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Abstract
Motivated by a rigidity-theoretic perspective on the Localization Problem in 2D, we develop an
algorithm for computing circuit polynomials in the algebraic rigidity matroid CMn associated to the
Cayley-Menger ideal for n points in 2D. We introduce combinatorial resultants, a new operation
on graphs that captures properties of the Sylvester resultant of two polynomials in the algebraic
rigidity matroid. We show that every rigidity circuit has a construction tree from K4 graphs based
on this operation. Our algorithm performs an algebraic elimination guided by the construction tree,
and uses classical resultants, factorization and ideal membership. To demonstrate its effectiveness,
we implemented our algorithm in Mathematica: it took less than 15 seconds on an example where a
Gröbner Basis calculation took 5 days and 6 hrs.
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1 Introduction

This paper addresses combinatorial, algebraic and algorithmic aspects of a question motivated
by the following ubiquitous problem from distance geometry:

Localization. A graph together with weights associated to its edges is given. The goal is
to find placements of the graph in some Euclidean space, so that the edge lengths match
the given weights. In this paper, we work in 2D. A system of quadratic equations can be
easily set up so that the possible placements are among the (real) solutions of this system.
Rigidity Theory can help predict, a priori, whether the set of solutions will be discrete (if the
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given weighted graph is rigid) or continuous (if the graph is flexible). In the rigid case, the
double-exponential Gröbner basis algorithm can be used, in principle, to eliminate all but
one of the variables. Once a polynomial in a single variable is obtained, numerical methods
are used to solve it. We then select one solution, substitute it in the original equations,
eliminate to get a polynomial in a new variable and repeat.

Single unknown distance problem. Instead of attempting to directly compute the coordin-
ates of all the vertices, we restrict our attention to the related problem of finding the possible
values of a single unknown distance corresponding to a non-edge (a pair of vertices that
are not connected by an edge). Indeed, if we could solve this problem for a collection of
non-edge pairs that form a trilateration when added to the original collection of edges, then
a single solution in Cartesian coordinates could be easily computed afterwards in linearly
many steps of quadratic equation solving.

Rigidity circuits. We formulate the single unknown distance problem in terms of Cayley-
coordinates (squared distances between points) rather than Cartesian xy-coordinates. Known
theorems from Distance Geometry, Rigidity Theory and Matroid Theory help reduce this
problem to finding a certain irreducible polynomial in the Cayley-Menger ideal, called the
circuit polynomial. Its support is a graph called a circuit in the rigidity matroid, or shortly
a rigidity circuit. Substituting given edge lengths in the circuit polynomial results in a
uni-variate polynomial which can be solved for the unknown distance.

The focus of this paper is the following:

▶ Main Problem. Given a rigidity circuit, compute its corresponding circuit polynomial.

Related work. While both distance geometry and rigidity theory have a distinguished
history for which a comprehensive overview would be too long to include here, very little is
known about computing circuit polynomials. To the best of our knowledge, their study in
arbitrary polynomial ideals was initiated in the PhD thesis of Rosen [23]. His Macaulay2
code [24] is useful for exploring small cases, but the Cayley-Menger ideal is beyond its reach.
A recent article [25] popularizes algebraic matroids and uses for illustration the smallest
circuit polynomial K4 in the Cayley-Menger ideal. We could not find non-trivial examples
anywhere. Indirectly related to our problem are results such as [28], where an explicit
univariate polynomial of degree 8 is computed (for an unknown angle in a K3,3 configuration
given by edge lengths, from which the placement of the vertices is determined) and [26],
for its usage of Cayley coordinates in the study of configuration spaces of some families of
distance graphs. A closely related problem is that of computing the number of embeddings
of a minimally rigid graph [4], which has received a lot of attention in recent years (e.g.
[6, 1, 10, 9], to name a few). References to specific results in the literature that are relevant
to the theory developed here and to our proofs are given throughout the paper.

How tractable is the problem? Circuit polynomial computations can be done, in principle,
with the double-exponential time Gröbner basis algorithm with an elimination order. The
largest we could do with the GroebnerBasis function of Mathematica 12 (running on a
2019 iMac computer with 6 cores at 3.7Ghz and 16GB RAM) was the Desargues-plus-one
(Fig. 1) circuit (658, 175 terms), which took 5 days and 6 hours. In all other cases the
execution timed out or crashed. Our goal is to make such calculations more tractable by
taking advantage of structural information inherent in the problem.
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Our results. We describe a new algorithm to compute a circuit polynomial with known
support. It relies on resultant-based elimination steps guided by a novel inductive construction
for rigidity circuits. While inductive constructions have been often used in Rigidity Theory,
most notably the Henneberg sequences for Laman graphs [14] and Henneberg II sequences for
rigidity circuits [2], we argue that our construction is more natural due to its direct algebraic
interpretation. We have implemented our method in Mathematica and applied it successfully
to compute all circuit polynomials on up to 6 vertices and a few on 7 vertices, the largest of
which having over two million terms. The previously mentioned example that took over 5
days to complete with GroebnerBasis, was solved by our algorithm in less than 15 seconds.

Main theorems. We first define the combinatorial resultant of two graphs as an abstraction
of the classical resultant. Our main theoretical result is split into the combinatorial Theorem 1
and the algebraic Theorem 2, each with an algorithmic counterpart.

▶ Theorem 1. Each rigidity circuit can be obtained, inductively, by applying combinatorial
resultant operations starting from K4 circuits. The construction is captured by a binary
resultant tree whose nodes are intermediate rigidity circuits and whose leaves are K4 graphs.

Theorem 1 leads to a graph algorithm for finding a combinatorial resultant tree of a circuit.
Each step of the construction can be carried out in polynomial time using variations on the
Pebble Game matroidal sparsity algorithms [18] combined with Hopcroft and Tarjan’s linear
time 3-connectivity algorithm [15]. However, it is conceivable that the resultant tree could
be exponentially large with non-repeating subtrees, and thus the entire construction could
take an exponential number of steps: understanding in detail the algorithmic complexity of
our method remains a problem for further investigation.

▶ Theorem 2. Each circuit polynomial can be obtained, inductively, from K4 circuit poly-
nomials by applying resultant operations in a manner guided by the combinatorial resultant
tree from Theorem 1. At each step, the resultant produces a polynomial that may not be
irreducible. A polynomial factorization and a test of membership in the ideal may need to be
applied to identify the factor which is the circuit polynomial.

The resulting algebraic elimination algorithm runs in exponential time, in part because of
the growth in size of the polynomials that are being produced. Several interesting theoretical
open questions remain, whose answers may affect the precise time complexity analysis.

Computational experiments. We implemented our algorithms in Mathematica V12.1.1.0
on two computers with the following specifications: Intel i5-9300H 2.4GHz, 32 GB RAM,
Windows 10 64-bit; and Intel i5-9600K 3.7GHz, 16 GB RAM, macOS Mojave 10.14.5. We
also explored Macaulay2, but it was much slower than Mathematica (hours vs. seconds) in
computing one of our examples. The polynomials resulting from our calculations, summarized
in Table 1 at the end of the paper, are made available on a github repository [19].

Overview of the paper. In Section 2 we introduce the background concepts from matroid
theory and rigidity theory. We introduce combinatorial resultants in Section 3, prove
Theorem 1 and describe the algorithm for computing a combinatorial resultant tree. In
Section 4 we introduce the background concepts pertaining to algebraic matroids in the
Cayley-Menger ideal and elimination theory. In Section 5 we prove Theorem 2. We conclude
in Section 6 with a summary of the preliminary experimental results we carried with our
implementation. For complete details and a self-contained presentation, including relevant
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definitions and results from Rigidity Theory, Matroid Theory, Ideals, the Cayley-Menger
ideal, Resultants and Elimination theory, complete proofs and further details on our results,
the reader should refer to the full version of the paper, currently available on the arxiv [21].

2 Preliminaries: circuits in the rigidity matroid

We start with the combinatorial aspects of our problem. In this section we review well-known
concepts and results from combinatorial rigidity theory that are relevant for our paper.

Notation. We work with (sub)graphs given by subsets E of edges of the complete graph
Kn on vertices [n] := {1, · · · , n}. If G is a (sub)graph, then V (G), resp. E(G) denote its
vertex, resp. edge set. The support of G is E(G). The vertex span V (E) of edges E is the
set of all edge-endpoint vertices. A subgraph G is spanning if its edge set E(G) spans [n].
The neighbours N(v) of v are the vertices adjacent to v in G.

Rigid graphs. Let G = (V, E) be an undirected graph and let ℓ = {ℓij |ij ∈ E} be a collection
of numbers interpreted as lengths associated to its edges. Up to rigid transformations, in
how many ways can we place the vertices of G at points in the plane, so that the segments
corresponding to edges have the prescribed lengths? The answer can be a finite number or
a continuum of possibilities, and it depends in principle on both G and ℓ. For all but a
measure zero set of possible lengths (said to be generic2), the answer depends only on G.
We say that G is rigid if, for generic edge lengths, the number of placements is finite, and
flexible otherwise. G is said to be minimally rigid if it is rigid, but it becomes flexible when
any of its edges is removed.

Laman graphs. Minimally rigid graphs are characterized by Laman’s Theorem [17]: a graph
G = (V, E) is minimally rigid in 2D iff (a) G is (2, 3)-sparse (no subset of n′ ≤ n = |V |
vertices spans more than 2n′ − 3 edges) and (b) G is (2, 3)-tight (has a total of 2n − 3 edges).
Graphs with these two properties will be called Laman graphs. A Laman-plus-one graph is
obtained by adding one edge to a Laman graph: it has a total of 2n − 2 edges and thus it
violates the (2, 3)-sparsity condition on V and possibly on some other proper subsets of V .

Matroids. A matroid is an abstraction capturing (in)dependence relations among collections
of elements from a ground set, and is inspired by both linear dependencies (among, say, rows
of a matrix) and by algebraic constraints imposed by algebraic equations on a collection
of otherwise free ("independent") variables. The standard way to specify a matroid is via
its independent sets, which have to satisfy certain axioms [22] (skipped here, since they are
not relevant for our presentation). A base is a maximal independent set and a dependent
set is one which is not independent. A minimal dependent set is called a circuit. Relevant
for our purposes are the following general aspects: (a) (hereditary property) a subset of an
independent set is also independent; (b) all bases have the same cardinality, called the rank
of the matroid. Further properties will be introduced in context, as needed. In this paper we
encounter two types of matroids: a graphic matroid, defined on a ground set given by all
the edges En := {ij : 1 ≤ i < j ≤ n} of the complete graph Kn; this is the (2, 3)-sparsity

2 Many results in Rigidity Theory are often using the very strong assumption that the edge lengths should
be algebraically independent in order to be generic; this assumption simplifies the proofs but is not
necessary and would preclude any effective algorithmic application of generic graphs.
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matroid or the generic rigidity matroid described below; and an algebraic matroid, defined
on an isomorphic ground set of variables Xn := {xij : 1 ≤ i < j ≤ n}; this is the algebraic
matroid for the Cayley-Menger ideal and will be introduced in Section 4. These matroids are
isomorphic (for a comprehensive proof, see [21]).

Figure 1 The four types of circuits on n = 6 vertices: 2D double-banana, 5-wheel W5, Desargues-
plus-one and K3,3-plus-one.

Circuits in the Rigidity Matroid. Laman graphs form the bases of the so-called (generic)
2D rigidity matroid. The independent sets are the (2, 3)-sparse graphs; the dependent sets
violate the (2, 3)-sparsity condition on at least one subset of vertices. A (rigidity) circuit is a
dependent graph with minimum edge support: removing any of its edges leads to a Laman
graph on its spanned vertex set. A spanning rigidity circuit has V as its vertex set (Fig. 1).
A Laman-plus-one graph contains a unique circuit. A spanning rigidity circuit C = (V, E) is
a special case of a Laman-plus-one graph: it has a total of 2n − 2 edges and it satisfies the
(2, 3)-sparsity condition on all proper subsets of n′ ≤ n − 1 vertices.

Operations on circuits. If G1 and G2 are two graphs, we use a consistent notation for
their number of vertices and edges ni = |V (Gi)|, mi = |E(Gi)|, i = 1, 2, and for their union
and intersection of vertices and edges, as in V∪ = V (G1) ∪ V (G2), V∩ = V (G1) ∩ V (G2),
n∪ = |V∪|, n∩ = |V∩| and similarly for edges, with m∪ = |E∪| and m∩ = |E∩|. Let C1 and
C2 be two circuits with exactly one common edge uv. Their 2-sum C := C1 ⊗ C2 is the
graph C = (V∪, E∪ \ {uv}). The inverse operation of splitting C into C1 and C2 is called a
2-split 3 (Fig. 2). It is easy to see that the 2-sum of two circuits is a circuit, and that any
2-split of a circuit gives a pair of circuits ([2], Lemmas 4.1, 4.2 or use sparsity).

Figure 2 Splitting twice a 2-connected circuit (left) to get three 3-connected circuits (right).

3 The 2-sum operation assumes that the two vertices of the summands coincide, and the 2-split operation
produces two graphs, shown as disjoint in Fig. 2, for clarity.

SoCG 2021
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Connectivity. A circuit is always a 2-connected graph (this follows easily from sparsity),
and for simplicity we refer to one that is not 3-connected as a 2-connected circuit. The Tutte
decomposition [27] of a graph into 3-connected components, applied on a circuit, induces
2-splits and produces smaller circuits: any 2-connected circuit can be constructed from
smaller 3-connected circuits via 2-sums (Fig. 2).

Inductive constructions for 3-connected circuits. A Henneberg II extension (also called
an edge splitting operation) is defined for an edge uv and a non-incident vertex w, as follows:
the edge uv is removed, a new vertex a and three new edges au, av, aw are added. Berg and
Jordan [2] have shown that, if G is a 3-connected circuit, then a Henneberg II extension on
G is also a 3-connected circuit. The inverse Henneberg II operation on a circuit removes one
vertex of degree 3 and adds a new edge among its three neighbors in such a way that the
result is also a circuit. Berg and Jordan have shown that every 3-connected circuit admits
an inverse Henneberg II operation which also maintains 3-connectivity. As a consequence, a
3-connected circuit has an inductive construction, i.e. it can be obtained from a single K4 by
Henneberg II extensions that maintain 3-connectivity. Their proof is based on the existence
of two non-adjacent vertices with 3-connected inverse Henneberg II circuits. We will make
use in Section 3 of the following weaker result, which does not require the maintenance of
3-connectivity in the inverse Henneberg II operation.

Figure 3 A Henneberg II extension of the Desargues-plus-one circuit.

▶ Lemma 3 (Theorem 3.8 in [2]). A 3-connected circuit with at least 5 vertices has either (a)
four vertices that admit an inverse Henneberg II to a circuit, or (b) three pairwise non-adjacent
vertices that admit an inverse Henneberg II to a circuit (not necessarily 3-connected).

3 Combinatorial resultants

We define now the combinatorial resultant operation on two graphs, prove Theorem 1 and
describe its algorithmic implications.

Figure 4 Circuit-invalid combinatorial resultant of two properly intersecting circuits. Left to
right: a 4-wheel W4, a complete K4 graph, their common Laman graph (dotted, with red elimination
edge) and the combinatorial resultant, which is a non-circuit Laman-plus-one graph.



G. Malić and I. Streinu 52:7

Combinatorial resultant. Let G1 and G2 be two distinct graphs with non-empty intersection
E∩ ≠ ∅ and let e ∈ E∩ be a common edge. The combinatorial resultant of G1 and G2 on the
elimination edge e is the graph CRes(G1, G2, e) with vertex set V∪ and edge set E∪ \ {e}.

The 2-sum is the special case when the two graphs have exactly one edge in common.
Circuits are closed under the 2-sum operation, but they are not closed under general
combinatorial resultants (Fig. 4). We are interested in combinatorial resultants that produce
circuits from circuits. The following Lemma gives a necessary condition.

▶ Lemma 4. The combinatorial resultant of two circuits has m = 2n−2 edges iff the common
subgraph G∩ of the two circuits is Laman.

Figure 5 Circuit-valid combinatorial resultant of two properly intersecting circuits. Left to right:
a 4-wheel W4, a complete K4 graph, their common Laman graph (dotted, with red elimination edge)
and their combinatorial resultant, the 5-wheel W5 circuit.

Proof. Let C be the combinatorial resultant with n vertices and m edges of two circuits C1
and C2 with ni vertices and mi edges, i = 1, 2. By inclusion-exclusion n = n1 + n2 − n∩ and
m = m1+m2−m∩−1. Substituting here the values for m1 = 2n1−2 and m2 = 2n2−2, we get
m = 2n1−2+2n2−2−m∩−1 = 2(n1+n2−n∩)−2+2n∩−3−m∩ = (2n−2)+(2n∩−3)−m∩.
We have m = 2n − 2 iff m∩ = 2n∩ − 3. Since both C1 and C2 are circuits, it is not possible
that one edge set be included in the other: circuits are minimally dependent sets of edges and
thus cannot contain other circuits. As a proper subset of both E1 = E(C1) and E2 = E(C2),
E∩ satisfies the hereditary (2, 3)-sparsity property. If furthermore G∩ has exactly 2n∩ − 3
edges, then it is Laman. ◀

Circuit-valid combinatorial resultant sequences. Two circuits are said to be properly
intersecting if their common subgraph is Laman. Being properly intersecting is a necessary
but not sufficient condition for the combinatorial resultant of two circuits to produce a circuit
(Fig. 4). A combinatorial resultant operation applied to two properly intersecting circuits is
said to be circuit-valid if it results in a spanning circuit (Fig. 5).

▶ Open Problem 1. Find necessary and sufficient conditions for the combinatorial resultant
of two circuits to be a circuit.

In Section 2 we have seen that a 2-connected circuit can be obtained from 3-connected
circuits via 2-sums. To complete the proof of Theorem 1 we show now:

▶ Proposition 5. Let C = (V, E) be a 3-connected circuit spanning n + 1 ≥ 5 vertices. Then,
in polynomial time, we can find two circuits A and B such that A has n vertices, B has at
most n vertices and C is a circuit-valid combinatorial resultant of A and B. Algorithm 1
summarizes the procedure.

SoCG 2021
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Algorithm 1 Inverse Combinatorial Resultant.
Input: 3-connected circuit C

Output: circuits A, B and edge e such that C = CRes(A, B, e)
1: for each vertex a of degree 3 do
2: if inverse Henneberg II is possible on a

3: and there is a non-adjacent degree 3 vertex b then
4: Get circuit A and edge e by inverse Henneberg II in C on a

5: Let D = C without b (and its edges) and with new edge e

6: Compute unique circuit B in D

7: return circuits A, B and edge e

8: end if
9: end for

Proof. We apply a weaker version of Lemma 3 to find two non-adjacent vertices a and b of
degree 3 such that a circuit A can be produced via an inverse Henneberg II operation on
vertex a in C (see Fig. 6). Let the neighbors N(a) = {u, v, w} of vertex a be labeled such
that e = uw is a non-edge in C and becomes an edge in the new circuit A = (V \ {a}, E \
{au, av, aw} ∪ {uv}).

Figure 6 The 3-connected circuit C spanning n + 1 vertices with two non-adjacent vertices a

(red) and b (blue) of degree 3. Their neighbors N(a) and N(b) may not be disjoint. An inverse
Henneberg II at a removes the red edges at a and adds dotted red edge e = uv. Circuit A (red).

Figure 7 Remove from C the edges from b (blue dotted) and add red edge e. Circuit B (blue).

To define circuit B, we first let L be the subgraph of C induced by V \ {b}. Simple
sparsity considerations show that L is a Laman graph. The graph D obtained from L by
adding the edge e = uv, as in Fig. 7 (left), is a Laman-plus-one graph containing the three
edges incident to a (which are not in A) and the edge e (which is in A). Thus D contains a
unique circuit B (Fig. 7 left) with edge e ∈ B (see e.g. [22, Proposition 1.1.6]). It remains to
prove that B contains a and its three incident edges. If B does not contain a, then it is a
proper subgraph of A: this contradicts the minimality of A as a circuit. Therefore a is a
vertex in B, and because a vertex in a circuit can not have degree less than 3, it follows that
B must contain all three of its incident edges.
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The combinatorial resultant CRes(A, B, e) of the circuits A and B with e the eliminated
edge satisfies the desired property that C = CRes(A, B, e). Algorithm 1 captures this
procedure. The main steps, the Inverse Henneberg II step on a circuit at line 4 and finding
the unique circuit in a Laman-plus-one graph at line 6 can be done in polynomial time using
properties of the (2, 3) and (2, 2)-sparsity pebble games from [18]. ◀

▶ Corollary 6. The representation of C as the combinatorial resultant of two smaller circuits
is, in general, not unique: an example is the 2D “double-banana” (Fig. 8).

Figure 8 The 2-connected double-banana circuit can be obtained as combinatorial resultant from
two K4 graphs (left, 2-sum), and from two wheels on 4 vertices (right). Dashed lines indicate the
eliminated edges, and in each case one of the two circuits is highlighted to distinguish K4 from W4.

Resultant tree. The inductive construction of a circuit using combinatorial resultant
operations is captured by a tree structure, whose size influences the complexity of the
algorithm. A resultant tree TC for the circuit C on n vertices is a rooted binary tree with
C as its root and such that: (a) the nodes of TC are circuits; (b) circuits on level k have
at most n − k vertices; (c) the two children {Ca, Cb} of a parent circuit Cc are such that
Cc = CRes(Ca, Cb, e), for some common edge e, and (d) the leaves are complete graphs on 4
vertices. The depth of the tree is at most n − 4, and its size may be anywhere between linear
to exponential in n. The best case occurs when the resultant tree is path-like, with each
internal node having a K4 leaf. The worst case could be a complete binary tree: each internal
node at level k would combine two circuits with the same number n − k − 1 of vertices into
a circuit with n − k vertices. Sporadic examples of small balanced combinatorial resultant
trees exist (e.g. for K33-plus-one), but it remains an open problem to find infinite families of
such examples. Even if such a family would be found, it is still conceivable that alternative,
non-balanced combinatorial resultant trees could yield the same circuit. Answers to the
following questions would refine the algorithm’s analysis.

▶ Open Problem 2. Are there infinite families of circuits with only balanced combinatorial
resultant trees?

▶ Open Problem 3. Characterize the circuits produced by the worst-case size of the combin-
atorial resultant tree.

4 Preliminaries: the Cayley-Menger ideal and its circuit polynomials

In preparation for the proof of Theorem 2, we turn now to the algebraic aspects of our
problem and review concepts from polynomial ideals and algebraic matroids. We define circuit
polynomials in the 2D Cayley-Menger ideal and make the connection with combinatorial
rigidity circuits. Complete details and proofs appear in [21].

SoCG 2021
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Notations and conventions. To keep the extended abstract focused, we avoid giving the
most general definitions unless necessary. We restrict the presentation to the field of rational
numbers Q, to the set of variables Xn = {xi : 1 ≤ i ≤ n} (or Xn = {xi,j : 1 ≤ i < j ≤ n} in
the Cayley-Menger setting) and to polynomial rings R = Q[X] over sets of variables X ⊂ Xn.
The support supp f of a polynomial f ∈ Q[Xn] is the set of indeterminates appearing in f .

Polynomial ideals. A set of polynomials I ⊂ Q[X] is an ideal of Q[X] if it is closed under
addition and multiplication by elements of Q[X]. If I ⊂ Q[X] is an ideal and X ′ ⊂ X is a
subset of variables, then I ∩ Q[X ′] is also an ideal, called the elimination ideal of I with
eliminated variables X \ X ′. A generating set for an ideal is a set S ⊂ Q[X] such that every
polynomial in the ideal is an algebraic combination (addition and multiplication) of elements
in S with coefficients in Q[X]. Hilbert Basis Theorem (see [7]) guarantees that every ideal
in a polynomial ring has a finite generating set. Ideals generated by a single polynomial
are called principal. An ideal I is a prime ideal if, whenever fg ∈ I, then either f ∈ I or
g ∈ I. A polynomial is irreducible (over Q[X]) if it cannot decomposed into a product of
non-constant polynomials in Q[X]. A principal ideal of Q[X] is prime iff it is generated by an
irreducible polynomial. However, an ideal generated by two or more irreducible polynomials
is not necessarily prime. We’ll make use of the following well-known result.

▶ Proposition 7. If I is a prime ideal of Q[X] and X ′ ⊂ X is non-empty, then the elimination
ideal I ∩ Q[X ′] is prime.

The theory of Gröbner bases [5, 7] gives a general framework for computing generating sets
of an ideal. Gröbner bases also give a general approach for computing elimination ideals: if
G is a Gröbner basis for I with respect to an elimination order (see Exercises 5 and 6 in §1
of Chapter 3 in [7]), e.g. the lexicographic order xi1 > xi2 > · · · > xin

, then the elimination
ideal I ∩ Q[xik+1 , . . . , xin ] which eliminates the first k indeterminates from I in the specified
order has G ∩ Q[xik+1 , . . . , xin

] as its Gröbner basis.

Resultants. The resultant can be introduced in several equivalent ways [11]. Here we use
its definition as the determinant of the Sylvester matrix. Given two polynomials f and g in
one variable x, of degrees r, resp. s, the Sylvester matrix is an (r + s) × (r + s) matrix whose
entries are a special arrangement of the coefficients of f and g; the precise formulation is
given in the full paper [21]. If the coefficients of f, g are themselves polynomials in a ring
R = Q[X], i.e. f, g ∈ R[x], then the resultant Res(f, g, x) ∈ Q[X] is a polynomial in the
coefficients’ variables but not in x. In short, the resultant eliminates the variable x. A proof
of the following proposition can be found in [7, pp. 167].

▶ Proposition 8. Let I be an ideal of R[x] and f, g ∈ I. Then Res(f, g, x) is in the elimination
ideal I ∩ R.

Algebraic matroid of a prime ideal. Intuitively, a collection of variables is independent if it
is not constrained by any polynomial in the ideal, and dependent otherwise. Formally, let I

be a prime ideal of the polynomial ring Q[Xn]. We define the algebraic matroid A(I) of I on
the ground set Xn by its independent sets: subsets of variables that are not supported by
any polynomial in the ideal. Its dependent sets are supports of polynomials in the ideal (see
[25] for some small examples).
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Circuits and circuit polynomials. A circuit is a minimal set of variables supported by a
polynomial in I, called a circuit polynomial. The following theorem, encompassing a result of
Lovasz and Dress [8], implies that circuit polynomials generate elimination ideals supported
on circuits.

▶ Theorem 9. Let I be a prime ideal in Q[X] and C ⊂ X a circuit of the algebraic matroid
A(I). The ideal I ∩ Q[C] is principal and generated by an irreducible circuit polynomial pC ,
which is unique up to multiplication by a constant.

The Cayley-Menger ideal and its algebraic matroid. We turn now to the Cayley-Menger
setting specific to our paper, where we use variables Xn = {xi,j : 1 ≤ i < j ≤ n} for unknown
squared distances between pairs of points. The distance matrix of n labeled points is the
matrix of squared distances between pairs of points. The Cayley matrix is the distance
matrix bordered by a new row and column of 1’s, with zeros on the diagonal:

0 1 1 1 · · · 1
1 0 x1,2 x1,3 · · · x1,n

1 x1,2 0 x2,3 · · · x2,n

1 x1,3 x2,3 0 · · · x3,n

...
...

...
...

. . .
...

1 x1,n x2,n x3,n · · · 0


Cayley’s Theorem says that, if the distances come from a point set in the Euclidean space
Rd, then the rank of this matrix must be at most d + 2. Thus all the (d + 3) × (d + 3) minors
of the Cayley-Menger matrix should be zero. These minors induce polynomials in Q[Xn]
which generate the (n, d)-Cayley-Menger ideal. They are called the standard generators, are
homogeneous polynomials with integer coefficients and are irreducible over Q. The (n, d)-
Cayley-Menger ideal is a prime ideal of dimension dn −

(
d+1

2
)

[3, 12, 13, 16] and codimension(
n
2
)

− dn +
(

d+1
2

)
. We work with the 2D Cayley-Menger ideal CMn, generated by the 5 × 5

minors of the Cayley matrix. Its algebraic matroid is denoted by A(CMn).
The following result (see [21] for a complete proof), allows us to identify the ground set

of the Cayley-Menger algebraic matroid Xn with the edges of the complete graph Kn, and
the circuits in the algebraic matroid (supports of circuit polynomials in CMn), as sets of
variables, with graph-theoretical rigidity circuits on n vertices.

▶ Theorem 10. The Cayley-Menger algebraic matroid is isomorphic to the rigidity matroid.

From now on, we will use the isomorphism to move freely between subsets of variables X ⊂ Xn

and their corresponding edge sets, and between algebraic circuits and rigidity circuits. Given
a (rigidity) circuit C, we denote by pC its corresponding circuit polynomial.

Resultants in the Cayley-Menger ideal. Let f, g be two polynomials in the Cayley-Menger
ideal with xij one of their common variables. We treat them as polynomials in xij , therefore
the coefficients are themselves polynomials in the remaining variables. The fact that the entries
in the Sylvester matrix are polynomials supported exactly on the variables corresponding to
the combinatorial resultant of the supports of f and g on elimination variable (edge) ij is
what motivated the definition given in Section 3.

The following lemma, whose proof follows immediately from Proposition 8, provides the
connection with combinatorial resultants.
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▶ Lemma 11. Let I be an ideal in Q[Xn], f, g ∈ I with supports Sf = supp f and Sg = supp g,
and let xij be a common variable in Sf ∩ Sg. Let S = CRes(Sf , Sg, ij) ⊂ Xn be the
combinatorial resultant of the supports. Then Res(f, g, xij) ∈ I ∩ Q[S].

Homogeneous properties. The standard generators of the Cayley-Menger ideal, in particular
those that correspond to K4 graphs, are obviously homogeneous. The following proposition
(to be used in Algorithm 2) shows that the polynomials obtained via resultants are also
homogeneous, and allows us to infer their homogeneous degrees.

▶ Proposition 12. The resultant Res(f, g, x) of homogeneous polynomials f and g of homo-
geneous degree m and n is a homogeneous polynomial of degree:

m degx g + n degx f − degx f · degx g.

5 Computing resultants of circuit polynomials

We are now ready to prove our main result, Theorem 2. Algorithm 2 below describes how to
obtain the circuit polynomial pC from the circuits pA and pB , when C = CRes(A, B, e).

Algorithm 2 Circuit polynomial: resultant step.
Input: Circuits A, B and edge e such that C = CRes(A, B, e). Circuit polynomials pA and
pB and elimination variable xe.
Output: Circuit polynomial pC for C.

1: Compute the resultant p = Res(pA,pB ,xe).
2: if p is irreducible then
3: pC = p return pC

4: else
5: factors = factorize p over Q
6: factors = discard factors with support not equal to C

7: if exactly one remaining factor (possibly with multiplicity) then
8: pC = the unique factor supported on C

9: else
10: apply a test of membership in the CM ideal on the remaining factors
11: pC = unique factor for which ideal membership test succeeded
12: return pC

13: end if
14: end if

The correctness of Steps 1–4 follows from the following Lemma.

▶ Lemma 13. Let C be a rigidity circuit C = CRes(A, B, e) obtained as a combinatorial
resultant of two other circuits A and B with pA and pB as their circuit polynomials. Then:
1. The resultant Res(pA, pB , xe) is supported on C and contained in the elimination ideal

⟨pC⟩ generated by the circuit polynomial pC .
2. The circuit polynomial pC of C is an irreducible factor over Q of Res(pA, pB , xe).
3. When Res(pA, pB , xe) is irreducible then it will be equal to pC .

Proof. The resultant Res(pA, pB , xe) is a non-constant polynomial supported on C. Since
⟨pA, pB⟩ ⊂ CMn, by Lemma 11 we have that Res(pA, pB , xe) is contained in the elimination
ideal CMn ∩ Q[C] = ⟨pC⟩. ◀
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Steps 6–9 would not be necessary if the resultant would always be irreducible. But in
general pC will only be one of the irreducible factors over Q of Res(pA, pB , xe).

▶ Lemma 14. The resultant of two circuit polynomials is not always a circuit polynomial.

Proof. We prove the Lemma with an example, which can be easily generalized. Recall from
Corollary 6 that in general a rigidity circuit C can be represented as the combinatorial
resultant of two circuits in more than one way. If C = CRes(C1, C2, e) = CRes(C3, C4, f)
and pCi for i ∈ {1, 2, 3, 4} are the corresponding circuit polynomials, then Res(pC1 , pC2 , xe)
and Res(pC3 , pC4 , xf ) will in general be distinct elements of ⟨pC⟩. The 2-connected circuit
in Fig. 8 has two distinct combinatorial resultant trees. Using Prop. 12 to compute the
homogeneous degrees of the resultants, we obtain degrees 8 and 48. Both resultants have the
same circuit as its supporting set, hence they are both in the elimination ideal of the circuit,
but only the one of homogeneous degree 8 is the circuit polynomial. ◀

In general, if two resultant steps produce two polynomials on the same rigidity circuit
support, the one of higher degree must have a non-trivial factor, while the other one will
possibly be irreducible, but this is not guaranteed.

▶ Corollary 15. Under the assumptions of Theorem 13, the resultant Res(pA, pB , xe) is a
circuit polynomial if and only if it is irreducible (over Q).

This leads to the following natural question.

▶ Open Problem 4. Let C, A and B be rigidity circuits such that C = CRes(A, B, e) with
pC , pA and pB the corresponding circuit polynomials. Identify sufficient conditions under
which Res(pA, pB , xe) is pC .

Since in general pC will only be one of the irreducible factors over Q of Res(pA, pB , xe),
we must proceed to Step 7 in the Algorithm and factorize the resultant p. The need for the
factorization step was already encountered in the examples we have so far computed.

Determining the circuit polynomial from the resultant. If Res(pA, pB , xe) is not irreducible,
then exactly one of its irreducible factors (over Q) is in CMn, and that “good” factor is
precisely the circuit polynomial pC . A “bad” factor can be discarded in two steps: by
analysing its support (lines 8–11) and by an ideal membership test (lines 13-14).

Analysing the supports of the irreducible factors. The elimination ideal ⟨pC⟩ is an ideal
of Q[C], and since Res(pA, pB , xe) ∈ ⟨pC⟩, any irreducible factor (over Q) of this resultant
is supported on a subset of C that is not necessarily proper. We know that at least one of
these factors must be supported on exactly C, and if there is only one such factor (possibly
with multiplicity), then it must be pC . Factors with a proper support are necessarily not in
the ideal (they are independent in the Cayley-Menger matroid) and can be discarded. Hence,
if there are no other factors supported on C, the algorithm stops on line 11 and returns
PC without any additional calculations. So far, in all the concrete examples on which we
could complete the calculations with our algorithm, the “bad” factors were supported on strict
subsets of C: whether this is always true remains an intriguing open question/conjecture.
Should it be true, then there will be no need for Steps 9–14 in our algorithm.

▶ Open Problem 5. Identify sufficient conditions for the resultant Res(pA, pB , xe) of two
circuit polynomials to have exactly one factor (up to multiplicity) supported on CRes(A, B, e).

Lacking a definitive answer at this time, we describe a way for the algorithm to proceed.
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Ideal membership test. Let’s assume that we have an irreducible factor of Res(pA, pB , xe)
that is supported on C. We will have to test it for membership in CMn. The ideal membership
test [7, pp. 97] invokes a Gröbner basis calculation, but it can be with any monomial order,
not necessarily an elimination order, hence it has a better chance at succeeding. Further
details and possible algorithm optimization ideas (which we did not have yet to employ in
the experimental part reported in the next section) are described in the full paper [21].

6 Concluding remarks

In this paper we introduced the combinatorial resultant operation, analogous to the classical
resultant of polynomials, and used it to derive a new algorithm for computing circuit polyno-
mials in the 2D Cayley-Menger ideal. Our approach highlights an inherent combinatorial
structure in this ideal and leads to further theoretical and algorithmic questions. To demon-
strate the effectiveness of our method we conclude by listing in Table 1 the circuit polynomials
that we could compute within a reasonable amount of time. The most challenging was
the K3,3-plus-one circuit, which required an extension of the method presented here: this
extended resultant is the topic of an upcoming paper [20].

Table 1 Results: all circuit polynomials on n ≤ 6 vertices and two circuit polynomials on n = 7
vertices. For the definition of Extended Resultant, see [20].

n Circuit Method Comp. time
(seconds) No. terms Hom.

degree

4 K4 Determinant 0.0008 22 3

5 Wheel on 4 vertices Gröbner 0.02 843 8
Resultant 0.013

6 2D double banana Gröbner 0.164 1 752 8
Resultant 0.029

6 Wheel on 5 vertices Gröbner 10 857 273 123 20
Resultant 7.07

6 Desargues-plus-one Gröbner 454 753 658 175 20
Resultant 14.62

6 K3,3-plus-one Extended Resultant 1 402 1 018 050 18

7 2D double banana ⊕16 K1567
4 Resultant 38.14 1 053 933 20

7 2D double banana ⊕56 K4567
4 Resultant 89.86 2 579 050 20
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