Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH Schloss Dagstuhl - Leibniz-Zentrum für Informatik GmbH scholarly article en Hespe, Demian; Lamm, Sebastian; Schorr, Christian https://www.dagstuhl.de/lipics License: Creative Commons Attribution 4.0 license (CC BY 4.0)
when quoting this document, please refer to the following
DOI:
URN: urn:nbn:de:0030-drops-137893
URL:

; ;

Targeted Branching for the Maximum Independent Set Problem

pdf-format:


Abstract

Finding a maximum independent set is a fundamental NP-hard problem that is used in many real-world applications. Given an unweighted graph, this problem asks for a maximum cardinality set of pairwise non-adjacent vertices. In recent years, some of the most successful algorithms for solving this problem are based on the branch-and-bound or branch-and-reduce paradigms. In particular, branch-and-reduce algorithms, which combine branch-and-bound with reduction rules, have been able to achieve substantial results, solving many previously infeasible real-world instances. These results were to a large part achieved by developing new, more practical reduction rules. However, other components that have been shown to have a significant impact on the performance of these algorithms have not received as much attention. One of these is the branching strategy, which determines what vertex is included or excluded in a potential solution. Even now, the most commonly used strategy selects vertices solely based on their degree and does not take into account other factors that contribute to the performance of the algorithm.
In this work, we develop and evaluate several novel branching strategies for both branch-and-bound and branch-and-reduce algorithms. Our strategies are based on one of two approaches which are motivated by existing research. They either (1) aim to decompose the graph into two or more connected components which can then be solved independently, or (2) try to remove vertices that hinder the application of a reduction rule which can lead to smaller graphs. Our experimental evaluation on a large set of real-world instances indicates that our strategies are able to improve the performance of the state-of-the-art branch-and-reduce algorithm by Akiba and Iwata. To be more specific, our reduction-based packing branching rule is able to outperform the default branching strategy of selecting a vertex of highest degree on 65% of all instances tested. Furthermore, our decomposition-based strategy based on edge cuts is able to achieve a speedup of 2.29 on sparse networks (1.22 on all instances).

BibTeX - Entry

@InProceedings{hespe_et_al:LIPIcs.SEA.2021.17,
  author =	{Hespe, Demian and Lamm, Sebastian and Schorr, Christian},
  title =	{{Targeted Branching for the Maximum Independent Set Problem}},
  booktitle =	{19th International Symposium on Experimental Algorithms (SEA 2021)},
  pages =	{17:1--17:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-185-6},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{190},
  editor =	{Coudert, David and Natale, Emanuele},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/opus/volltexte/2021/13789},
  URN =		{urn:nbn:de:0030-drops-137893},
  doi =		{10.4230/LIPIcs.SEA.2021.17},
  annote =	{Keywords: Graphs, Combinatorial Optimization, Independent Set, Vertex Cover, Clique, Branch-and-Reduce, Branch-and-Bound, Data Reduction}
}

Keywords: Graphs, Combinatorial Optimization, Independent Set, Vertex Cover, Clique, Branch-and-Reduce, Branch-and-Bound, Data Reduction
Seminar: 19th International Symposium on Experimental Algorithms (SEA 2021)
Issue date: 2021
Date of publication: 31.05.2021
Supplementary Material: Software (Source Code): https://github.com/Hespian/CutBranching archived at: https://archive.softwareheritage.org/swh:1:dir:ba9fbe7f94ffb2b8563f5057a97481404d236781


DROPS-Home | Fulltext Search | Imprint | Privacy Published by LZI