
.0
1
4

0
.2
4
9

0
.0
1
5

0
.1
3
9

0
.0
1
5

0
.0
0
6

hu
m

an
0
.0
2
5

0
.0
2
5

0
.0
3
3

0
.0
9
7

0
.0
3
3

0
.0
1
5

0
.0
3
3

0
.0
4
5

0
.0
3
3

0
.0
7
2

0
.0
2
2

0
.0
3
6

0
.0
2
2

0
.0
8
3

0
.0
2
2

0
.2
8
1

0
.0
2
2

0
.1
1
8

0
.0
2
2

0
.0
0
6

p2
p-

G
nu

te
lla

31
0
.0
3
1

0
.0
3
0

0
.0
3
7

0
.1
1
1

0
.0
3
7

0
.0
1
7

0
.0
3
7

0
.0
4
6

0
.0
3
6

0
.1
0
0

0
.0
2
6

0
.0
3
7

0
.0
2
6

0
.0
7
0

0
.0
2
6

0
.1
9
1

0
.0
2
6

0
.2
7
4

0
.0
2
6

0
.0
2
3

em
ai

l-
E

uA
ll

0
.0
5
4

0
.0
6
2

0
.0
6
1

0
.1
6
1

0
.0
6
2

0
.0
5
5

0
.0
6
2

0
.0
4
5

0
.0
6
1

5
.2
6
7

0
.0
4
2

0
.0
5
8

0
.0
4
2

0
.2
0
4

0
.0
4
2

0
.3
4
2

0
.0
4
2

0
.1
9
7

0
.0
4
2

2
.8
5
8

w
eb

-G
oo

gl
e

0
.0
7
7

0
.0
7
9

0
.0
7
6

0
.1
7
5

0
.0
7
5

0
.0
8
1

0
.0
7
6

0
.0
5
2

0
.0
7
0

1
.4
0
0

0
.0
4
9

0
.0
6
8

0
.0
4
8

0
.1
9
0

0
.0
4
8

0
.4
5
8

0
.0
4
8

0
.2
3
7

0
.0
4
8

1
.4
0
5

so
c-

L
iv

eJ
ou

rn
al

1
0
.0
6
5

0
.0
6
2

0
.0
7
0

0
.1
9
2

0
.0
7
2

0
.0
5
7

0
.0
7
2

0
.0
4
6

0
.0
6
9

3
.7
8
5

0
.0
5
8

0
.0
7
7

0
.0
5
8

0
.2
4
0

0
.0
5
8

0
.4
4
6

0
.0
5
8

0
.2
0
1

0
.0
5
8

1
.8
0
6

w
ik

i-
T
al

k
0
.0
7
5

0
.0
7
3

0
.0
8
3

0
.2
6
9

0
.0
8
3

0
.0
4
9

0
.0
8
3

0
.0
4
4

0
.0
8
3

0
.0
5
8

0
.0
7
7

0
.0
5
7

0
.3
3
0

0
.0
5
7

0
.3
5
6

0
.0
5
7

0
.1
7
2

0
.0
5
7

M
in

0
.0
1
2

0
.0
1
4

0
.0
1
3

0
.0
3
0

0
.0
1
3

0
.0
1
1

0
.0
1
3

0
.0
4
2

0
.0
1
3

0
.0
1
0

0
.0
1
5

0
.0
0
9

0
.0
3
1

0
.0
0
9

0
.0
8
9

0
.0
0
9

0
.0
8
7

0
.0
0
9

A
v
er

ag
e

2
.3
8
2

1
.1
8
8

1
.1
5
4

0
.2
6
0

0
.1
4
9

3
.7
2
7

3
.7
9
3

1
.3
4
5

1
.3
5
8

3
7
.5
5
4

1
1
.5
0
8

1
1
.0
6
9

0
.3
9
9

0
.3
4
5

1
1
8
.8
3
5

1
0
9
.0
1
4

4
2
.6
3
2

3
3
.6
9
9

M
a
x

8
2
.9
6
0

3
6
.1
9
3

3
6
.1
3
9

3
.0
9
2

2
.4
4
9

1
3
9
.5
4
4

1
4
2
.7
3
1

5
1
.1
2
5

5
1
.0
4
6

8
7
0
.7
8
7

2
4
7
.7
0
0
2
4
6
.2
1
8

4
.6
2
5

4
.7
7
5

3
5
2
4
.7
3
4

3
4
6
2
.7
9
0

9
7
1
.8
0
7
9
4
4
.5
2
6

K. Hanauer, C. Schulz, and J. Trummer 13:21

Ta
bl

e
A

.7
Av

er
ag

e
qu

er
y

tim
es

in
µs

fo
r

10
00

00
ra

nd
om

(le
ft)

an
d

20
00

00
m

ix
ed

qu
er

ie
s

(r
ig

ht
).

H
ig

hl
ig

ht
ed

re
su

lts
ar

e
th

e
ov

er
al

lb
es

t/
se

co
nd

-b
es

t
af

te
r

Ma
tr

ix
pe

r
qu

er
y

se
t

ov
er

al
lt

es
te

d
al

go
rit

hm
s.

←
ra

nd
om

m
ix

ed
→

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

O’
R
+

In
st

an
ce

pB
iB

FS
PR

ea
CH

PR
ea

CH
PP

L
PP

L
IP

(d
)

IP
(d

)
BF

L(
d)

BF
L(

d)
Ma

tr
ix

pB
iB

FS
PR

ea
CH

PR
ea

CH
PP

L
PP

L
IP

(d
)

IP
(d

)
BF

L(
d)

BF
L(

d)
Ma

tr
ix

kr
on

_
lo

gn
12

0
.1
2
0

0
.1
2
0

0
.0
8
4

0
.0
4
5

0
.0
2
8

0
.6
3
5

0
.2
5
1

3
.0
1
4

0
.3
0
0

0
.0
1
9

0
.1
9
4

0
.1
9
7

0
.1
3
9

0
.0
3
9

0
.0
2
9

1
.1
2
1

0
.4
3
3

1
.6
9
4

0
.5
1
6

0
.0
1
6

kr
on

_
lo

gn
16

0
.7
7
6

0
.8
2
1

0
.6
2
8

0
.1
5
5

0
.0
8
1

5
.4
6
3

2
.2
9
7

7
.1
9
4

2
.2
1
5

1
.0
0
6

1
.6
8
2

1
.7
8
8

1
.3
5
1

0
.1
4
3

0
.0
8
8

1
2
.9
4
3

5
.3
1
7

1
2
.6
1
4

4
.9
3
2

0
.1
1
0

kr
on

_
lo

gn
17

0
.6
0
6

0
.6
0
7

0
.2
3
7

0
.1
8
0

0
.0
9
2

4
.0
4
0

1
.0
0
1

3
.6
1
7

0
.4
8
2

1
.3
2
6

1
.2
5
8

1
.3
3
3

0
.3
8
9

0
.1
7
6

0
.0
9
7

1
0
.3
6
1

2
.3
6
2

5
.0
6
1

0
.9
3
2

0
.1
7
3

kr
on

_
lo

gn
20

7
.3
2
7

4
.2
7
3

3
.9
9
8

0
.2
7
6

0
.1
5
0

5
3
.8
5
3

2
6
.2
3
9

5
9
.3
1
9

2
6
.6
3
8

2
.4
3
0

2
3
.1
8
3

1
2
.6
5
1

1
1
.7
5
3

0
.2
8
5

0
.2
0
7

1
7
1
.5
8
4

8
2
.0
1
6

1
8
7
.0
3
6

8
1
.3
8
4

0
.3
9
3

kr
on

_
lo

gn
21

1
0
.3
6
4

2
.4
5
8

1
.0
6
4

0
.3
1
1

0
.1
7
9

4
4
.5
6
6

2
7
.5
9
2

3
3
.3
1
8

1
7
.0
8
9

3
3
.6
7
7

7
.8
0
6

3
.0
8
5

0
.3
2
3

0
.2
6
6

1
5
3
.7
9
8

9
7
.0
1
8

1
0
2
.0
1
3

5
6
.9
8
2

ra
nd

n2
0-

21
0
.2
6
0

0
.4
1
9

0
.3
0
6

0
.2
8
4

0
.1
5
2

0
.2
2
4

0
.1
8
9

0
.0
5
6

0
.1
1
6

1
.7
7
1

0
.7
9
5

0
.7
1
0

0
.5
6
0

0
.3
9
1

0
.2
9
1

1
.3
8
7

1
.0
0
5

0
.4
6
6

0
.4
2
0

0
.3
7
2

ra
nd

n2
0-

22
3
.0
0
7

2
.5
5
2

2
.3
6
3

0
.4
3
1

0
.3
3
9

2
.4
9
4

2
.4
4
5

0
.3
5
5

0
.4
2
0

1
.0
6
0

1
9
.3
5
6

1
2
.2
2
7

1
2
.0
9
0

0
.8
0
6

0
.8
2
4

2
8
.1
6
3

2
8
.0
4
6

4
.8
8
2

4
.9
0
4

0
.3
3
8

ra
nd

n2
0-

23
1
1
0
.8
6
7

4
2
.8
8
0

4
2
.5
2
0

2
.9
6
3

2
.4
0
5

2
7
8
.2
9
5
2
7
9
.2
6
6

8
9
.9
5
3

8
7
.1
7
8

5
.2
4
2

4
7
7
.0
0
9

1
4
1
.8
6
5
1
4
0
.7
0
5

3
.9
7
7

3
.7
1
5
1
7
9
4
.9
2
5
1
8
0
5
.9
2
2

5
1
1
.4
4
0
4
9
7
.8
7
0

0
.3
5
5

ra
nd

n2
3-

24
0
.3
5
5

1
.0
3
3

0
.7
8
4

0
.4
1
3

0
.2
2
4

0
.3
1
0

0
.2
6
6

0
.0
5
6

0
.1
7
1

1
.0
7
3

0
.9
2
8

0
.7
3
9

0
.5
5
3

0
.4
0
1

1
.8
1
9

1
.3
1
4

0
.5
8
0

0
.5
4
7

ra
nd

n2
3-

25
4
.1
6
0

3
.9
1
6

3
.6
7
1

0
.5
5
5

0
.4
3
3

3
.3
2
3

3
.2
3
0

0
.4
1
9

0
.5
4
0

2
7
.9
2
7

1
6
.2
1
2

1
6
.0
9
2

0
.9
0
1

0
.9
2
0

3
6
.9
1
6

3
6
.9
1
4

6
.1
3
0

6
.1
7
5

de
la

un
ay

_
n1

5
0
.1
3
3

0
.1
7
5

0
.0
7
7

0
.1
3
3

0
.0
5
4

0
.2
2
9

0
.1
0
2

0
.0
9
1

0
.0
4
5

0
.0
6
4

0
.6
8
5

0
.1
6
6

0
.1
2
0

0
.1
2
9

0
.0
8
0

2
.8
4
6

1
.4
0
6

0
.4
2
0

0
.3
0
7

0
.0
5
6

de
la

un
ay

_
n2

0
0
.2
3
6

0
.4
0
8

0
.2
2
6

0
.2
9
5

0
.1
3
9

0
.3
6
3

0
.1
7
6

0
.0
5
8

0
.1
1
8

0
.9
9
2

1
.6
3
9

0
.3
6
1

0
.3
0
1

0
.3
6
8

0
.2
9
2

4
.8
0
0

3
.3
1
8

1
.1
2
8

0
.9
8
2

0
.3
8
4

de
la

un
ay

_
n2

2
0
.2
8
0

0
.6
5
0

0
.3
1
5

0
.3
7
3

0
.1
8
1

0
.4
1
7

0
.2
2
0

0
.0
5
6

0
.1
5
4

1
.8
5
6

0
.4
3
0

0
.3
7
1

0
.4
7
8

0
.3
7
7

4
.9
0
0

3
.7
3
1

1
.5
0
2

1
.3
5
4

ci
te

se
er

.s
cc

0
.0
5
7

0
.0
7
7

0
.0
5
7

0
.2
3
5

0
.0
5
7

0
.0
5
0

0
.0
5
7

0
.0
4
3

0
.0
5
7

1
.3
2
3

0
.1
0
5

0
.0
9
5

0
.1
0
6

0
.2
9
4

0
.1
0
6

0
.2
4
3

0
.1
0
6

0
.1
2
4

0
.1
0
6

0
.3
8
5

ci
te

se
er

x
0
.2
0
8

0
.2
5
3

0
.2
3
8

0
.3
6
9

0
.1
3
8

0
.1
6
4

0
.1
6
3

0
.0
7
9

0
.1
3
4

0
.3
9
7

0
.2
0
4

0
.1
7
9

0
.3
8
6

0
.1
2
1

1
.4
0
7

0
.3
0
1

0
.8
9
0

0
.2
2
7

ci
t-

P
at

en
ts

4
.1
0
7

3
.0
2
9

2
.8
5
7

0
.5
3
2

0
.3
2
9

3
.9
9
8

3
.8
8
9

0
.6
8
0

0
.7
4
3

1
2
1
.4
4
4

6
0
.4
8
8

5
9
.9
7
5

1
.3
0
1

1
.2
5
5

2
3
6
.1
6
6

2
4
0
.4
6
6

5
9
.5
2
3

5
8
.8
1
0

go
_

un
ip

ro
t

0
.1
0
8

0
.1
2
3

0
.1
0
3

0
.3
9
4

0
.1
0
1

0
.0
6
9

0
.1
0
1

0
.0
4
2

0
.1
0
1

1
0
3
.6
3
3

0
.4
1
1

0
.3
4
8

0
.4
8
5

0
.2
8
8

0
.6
1
0

0
.4
3
5

0
.3
7
8

0
.3
3
7

un
ip

ro
te

nc
_

22
m

0
.0
6
7

0
.0
6
8

0
.0
6
8

0
.2
6
0

0
.0
6
8

0
.0
4
5

0
.0
6
8

0
.0
4
3

0
.0
6
8

0
.0
9
3

0
.0
9
9

0
.0
9
2

0
.2
7
7

0
.0
9
2

0
.2
1
3

0
.0
9
2

0
.1
3
0

0
.0
9
2

un
ip

ro
te

nc
_

10
0m

0
.1
3
2

0
.1
6
5

0
.1
3
4

0
.4
1
9

0
.1
3
4

0
.0
9
8

0
.1
3
4

0
.0
4
3

0
.1
3
4

0
.1
4
9

0
.1
5
2

0
.1
4
8

0
.4
5
0

0
.1
4
8

0
.3
4
2

0
.1
4
8

0
.1
4
9

0
.1
4
8

un
ip

ro
te

nc
_

15
0m

0
.1
5
4

0
.2
1
0

0
.1
5
6

0
.4
5
4

0
.1
5
6

0
.1
1
6

0
.1
5
6

0
.0
4
4

0
.1
5
6

0
.1
7
0

0
.1
7
2

0
.1
7
0

0
.4
9
9

0
.1
7
0

0
.3
8
3

0
.1
7
0

0
.1
5
2

0
.1
7
0

go
_

su
b

0
.0
3
4

0
.0
4
6

0
.0
2
5

0
.0
6
4

0
.0
2
3

0
.0
5
4

0
.0
3
0

0
.0
7
6

0
.0
2
2

0
.0
2
7

0
.1
2
2

0
.0
9
9

0
.0
6
0

0
.0
7
7

0
.0
4
1

1
.2
5
9

0
.2
4
7

0
.2
1
2

0
.0
9
1

0
.0
2
1

pu
bm

ed
_

su
b

0
.0
8
3

0
.0
8
3

0
.0
6
1

0
.0
7
7

0
.0
3
8

0
.0
7
0

0
.0
5
4

0
.1
1
8

0
.0
3
3

0
.0
3
0

0
.3
1
8

0
.2
9
6

0
.2
0
5

0
.0
8
9

0
.0
5
9

0
.7
4
0

0
.3
1
6

0
.4
9
7

0
.2
2
0

0
.0
2
6

ya
go

_
su

b
0
.0
2
5

0
.0
3
1

0
.0
1
8

0
.0
6
4

0
.0
1
8

0
.0
2
2

0
.0
1
8

0
.0
6
1

0
.0
1
6

0
.0
2
7

0
.0
9
2

0
.0
7
0

0
.0
5
1

0
.0
7
6

0
.0
4
1

0
.1
8
8

0
.0
8
1

0
.1
4
7

0
.0
6
4

0
.0
2
3

ci
te

se
er

_
su

b
0
.0
8
5

0
.0
9
2

0
.0
6
0

0
.0
8
3

0
.0
4
1

0
.0
7
6

0
.0
5
6

0
.0
8
8

0
.0
3
0

0
.0
3
3

0
.3
3
8

0
.1
9
6

0
.1
4
6

0
.0
9
5

0
.0
6
6

0
.6
3
4

0
.3
4
7

0
.3
2
0

0
.1
7
9

0
.0
2
9

ar
X

iv
0
.3
7
9

0
.3
7
7

0
.2
5
3

0
.0
8
5

0
.0
4
9

1
.2
1
5

0
.6
2
2

1
.7
7
4

0
.3
2
2

0
.0
2
6

0
.7
4
3

0
.7
5
2

0
.4
3
3

0
.0
6
8

0
.0
4
9

3
.4
2
4

1
.6
0
6

1
.7
9
5

0
.8
7
7

0
.0
2
3

am
az

e
0
.0
1
5

0
.0
1
7

0
.0
1
4

0
.0
4
1

0
.0
1
4

0
.0
3
0

0
.0
1
4

1
.2
6
2

0
.0
1
4

0
.0
1
9

0
.0
1
5

0
.0
2
0

0
.0
1
5

0
.0
3
9

0
.0
1
5

0
.0
5
7

0
.0
1
5

0
.0
8
6

0
.0
1
5

0
.0
1
5

ke
gg

0
.0
1
5

0
.0
1
7

0
.0
1
5

0
.0
4
3

0
.0
1
5

0
.0
3
5

0
.0
1
5

1
.5
4
2

0
.0
1
5

0
.0
1
8

0
.0
1
6

0
.0
2
0

0
.0
1
5

0
.0
3
9

0
.0
1
5

0
.0
6
0

0
.0
1
5

0
.0
8
6

0
.0
1
5

0
.0
1
5

na
sa

0
.0
2
6

0
.0
3
0

0
.0
2
3

0
.0
5
4

0
.0
2
1

0
.0
4
1

0
.0
2
4

0
.0
9
4

0
.0
1
9

0
.0
2
4

0
.0
4
8

0
.0
5
1

0
.0
3
7

0
.0
5
6

0
.0
2
5

0
.8
3
8

0
.0
8
8

0
.2
0
9

0
.0
3
6

0
.0
1
9

xm
ar

k
0
.0
2
9

0
.0
3
0

0
.0
2
3

0
.0
5
9

0
.0
2
3

0
.0
4
9

0
.0
2
9

0
.1
8
8

0
.0
2
0

0
.0
2
5

0
.0
3
7

0
.0
4
6

0
.0
2
9

0
.0
5
3

0
.0
2
2

0
.2
3
9

0
.0
4
0

1
.1
1
8

0
.0
2
4

0
.0
2
0

vc
ho

cy
c

0
.0
1
7

0
.0
1
6

0
.0
1
7

0
.0
5
8

0
.0
1
6

0
.0
1
4

0
.0
1
6

0
.0
5
9

0
.0
1
6

0
.0
3
1

0
.0
2
0

0
.0
2
5

0
.0
1
9

0
.0
5
6

0
.0
1
9

0
.1
3
6

0
.0
1
9

0
.0
8
0

0
.0
2
0

0
.0
2
3

m
tb

rv
0
.0
1
6

0
.0
1
6

0
.0
1
7

0
.0
5
8

0
.0
1
6

0
.0
1
3

0
.0
1
6

0
.0
6
0

0
.0
1
6

0
.0
3
1

0
.0
2
1

0
.0
2
6

0
.0
2
0

0
.0
5
6

0
.0
2
0

0
.1
3
2

0
.0
2
1

0
.0
8
5

0
.0
2
0

0
.0
2
4

an
th

ra
0
.0
1
7

0
.0
1
9

0
.0
1
7

0
.0
6
4

0
.0
1
7

0
.0
1
3

0
.0
1
7

0
.0
5
4

0
.0
1
7

0
.0
3
5

0
.0
2
0

0
.0
2
7

0
.0
1
9

0
.0
6
1

0
.0
2
0

0
.1
6
1

0
.0
2
0

0
.0
7
5

0
.0
2
0

0
.0
2
5

ec
oo

0
.0
1
7

0
.0
1
8

0
.0
1
7

0
.0
6
4

0
.0
1
7

0
.0
1
3

0
.0
1
7

0
.0
5
6

0
.0
1
7

0
.0
3
5

0
.0
2
0

0
.0
2
7

0
.0
2
0

0
.0
6
0

0
.0
2
0

0
.1
4
8

0
.0
2
0

0
.0
8
8

0
.0
2
0

0
.0
2
6

ag
ro

cy
c

0
.0
1
7

0
.0
1
8

0
.0
1
8

0
.0
6
4

0
.0
1
8

0
.0
1
4

0
.0
1
7

0
.0
5
5

0
.0
1
7

0
.0
3
6

0
.0
2
0

0
.0
2
7

0
.0
2
0

0
.0
6
1

0
.0
2
0

0
.1
4
3

0
.0
2
0

0
.1
0
0

0
.0
2
0

0
.0
2
6

hu
m

an
0
.0
2
4

0
.0
2
6

0
.0
2
6

0
.1
0
9

0
.0
2
6

0
.0
1
5

0
.0
2
6

0
.0
4
8

0
.0
2
6

0
.0
7
4

0
.0
2
8

0
.0
3
3

0
.0
2
7

0
.1
0
8

0
.0
2
7

0
.1
5
9

0
.0
2
7

0
.0
9
1

0
.0
2
7

0
.0
4
6

p2
p-

G
nu

te
lla

31
0
.0
3
0

0
.0
3
4

0
.0
3
1

0
.1
2
3

0
.0
3
0

0
.0
1
9

0
.0
3
0

0
.1
0
4

0
.0
3
0

0
.1
0
2

0
.0
3
3

0
.0
3
7

0
.0
3
2

0
.1
2
6

0
.0
3
2

0
.1
1
6

0
.0
3
3

0
.1
7
3

0
.0
3
2

0
.0
7
2

em
ai

l-
E

uA
ll

0
.0
5
8

0
.0
6
9

0
.0
5
6

0
.1
7
5

0
.0
5
7

0
.0
7
5

0
.0
5
7

0
.4
5
1

0
.0
5
6

5
.4
9
7

0
.0
6
2

0
.0
7
2

0
.0
6
0

0
.2
0
0

0
.0
6
0

0
.2
1
8

0
.0
6
1

0
.1
3
4

0
.0
6
0

0
.3
1
8

w
eb

-G
oo

gl
e

0
.0
8
1

0
.0
9
4

0
.0
7
9

0
.2
0
4

0
.0
7
9

0
.1
4
7

0
.0
7
9

1
.1
8
7

0
.0
7
4

1
.4
6
1

0
.0
7
5

0
.0
8
4

0
.0
7
1

0
.2
2
4

0
.0
7
2

0
.2
9
2

0
.0
7
3

0
.1
5
7

0
.0
7
0

0
.2
6
2

so
c-

L
iv

eJ
ou

rn
al

1
0
.0
7
5

0
.0
7
7

0
.0
7
4

0
.2
3
9

0
.0
7
6

0
.1
5
2

0
.0
7
5

1
.6
6
8

0
.0
7
3

3
.0
7
4

0
.0
8
0

0
.0
8
9

0
.0
7
7

0
.2
6
0

0
.0
7
8

0
.2
7
4

0
.0
7
8

0
.1
3
5

0
.0
7
7

0
.3
9
0

w
ik

i-
T
al

k
0
.0
7
6

0
.0
7
5

0
.0
7
6

0
.2
7
8

0
.0
7
6

0
.0
5
4

0
.0
7
6

0
.1
0
5

0
.0
7
6

0
.0
8
7

0
.0
9
5

0
.0
8
8

0
.3
1
9

0
.0
8
8

0
.2
2
8

0
.0
8
8

0
.1
2
3

0
.0
8
8

M
in

0
.0
1
5

0
.0
1
6

0
.0
1
4

0
.0
4
1

0
.0
1
4

0
.0
1
3

0
.0
1
4

0
.0
4
2

0
.0
1
4

0
.0
1
5

0
.0
2
0

0
.0
1
5

0
.0
3
9

0
.0
1
5

0
.0
5
7

0
.0
1
5

0
.0
7
5

0
.0
1
5

A
v
er

ag
e

3
.5
2
3

1
.5
9
6

1
.4
8
3

0
.2
7
1

0
.1
4
9

9
.7
7
8

8
.5
1
6

5
.0
6
3

3
.3
6
1

1
9
.9
6
4

6
.3
5
1

6
.1
0
2

0
.3
5
2

0
.2
5
8

6
0
.3
5
2

5
6
.4
3
3

2
2
.0
0
2

1
7
.5
4
1

M
a
x

1
1
0
.8
6
7

4
2
.8
8
0

4
2
.5
2
0

2
.9
6
3

2
.4
0
5

2
7
8
.2
9
5
2
7
9
.2
6
6

8
9
.9
5
3

8
7
.1
7
8

4
7
7
.0
0
9

1
4
1
.8
6
5
1
4
0
.7
0
5

3
.9
7
7

3
.7
1
5
1
7
9
4
.9
2
5
1
8
0
5
.9
2
2

5
1
1
.4
4
0
4
9
7
.8
7
0

SEA 2021

13:22 O’Reach: Even Faster Reachability in Large Graphs

Ta
bl

e
A

.8
Sp

ee
du

ps
w

ith
O’

Re
ac

h
pl

us
fa

llb
ac

k
ov

er
pu

re
fa

llb
ac

k
al

go
rit

hm
.

Va
lu

es
gr

ea
te

r
1.

00
ar

e
hi

gh
lig

ht
ed

.

ne
ga

ti
ve

po
si

ti
ve

ra
nd

om
m

ix
ed

In
st

an
ce

PR
ea

CH
PP

L
TF

IP
(s

)
IP

(d
)

BF
L(

s)
BF

L(
d)

PR
ea

CH
PP

L
TF

IP
(s

)
IP

(d
)

BF
L(

s)
BF

L(
d)

PR
ea

CH
PP

L
TF

IP
(s

)
IP

(d
)

BF
L(

s)
BF

L(
d)

PR
ea

CH
PP

L
TF

IP
(s

)
IP

(d
)

BF
L(

s)
BF

L(
d)

kr
on

_
lo

gn
12

1
.1
6

1
.6
5

2
.9
9

0
.9
7

1
.0
0

1
.8
7

2
.1
1

1
.4
3

1
.1
1

2
.3
0

2
.4
5

2
.6
9

3
.1
3

3
.3
3

1
.4
3

1
.5
8

2
.5
8

2
.3
4

2
.5
3

9
.8
6

1
0
.0
6

1
.4
2

1
.3
2

2
.3
9

2
.4
1

2
.5
9

3
.0
6

3
.2
8

kr
on

_
lo

gn
16

0
.8
3

1
.4
5

0
.6
8

0
.6
9

0
.9
9

1
.0
5

1
.3
1

1
.0
8

2
.2
9

2
.4
4

2
.4
2

2
.5
7

1
.3
1

1
.9
0

2
.2
7

2
.3
8

3
.1
6

3
.2
5

1
.3
2

1
.6
1

2
.2
8

2
.4
3

2
.4
1

2
.5
6

kr
on

_
lo

gn
17

0
.9
2

1
.5
7

0
.7
3

0
.7
3

0
.9
3

0
.9
9

3
.6
7

1
.5
2

4
.3
4

4
.4
7

5
.1
4

5
.7
2

2
.5
7

1
.9
4

3
.9
8

4
.0
4

6
.9
2

7
.5
0

3
.4
2

1
.8
2

4
.2
7

4
.3
9

4
.8
8

5
.4
3

kr
on

_
lo

gn
20

0
.9
2

1
.8
5

0
.8
4

0
.8
3

0
.9
0

0
.9
2

1
.0
8

1
.0
3

2
.0
7

2
.0
9

2
.2
1

2
.3
0

1
.0
7

1
.8
4

2
.0
2

2
.0
5

2
.1
6

2
.2
3

1
.0
8

1
.3
8

2
.0
7

2
.0
9

2
.2
1

2
.3
0

kr
on

_
lo

gn
21

0
.9
0

1
.8
0

0
.8
2

0
.8
0

0
.8
0

0
.8
3

2
.5
7

0
.8
8

1
.6
5

1
.5
9

1
.7
5

1
.7
9

2
.3
1

1
.7
4

1
.6
7

1
.6
2

1
.9
0

1
.9
5

2
.5
3

1
.2
2

1
.6
5

1
.5
9

1
.7
5

1
.7
9

ra
nd

n2
0-

21
1
.4
6

1
.8
1

1
.9
2

1
.4
3

1
.1
4

0
.3
6

0
.4
6

1
.2
2

1
.1
9

1
.3
8

1
.5
6

1
.4
0

1
.2
2

1
.2
3

1
.3
7

1
.8
7

2
.0
0

1
.4
4

1
.1
9

0
.3
9

0
.4
9

1
.2
7

1
.3
4

1
.5
3

1
.3
7

1
.3
8

1
.0
8

1
.1
1

ra
nd

n2
0-

22
1
.0
8

1
.2
7

1
.5
0

1
.0
3

1
.0
2

0
.9
4

0
.8
3

1
.0
0

0
.9
0

1
.1
5

1
.0
1

1
.0
0

1
.0
1

1
.0
0

1
.0
8

1
.2
7

1
.5
2

1
.0
5

1
.0
2

0
.9
4

0
.8
5

1
.0
1

0
.9
8

1
.2
3

1
.0
2

1
.0
0

1
.0
0

1
.0
0

ra
nd

n2
0-

23
1
.0
0

1
.2
6

1
.0
5

0
.9
8

1
.0
1

1
.0
0

1
.0
1

0
.9
7

1
.0
1

1
.0
2

1
.0
2

1
.0
3

1
.0
1

1
.2
3

1
.0
3

1
.0
0

1
.0
2

1
.0
3

1
.0
1

1
.0
7

1
.0
4

0
.9
9

1
.0
1

1
.0
3

ra
nd

n2
3-

24
1
.1
6

1
.8
7

2
.0
8

1
.3
8

1
.1
7

0
.2
7

0
.3
3

1
.1
7

1
.2
2

1
.4
3

1
.4
4

1
.4
0

1
.1
9

1
.2
0

1
.3
2

1
.8
4

2
.0
6

1
.4
7

1
.1
7

0
.2
6

0
.3
3

1
.2
6

1
.3
8

1
.6
2

1
.4
1

1
.3
8

1
.0
3

1
.0
6

ra
nd

n2
3-

25
1
.0
8

1
.2
8

1
.5
3

1
.0
4

1
.0
3

0
.8
9

0
.7
7

1
.0
0

0
.8
8

1
.1
3

1
.0
1

1
.0
0

1
.0
0

1
.0
0

1
.0
7

1
.2
8

1
.5
3

1
.2
8

1
.0
3

0
.9
0

0
.7
8

1
.0
1

0
.9
8

1
.2
3

1
.0
0

1
.0
0

0
.9
9

0
.9
9

de
la

un
ay

_
n1

5
2
.2
4

2
.1
6

2
.7
1

2
.8
0

2
.1
4

0
.8
8

1
.1
9

0
.9
6

0
.9
4

1
.3
4

2
.1
4

1
.9
3

1
.3
4

1
.3
4

2
.2
6

2
.4
6

3
.0
2

2
.7
5

2
.2
4

1
.7
3

2
.0
2

1
.3
9

1
.6
2

1
.8
3

2
.1
2

2
.0
2

1
.3
3

1
.3
7

de
la

un
ay

_
n2

0
1
.8
7

2
.0
3

2
.5
9

2
.6
3

1
.9
4

0
.3
1

0
.4
4

0
.8
4

1
.0
0

1
.3
4

1
.4
6

1
.4
3

1
.2
0

1
.2
0

1
.8
1

2
.1
3

2
.7
0

2
.7
8

2
.0
6

0
.3
5

0
.4
9

1
.2
0

1
.2
6

1
.6
2

1
.5
2

1
.4
5

1
.1
4

1
.1
5

de
la

un
ay

_
n2

2
1
.5
2

2
.0
5

2
.6
8

2
.5
1

1
.8
8

0
.2
5

0
.3
5

0
.7
2

1
.0
0

1
.2
9

1
.2
9

1
.2
8

1
.1
7

1
.1
6

2
.0
6

2
.0
6

2
.6
6

2
.5
3

1
.8
9

0
.2
6

0
.3
6

1
.1
6

1
.2
7

1
.6
1

1
.4
5

1
.3
1

1
.1
1

1
.1
1

ci
te

se
er

.s
cc

1
.3
5

4
.1
1

0
.4
2

0
.9
3

0
.8
9

0
.6
2

0
.7
8

0
.7
9

2
.7
0

2
.6
8

2
.8
5

3
.4
3

1
.3
7

1
.6
0

1
.3
5

4
.1
1

0
.5
1

0
.9
0

0
.8
7

0
.6
0

0
.7
5

0
.8
9

2
.7
7

2
.0
2

2
.0
0

2
.2
9

0
.9
8

1
.1
6

ci
te

se
er

x
0
.9
9

2
.5
5

2
.9
7

1
.0
0

0
.9
3

0
.4
1

0
.4
1

1
.1
2

3
.4
7

1
6
.9
9

4
.1
2

5
.8
9

4
.1
7

5
.7
9

1
.0
7

2
.6
7

3
.0
1

1
.0
6

1
.0
1

0
.5
4

0
.5
9

1
.1
4

3
.2
0

9
.6
6

3
.5
1

4
.6
7

3
.1
8

3
.9
3

ci
t-

P
at

en
ts

1
.0
7

1
.6
0

2
.0
2

1
.0
3

1
.0
3

0
.9
7

0
.8
9

1
.0
1

0
.9
2

1
.1
6

0
.9
9

0
.9
8

1
.0
0

1
.0
1

1
.0
6

1
.6
2

2
.0
3

1
.0
6

1
.0
3

0
.9
8

0
.9
2

1
.0
1

1
.0
4

1
.2
6

1
.0
3

0
.9
8

1
.0
0

1
.0
1

go
_

un
ip

ro
t

1
.2
2

3
.9
2

1
.0
8

0
.7
0

0
.7
0

0
.3
4

0
.4
3

1
.1
4

1
.2
3

1
.3
8

1
.4
5

1
.4
8

1
.2
6

1
.3
3

1
.2
0

3
.8
9

1
.0
7

0
.6
8

0
.6
8

0
.3
3

0
.4
2

1
.1
8

1
.6
8

1
.3
9

1
.3
6

1
.4
0

1
.0
6

1
.1
2

un
ip

ro
te

nc
_

22
m

1
.0
2

3
.8
2

1
.2
0

0
.6
8

0
.6
8

0
.5
0

0
.6
5

1
.0
5

3
.8
0

2
.4
9

4
.6
0

4
.6
3

2
.4
1

2
.7
2

1
.0
0

3
.8
3

1
.2
0

0
.6
7

0
.6
7

0
.4
9

0
.6
3

1
.0
8

3
.0
2

1
.7
8

2
.3
3

2
.3
3

1
.1
4

1
.4
2

un
ip

ro
te

nc
_

10
0m

1
.2
5

3
.1
4

1
.4
3

0
.7
6

0
.7
5

0
.2
5

0
.3
3

0
.9
2

3
.8
3

2
.9
5

4
.2
1

4
.2
7

1
.7
0

1
.9
7

1
.2
4

3
.1
4

1
.4
3

0
.7
4

0
.7
3

0
.2
5

0
.3
2

1
.0
3

3
.0
3

2
.1
0

2
.2
7

2
.3
1

0
.8
4

1
.0
1

un
ip

ro
te

nc
_

15
0m

1
.3
5

2
.9
1

1
.5
0

0
.7
7

0
.7
6

0
.2
2

0
.2
9

0
.8
7

3
.6
7

2
.9
7

3
.9
7

4
.0
7

1
.5
0

1
.7
2

1
.3
5

2
.9
2

1
.5
1

0
.7
6

0
.7
5

0
.2
2

0
.2
8

1
.0
1

2
.9
3

2
.1
4

2
.2
5

2
.2
5

0
.7
4

0
.8
9

go
_

su
b

1
.6
5

2
.2
5

1
.6
3

2
.2
8

1
.6
0

1
.7
7

2
.3
3

1
.5
8

1
.6
7

4
.4
6

6
.2
8

5
.4
7

2
.4
4

2
.3
1

1
.8
2

2
.7
6

2
.0
4

2
.3
4

1
.8
3

2
.8
4

3
.4
4

1
.6
6

1
.8
8

3
.7
9

6
.1
7

5
.1
0

2
.3
4

2
.3
3

pu
bm

ed
_

su
b

1
.1
4

1
.5
3

1
.4
6

1
.0
6

1
.0
2

1
.2
4

1
.5
8

1
.4
4

1
.2
2

1
.4
3

2
.0
8

2
.5
0

2
.3
6

2
.3
1

1
.3
5

2
.0
5

1
.9
2

1
.3
4

1
.2
9

2
.9
1

3
.6
1

1
.4
5

1
.5
1

1
.5
3

1
.9
8

2
.3
4

2
.3
0

2
.2
6

ya
go

_
su

b
1
.2
8

2
.5
4

1
.0
3

1
.0
5

0
.9
3

1
.7
4

2
.2
2

1
.3
1

1
.5
1

1
.4
0

2
.2
2

2
.5
0

1
.9
6

2
.1
9

1
.7
1

3
.6
5

1
.6
4

1
.4
3

1
.2
5

3
.1
0

3
.7
9

1
.3
7

1
.8
6

1
.4
4

2
.0
7

2
.3
1

1
.9
5

2
.2
9

ci
te

se
er

_
su

b
1
.5
0

1
.8
9

1
.7
1

1
.5
1

1
.3
3

1
.5
1

1
.8
7

1
.2
8

1
.1
0

1
.2
8

1
.8
7

1
.8
5

1
.8
9

1
.8
1

1
.5
3

2
.0
3

1
.9
1

1
.5
5

1
.3
6

2
.4
9

2
.9
0

1
.3
4

1
.4
4

1
.4
4

1
.9
0

1
.8
2

1
.8
5

1
.7
9

ar
X

iv
1
.1
6

1
.6
1

2
.6
7

1
.2
5

1
.2
4

1
.2
8

1
.4
2

1
.9
1

0
.9
8

1
.6
1

2
.1
2

2
.3
1

2
.1
2

2
.0
9

1
.4
9

1
.7
5

2
.4
2

1
.9
2

1
.9
5

4
.7
2

5
.5
2

1
.7
4

1
.3
8

2
.0
4

1
.9
5

2
.1
3

2
.0
7

2
.0
5

am
az

e
1
.0
5

2
.3
1

0
.8
4

0
.8
5

0
.8
3

2
.9
8

3
.7
2

1
.6
8

3
.4
0

2
.3
8

9
.1
1

9
.8
0

7
.7
6

1
1
.2
1

1
.1
7

2
.9
1

1
.3
5

1
.9
4

2
.1
0

8
7
.9
2

9
0
.0
1

1
.3
4

2
.6
2

1
.6
2

3
.5
9

3
.8
6

4
.1
5

5
.8
5

ke
gg

0
.9
7

2
.1
4

0
.8
5

1
.0
1

0
.9
4

2
.7
2

3
.5
4

1
.6
6

3
.3
4

2
.2
8

9
.1
7

1
0
.0
3

7
.2
9

1
0
.8
8

1
.1
7

2
.8
7

1
.3
6

2
.2
4

2
.3
3

1
0
5
.2
9

1
0
5
.0
7

1
.3
1

2
.6
2

1
.6
1

3
.7
3

3
.9
6

4
.0
1

5
.7
9

na
sa

1
.0
5

1
.7
7

1
.5
0

1
.3
4

1
.0
4

1
.6
3

2
.0
9

1
.3
3

1
.9
9

5
.1
7

1
3
.3
7

1
1
.0
2

6
.3
8

7
.8
9

1
.3
5

2
.6
1

2
.2
3

2
.0
6

1
.7
1

4
.3
6

4
.9
1

1
.3
7

2
.2
6

3
.5
5

1
1
.4
9

9
.5
5

4
.8
7

5
.8
8

xm
ar

k
1
.1
8

2
.0
1

1
.5
7

1
.4
1

1
.3
6

1
.8
5

2
.3
6

1
.8
7

2
.1
9

3
.9
9

9
.4
8

9
.6
8

9
7
.9
0

1
0
3
.1
7

1
.3
1

2
.5
3

1
.9
7

1
.8
1

1
.7
1

8
.7
7

9
.4
0

1
.6
0

2
.3
7

2
.6
9

6
.1
3

5
.9
9

4
4
.7
6

4
5
.8
3

vc
ho

cy
c

0
.9
3

2
.9
5

1
.8
4

0
.8
7

0
.7
5

2
.2
1

2
.8
1

1
.7
2

2
.8
6

5
.5
7

3
8
.8
0

1
6
.4
0

5
.3
4

6
.4
3

0
.9
7

3
.5
9

2
.3
1

0
.9
7

0
.8
5

3
.0
3

3
.6
8

1
.3
2

2
.9
4

3
.3
1

1
5
.1
0

6
.9
9

3
.2
5

4
.1
0

m
tb

rv
0
.8
7

2
.7
5

1
.4
6

0
.8
3

0
.6
9

2
.0
5

2
.6
2

1
.4
9

2
.3
6

4
.3
1

3
0
.5
0

1
2
.2
6

4
.6
1

6
.2
5

0
.9
8

3
.5
9

1
.9
5

0
.9
9

0
.8
2

3
.1
2

3
.7
6

1
.2
7

2
.8
1

2
.8
8

1
4
.4
1

6
.1
8

3
.0
9

4
.2
0

an
th

ra
0
.9
6

2
.8
5

1
.7
8

0
.7
2

0
.7
1

1
.9
1

2
.4
2

1
.8
4

3
.1
9

2
2
.6
5

2
5
.9
0

1
8
.6
4

4
.8
7

6
.3
7

1
.1
0

3
.7
2

2
.4
2

0
.7
9

0
.7
8

2
.6
3

3
.1
8

1
.3
6

3
.1
2

9
.4
1

1
0
.8
1

7
.9
3

2
.8
1

3
.7
4

ec
oo

0
.9
0

2
.8
8

1
.8
5

0
.8
0

0
.6
9

2
.0
5

2
.5
2

1
.9
5

2
.8
8

7
.0
9

2
0
.2
6

1
7
.7
4

5
.8
2

7
.7
7

1
.0
3

3
.7
3

2
.4
8

0
.8
7

0
.7
8

2
.6
5

3
.3
0

1
.3
9

3
.0
8

4
.0
3

8
.1
1

7
.3
0

3
.2
8

4
.4
4

ag
ro

cy
c

0
.8
2

2
.5
8

1
.6
7

0
.7
1

0
.6
2

1
.7
7

2
.2
1

1
.9
1

3
.0
4

2
9
.0
5

3
7
.5
8

1
6
.4
8

8
.1
9

9
.2
8

0
.9
9

3
.6
5

2
.4
5

1
.0
0

0
.7
9

2
.6
3

3
.1
5

1
.3
8

3
.1
3

1
1
.8
7

1
4
.2
2

7
.0
7

4
.1
2

5
.0
7

hu
m

an
0
.7
8

2
.9
7

1
.2
3

0
.4
6

0
.4
5

1
.0
7

1
.4
0

1
.6
5

3
.8
6

2
3
.0
0

1
4
.9
4

1
2
.7
4

4
.4
2

5
.4
7

1
.0
1

4
.2
6

1
.9
9

0
.5
9

0
.5
7

1
.4
6

1
.8
6

1
.2
0

3
.9
9

1
0
.7
0

6
.7
5

5
.8
1

2
.5
9

3
.3
4

p2
p-

G
nu

te
lla

31
0
.8
1

3
.0
1

1
.2
8

0
.4
6

0
.4
6

0
.9
7

1
.2
5

1
.4
3

2
.7
0

4
.4
7

6
.6
6

7
.3
6

8
.3
1

1
0
.5
7

1
.1
0

4
.0
9

1
.9
4

0
.6
3

0
.6
4

3
.1
3

3
.5
1

1
.1
6

3
.9
2

3
.1
5

3
.2
5

3
.5
6

4
.2
7

5
.3
8

em
ai

l-
E

uA
ll

1
.0
2

2
.6
2

0
.5
9

0
.9
1

0
.8
9

0
.5
7

0
.7
3

1
.4
0

4
.9
2

4
.0
5

8
.0
4

8
.2
4

3
.8
6

4
.7
5

1
.2
3

3
.0
7

1
.0
4

1
.3
0

1
.3
1

8
.0
6

8
.0
4

1
.2
0

3
.3
2

2
.4
8

3
.5
0

3
.5
8

1
.7
2

2
.2
3

w
eb

-G
oo

gl
e

1
.0
4

2
.3
2

1
.8
1

1
.1
1

1
.0
7

0
.5
6

0
.7
4

1
.4
0

3
.9
2

5
.0
8

9
.1
2

9
.4
4

4
.1
8

4
.9
0

1
.1
9

2
.5
8

2
.2
4

1
.8
4

1
.8
6

1
6
.6
2

1
6
.0
3

1
.1
8

3
.1
3

3
.2
0

3
.8
8

4
.0
0

1
.8
2

2
.2
4

so
c-

L
iv

eJ
ou

rn
al

1
0
.8
9

2
.6
9

1
.4
0

0
.8
0

0
.8
0

0
.4
9

0
.6
6

1
.3
2

4
.1
1

5
.0
9

7
.3
9

7
.6
3

2
.9
0

3
.4
4

1
.0
4

3
.1
5

2
.2
9

1
.9
6

2
.0
1

2
3
.8
4

2
2
.7
5

1
.1
5

3
.3
5

3
.1
7

3
.4
0

3
.5
0

1
.3
6

1
.7
5

w
ik

i-
T
al

k
0
.8
9

3
.2
4

1
.1
5

0
.6
0

0
.5
9

0
.4
0

0
.5
3

1
.3
5

5
.7
6

5
.1
7

6
.0
1

6
.2
1

2
.2
2

3
.0
0

0
.9
8

3
.6
5

1
.3
4

0
.7
0

0
.7
1

1
.2
2

1
.3
8

1
.0
9

3
.6
3

2
.8
8

2
.5
2

2
.6
0

1
.0
5

1
.4
0

G
eo

m
et

r
ic

M
ea

n
1
.1
0

2
.2
2

1
.0
0

0
.9
2

0
.8
8

1
.0
6

1
.3
3

1
.9
0

4
.2
1

3
.9
8

2
.7
9

3
.1
4

1
.2
9

2
.5
3

1
.3
5

1
.2
6

2
.1
2

2
.4
0

1
.2
9

2
.0
4

2
.9
4

2
.7
7

2
.0
2

2
.3
1

R
at

io
R

u
n
ti

m
e

A
vg

s
1
.0
3

1
.7
5

1
.0
6

0
.9
8

1
.0
0

0
.9
9

1
.0
4

1
.1
6

1
.0
7

1
.0
9

1
.1
5

1
.2
7

1
.0
8

1
.8
2

1
.1
5

1
.1
5

1
.3
1

1
.5
1

1
.0
4

1
.3
6

1
.0
9

1
.0
7

1
.1
4

1
.2
5

A
v
er

ag
e

1
.1
3

2
.3
2

1
.0
9

0
.9
8

1
.1
1

1
.3
5

1
.4
1

2
.2
5

7
.5
9

5
.8
7

5
.4
8

6
.2
5

1
.3
3

2
.6
9

1
.5
2

1
.4
1

7
.9
6

8
.2
2

1
.3
3

2
.2
3

4
.0
5

3
.3
7

3
.2
1

3
.6
3

K. Hanauer, C. Schulz, and J. Trummer 13:23

Table A.9 Average query times in µs for 100 000 negative (left) and positive queries (right).
Highlighted results are the overall best/second-best after Matrix per query set over all tested
algorithms.

← negative positive→
O’R + O’R + O’R + O’R + O’R + O’R +

Instance TF TF IP(s) IP(s) BFL(s) BFL(s) TF TF IP(s) IP(s) BFL(s) BFL(s)

kron_logn12 0.448 0.150 0.025 0.025 0.074 0.039 2.222 0.966 2.214 0.903 3.100 0.992
kron_logn16 0.072 0.106 0.177 0.179 29.244 12.765 23.413 9.661
kron_logn17 0.091 0.124 0.111 0.119 27.734 6.396 9.437 1.835
kron_logn20 0.164 0.195 0.351 0.388 345.677 167.109 341.645 154.522
kron_logn21 0.204 0.249 0.225 0.281 316.522 191.688 184.889 105.423

randn20-21 0.287 0.150 0.319 0.223 0.044 0.123 0.501 0.364 2.832 1.815 0.837 0.687
randn20-22 0.449 0.299 4.248 4.126 0.840 0.898 1.337 1.160 84.935 83.959 18.779 18.685
randn20-23 198.518 188.459 96.362 95.814 4 720.272 4 656.298 1 683.9891 656.785
randn23-24 0.438 0.211 0.453 0.328 0.046 0.171 0.732 0.513 3.785 2.635 1.045 0.880
randn23-25 0.607 0.396 5.394 5.178 0.950 1.064 1.589 1.404 113.423 112.633 23.804 23.875

delaunay_n15 0.150 0.055 0.336 0.120 0.040 0.045 0.243 0.181 5.105 2.385 0.655 0.490
delaunay_n20 0.367 0.141 0.588 0.223 0.038 0.124 0.664 0.495 8.549 5.864 2.085 1.739
delaunay_n22 0.475 0.177 0.667 0.266 0.039 0.154 0.818 0.635 8.575 6.658 2.818 2.403

citeseer.scc 0.023 0.056 0.052 0.056 0.034 0.056 0.301 0.112 0.320 0.112 0.154 0.112
citeseerx 0.450 0.152 0.183 0.183 0.063 0.154 2.615 0.154 2.792 0.678 2.007 0.482
cit-Patents 1.078 0.533 6.259 6.049 1.845 1.904 10.640 9.168 701.034 708.037 245.211 244.524
go_uniprot 0.115 0.107 0.069 0.098 0.033 0.098 44.738 32.490 0.924 0.637 0.613 0.488
uniprotenc_22m 0.080 0.066 0.045 0.066 0.033 0.066 0.180 0.072 0.332 0.072 0.174 0.072
uniprotenc_100m 0.187 0.131 0.099 0.131 0.033 0.131 0.348 0.118 0.497 0.118 0.201 0.118
uniprotenc_150m 0.229 0.153 0.117 0.153 0.034 0.153 0.411 0.139 0.551 0.139 0.208 0.139

go_sub 0.042 0.026 0.089 0.039 0.044 0.025 0.338 0.076 4.302 0.685 0.385 0.158
pubmed_sub 0.069 0.047 0.070 0.066 0.055 0.044 0.228 0.160 1.482 0.714 1.260 0.535
yago_sub 0.024 0.023 0.026 0.024 0.037 0.021 0.085 0.060 0.250 0.113 0.178 0.091
citeseer_sub 0.066 0.038 0.100 0.066 0.046 0.030 0.155 0.121 1.247 0.666 0.600 0.317
arXiv 0.681 0.255 0.354 0.283 0.173 0.136 1.470 0.915 6.698 3.161 4.315 2.034

amaze 0.011 0.013 0.011 0.013 0.039 0.013 0.022 0.009 0.083 0.009 0.071 0.009
kegg 0.013 0.015 0.015 0.015 0.041 0.015 0.021 0.009 0.086 0.009 0.068 0.009
nasa 0.039 0.026 0.046 0.034 0.042 0.026 0.130 0.025 2.216 0.166 0.307 0.048
xmark 0.040 0.025 0.047 0.033 0.043 0.023 0.081 0.020 0.461 0.049 2.160 0.022
vchocyc 0.031 0.017 0.015 0.017 0.037 0.017 0.076 0.014 0.571 0.015 0.080 0.015
mtbrv 0.026 0.018 0.015 0.018 0.037 0.018 0.071 0.016 0.569 0.019 0.078 0.017
anthra 0.033 0.019 0.014 0.019 0.037 0.019 0.307 0.014 0.385 0.015 0.067 0.014
ecoo 0.034 0.019 0.015 0.019 0.038 0.019 0.100 0.014 0.308 0.015 0.084 0.014
agrocyc 0.035 0.021 0.015 0.021 0.037 0.021 0.402 0.014 0.559 0.015 0.118 0.014
human 0.040 0.033 0.015 0.033 0.035 0.033 0.496 0.022 0.328 0.022 0.096 0.022

p2p-Gnutella31 0.047 0.037 0.017 0.037 0.035 0.036 0.115 0.026 0.173 0.026 0.215 0.026
email-EuAll 0.036 0.061 0.056 0.062 0.035 0.061 0.168 0.042 0.334 0.042 0.160 0.042
web-Google 0.135 0.074 0.086 0.077 0.039 0.070 0.246 0.048 0.442 0.048 0.202 0.048
soc-LiveJournal1 0.099 0.071 0.057 0.072 0.034 0.069 0.298 0.058 0.432 0.058 0.170 0.058
wiki-Talk 0.095 0.083 0.050 0.083 0.033 0.083 0.297 0.057 0.344 0.057 0.127 0.057

Min 0.011 0.013 0.033 0.013 0.083 0.009 0.067 0.009
Average 5.342 5.059 2.496 2.506 156.016 145.532 62.338 54.329
Max 198.518 188.459 96.362 95.814 4 720.272 4 656.298 1 683.9891 656.785

SEA 2021

13:24 O’Reach: Even Faster Reachability in Large Graphs

Table A.10 Average query times in µs for 100 000 random (left) and 200 000 mixed queries
(right). Highlighted results are the overall best/second-best after Matrix per query set over all
tested algorithms.

← random mixed→
O’R + O’R + O’R + O’R + O’R + O’R +

Instance TF TF IP(s) IP(s) BFL(s) BFL(s) TF TF IP(s) IP(s) BFL(s) BFL(s)

kron_logn12 0.995 0.385 0.631 0.269 2.933 0.297 1.349 0.564 1.128 0.469 1.594 0.520
kron_logn16 6.212 2.731 6.794 2.148 14.705 6.440 11.845 4.923
kron_logn17 5.507 1.385 3.515 0.508 13.973 3.269 4.795 0.983
kron_logn20 54.122 26.731 54.180 25.126 173.231 83.873 170.936 77.473
kron_logn21 45.584 27.339 30.225 15.939 158.059 95.937 92.489 52.906

randn20-21 0.293 0.147 0.329 0.228 0.047 0.118 0.413 0.269 1.593 1.160 0.450 0.417
randn20-22 0.452 0.297 4.161 3.978 0.840 0.895 0.921 0.747 44.638 43.895 9.833 9.813
randn20-23 393.758 382.669 161.427 157.768 2 454.174 2 367.299 891.487 879.033
randn23-24 0.449 0.218 0.450 0.306 0.044 0.173 0.610 0.377 2.139 1.513 0.556 0.542
randn23-25 0.619 0.405 5.551 4.324 0.993 1.106 1.131 0.919 59.395 59.119 12.398 12.506

delaunay_n15 0.168 0.055 0.371 0.135 0.077 0.045 0.212 0.116 2.742 1.292 0.359 0.271
delaunay_n20 0.372 0.138 0.604 0.217 0.041 0.118 0.533 0.330 4.657 3.064 1.075 0.946
delaunay_n22 0.479 0.180 0.671 0.265 0.040 0.154 0.669 0.415 4.744 3.268 1.429 1.290

citeseer.scc 0.029 0.057 0.052 0.057 0.035 0.057 0.215 0.106 0.213 0.106 0.104 0.106
citeseerx 0.448 0.149 0.184 0.174 0.078 0.143 1.587 0.164 1.543 0.440 1.048 0.329
cit-Patents 1.064 0.525 6.626 6.270 1.869 1.911 5.937 4.717 353.571 343.027 123.587 123.261
go_uniprot 0.109 0.101 0.069 0.101 0.033 0.101 22.618 16.328 0.540 0.397 0.342 0.322
uniprotenc_22m 0.081 0.068 0.046 0.068 0.033 0.068 0.163 0.092 0.213 0.092 0.104 0.092
uniprotenc_100m 0.191 0.134 0.098 0.134 0.033 0.134 0.311 0.148 0.337 0.148 0.124 0.148
uniprotenc_150m 0.236 0.156 0.118 0.156 0.034 0.156 0.365 0.170 0.382 0.170 0.126 0.170

go_sub 0.047 0.023 0.091 0.039 0.063 0.022 0.196 0.052 2.166 0.351 0.220 0.094
pubmed_sub 0.080 0.042 0.084 0.062 0.115 0.039 0.158 0.103 0.787 0.398 0.667 0.290
yago_sub 0.030 0.018 0.027 0.019 0.050 0.016 0.062 0.043 0.145 0.070 0.115 0.059
citeseer_sub 0.077 0.040 0.106 0.068 0.078 0.031 0.119 0.083 0.693 0.364 0.330 0.179
arXiv 0.751 0.311 1.291 0.674 1.929 0.408 1.112 0.545 3.571 1.832 2.253 1.088

amaze 0.019 0.014 0.028 0.014 1.232 0.014 0.024 0.015 0.053 0.015 0.061 0.015
kegg 0.020 0.015 0.034 0.015 1.545 0.015 0.024 0.015 0.056 0.015 0.060 0.015
nasa 0.044 0.020 0.055 0.027 0.083 0.019 0.092 0.026 1.150 0.100 0.181 0.037
xmark 0.044 0.022 0.053 0.029 0.174 0.020 0.067 0.025 0.261 0.043 1.106 0.025
vchocyc 0.037 0.016 0.016 0.016 0.049 0.016 0.063 0.019 0.294 0.019 0.064 0.020
mtbrv 0.031 0.016 0.016 0.016 0.050 0.016 0.058 0.020 0.307 0.021 0.063 0.020
anthra 0.041 0.017 0.014 0.017 0.045 0.017 0.183 0.019 0.219 0.020 0.056 0.020
ecoo 0.043 0.017 0.015 0.017 0.045 0.017 0.079 0.020 0.165 0.020 0.065 0.020
agrocyc 0.043 0.017 0.018 0.018 0.046 0.017 0.232 0.020 0.287 0.020 0.082 0.020
human 0.051 0.026 0.015 0.026 0.037 0.026 0.290 0.027 0.184 0.027 0.070 0.027

p2p-Gnutella31 0.058 0.030 0.019 0.030 0.093 0.030 0.102 0.032 0.106 0.033 0.138 0.032
email-EuAll 0.059 0.057 0.074 0.057 0.452 0.056 0.150 0.060 0.213 0.061 0.103 0.060
web-Google 0.175 0.078 0.147 0.080 1.231 0.074 0.229 0.072 0.285 0.073 0.127 0.070
soc-LiveJournal1 0.172 0.075 0.148 0.075 1.748 0.073 0.246 0.078 0.266 0.078 0.105 0.077
wiki-Talk 0.102 0.076 0.054 0.076 0.093 0.076 0.253 0.088 0.221 0.088 0.093 0.088

Min 0.014 0.014 0.033 0.014 0.053 0.015 0.056 0.015
Average 12.865 11.193 6.645 5.073 80.572 73.625 32.456 28.496
Max 393.758 382.669 161.427 157.768 2 454.174 2 367.299 891.487 879.033

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 O'Reach: Faster Reachability via Observations
	4.1 Extended Topological Orderings
	4.2 Supportive Vertices
	4.3 The Complete Algorithm

	5 Experimental Evaluation
	5.1 Experimental Results

	6 Conclusion
	A Appendix

