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Abstract
We present the web portal Λ-symsym, available at http://158.110.146.197:31780/automata/,
for experimenting with game semantics of λ!-calculus, and its normalizing elementary sub-calculus,
the λEAL-calculus. The λ!-calculus is a generalization of the λ-calculus obtained by introducing a
modal operator !, giving rise to a pattern β-reduction. Its sub-calculus corresponds to an applicatively
closed class of terms normalizing in an elementary number of steps, in which all elementary functions
can be encoded. The game model which we consider is the Geometry of Interaction model I
introduced by Abramsky to study reversible computations, consisting of partial involutions over a
very simple language of moves.

Given a λ!- or a λEAL-term, M , Λ-symsym provides:
an abstraction algorithm A!, for compiling M into a term, A!(M), of the linear combinatory
logic CL!, or the normalizing combinatory logic CLEAL;
an interpretation algorithm [[ ]]I yielding a specification of the partial involution [[A!(M)]]I in
the model I;
an algorithm, I2T , for synthesizing from [[A!(M)]]I a type, I2T ([[A!(M)]]I), in a multimodal,
intersection type assignment discipline, ⊢!.
an algorithm, T 2I, for synthesizing a specification of a partial involution from a type in ⊢!,
which is an inverse to the former.

We conjecture that ⊢! M : I2T ([[A!(M)]]I). Λ-symsym permits to investigate experimentally the
fine structure of I, and hence the game semantics of the λ!- and λEAL-calculi. For instance, we can
easily verify that the model I is a λ!-algebra in the case of strictly linear λ-terms, by checking all
the necessary equations, and find counterexamples in the general case.

We make this tool available for readers interested to play with games (-semantics). The paper
builds on earlier work by the authors, the type system being an improvement.
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1 Introduction

We present the web portal Λ-symsym, available at http://158.110.146.197:31780/
automata/, for experimenting, in the spirit of [24], with the game semantics of the λ!-calculus,
and its normalizing elementary affine sub-calculus, the λEAL-calculus. The λ!-calculus is
a generalization of the λ-calculus obtained by introducing a co-monadic modal operator !,
which gives rise to a pattern β-reduction. Its sub-calculus corresponds to an applicatively
closed class of terms normalizing in an elementary number of steps. All elementary functions
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can be encoded in the λEAL-calculus, cf [20, 6]. The game model that we consider consists
of partial involutions, i.e. partial symmetric functions. These were introduced by Abramsky
in [3] to provide a Geometry of Interaction model, I, of reversible computation for linear
combinatory logic, see also [4, 5].

In a series of papers by the authors, [12, 10, 11, 18], we have explored and extended
Abramsky’s model I. In particular, we have introduced:

a generalized co-monadic λ-calculus, the λ!-calculus, which subsumes also the elementary
affine and linear affine calculi [26, 7, 6, 15, 16];
abstraction algorithms for compiling the above calculi in corresponding fragments of an
extended linear combinatory logic, CL! or the normalizing CLEAL;
a semantics of these combinatory logics in terms of partial involutions, and hence a
semantics of the λ!-calculus via the abstraction algorithm;
a multi-modal intersection type systems ⊢! for the λ!-calculus;
an algorithm T 2I for obtaining a specification of a partial involution, given a type in the
language of ⊢!, and an algorithm I2T for synthesizing a type given a specification of a
partial involution, which are “morally” mutual inverses.

Moreover, we have shown that linear application between involutions, i.e. the game
analogue of Girard’s “Execution Formula”, amounts to a kind of resolution between types in
⊢!. In particular, in the case of strictly linear terms M, N , we have that I2T ([[MN ]]I) =
I2T ([[M ]]I · [[N ]]I) = Res(I2T ([[M ]]I), I2T ([[N ]]I)), [12]. In this perspective, types deriving
from I2T can be viewed as a kind of principal types for terms in the λ!-calculus.

In this paper, we outline the implementation of the algorithms above and present the on-
line tool Λ-symsym1 for experimenting with them in a user-friendly interactive setting, thus
allowing for the investigation of the fine structure and the peculiarities of the symmetric game
semantics of λ!-calculus. The sheer combinatorial complexity of applying linear application
by hand, in effect, makes it essential to use a machine for checking equalities and finding
counterexamples.

Λ-symsym easily provides evidence for the following facts.
The model I of partial involutions does not satisfy any form of the ξ-rule, if the terms
involved are not strictly linear. Namely, we can check all the necessary equations for I to
be a λ!-algebra in the strictly linear case and provide counterexamples otherwise.
Partial involutions keep track of the history of the execution, such as the erasures of
arguments or the comonad !.

In particular, given a normalizing λ!-term, or a λEAL-term, M , the web tool provides a web
application for compiling M into a term of linear combinatory logic, A!(M) or AEAL(M),
respectively. Another web application provides the interpretation of A!(M) as a specification,
[[A!(M)]]I , of a partial involution over a very simple language of moves, in the model I of [3].
Yet another application permits to synthesize from [[A!(M)]]I a type, I2T ([[A!(M)]]I), in a
multimodal, intersection type discipline. The type assignment system is given in the form
of a general type system ⊢!, for which we conjecture that ⊢! M : I2T ([[A!(M)]]I). In this
paper we do not discuss the other web applications made available by the tool Λ-symsym
for dealing with the other λ!-calculi of [18], and non normalizing terms.

We wrote this paper to encourage interested readers to enjoy utilizing Λ-symsym. We
made it available for people to play with games (-semantics)!

1 We combine Λ to the magic word of the formula Open Sesame, (iftah ya symsym), in the

Arab collection of novels 1001 Nights, (kitab alf laylah wa-laylah), which reminds that
our semantics are symmetric partial functions.
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Synopsis. In Section 2, we introduce in a self-contained format the formal systems used
in the web tool, namely the λ!-calculus, and the λEAL-calculus, the linear combinatory
logics CL! and CLEAL, !-intersection-types, and the ⊢! type discipline. In Subsection 2.1 we
give the corresponding abstraction algorithms. In Section 3, we present the game theoretic
semantics of the linear combinatory logic CL!, and hence of its normalizing sublogic CLEAL,
in terms of partial involutions. We introduce also the crucial concept of specification of an
involution. In Subsection 3.1, we present the two algorithms I2T and T 2I, for mapping
specifications of partial involutions into types and back. In Section 4, we illustrate the web
tool Λ-symsym and present its web interface. In Subsection 4.2 we discuss remarkable
example sessions. Finally, in Section 5, we draw some conclusions and outline future directions.
In the Appendix A, we give the Erlang code corresponding to the implementation of linear
application of involutions. The complete code of our web tool is available in [13].

2 The λ!-calculus, Linear Combinatory Logic, !-intersection-types

In this section we recall the formal systems used in the web tool. Most of these appear
already in earlier papers by the authors, see [12, 10, 11, 18], but for the definition of the type
assignment system ⊢!.

We start with the λ!-calculus and its sub-calculus.

▶ Definition 1 (λ!-calculus, λEAL-calculus).
The language Λ! of the λ!-calculus is inductively defined from variables x, y, z, . . . and
constants c, . . ., and it is closed under the following formation rules:

M ∈ Λ! N ∈ Λ!

MN ∈ Λ! (app) M ∈ Λ!

!M ∈ Λ! (!)

M ∈ Λ! O!
≤1(x, M)

λx.M ∈ Λ! (λ) M ∈ Λ! O≥1(x, M)
λ!x.M ∈ Λ! (λ!)

where FV (M) denotes the set of free variables of M , and O#
? (x, M) (O#

? (M)), for #
denoting either ! or blank, and ? denoting ≤ 1 or ≥ 1 or no constraint, means that the
variable x (the free variables of M) appears at most once (≤ 1) or at least once (≥ 1) in
M , respectively, and, when # is not blank, that it cannot appear in the scope of !.
We denote by ≡ syntactical identity on λ-terms.
The language ΛEAL of the λEAL-calculus is the restriction of Λ! obtained by considering
rules (app), (λ), and the following versions of the rules (λ!) and (!):

M ∈ ΛEAL O≥1(x, M) x is in the scope of a single !
λ!x.M ∈ ΛEAL

M ∈ ΛEAL O!(M)
!M ∈ ΛEAL

The reduction rules of the λ!-calculus include the restrictions of the standard (β)-rule and
(ξ)-rule to linear abstractions, the pattern-β-reduction rule, which define the behaviour
of the ! pattern abstraction operator, the corresponding (str !) structural rule, and the (ξ!)
rule, namely:

(β) (λx.M)N →! M [N/x] (β!) (λ!x.M)!N →! M [N/x]

(ξ) M →! N λx.M ∈ Λ!

λx.M →! λx.N
(ξ!) M →! N λ!x.M ∈ Λ!

λ!x.M →! λ!x.N
(str !) M →! N

!M →!!N

(applL) M1 →! M ′
1

M1M2 →! M ′
1M2

(applR) M2 →! M ′
2

M1M2 →! M1M ′
2

We denote by →∗
! the reflexive and transitive closure of →!.

The reduction rules of the λEAL-calculus are the restrictions of the rules of the λ!-calculus
to ΛEAL-terms. We denote by →EAL the corresponding reduction relation.

TYPES 2020
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We define strong normal forms as the irreducible terms which do not contain stuck redexes,
i.e. subterms of the shape (!M)N or (λ!x.M)P , where P is irreducible and not a !-term.

▶ Definition 2 (Strong Normal Forms). The set SN ! of strong normal forms is inductively
defined as follows:

Mi ∈ SN ! ∀i ∈ {1, . . . , n}
xM1 . . . Mn ∈ SN !

M ∈ SN !

!M ∈ SN !

M ∈ SN ! λx.M ∈ Λ!

λx.M ∈ SN !
M ∈ SN ! λ!x.M ∈ Λ!

λ!x.M ∈ SN !

Of course many terms containing stuck redexes are typable in the typing system of
Definition 6 below, and receive the appropriate involution semantics, e.g. λx.(λ!y.y)x behaves
as λ!x.x, but these intricacies are not worthwhile considering for the purposes of this paper.

The involution semantics of terms in Λ! and in ΛEAL will be given via a compilation in
linear combinatory logic.

▶ Definition 3 (Linear Combinatory Logics).
The language of the extended linear combinatory logic CL! consists of variables x, y, . . .,
distinguished constants (combinators) B, C, I, K, W, D, δ, F, and it is closed under ap-
plication and !-promotion, i.e.:

M ∈ CL! N ∈ CL!

MN ∈ CL!
M ∈ CL!

!M ∈ CL!

In CL!-terms, we associate · to the left and we assume ! to have order of precedence
greater than ·. Combinators reduce according to the following pattern reduction rules:

BMNP →! M(NP ) IM →! M CMNP →! (MP )N KMN →! M

WM !N →! M !N !N δ!M →!!!M D!M →! M F!M !N →!!(MN)
M →! M ′

C[M ] →! C[M ′] for any context C[ ],

where one-hole contexts are defined as usual.
The language of elementary affine combinatory logic CLEAL includes only the combinators
B, I, C, K, W, F, and is closed under the rules of application and !-promotion. The
reduction relation restricted to CLEAL is denoted by →EAL.

We use the notation Comb to denote any of the combinators in the above definition.

We recall the following proposition because it is not so immediate:

▶ Proposition 4 (Normalization [18]). The λEAL-calculus and CLEAL linear combinatory
logic are strongly normalizing.

The type discipline introduced in this section is a refinement of the ones introduced in
[10, 12, 11] and originated in the process of relating partial involutions and principal types.
It amounts essentially to a multimodal intersection type discipline, which generalizes [8].

▶ Definition 5 (Type Language). The language of types, Type!, is a two sorted language
given by the following grammars, where ω is a constant, and α, β, . . . and i, j, . . . are type
and index variables respectively:
(Type! ∋) σ, τ ::= ω | α | . . . | σ ⊸ τ | σ̂

(T̂ ype! ∋) σ̂, τ̂ ::= !uσ | σ̂ ∧ τ̂

u, v ::= ϵ | i | j | . . . | ⟨u, v⟩.
The syntactic category σ̂-types isolates types whose main constructor is ! or ∧. Moreover, we
consider the equivalence relation on types ∼ induced by ω ∼ σ, for any type σ which contains
only the constant ω and no type variables.
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▶ Definition 6 (Type System).
The type system ⊢! derives judgements Γ ⊢! M : τ , where the environment Γ is a set of pairs
of the following shapes: x : σ, !x : σ̂; each variable occurs at most once in Γ either as a linear
variable or a !-variable. dom(Γ) denotes the set of variables which appear in Γ.

Assumption rule:

x : α ⊢! x : α
(Var)

Introduction and elimination rules:

Γ ⊢! M : σ i fresh
!̂i(Γ) ⊢! !M :!iσ

(!Intro) Γ ⊢! !M :!iσ !(Γ)
!̂[ϵ/i](Γ) ⊢! M : σ[ϵ/i]

(!-Elim)

Γ1 ⊢! !M : σ̂ Γ2 ⊢! !M : τ̂ !(Γ1) !(Γ2)
Γ1 ∧ Γ2 ⊢! !M : σ̂ ∧ τ̂

(∧- Intro)

Γ ⊢! M : σ̂ ∧ τ̂
Γ ⊢! M : σ̂

(∧-E-left) Γ ⊢! M : σ̂ ∧ τ̂
Γ ⊢! M : τ̂

(∧-E-right)

Γ1 ⊢! M : σ ⊸ τ Γ2 ⊢! N : σ
⋂

!(Γ1, Γ2)
Γ1 ∧ Γ2 ⊢! MN : τ

(MP)

Γ, x : σ ⊢! M : τ
Γ ⊢! λx.M : σ ⊸ τ

(λ) Γ, !x : σ̂ ⊢! M : τ
Γ ⊢! λ!x.M : σ̂ ⊸ τ

(λ!)

Γ ⊢! M : σ
U(Γ) ⊢! M : U(σ) (Inst)

Structural-rules:

Γ ⊢! M : σ x /∈ dom(Γ)
Γ, x : τ ⊢! M : σ

(weak) σ ∼ ω
Γ ⊢! M : σ

(ω)

where
!(Γ) means that all variables in Γ are banged (Γ is possibly empty);
by a slight abuse of notation

!̂u(Γ, x : τ) = !̂u(Γ), !x : !̂u(τ) and


!̂u(τ) =!uτ if τ /∈ T̂ ype!

!̂u(!vτ) =!⟨u,v⟩τ

!̂u(τ̂ ∧ σ̂) = !̂u(τ̂) ∧ !̂u(σ̂);
!̂[ϵ/i](Γ, !x : τ) = !̂[ϵ/i](Γ), !x : τ [ϵ/i];⋂

!(Γ1, Γ2) means that each variable in the intersection of dom(Γ1) and dom(Γ2) is
!-prefixed both in Γ1 and Γ2;
for Γ1, Γ2 such that

⋂
!(Γ1, Γ2), the environment Γ1 ∧ Γ2 is defined by:

if x : σ ∈ Γ1 or x : σ ∈ Γ2, then x : σ ∈ Γ1 ∧ Γ2
if !x : σ ∈ Γ1 and x ̸∈ dom(Γ2), or !x : σ ∈ Γ2 and x ̸∈ dom(Γ1), then !x : σ ∈ Γ1 ∧ Γ2
if !x : σ1 ∈ Γ1 and !x : σ2 ∈ Γ2, then !x : σ1 ∧ σ2 ∈ Γ1 ∧ Γ2;

U is a substitution, mapping type/index variables to types/indexes, respectively.

We will denote by Type!− and ⊢−
! the set of types without ω and the type system without the

ω-rule, respectively.
The type system ⊢EAL is obtained by giving up the rule (!-Elim) and restricting the rules of
⊢! to λ-terms in ΛEAL.

Some comments and remarks on the above definitions are in order:

TYPES 2020
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The type connective ∧ is neither commutative nor idempotent nor associative.
The notion of type equivalence ∼ defined above for the system of Definition 6 is a sharp
restriction of the usual type equivalence on intersection types, cf. [8]. The traditional
rule does not hold in the involution model of Section 3.
Not all terms of Λ! can be typed in ⊢−

! , i.e. without the ω-rule, e.g.
⊢! (λ!x.x!x)(λ!x.x!x) : ω ⊢! λ!x!y.(λ!z.z)(xy) : (α ⊸ ω) → (α ⊸ ω).
The former is not normalizing, while in the latter pattern matching fails and hence it
does not have a strong normal form. Notice however that the type which can be assigned
to it records the fact that the two variables can be applied. The meaningfulness of such
types is the reason for weakening the traditional definition of type equivalence ∼ as in the
system of Definition 6. The issue is rather intricate and will be taken up in Section 4.2.2.
Rule (Inst) could be made redundant by allowing arbitrary types in rule (Var) and
arbitrary indices in rule (!Intro).
One could consider also second or higher order (possibly recursive) type systems. Their
typing strength is subsumed by the ∧-rules.

A relevant class of types is that of binary types, which, as we will see in Section 3.1, arise
naturally from specifications of partial involutions:

▶ Definition 7.
A type τ ∈ Type! is binary if each type variable appears at most twice in τ .
A judgement Γ ⊢! M : τ is binary if each type variable occurs at most twice in it.

A slight modification of Theorem 30 [11] allows to prove that:

▶ Proposition 8. If Γ ⊢! M : τ is derivable, then there exist a binary judgement Γ′ ⊢! M : τ ′

and a substitution U such that U(Γ′) = Γ and U(τ ′) = τ .

2.1 Abstraction Algorithm
The abstraction algorithm for mapping terms of the λ!-calculus into the linear combinatory
algebra CL! is a refinement of the standard abstraction algorithm, but this needs to be
carefully spelled out so as to factor out as an abstraction algorithm also from λEAL to
CLEAL.

▶ Definition 9 (Abstraction Algorithms A!, AEAL).
Let Λ!

CL denote the set of terms of the λ!-calculus obtained by taking combinators as the
constants of the calculus. We define A! : Λ!

CL → CL! as in Figure 1, where # denotes
the modality ! or no modality.
Let ΛEAL

CL be the set of λEAL-terms obtained by taking CLEAL-combinators as constants.
We define AEAL : ΛEAL

CL → CLEAL as the restriction of A! to terms in ΛEAL
CL .

Vice versa, we denote by ( )λ : CL! → Λ! the natural mapping of a CL-term into a
λ-term obtained by replacing, in place of each combinator, the corresponding Λ!-term as
follows:

(B)λ = λxyz.x(yz) (C)λ = λxyz.(xz)y (I)λ = λx.x (K)λ = λxy.x

(W)λ = λx!y.x!y!y (D)λ = λ!x.x (δ)λ = λ!x.!!x (F)λ = λ!x!y.!(xy).
The following theorem justifies the above definition. For ease of readability we will often
use the notation λ∗#x1 . . . #xn.M , for M ∈ CL!, to denote A!(λ#x1 . . . #xn.M), where #
stands for either the modality ! or no modality (see [18] for more details).
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A!(M)

=



x if M ≡ x

Comb if M ≡ Comb
I if M ≡ λx.x

F(!I) if M ≡ λ!x.!x
D if M ≡ λ!x.x

Kc if M ≡ λx.c

Ky if M ≡ λx.y

C(A!(λx.M1))A!(M2) if M ≡ λx.M1M2 and x ∈ F V (M1)
BA!(M1)A!(λx.M2) if M ≡ λx.M1M2 and x ∈ F V (M2)
K(A!(M1)A!(M2)) if M ≡ λx.M1M2 and x ̸∈ F V (M1M2)
A!(λ#x.A!(λ#y.M1)) if M ≡ λ#x.λ#y.M1

W(B(CA!(λ!x.M1))(A!(λ!x.M2))) if M ≡ λ!x.M1M2 and x ∈ FV (M1), x ∈ FV (M2)
BA!(M1)A!(λ!x.M2) if M ≡ λ!x.M1M2 and x ̸∈ F V (M1), x ∈ F V (M2)
CA!(λ!x.M1)A!(M2) if M ≡ λ!x.M1M2 and x ∈ F V (M1), x ̸∈ F V (M2)
F!(λx.A!(M1)) if M ≡ λ!x.!M1 and x occurs once in M1 and O!(M1)
WA!(λ!y.λ!x.!M1[y/x1]) if M ≡ λ!x.!M1[x1], x occurs in M1 more than once

and x1 is the leftmost occurrence of x in M1 and O!(M1)
B(F(!A!(λ!x.M1)))δ if M ≡ λ!x.!M1 and ¬O!(M1)
A!(M1)A!(M2) if M = M1M2

!A!(M1) if M =!M1

F AIL otherwise

Figure 1 The Abstraction Algorithm A! : Λ!
CL → CL!.

▶ Theorem 10 (Soundness of the Abstraction Algorithms A! and AEAL).
Let M ∈ CL!, let #M1, . . . , #Mn ∈ Λ!, n ≥ 0, then
(λ∗#x1 . . . #xn.M)A!(#M1) . . . A!(#Mn) →∗

! M [A!(M1)/x1, . . . , A!(Mn)/xn] .

Let M ∈ CLEAL, let #M1, . . . , #Mn ∈ ΛEAL, n ≥ 0, then AEAL(M) ∈ ΛEAL and
moreover:
(λ∗#x1 . . . #xn.M)AEAL(#M1) . . . AEAL(#Mn) →∗

! M [AEAL(M1)/x1, . . . , AEAL(Mn)/xn] .

The abstraction algorithm in Fig. 1 is implemented in Λ-symsym, see Section 4.

3 Game Semantics for Combinatory Logics and λ-calculi

In this section, we present the game theoretic semantics of the linear combinatory logic CL!,
and hence of its sublogic CLEAL, in terms of partial involutions. Then, via the abstraction
algorithm, we obtain a game semantics for terms in Λ! and ΛEAL. Finally, we present two
algorithms, I2T and T 2I, which relate schematic representations of partial involutions and
types.

We start by introducing the model of partial involutions, I, originally defined by Abramsky
in [3] in order to study reversible computations, and studied in [12, 11, 18]. The notion of
application on this model amounts to the categorical trace on a subcategory of the category
of relations, introduced in [23] (see also [2]).

▶ Definition 11 (The Model of Partial Involutions, I).
TΣ, the language of moves, is defined by the signature Σ0= {ϵ}, Σ1 = {l, r}, Σ2 = {⟨ , ⟩}
(where Σi is the set of constructors of arity i); terms r(t) are output words, while terms
l(t) are input words (often denoted simply by rt and lt);

TYPES 2020
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I is the set of partial involutions over TΣ, i.e. the set of all partial functions f : TΣ ⇀ TΣ
such that f(t) = t′ ⇔ f(t′) = t;
the operation of replication is defined by !f = {(⟨t, t1⟩, ⟨t, t2⟩) | t ∈ TΣ ∧ (t1, t2) ∈ f};
the notion of linear application is defined by f · g = frr ∪ (frl; g; (fll; g)∗; flr), where
fij = {(t1, t2) | (i(t1), j(t2)) ∈ f}, for i, j ∈ {r, l} (see diagram below), where “;” denotes
postfix composition of relations.

in // •
frr //

frl

��

• // out

•
g // •

fll

oo

flr

OO

▶ Proposition 12 ([3]). I is closed under !-replication and linear application.

Next we give the notion of schematic specification of the graph of a partial involution,
which was introduced in [18] and recall some of its main properties. Schematic specifications
induce a substructure of I which is still closed under application and replication, and it is
sufficient to interpret all combinators, see [18] for full details.

▶ Definition 13 (Schematic Specification). Let TΣ[Var ] denote the set of terms generated by
the signature Σ \ {ϵ} starting from a set of variables Var , where we distinguish between term
variables x, y, . . . and index variables i, j, . . ., i.e.:
(TΣ[Var ] ∋) t ::= x | y | . . . | lt | rt | ⟨u, t⟩ where u ::= ϵ | i | j | . . . | lu | ru | ⟨u, v⟩ .

A specification P of a partial involution is a (possibly infinite) irreflexive set of pairs
{t1 ↔ t′

1, t2 ↔ t′
2, . . .}, where:

(i) ti, t′
i ∈ TΣ[Var ];

(ii) a single pair ti ↔ t′
i represents both (ti, t′

i) and (t′
i, ti);

(iii) in any pair ti ↔ t′
i exactly one term variable appears, once in ti and once in t′

i;
(iv) for any pairs ti ↔ t′

i, tj ↔ t′
j, ti is not an instance of tj.

Schematic specifications generate graphs of partial involutions as follows:

▶ Definition 14 (G). Given a schematic specification P , the set G(P ) is the symmetric
closure of the set {(U(t1), U(t2)) | (t1 ↔ t2) ∈ P ∧ U : TΣ[Var ] → TΣ}.

The following lemma follows immediately from the above definitions:

▶ Lemma 15. If P is a specification, then G(P ) is the graph of a partial involution on TΣ.

Not all partial involutions are generated by specifications, e.g. the relation {rϵ ↔ lϵ} is
trivially not induced by any specification.

A notion of composition on specifications, which corresponds to composition on partial
involutions can be defined as follows:

▶ Definition 16 (Composition of Specifications). Let P, P ′ be specifications. We define

P ; P ′ = {(t, t′) | ∃(t1, t2) ∈ P, (t′
1, t′

2) ∈ P ′, U. (U = U(t2, t′
1) ∧ t = U(t1) ∧ t′ = U(t′

2))} ,

where U(t2, t′
1) is the most general unifier of t2 and t′

1.

This definition essentially amounts to composition in Clause Algebras, as in [19].
The above definitions permits to define a notion of application between specifications,

P · P ′, which mimics the one between partial involutions in Definition 11.
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[[B]]I = {r3x ↔ lrx , l2x ↔ rlrx , rl2x ↔ r2lx}
[[I]]I = {lx ↔ rx}
[[C]]I = {l2x ↔ r2lx , lrlx ↔ rlx , lr2x ↔ r3x}
[[K]]I = {lx ↔ r2x}
[[F]]I = {l⟨i, rx⟩ ↔ r2⟨i, x⟩ , l⟨i, lx⟩ ↔ rl⟨i, x⟩}
[[W]]I = {r2x ↔ lr2x , l2⟨i, x⟩ ↔ rl⟨li, x⟩ , lrl⟨i, x⟩ ↔ rl⟨ri, x⟩}
[[δ]]I = {l⟨⟨i, j⟩, x⟩ ↔ r⟨i, ⟨j, x⟩⟩}
[[D]]I = {l⟨ϵ, x⟩ ↔ rx}
[[MN ]]I = [[M ]]I · [[N ]]I
[[!M ]]I = ![[M ]]I

Figure 2 Game Semantics for CL!.

▶ Lemma 17 ([18]). Let P, P ′ be specifications. Then
(i) G(P ; P ′) = G(P ); G(P ′);
(ii) G(P · P ′) = G(P ) · G(P ′).

One can easily check that:

▶ Lemma 18 ([18]). The substructure of I induced by schematic specifications is closed
under application and replication.

Now we are in the position of giving the interpretation in I of CL!, by defining the schematic
specifications of the graphs of the combinators.

▶ Definition 19 (Game Semantics of CL!). The combinatory logic CL! is interpreted in I as
in Figure 2, where we use the abbreviation lnt and rnt for the terms l . . . l︸ ︷︷ ︸

n

t, and r . . . r︸ ︷︷ ︸
n

t.

In following proposition for (i) see [3], for (ii) see [11].

▶ Proposition 20.
(i) I is a model of CL!, and hence of the combinatory sublogic CLEAL.
(ii) I is a model of all the reduction rules of Λ!, but the ξ-rules.

Using the semantics for CL!-combinators defined in Figure 2, and the abstraction al-
gorithm described in Section 2.1, one can derive the partial involution corresponding to a
given λ-term, by repeatedly applying our implementation of linear application on involutions
(see Appendix A). However, not all interpretations of CL!-combinators are partial involutions
with finite specifications, since graphs of finite specifications are not closed under linear
application. E.g. the fixed point combinator (λ∗!x!y.y!(x!y!y!x))!(λ∗!x!y.y!(x!y!y!x)) has an
infinite specification. This is taken care of in Λ-symsym by outputting the stream of pairs
in the partial specification.

3.1 Correspondence Algorithms, I2T , T 2I
Here we present the two algorithms, I2T and T 2I, which relate schematic representations of
partial involutions and types in Type!. The first algorithm, given a schematic specification of
a partial involution, yields a binary type, the latter, given a binary type, provides a schematic
specification of a partial involution. The two transformations are one inverse of the another
over suitable domains of schematic specifications and types.
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We begin by explaining how the algorithm I2T works. First of all, we need the following
build_type_tree( ) function, in order to build a skeleton type tree from a term t ∈ TΣ[V ar].
The function definition is syntax driven:

build_type_tree(t)

=



αx if t ≡ x

build_type_tree(t′) → _ if t ≡ lt′

_ → build_type_tree(t′) if t ≡ t′

!ubuild_type_tree(t′) if τ ≡ ⟨u, t′⟩
and u does not contain l/r constructors

build_type_tree(⟨u′, t′⟩) ∧ _ if t ≡ ⟨u, t′⟩ and l is the leftmost l/r constructor
in u and u′ is obtained from u by erasing it

_ ∧ build_type_tree(⟨u′, t′⟩) if t ≡ ⟨u, t′⟩ and r is the leftmost l/r constructor
in u and u′ is obtained from u by erasing it

where the underscore characters (_) above stand for “missing parts” of the resulting type
tree. Such holes will be (hopefully) filled in by successive unifications, as explained below.

Hence, for each rule ti ↔ t′
i (for i = 1, . . . , n) of a given specification, we compute the

two (partial) types build_type_tree(ti) and build_type_tree(t′
i). Finally, we try to unify

all such partial types, over all rules. If we succeed, we infer a type representing the original
partial specification; otherwise, we fail. Notice that the possible final type may still contain
“holes”. E.g. partial specifications of erasing terms do not exhibit any rule for the variable
which is erased.

Due to the peculiar syntax of types in Type!, unification of types is not a plain unification
à la Robinson. Indeed, we have subcases which may need to spawn ∧-constructors in order to
instantiate new instances of some types. For instance, a !-subtype like !uσ may need to spawn
new instances of !uσ, becoming !u′σ′∧!u′′σ′′ ∧ . . ., in order to unify against another type. In
our implementation, we implement such spawnings in order to ease the unification process as
much as possible. At the end there can be some leftovers of those spawning activities; thus,
we implement a sort of “garbage collector” which takes care of those dummy ∧’s, before
returning the final type-candidate to the user.

Another subtle issue comes from the fact that the order in which the pairs of the
specification are processed may imply success or failure in the unification process (because
the spawning of ∧-constructors must trigger at the right moment). Hence, we restart the
procedure until a type is found, permuting in all possible ways the pairs in the specification.

Finally, the type synthesis algorithm may fail, totally or partially. Total failure can be
easily detected, since the algorithm returns Ω, meaning that it was not able to build even
a partial skeleton. On the other hand, partial failure occurs when the algorithm does not
succeed in recovering a complete type tree from the partial specification, i.e., there remain
some “holes” to be filled in. Such holes are marked by placeholders of the form Ωi, where i

is some integer index. Such Ωi’s correspond to the underscore characters generated by the
build_type_tree() function above which have not been instantiated by the type unification
algorithm. We could safely replace them with a plain Ω, since the type ω is a wild card, but
we do not make this choice in the web tool, see Section 4.2.2.

The other way round is dealt with by the algorithm T 2I. Here the input can be any
type and the output is a specification of a symmetric relation; if the input type is binary,
then the result is the specification of a partial involution. The algorithm processes all type
variables occurring in a given type by means of the function var_type2PI, which produces
a list L of partial specification terms. If the type is binary the list has at most length 2. The
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partial specification rules for that type variable are obtianed by combining in all possible
ways the terms of L. Repeating this procedure for all type variables of a type, we recover
the corresponding partial specification. We give only var_type2PI:

var_type2P I(α, τ)

=



[xα] if τ ≡ α

l(var_type2P I(α, τ ′)) + +
r(var_type2P I(α, τ ′′)) if τ ≡ τ ′ → τ ′′

and α ∈ fv(τ ′), α ∈ fv(τ ′′)
l(var_type2P I(α, τ ′)) if τ ≡ τ ′ → τ ′′

and α ∈ fv(τ ′) \ fv(τ ′′)
r(var_type2P I(α, τ ′′)) if τ ≡ τ ′ → τ ′′

and α ∈ fv(τ ′′) \ fv(τ ′)
add_index(u, var_type2P I(α,

∧n

i=1!vi τi)) if τ ≡
∧n

i=1!<u,vi>τi

compose_index(l, var_type2P I(α, τ ′)) + +
compose_index(r, var_type2P I(α, τ ′′)) if τ ≡ τ ′ ∧ τ ′′

and α ∈ fv(τ ′), α ∈ fv(τ ′′)
and ! indices in τ have different π1’s

compose_index(l, var_type2P I(α, τ ′)) if τ ≡ τ ′ ∧ τ ′′

and α ∈ fv(τ ′) \ fv(τ ′′)
and ! indices in τ have different π1’s

compose_index(r, var_type2P I(α, τ ′′)) if τ ≡ τ ′ ∧ τ ′′

and α ∈ fv(τ ′′) \ fv(τ ′)
and ! indices in τ have different π1’s

add_index(u, var_type2P I(α, τ ′)) if τ ≡!uτ ′ and α ∈ fv(τ ′)
[] otherwise

where:
fv(τ) is the set of free variables of type τ ;
in the expression τ ≡

∧n
i=1 τi the right-hand side term denotes the atomic components of

τ ;
++ is the list concatenation operator;
the functions l() and r(), when applied to a list (i.e., the return type of var_type2PI()),
distribute, respectively the l and r constructors at the head of all elements of the list, i.e.,
each t ∈ L will be substituted by lt (resp. rt);
compose_index(c, L) (where c is either l or r) is a function distributing the constructor
c to all the pairs of the list L, i.e., each ⟨u, t⟩ ∈ L will be substituted by ⟨cu, t⟩;
add_index(u, t) is a function distributing the index u to all elements of the list L, i.e.
each tinL will be substituted by ⟨u, t⟩.

Notice that in dealing with types whose outermost constructor is ∧, we distinguish between
the cases where all atomic components have a common prefix in their !’s, denoting that
promotions have been carried after the ∧ operations, and the cases where there is no such
common prefix, where the ∧-constructor was indeed the last to be used in producing the type.

It is easy to check that:

▶ Lemma 21.
1. For any specification P of a partial involution, I2T (P ) is a binary type.
2. For any binary type τ , T 2I(τ) is a specification of a partial involution.
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The two transformations, I2T and T 2I, are the inverse of one another in the sense:

▶ Conjecture 22.
1. Let M ∈ Λ! be a closed term which reduces to a term in strong normal form, without the

use of the ξ-rules, then: ⊢ M : I2T ([[M ]]I) and T 2I(I2T ([[M ]]I)) = [[M ]]I .

2. Let τ be a binary type, then I2T (T 2I(τ)) = τ .
When a closed term M ∈ Λ! needs the ξ-rules to reduce to strong normal form its semantics
as a partial involution does not necessarily yield an immediately meaningful type. We will
discuss this issue further in Section 5.

Conjecture 22 applies also when we restrict to terms of ΛEAL.

4 The Web Tool Λ-symsym

In the following, we will illustrate how to use the web tool, Λ-symsym, available at
http://158.110.146.197:31780/automata/, in order to experiment with the algorithms
provided in the previous section. We will provide excerpts from various sessions illustrating
how to convert λ!-terms to combinators, from the latter to partial involutions, and finally
to types. Moreover, we will also show how to infer a partial involution from a type. The
web tool is implemented in the language Erlang, [17]. We chose this language because of
its rich pattern matching features, its flexible constructors such as the set data type and for
the large number of libraries which allow for a rapid prototyping. The fine details of the
implementation appear in [13]

4.1 Encoding λ-terms, partial involutions and types
First we give the syntax representation; the following tables contain the correspondences
between the syntax we use with “pencil and paper”, the actual input syntax and the internal
representation used by our algorithms.

λ-terms
On the paper Input syntax Internal representation
x X {var, "X"}
C C {comb, C}
MN M@N {lapp, M, N}
λx.M l*X.M {abs, {var, "X"}, M}
λ!x.M l*!X.M {abs_b, {var, "X"}, M}
!M !M {bang, M}

Partial Involutions
On the paper Input syntax Internal representation
ϵ e e
x X {var, "X"}
lM lM {l, M}
rM rM {r, M}
⟨M, N⟩ <M,N> {p, M, N}
M ↔ N M <-> N [{M,N},{N,M}]

Types
On the paper Input syntax Internal representation
α A {var, "A"}
α −→ β A -> B {map, A, B}
α ∧ β A /\ B {cap, A, B}
!iα !I M {bang, I, M}

http://158.110.146.197:31780/automata/
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Figure 3 The interface of the web tool.

4.1.1 The web interface
Figure 3 depicts the web interface we can use to call the algorithms. It has 4 components:
1. a green drop-down menu allowing the user to choose the function to execute (e.g.,

lambda2type() in the general setting, as it appears in Figure 3); it provides a number of
functions for the general case, Λ! and for the ΛEAL case, namely:

(i) the function lambda2type() which given a term produces its combinatory logic
translation, its semantics as a specification of a partial involution, and the type
corresponding to the specification;

(ii) the function show_partial_involution which produces a specification of a partial
involution, given a type;

(iii) the function show_type which yields a type given a partial involution;
(iv) more functions which have not been discussed in this paper for dealing with polyno-

mial terms, and Hindley-Milner Types;
2. a text area where the user can write the argument to pass to the selected function;
3. another text area where the result will appear after clicking the button “Compute”;
4. a red button (“Compute”) to start the computation.

4.2 Sessions
4.2.1 Strictly Linear Combinators in I are a λ-algebra
One can see that the partial involutions corresponding to the two terms in input are equal.
This is one of the many equations which need to be checked to show that the ξ rule holds.

Input:
l*X.l*Y.l*Z.X@(Y@Z)
Combinators abstraction:
((C((BB)((BB)I)))((C((BB)I))I))
Partial involution rules:
--- begin ---
l(r(_X7)) <-> r(r(r(_X7)))
l(l(_X7)) <-> r(l(r(_X7)))
r(l(l(_X7))) <-> r(r(l(_X7)))
--- end ---
Principal type:
((_X10 -> _X9) -> ((_X8 -> _X10) -> (_X8 -> _X9)))

Input:
B
Partial involution rules:
--- begin ---
r(r(r(_X1))) <-> l(r(_X1))
l(l(_X1)) <-> r(l(r(_X1)))
r(l(l(_X1))) <-> r(r(l(_X1)))
--- end ---
Principal type:
((_X4 -> _X3) -> ((_X2 -> _X4) -> (_X2 -> _X3)))

4.2.2 The ξ-rule fails for erasers
The following example shows that the ξ-rule fails in I when terms erase variables. The
session on the right hand side shows that erased subterms might still leave an echo in the
partial involution. This is the reason why we have not taken the standard ω-equivalence
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as for intersection types. Please bear in mind that, when an inferred type features some
_Omegai variables (for i=1,2,3...), these variables stand for placeholders for any type.
They are “holes” in the type tree structure which arise since partial involutions do not
provide unnecessary information.

Input:
l*X.l*Y.((l*Z.I)@(X@Y))
Combinators abstraction:
((B(B(KI)))((C((BB)I))I))
Partial involution rules:
--- begin ---
r(r(l(_X4))) <-> r(r(r(_X4)))
l(l(_X4)) <-> r(l(_X4))
--- end ---
Principal type:
((_X5 -> _Omega3) -> (_X5 -> (_X6 -> _X6)))

Input:
l*X.l*Y.l*Z.Z
Combinators abstraction:
(K(KI))
Partial involution rules:
--- begin ---
r(r(l(_X2))) <-> r(r(r(_X2)))
--- end ---
Principal type:
(_Omega1 -> (_Omega2 -> (_X3 -> _X3)))

4.2.3 The ξ-rule fails when modalities are erased
As was the case in the above example, also in this case there remains an echo in the partial
involution when modalities are erased.

Input:
l*!X.D@!X
Combinators abstraction:
((BD)(F!(I)))
Partial involution rules:
--- begin ---
l(<e, _X1>) <-> r(_X1)
--- end ---
Principal type:
((!e _X2) -> _X2)

Input:
l*!X.D@!(D@!X)
Combinators abstraction:
((BD)((B(F!(((BD)(F!(I))))))d))
Partial involution rules:
--- begin ---
l(<<e, e>, _X1>) <-> r(_X1)
--- end ---
Principal type:
((!<e, e> _X2) -> _X2)

4.2.4 The ξ-rule fails in general
The following sessions illustrate that the ξ-rule fails in the encoding of standard λ-calculus
via application in the Kleisli category. This issue will be briefly discussed in Section 5.

Input:
l*!X.(l*!Y.Y@!Y)@!(X@!X)
Combinators abstraction:
((B(W((C((BB)D))(F!(I)))))((B(F!((W((C((BB)D))(F!(I)))))))d))
Partial involution rules:
--- begin ---
l(<<l(e), l(e)>, r(r(_X15))>) <-> r(_X15)
l(<<_X15, l(e)>, l(<_X16, _X17>)>) <-> l(<<_X15, r(_X16)>, _X17>)
l(<<l(e), l(e)>, r(l(<_X15, _X16>))>) <-> l(<<r(_X15), l(e)>, r(_X16)>)
--- end ---
Principal type:
(((!<e, e> (_Omega6 -> ((!_X17 _X18) -> _X21))) /\ (!<_X22, e> ((!_X19 _X20) -> _Omega10))) /\

/\ (((!<_X22, _X19> _X20) /\ (!<_X17, e> (_Omega4 -> _X18))) /\
/\(!<_X22, e> ((!_X19 _X20) -> _Omega10))))

-> _X21

but

Input:
l*!X.X@!X@!(X@!X)
Combinators abstraction:
(W((C((BB)(W((C((BB)D))(F!(I))))))((B(F!((W((C((BB)D))(F!(I)))))))d)))
Partial involution rules:
--- begin ---
r(_X14) <-> l(<l(l(e)), r(r(_X14))>)
l(<l(l(e)), l(<_X14, _X15>)>) <-> l(<l(r(_X14)), _X15>)
l(<l(l(e)), r(l(<_X14, _X15>))>) <-> l(<r(<_X14, l(e)>), r(_X15)>)
l(<r(<_X14, l(e)>), l(<_X15, _X16>)>) <-> l(<r(<_X14, r(_X15)>), _X16>)
--- end ---
Principal type:
(((!e ((!_X20 _X21) -> ((!_X17 _X23) -> _X24))) /\ (!_X20 _X21))/\

/\ ((!<_X17, e> ((!_X18 _X19) -> _X23)) /\ (!<_X17, _X18> _X19))) -> _X24
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4.2.5 Church Binary Words in the λEAL-calculus
This is the encoding of Church binary word < 0, 0, 1 > as would appear in [6].

Input:
l*!X.l*!Y.!(l*Z.X@(X@(Y@Z)))
Combinators abstraction:
((BF)(W((BF)(F!(((C((BB)((BB)((BB)I))))((C((BB)((BB)I)))((C((BB)I))I))))))))
Partial involution rules:
--- begin ---
l(<l(_X9), r(_X10)>) <-> r(r(<_X9, r(_X10)>))
l(<l(_X9), l(_X10)>) <-> l(<r(_X9), r(_X10)>)
l(<r(_X9), l(_X10)>) <-> r(l(<_X9, r(_X10)>))
r(r(<_X9, l(_X10)>)) <-> r(l(<_X9, l(_X10)>))
--- end ---
Principal type:
(((!_X11 (_X15 -> _X14)) /\ (!_X11 (_X16 -> _X15))) -> ((!_X11 (_X12 -> _X16)) -> (!_X11 (_X12 -> _X14))))

5 Final Remarks

In this paper we have introduced the web tool Λ-symsym which implements various
algorithms for computing the game semantics, in terms of involutions, of λ!- and λEAL-terms
and their types. Using Λ-symsym we have uncovered many peculiarities of game semantics.
The fact that in Abramsky’s model, I, the ξ-rule fails in the general case, but not in the
strictly linear case is perhaps the most remarkable one. Actually the portal Λ-symsym
makes available algorithms, similar to the ones introduced in this paper, for dealing with
the λLAL-calculus, introduced by the authors in [18], which captures in our framework
the polynomial calculi underpinning Light Linear Logic, cf [20, 26]. Furthermore, partial
involutions easily generalize to symmetric partial relations, see [18]. In this broader setting
one can model ML-types. Λ-symsym provides algorithms also for this case.

We list, in a cursory manner, a number of intriguing issues deserving future attention.
There is a plausible duality between types in ⊢! and partial involutions, which should
build up to a framework such as the one in [14, 1] for domain theory and intersection
types, cf [9].
Conjecture 22 appears to be very difficult to prove in full generality. A proof should
relate two dual alternative ways of carrying out unification. In analogy to Abramsky’s
terminology, we could call the wave-style traditional unification and the particle-style
unification, which goes on when linearly applying two specifications of involutions.
The failure of the ξ-rule in the model I uncovers the fact that sometimes, rather than
computing the most general unifier between the corresponding types, linear application
of partial involutions stops short of that and just computes some sort of least general
ancestor of the type. This has not been fully appreciated yet. In this respect, exploring
the connections of the present work with Girard’s Clause Algebras and the Execution
Formula as in [19] should prove fruitful.
The λ!-calculus is worthwhile investigating per se, but many well established notions need
to be generalized, most notably normal forms, because of stuck terms. The paper [21]
should provide some suggestions.
J.-Y. Girard in [20] introduced a polynomial time set-theory, which bears some relation
to the one of Fitch as presented in [25], which we have studied in [22]. The experience
gathered with λLAL-calculus should improve our understanding of its applicability.

In conclusion we think that the fine structure of game semantics of the λ-calculus needs
more investigation. This could be quite rewarding, provided more concrete experiments are
carried out. Λ-symsym is our contribution to making them a little more feasible.
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A An Erlang implementation of application between specifications of
partial involutions

The definition of linear application between specifications of partial involutions follows the
definition in [3], namely the flow diagram in Definition 11 (see Section 3). Given f, g,
f · g = frr ∪ frl; g; (fll; g)∗; flr, where fij = {(u, v) | (i(u), j(v)) ∈ f} for i, j ∈ {l, r}. Hence,
we must begin by implementing a function extract, which infers l- and r- rewriting rules
from the partial involution represented by the list L, according to Op1 and Op2:

extract(L,Op1,Op2) ->
case L of

[] -> [];
[{e,_}|T] -> extract(T,Op1,Op2);
[{_,e}|T] -> extract(T,Op1,Op2);
[{{p,_,_},_}|T] -> extract(T,Op1,Op2);
[{_,{p,_,_}}|T] -> extract(T,Op1,Op2);
[{T1,T2}|T] -> {O1,S1}=T1,

{O2,S2}=T2,
if

(O1==Op1) and (O2==Op2) -> [{S1,S2} | extract(T,Op1,Op2)];
true -> extract(T,Op1,Op2)

end
end.

Thus, if F represents a partial involution, then extract(F,r,l) will compute Frl.
Then, we define the core function composeRuleList which composes rule R1→R2 with

all the rules in L (exploiting the natural unification and substitution functions):

composeRuleList(R1,R2,L) ->
case L of

[] -> [];
[{S1,S2}|T] -> {ExitStatus,MGU}=unify(R2,S1,[]),

if
(ExitStatus==ok) -> [{subListTerm(MGU,R1),subListTerm(MGU,S2)}

| composeRuleList(R1,R2,T)];
true -> composeRuleList(R1,R2,T)

end
end.
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7:18 Λ-Symsym

In order to avoid possible clashes between variable names, the alpha function defined
below replaces all variables in Ruleset1 which also occur in Ruleset2 with freshly generated
ones:

alpha(Ruleset1,Ruleset2) ->
Vars1=ruleListVars(Ruleset1),
Vars2=ruleListVars(Ruleset2),
FreshSubst=separateVars(Vars1,Vars2),
subListRuleset(FreshSubst,Ruleset1).

alpha is used fruitfully in the definition of compose which computes all possible chainings
between rewriting rules of L1 and L2:

compose(L1,L2) ->
L1_Fresh=alpha(L1,L2),
compose_fresh(L1_Fresh,L2).

compose_fresh(L1_Fresh,L2) ->
case L1_Fresh of

[] -> [];
[H1|T1] -> {R1,R2}=H1,

composeRuleList(R1,R2,L2)++compose_fresh(T1,L2)
end.

The function star capitalizes on the definition of compose, in order to implement the
computation of H; (F; G)∗:

star(H,F,G) ->
S=compose(H,F),
if

S==[] -> H;
true -> T=compose(S,G),

if
T==[] -> H;
true -> H++star(T,F,G)

end
end.

At this point, the implementation of linear application, according to Definition 11 of
Section 3, is straightforward:

lapp(F,G) ->
FRR=extract(F,r,r),
FRL=extract(F,r,l),
FLL=extract(F,l,l),
FLR=extract(F,l,r),
FRL_G=compose(FRL,G),
FRL_G_STAR=star(FRL_G,FLL,G),
FRR++compose(FRL_G_STAR,FLR).
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