Specifying Message Formats with Contiguity Types

Konrad Slind
Trusted Systems Group, Collins Aerospace, Minneapolis, USA

Abstract
We introduce Contiguity Types, a formalism for network message formats, aimed especially at self-describing formats. Contiguity types provide an intermediate layer between programming language data structures and messages, offering a helpful setting from which to automatically generate decoders, filters, and message generators. The syntax and semantics of contiguity types are defined and used to prove the correctness of a matching algorithm which has the flavour of a parser generator. The matcher has been used to enforce semantic well-formedness conditions on complex message formats for an autonomous unmanned avionics system.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Logic, verification, formal language theory, message format languages

Digital Object Identifier 10.4230/LIPIcs.ITP.2021.30

Supplementary Material HOL4 formalization may be found at:
Model: https://github.com/loonwerks/splat/blob/monitors/contig/abscontigScript.sml
archived at swh:1:cnt:62ff99d4ed11f6d7f8452467e27b8013398d3577

Acknowledgements This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. Discussions with Robby, Luke Ryon, Dave Greve, David Hardin, Magnus Myreen, and Michael Norrish have greatly improved this work.

1 Introduction

Serialized data, for example network messages, is an important component in many computer systems. As a result, innumerable libraries and tools have been created that use high level specifications as a basis for automating the creation, validation, and decoding of such data. Usually, these high level specifications describe the format of a message in terms of how the elements (fields) of the message are packed side-by-side to make the full message. When the size of each field is known in advance, there are really no conceptual difficulties. However, messages can be more complicated than that.

The main source of difficulty is self-describing messages: those where information embedded in fields of the message determines the final structure of the message. Two of the main culprits are variable-length arrays and unions. A variable-length array is a field where the number of elements in the field depends on the value of some already-seen field (or, more generally, as the result of a computation involving previously-seen information in the message). The length is therefore a value determined at runtime. A union is deployed when some information held in a message is used to determine the structure of later portions of the message. For example, unions can be used to support versioning where version \(i \) has \(n \) fields, and version \(i + 1 \) has \(n + 1 \). In settings where both versions need to be supported in a single format, it can make sense to encode the version handling inside the message, and unions are how this can be specified.
We believe that tools and techniques from formal language theory such as regular expressions, automata, grammars, parser generators, etc. can provide an effective way to tackle message formats, and have been using the acronym SPLAT (Semantic Properties for Language and Automata Theory) to refer to this approach. For example, we have used regular expressions as a specification language for message formats having simple interval constraints on the values allowed in fields. Generation of the corresponding DFA results in an efficient table-driven automaton implementing the specified constraints, with a solid proof certificate connecting the original constraints with the DFA behavior [5].

However, self-describing data formats fall outside the realm of common formal language techniques; e.g., variable-length fields are clearly not able to be described by regular or context-free languages. (These language classes encompass repetitions of a fixed or unbounded size, but not repetitions of a size determined by parts of the input string.) It seems that context-sensitive grammars can, in principle, specify such information, but there are few tools supporting context sensitive languages. Knuth introduced attribute grammars [8] for dealing with context-sensitive aspects of parsing, and those techniques address similar problems to ours. Another possibility would be to use parser combinators in order to quickly stitch together a parser; it seems likely that the combinators can be instrumented to gather and propagate contextual information. However, we are seeking a high level of formal specification and automation, while still being rooted in formal languages, with their emphasis on sets of strings as the basic notion.

2 Contiguity Types

The characteristic property of a message is contiguity: all the elements of the message are laid out side-by-side in a byte array (or string). Our assumption is that a message is the result of a map from structured data and we will rely on a basic collection of programming language types to capture that structure. Contiguity types (Figure 1) start with common base types (booleans, characters, signed and unsigned integers, etc.) and are closed under the construction of records, arrays, and unions. ²

Notice that τ is defined in terms of a type of arithmetic expressions exp and also bexp, boolean expressions built from exp. Now consider

Array τ exp.

For this to specify a varying length array dependent on other fields of the message, its dimension exp should be able to refer to the values of those fields. The challenge is just how to express the concept of “other fields”, i.e., we need a notation to describe the location in

² We will use the terms “contiguity type, contig, and τ interchangeably.
the message buffer where the value of a field can be accessed. Our core insight is that this is similar to a problem that programming language designers had in the 60s and 70s, resolved by the notions of L-value and R-value. The idea is originally due to Christopher Strachey in CPL [13] and developed subsequently, for example by Dennis Ritchie in C [12].

Before getting into formal details, we discuss a few examples. We will use familiar notation: records are lists of \texttt{filename} : \tau elements enclosed by braces; an array field \texttt{Array c dim} is written \texttt{c[\text{dim}]}; and \texttt{Alt b \tau_1 \tau_2} is written ‘if \texttt{b then} \tau_1 \texttt{else} \tau_2’. “Cascaded” Als may be written in Lisp “cond” style, i.e., as

\begin{align*}
\texttt{Alt} & \quad b_1 \rightarrow \tau_1 \ldots \\
& \quad b_n \rightarrow \tau_n \\
& \quad \text{otherwise} \rightarrow \tau_{n+1}
\end{align*}

1. The following is a record with no self-describing aspects: each field is of a statically known size.

\begin{verbatim}
{A : u8
 B : {name : char [13]
 cell : i32}
 C : bool
 }
\end{verbatim}

The \texttt{A} field is specified to be an unsigned int of width 8 bits, the \texttt{B} field is a record, the first element of which is a character array of size 13, and the second element of which is a 32 bit integer; the last field is specified to be a boolean.

2. Variable-sized strings are a classic self-describing aspect. In this example the contents of the \texttt{len} field determines the number of elements in the \texttt{elts} field.

\begin{verbatim}
{ len : u16
 elts : char [len]
 }
\end{verbatim}

3. The following example shows the \texttt{Alt} construct being used to support multiple versions in a single format. Messages with the value of field \texttt{versionID} being less than 14 have three fields in the message, while all others have two.

\begin{verbatim}
{versionID : u8
 versions : if versionID < 14 then
 { A : i32, B : u16}
 else { Vec : char [13]}
 }
\end{verbatim}

4. The following is a contrived example showing the need for resolution of multiple similarly named fields; it also shows how the information needed to determine the message structure may be deeply buried in some fields.

\begin{verbatim}
{len : u16
 A : {len : u16
 elts : u16[len]
 }
 B : char [A.len - 1 * len]
 C : i32 [A.elts[0]]
 }
\end{verbatim}
In programming languages, an L-value is an expression that can occur on the left-hand side of an assignment statement. Similarly, an R-value can occur on the right-hand side of assignments. Following are a few examples:

\[
\begin{align*}
\text{x} & := \text{x} + 1 \\
\text{A[x]} & := \text{B.y} + 42 \\
\text{A[x].lens.fst[7]} & := \text{MAX_LEN} \times 1024 + \text{B.y}
\end{align*}
\]

Figure 2 presents the formal syntax for L-values, R-values, and the boolean expressions we will use. An L-value can be a variable, an array index, or a record field access. R-values are arithmetic expressions that can contain L-values (we will use \(\text{exp}\) interchangeably with R-value).

An L-value denotes an offset from the beginning of a data structure, plus a width. In an R-value, an occurrence of an L-value is mapped to the value of the patch of memory between offset and offset + width. For the purpose of specifying message formats, it may not be immediately obvious that a notation supporting assignment in imperative languages can help, but there is indeed a form of assignment lurking.

The above explanation of L-values centers on indices into a byte buffer; in the following we will give a mild variant of this: instead of indices into the buffer, we lift out the designated slices. Thus, given environments \(\theta : \text{lval} \rightarrow \text{string}\) (binding L-values to strings), and functions \(\text{toN} : \text{string} \rightarrow \mathbb{N}\) and \(\text{toB} : \text{string} \rightarrow \text{bool}\) (which interpret byte sequences to numbers and booleans, respectively), expression evaluation and boolean expression evaluation have conventional definitions:

\[
\begin{align*}
\text{evalExp } \theta e &= \text{case } e \text{ of } \\
\text{Loc } lval & \Rightarrow \text{toN}(\theta(lval)) \\
\text{nLit } n & \Rightarrow n \\
\text{e}_1 + \text{e}_2 & \Rightarrow \text{evalExp } \theta \text{e}_1 + \text{evalExp } \theta \text{e}_2 \\
\text{e}_1 \times \text{e}_2 & \Rightarrow \text{evalExp } \theta \text{e}_1 \times \text{evalExp } \theta \text{e}_2 \\
\text{bLoc } lval & \Rightarrow \text{toB}(\theta(lval)) \\
\text{bLit } b & \Rightarrow b \\
\neg b & \Rightarrow \neg(\text{evalBexp } \theta b) \\
\text{b}_1 \lor \text{b}_2 & \Rightarrow \text{evalBexp } \theta \text{b}_1 \lor \text{evalBexp } \theta \text{b}_2 \\
\text{b}_1 \land \text{b}_2 & \Rightarrow \text{evalBexp } \theta \text{b}_1 \land \text{evalBexp } \theta \text{b}_2 \\
\text{e}_1 = \text{e}_2 & \Rightarrow \text{evalExp } \theta \text{e}_1 = \text{evalExp } \theta \text{e}_2 \\
\text{e}_1 < \text{e}_2 & \Rightarrow \text{evalExp } \theta \text{e}_1 < \text{evalExp } \theta \text{e}_2
\end{align*}
\]

Remark 1 (Partiality). Expression evaluation is partial because there is no guarantee that \(\theta(lval)\) is defined: an \(lval\) being looked-up may not be in the map \(\theta\). Failure in evaluation is modelled by the option type, and must be handled in the semantics and the matching algorithm. However error handling is omitted in the presentation since it hampers readability. See the HOL4 formalization for full details.
2.2 Semantics

We now confess to misleading the reader: in spite of the notational similarity, a contiguity type is not a type: it is a formal language. A type is usually understood to represent a set, or domain, of values, e.g., the type int32 represents a set of integers. In contrast, the contiguity type i32 represents the set of strings of width 32 bits. An element of a contiguity type can be turned into an element of a type by providing interpretations for all the strings at the leaves and interpreting the Recd and Array constructors into the corresponding type constructs. (A base contiguity type therefore serves mainly as a tag to be interpreted as a width and also as an intended target type.) Thus, contiguity types sit – conveniently – between the types in a programming language and the strings used to make messages.

The semantics definition depends on a few basic notions familiar from language theory: language concatenation, and iterated language concatenation.

\[
L_1 \cdot L_2 = \{w_1w_2 \mid w_1 \in L_1 \land w_2 \in L_2\}
\]

\[
L^0 = \epsilon
\]

\[
L^{n+1} = L \cdot L^n
\]

Definition 2 (Semantics of contiguity types). In the following, we assume given an assignment \(\theta\) for evaluating expressions. If an expression evaluation fails, the language being constructed will be \(\emptyset\).

\[
L_\theta(\tau) = \text{case } \tau \begin{cases}
\text{base } \Rightarrow \{s \mid \text{len}(s) = \text{width}(\text{base})\} \\
\text{Recd } (f_1 : \tau_1) \ldots (f_n : \tau_n) \Rightarrow L_\theta(\tau_1) \cdot \ldots \cdot L_\theta(\tau_n) \\
\text{Array } \tau \exp \Rightarrow \begin{cases}
L_\theta(\tau)^{\text{evalExp } \theta \ exp} & \text{if evalExp } \theta \ exp \text{ succeeds} \\
\emptyset & \text{if evaluation fails}
\end{cases}
\end{cases}
\]

\[
\text{Alt } bexp \tau_1 \tau_2 \Rightarrow \begin{cases}
L_\theta(\tau_1) & \text{if evalBexp } \theta \ bexp = \text{true} \\
L_\theta(\tau_2) & \text{if evalBexp } \theta \ bexp = \text{false} \\
\emptyset & \text{if evaluation fails}
\end{cases}
\]

Example 3. Consider the following schema for an option contiguity type. The empty record \(\{\}\) associated with boolean expression \(b\) has no fields.

\[
\text{if } b \text{ then } \{\} \text{ else } c
\]

In case \(b\) evaluates to true, no portion of the string is consumed; otherwise, \(c\) specifies the remainder of the processing. It may be instructive to consider how this type works with arrays. For example, a string meeting the following contig specification

\[
(\text{if } b \text{ then } \{\} \text{ else } \text{i32}) [3]
\]

is either zero or twelve bytes in length (assuming that i32 is four bytes wide).

3 Algorithms

The following are classical topics in formal language theory and practice, and they are worth investigating in the context of contiguity types. At present we have been working on decoding, filtering, and test generation.

Decoding A decoder breaks a sequence of bytes up and puts the pieces into a useful data structure, typically a parse tree. We will discuss this in more detail in Section 3.1.
Filtering A filter computes an answer to the question: “does a sequence of bytes meet the specification of a given contiguity type”. This is an instance of the language recognition problem. More powerful filters enforce that certain fields of a message, when interpreted, meet specific semantic properties. We will discuss this further in Section 4.1.

Serialization Given a contiguity type, synthesize a function that writes a compact binary version of a data structure to a message.

Test generation Given a contiguity type, generate byte sequences that do (or do not) meet its specification and feed the sequences to implementations in order to observe their behaviour.

Learning Given training sets of messages that are accepted/rejected by an implementation, attempt to discover a contiguity type for the entire set of messages.

3.1 Decoding

Above we mentioned that decoding can result in parse trees; however, self-describing messages allow a different conceptual framework to be brought to bear. There is an important distinction between parsing, which creates structure (parse trees), and matching, which is given structure and calculates assignments (substitutions). Giving some evocative types helps make the difference clear:

\[
\begin{align*}
\text{parse} : & \text{grammar} \rightarrow \text{string} \rightarrow \text{parsetree} \\
\text{match} : & \text{pattern} \rightarrow \text{string} \rightarrow \text{assignments}
\end{align*}
\]

For our purposes, namely decoding datastructures in binary format, the central decoding algorithm is a matcher: given a contiguity type \(\tau \) and a string \(s \), the matcher will either fail, or succeed with an assignment \(\theta : lval \mapsto \text{string} \) mapping each L-value in \(\tau \) to its corresponding slice of \(s \). The assignment \(\theta \) can be post-processed to yield a standard parse tree, but its novelty and strength is that \(\theta \) can be dynamically consulted to access the values needed to guide the processing of self-describing messages.

- **Definition 4** (Matching algorithm). The matcher operates over a triple \((\text{worklist}, \text{str}, \theta)\) where worklist is a stack used to linearize the input contiguity type \(\tau \), str represents the remainder of the input string, and \(\theta \) is the assignment being built up. Each element of the worklist is a \((\tau, lval)\) pair, where \(\tau \) is a contig, and \(lval \) is the path growing down from the root to \(\tau \). The notation \((lval \mapsto \text{slice}) \bullet \theta\) denotes the addition of binding \(lval \mapsto \text{slice} \) to \(\theta \).

We examine the cases in turn:

1. The worklist is empty; the match succeeds.

\[
([], \text{str}, \theta) \Rightarrow \text{SOME} (\text{str}, \theta)
\]

2. The first element of the worklist is a base type. The prescribed number of bytes are broken off the front of the string, giving \(\text{str} = (\text{slice}, \text{rst}) \); then the binding is added to \(\theta \) before recursing. If the string is shorter than the requested number of bytes, fail.

\[
((\text{Basic } a, lval) :: t, \text{str}, \theta) \Rightarrow (t, \text{rst}, (lval \mapsto \text{slice}) \bullet \theta)
\]

3 Thus the notion of matching discussed here is in the tradition of term rewriting [1], the main difference being that our substitutions are applied to \textit{vals} rather than variables.
The first element of the worklist is recd = Recd (f₁ : τ₁) ... (fₙ : τₙ). Before recursing, the fields are pushed onto the stack, extending the path to each field element:

\[(\text{recd}, \text{lval}) :: t, \text{str}, \theta) \Rightarrow (\{(\tau₁, \text{lval}.f₁), \ldots, (\tauₙ, \text{lval}.fₙ)\}@[t, \text{str}, \theta])\]

The first element of the worklist is an array. The dimension expression is evaluated to get the width d, then d copies are pushed onto the stack, where each path is extended with the array index.

\[(\text{Array } \tau \text{ exp}, \text{lval}) :: t, \text{str}, \theta) \Rightarrow (\{(\tau, \text{lval}[0]), \ldots, (\tau, \text{lval}[d - 1])\}@[t, \text{str}, \theta])\]

The first element of the worklist is an Alt. If b evaluates to true, τ₁ is pushed on to the worklist; if it evaluates to false, τ₂ is pushed. Otherwise, fail.

\[(\text{Alt } b \; τ₁ \; τ₂, \text{lval}) :: t, \text{str}, \theta) \Rightarrow ((\tau₁, \text{lval}) :: t, \text{str}, \theta)\]

The matcher function, \text{match} begins with an initial state

\[\text{state}_{0} = (\{(\text{root}, \tau)\}, \text{str}_{0}, \emptyset)\]

where the initial path is a default lval variable named root, the initial string is \text{str}_{0}, and the initial assignment has no bindings.

\textbf{Theorem 5 (Matcher termination).} As mentioned, the state of the matcher is held in a (worklist, str, θ) tuple. The termination relation is a lexicographic combination, where either \text{str} gets shorter, or, \text{str} is unchanged and worklist gets smaller under the multiset order. (The multiset order is useful in this proof since the handling of the Array construct is a nice version of the Hercules-Hydra problem [3].)

\textbf{Definition 6 (Substitution application).} Correctness depends on an operation θ lval τ applying substitution θ to contiguity type τ, starting at lval, in order to reconstruct the original string.

\[\theta \text{ lval } τ = \text{case } τ\left\{\begin{array}{ll}
\text{base} & \Rightarrow \theta(\text{lval}) \\
\text{Recd } (f₁ : τ₁) \ldots (fₙ : τₙ) & \Rightarrow \theta(\text{lval}.f₁) \; τ₁ \cdot \ldots \cdot \theta(\text{lval}.fₙ) \; τₙ \\
\text{Array } \tau \text{ exp} & \Rightarrow \\
\{ & \theta(\text{lval}[0]) \; τ₁ \cdot \ldots \cdot \theta(\text{lval}[d - 1]) \; τ₁, \text{ if } d = \text{evalExp } \text{θ exp} \\
& \emptyset, \text{ if evaluation fails}\}
\text{Alt } b \text{ exp } τ₁ \; τ₂ & \Rightarrow \\
\{ & \theta \text{ lval } τ₁, \text{ if evalBexp } θ bexp = \text{true} \\
& \theta \text{ lval } τ₂, \text{ if evalBexp } θ bexp = \text{false} \\
& \emptyset, \text{ if evaluation fails}\} \end{array}\right.\]

\textbf{Theorem 7 (Correctness of substitution).} The correctness statement for the matcher is similar to those found in the term rewriting literature, namely that the computed substitution applied to the contiguity type yields the original string:

\[\text{match } \text{state}_{0} = \text{SOME}(θ, s) \Rightarrow θ \text{ root } τ \cdot s = \text{str}_{0}\]

Proof. By induction on the definition of match. ☐

\textbf{Theorem 8 (Matcher soundness).} The connection to \(L_θ(τ)\) is formalized as

\[\text{str}_{0} = s₁ s₂ \land \text{match } \text{state}_{0} = \text{SOME}(θ, s₂) \Rightarrow s₁ \in L_θ(τ)\]
30:8 Specifying Message Formats with Contiguity Types

Proof. By induction on the definition of match. ▷

In other words, a successful match provides a θ that will successfully evaluate all encountered expressions, and the matched string is indeed in the language of τ. A completeness theorem going in the other direction has not yet been tackled.

Example 9. Given the contig

```
{A : Bool
 B : Char
 len : u16
 elts : i32 [len]
}
```

and an input string (listed in hex)

```
[0wx1, 0wx67, 0wx0, 0wx5, 0wx0, 0wx0, 0wx9, 0wx0, 0wx0, 0wx9, 0wx34, 0wx0, 0wx0, 0wx30, 0wx39, 0wx0, 0wx0, 0wxD4,
 0wx31, 0wxFF, 0wxFF, 0wxFE, 0wxB3]
```

created by encoding: the boolean $true$, the letter g, the number 5 (MSB 2 byte unsigned), and the five MSB 4 byte signed twos complement integers 25, 2356, 12345, 54321, and -333, the matcher creates the following assignment of lvals to substrings of the input:

```
[(root.A, (Bool, [0wx1])),
 (root.B, (Char, [0wx67])),
 (root.len, (u16, [0wx0, 0wx5])),
 (root.elts[0], (i32, [0wx0, 0wx0, 0wx0, 0wx9])),
 (root.elts[1], (i32, [0wx0, 0wx0, 0wx9, 0wx34])),
 (root.elts[2], (i32, [0wx0, 0wx0, 0wx30, 0wx39])),
 (root.elts[3], (i32, [0wx0, 0wx0, 0wxD4, 0wx31])),
 (root.elts[4], (i32, [0wxFF, 0wxFF, 0wxFE, 0wxB3]))
]
```

Note that each element of the list is of the form $(lval, (tag, bytes))$ where each slice is labelled with its corresponding base type, to support further translation.

Thus the matcher will break up the input string in accordance with the specification; the execution, in effect, generates a sequence of assignments that, if applied, would populate a data structure with the specified data in the specified places. Therefore it is not really necessary to generate parse trees in order to decode messages: one merely needs a target data structure to write data into. (In fact, when filtering, no target data structure is needed at all.) The correctness property will ensure that all fields are written with the specified data. The assignments can be incrementally evaluated as the decoder runs, or can be stored and applied when the decoder terminates.

4 Extended contiguity types

In the discussion so far, contiguity types can only express bounded data: each base type has a fixed size and all Array types are given an explicit bound. Removing these two restrictions would greatly increase expressiveness. Of course, we look to the theory of formal languages to guide extensions to the formalism. We have thus explored the addition of the empty language \emptyset, Kleene star, and a lexer. The augmented syntax can be seen in Figure 3. The addition of \emptyset (via Void) and Kleene star (via List) has been accomplished, along with the
\[\tau = \text{Base} (\text{regexp} \times \text{valFn}) \]
<table>
<thead>
<tr>
<th>\tau</th>
</tr>
</thead>
<tbody>
<tr>
<td>Void</td>
</tr>
<tr>
<td>List \tau</td>
</tr>
<tr>
<td>Recd ((f_1 : \tau_1) \ldots (f_n : \tau_n))</td>
</tr>
<tr>
<td>Array \tau \text{exp}</td>
</tr>
<tr>
<td>Alt \text{bexp} \tau_1 \tau_2</td>
</tr>
</tbody>
</table>

Figure 3 Extended contiguity types.

Proofs verifying the upgraded matcher. We also discuss replacing the existing base types with a lexer for completeness, even though that discussion more appropriately belongs to future work.

Definition 10 (Semantics additions). A base type element has the form \text{Base}(\text{regexp}, \text{valFn}), where \text{valFn} is a function that maps the string recognized by \text{regexp} to a data value. The semantics of a \text{Base} type is just the (formal language) semantics of its regular expression, \text{Void} denotes the empty set, and \text{List} is a “tagged” version of \text{Kleene star} (\text{NilTag} and \text{ConsTag} are described in Section 4.2).

\[
\mathcal{L}_\theta(\tau) = \text{case} \tau \begin{cases} \text{Base}(\text{regexp}, \text{valFn}) \Rightarrow \mathcal{L}(\text{regexp}) \\ \text{Void} \Rightarrow \emptyset \\ \text{List} \tau \Rightarrow (\text{ConsTag} \cdot \mathcal{L}(\tau))^* \cdot \text{NilTag} \\ \ldots (\text{previous clauses}) \end{cases}
\]

4.1 Void and in-message assertions

The \text{Alt} constructor combined with \text{Void} supports an in-message assertion feature. The contiguity type \text{Assert} \ text{bexp} is defined as follows:

Definition 11 (Assert).

\[
\text{Assert} \ bexp = \text{Alt} \ bexp \ (\text{Recd}[]) \text{ Void}
\]

The meaning of \text{Assert} \ b is obtained by simplification:

\[
\mathcal{L}_\theta(\text{Assert} \ bexp) = \text{if evalBexp} \ \theta \ bexp \ \text{then} \ \varepsilon \ \text{else} \ \emptyset
\]

and \text{match} evaluates it by failing when \text{evalBexp} \ \theta \ bexp is false, and otherwise continuing on without advancing in the input.

Example 12 (\text{A}^n \text{B}^n \text{C}^n). It is well known that \(L = \text{A}^n \text{B}^n \text{C}^n \) is not a context-free language. We can use \text{Assert} to specify a language that is nearly \(L \) with the following contiguity type:

\[
\text{charA} = \{ \text{ch} : \text{char}, \text{isA} : \text{Assert} (\text{ch} = 65)\} \quad (* \ ^* \text{A} ^* = \text{ASCII} \ 65 \ ^*)
\]

\[
\text{charB} = \{ \text{ch} : \text{char}, \text{isB} : \text{Assert} (\text{ch} = 66)\}
\]

\[
\text{charC} = \{ \text{ch} : \text{char}, \text{isC} : \text{Assert} (\text{ch} = 67)\}
\]

\[
\text{mesg} = \{ \text{len} : \text{u16} \\
A : \text{charA} [\text{len}] \\
B : \text{charB} [\text{len}] \\
C : \text{charC} [\text{len}] \\
\}
\]

In fact \(\mathcal{L}_\theta(\text{mesg}) = u \cdot A^{\text{toN}(u)} \cdot B^{\text{toN}(u)} \cdot C^{\text{toN}(u)} \).
Assert expressions have been used extensively when specifying wellformedness properties for messages in our application work. The applications include restrictions on array sizes and constraints on array elements, e.g., requiring that every element in an array of GPS coordinates is an acceptable GPS coordinate.

Example 13 (Array limits). In UxAS messages (see Section 5) the length of every array element is held in a separate *length* field which is two bytes in size. Thus the following *contig*, in the absence of any further constraint, supports arrays of length up to 65536 elements. A receiver system may well not be prepared for messages having collections of such potentially large components.

```plaintext
{ len : u16
  elts : i32 [len] }
```

In the meta-data for such messages, one can sometimes find information about the maximum expected size, usually a fairly small number. This can be directly expressed inside the *contig* with an **Assert**:

```plaintext
{ len : u16
  len-range : Assert (len <= 8)
  elts : i32 [len] }
```

Note that the expected array length should be specified before the array itself, otherwise the allocation attempt might be made before the check.

4.2 Kleene Star

Although the use of bounded *Array* types provides much expressiveness for representing sequences of data, ultimately some kinds of message can not be handled, i.e., those where there is no way to predict the number of nestings of structure: s-expressions, logical formulae, and programming language syntax trees are some typical examples. We address this shortcoming by adding a new contiguity type constructor – *List* – of unbounded lists. A message matching a *List* type will be subject to an encoding similar to implementations of lists in functional languages. The matching algorithm for contiguity types is extended to handle *List* objects by iteratively unrolling the recursive equation

\[
L^* = \varepsilon \cup L \cdot L^*
\]

Indeed the type *List* \(\tau\) is represented by the following contiguity type, a recursive record:

```plaintext
List \(\tau\) =
\[
\begin{cases}
\text{tag} : \text{u8} & \rightarrow \varepsilon \\
\text{test} : \text{Alt} & \rightarrow \{\text{hd} : \tau, \text{tl} : \text{List} \ \tau\}
\end{cases}
\]
```

In words, a *List* \(\tau\) matches a sequence of records where a single-byte tag (*NilTag* or *ConsTag*) is read, then tested to see whether to stop parsing the list (*NilTag*) or to continue on to parse a \(\tau\) into the *hd* field and recurse in order to process the remainder of the list. An incorrect value for the tag results in failure. Thus, the list of integers

\[
\text{Cons}(1, \text{Cons}(2, \text{Cons}(3, \text{Nil})))
\]

can be represented in a message as (assume **Code** is an encoder for integers)

```
ConsTag \cdot \text{Code}(1) \cdot ConsTag \cdot \text{Code}(2) \cdot ConsTag \cdot \text{Code}(3) \cdot \text{NilTag}
```
and match, given type \(\text{List int}\) (where \(\text{int}\) is a contiguity type for some flavor of integer) succeeds, returning the context:

\[
\begin{align*}
\text{root.tag} & \mapsto \text{ConsTag} \\
\text{root.hd} & \mapsto \text{Code}(1) \\
\text{root.tl.tag} & \mapsto \text{ConsTag} \\
\text{root.tl.hd} & \mapsto \text{Code}(2) \\
\text{root.tl.tl.tag} & \mapsto \text{ConsTag} \\
\text{root.tl.tl.hd} & \mapsto \text{Code}(3) \\
\text{root.tl.tl.tl.tag} & \mapsto \text{NilTag}
\end{align*}
\]

This solution is compositional, in the sense that \(\text{List}\) types can be the arguments of other contiguity types, can be applied to themselves, e.g., \(\text{List(List } \tau)\), etc. Thus quite general branching structures of arbitrary finite depth and width can be specified and parsed with this extension. The approach captures a certain class of context-free-like languages. However, it differs distinctly from the standard Chomsky hierarchy, mainly because sums are determined by looking behind when computing which choice to follow in an \(\text{Alt}\) type; for example, the list parser branches after it has seen the tag. The similarity with ‘no-lookahead’ parsing, such as \(\text{LL}(0)\) and \(\text{LR}(0)\), deserves further investigation.

Example 14 (First order term challenge). Although lists of contig types can be straightforwardly constructed with the above encoding, there remains a problem when lists are part of a recursive construction. A classic example is first order terms, as described by the following ML-style datatype:

\[
\text{term} = \text{Var of string} \\
| \text{App of string * term list}
\]

The following contiguity types capture a binary encoding of \(\text{term}\), using tags to distinguish the two kinds of term:

\[
\text{string} = \{\text{len} : \text{u16}, \text{elts} : \text{char}[\text{len}]\}
\]

\[
\text{term} = \begin{cases}
\text{tag} : \text{u8} \\
\text{test} : \text{Alt} \quad (\text{tag} = \text{VarTag}) & \mapsto \{\text{varName} : \text{string}\} \\
\quad (\text{tag} = \text{AppTag}) & \mapsto \{\text{fnName} : \text{string}, \text{Args} : \text{List term}\} \\
\text{otherwise} & \mapsto \text{Void}
\end{cases}
\]

However, such nested recursive specifications demand more elaborate constructions, for example treating \(\text{term}\) and \(\text{List}\) as being mutually recursively defined, as is already done for nested recursive datatypes in theorem provers [6].

4.3 Lexing

Currently, the set of base contiguity types comprises the usual base types expected in most programming languages. Semantically, a base type denotes a set of strings of the specified width, but it is also coupled with an interpretation function for example, the contiguity type \(\text{u8}\) denotes the set of all one-byte strings, interpreted by the usual unsigned valuation function:

\[
\text{u8} = (\{s \mid \text{length}(s) = 1\}, \text{toN})
\]
This approach cannot, however, capture base types such as string literals of arbitrary size, or bignums, or the situation in packed bit-level encodings where fields are of *ad hoc* sizes aimed at saving space. A common generalization is to express base types via regular expressions paired with interpretation functions. In that setting \(u_8 \) can be defined as

\[
u_8 = (., \text{toN})
\]

(where `.` is the standard regular expression denoting any character). Similarly,

\[
\text{Cstring} = ([0-255]^0 \lambda x. x)
\]

denotes the set of zero-terminated strings, as found in the C language. Its displayed interpretation is just the identity function, but could just as well be a function that drops the terminating \(\text{\texttt{\textbackslash 000}} \) character.

Scott Owens has already formalized a HOL4 theory of regexp based, maximal munch, lexer generation, and it is future work to adapt contiguity types to use those lexemes instead of the current restricted set of base types.

Application

In the DARPA CASE project, we have been applying contiguity types to help create provably secure message filters and runtime monitors. One example we have been working with is *OpenUxAS*, which has been developed by the Air Force Research Laboratory.\(^4\) UxAS is a collection of modular services that interact via a common message-passing architecture, aimed at unmanned autonomous systems. Each service subscribes to messages in the system and responds to queries. The content of each message conforms to the Light-weight Message Control Protocol (LMCP) format. In UxAS, software classes providing LMCP message creation, access, and serialization/deserialization are automatically generated from XML descriptions, which detail the exact data fields, units, and default values for each message. All UxAS services communicate with LMCP formatted messages.

An example LMCP message type is *AirVehicleState*. The following is its contiguity type:

```
AirVehicleState =
{ EntityState : EntityState
  Airspeed : float
  VerticalSpeed : float
  WindSpeed : float
  WindDirection : float
}
```

where an *EntityState* is quite an elaborate type:

```
{ ID : i64
  u : float
  v : float
  w : float
  udot : float
  vdot : float
  wdot : float
  Heading : float
```

\(^4\) See https://github.com/afrl-rq/OpenUxAS.
Most of the fields are simple base types, but the Location field and the PayloadStateList are complex. They are expressed with some derived syntax, which we will explain.

= The Location field, `mesgOption "LOCATION3D" location3D`, may or may not occur (signalled with a tag field), but if it does, it is a `location3D`, which is a GPS location, and its latitude, longitude, and altitude fields are checked with an Assert to make sure they lie within the expected numeric ranges, which are expressed as floating point numbers.

```
AltitudeType = AGL | MSL
```

```
location3D = {
    Latitude : double,
    Longitude : double,
    Altitude : float,
    AltitudeType : AltitudeType,
    Wellformed : Assert (
        -90.0 <= Latitude <= 90.0 and
        -180.0 <= Longitude <= 180.0 and
        0.0 <= Altitude <= 15000.0)
}
```

= The PayloadStateList is a variable-length array of optional records, with maximum length 8. Each record has, along with other fields, its own variable-length array of key-value pairs, and the key and value of each such pair is a variable-length string.

We have formalized most of the LMCP messages as contiguity types, and created filters and parsers by instantiating the match algorithm. In order to meet the demands of LMCP message modelling, the matcher algorithm has been upgraded to support a fuller expression and boolean expression language, but the core algorithm is the same as our verified core version. The filters and parsers have been added to an existing UxAS design and successfully tested with the UxAS simulator.

6 Extensions and future work

Various extensions have been easy to add to the contiguity type framework, and we also have more substantial ideas to pursue for future work.
Enumerations An enumeration declaration introduces a new base contiguity type, and also adds the specified elements to a map associating constant names to numbers. Suppose that enumerations are allowed to have up to 256 elements, allowing any enumerated element to fit in one byte. The following enumeration is taken from UxAS messages:

```haskell
NavigationMode
    = Waypoint | Loiter | FlightDirector
    | TargetTrack | FollowLeader | LostComm
```

A field expecting a `NavigationMode` element will be one byte wide, and thus there are 250 byte patterns that should not be allowed in the field. Thus, the contig

```haskell
{ A : NavigationMode }
```

should be replaced by

```haskell
{ A : NavigationMode
    A-range : Assert (A <= 5)
}
```

Raw blocks A raw chunk of a string (byte array) of a size that can depend on the values of earlier fields is easy to specify:

```haskell
Raw exp
```

For example, a large `Array` form can lead to a large number of L-values being stored in \(\theta \); if none are ever accessed later, e.g., if the array is some image data, it can be preferable to simply declare a `Raw` block. Thus a 2D array can be blocked out in the following manner:

```haskell
{ rows : i32
  cols : i32
  block : Raw (rows * cols)
}
```

Guest scanners It seemed useful to provide a general ability to host scanning functions. This is accomplished via the following constructor:

```haskell
Scanner (scanfn : string \rightarrow (string × string)option)
```

When a custom scanner is encountered during the matching process, the scanner is invoked on the input and should either fail or provide an \((s_1, s_2) \) pair representing a splitting of the input. Then \(s_1 \) is added to \(\theta \) at the current `lval`, and matching continues on \(s_2 \).

Non-copying implementations In the discussion so far, we have assumed that the input string is being broken up into substrings that are placed into the `lval` map \(\theta \). However, very little is changed if, instead of a substring, an `lval` in \(\theta \) maps to a pair of indices \((pos, width) \) designating the location of the substring. The result is a matcher that never copies byte buffer data. This is necessary to synthesize efficient filters.

In making this representation change, there is a slight change to the semantics. In the original, \(\theta(lval) \) yields a string whereas in the non-copying version, \(\theta(lval) \) yields a pair of indices, which means that the original string \(str_0 \) needs to be included in applying the assignment.
Compilation Our current implementation of contiguity types is in an interpreted style: the evaluation of numeric Array bounds and boolean guards on Alt conditions is done with respect to the current context, which is explicitly accumulated as the message is processed. However, notice that the host programming language will no doubt already provide compilation for numeric and boolean expressions. This leads to the idea of compiling contiguity types: the current matching algorithm for contiguity types can be replaced by the generation of equivalent host-language code which is then compiled by the host-language compiler and evaluated. Although the current contiguity type matcher has proved to be fast enough to keep up with the real-time demands of the UxAS system, we expect that a compiled version of the code would be much faster.

We would like to formalize the compilation algorithm and prove it correct. Since the CakeML formalization provides an operational semantics for CakeML programs, and a convenient translation from HOL4 expressions to CakeML ASTs, one should be able to prove a correctness theorem relating the matcher function of the present paper with a compiler that takes a contiguity type and generates CakeML. However, this is only speculative; there are many details to work out.

Relationship with grammars Contiguity types and match provide a type-directed and context-oriented parser generator that has some similarities with LL(0) or LR(0) languages wherein the parser can proceed with no lookahead. This is useful for binary-encoded datastructures. It would be very interesting to attempt to bridge the gap with conventional parsing technology based on grammars. A good beginning would be to understand the issues involved in attempting to translate context-free grammars into contiguity types and vice versa.

7 Related work

As mentioned in the introduction, domain specific languages for message formats have been around for a long time. Semantic definitions and verification for them is a much more recent phenomenon. The PADS framework [4] aimed at supporting a wide variety of formats, including text-based. Its core message description formalism was given semantics by translation into dependent type theory. An interesting integration of context-sensitivity into a conventional grammar framework has been done by Jim and Mandelbaum [7]. Everparse [11] is an impressive approach, based on parser combinators and having an emphasis on proving the invertibility of encode/decode pairs with automated proof (other properties are also established). Chlipala and colleagues [2] similarly emphasize encode/decode proofs, basing their work in Coq and using the power of dependent types to good effect. Formats based on dependent types can (and do) use the built-in expressive power of type theory to enforce semantic properties on data. A recent language in this vein is Parsely [10] which leverages the dependent records and predicate subtyping of PVS to provide a combination of PEG parsing and attribute grammars aimed at parsing complex language formats.

Many of these efforts obtain the semantics of the data description formalism by translation into features provided by a powerful host logic. In contrast, contiguity types use only very basic – and easily implemented – concepts. This means that contiguity type matchers, parsers, and extensions can be directly implemented in any convenient programming language. Contiguity types also provide a kind of dependency, without leveraging the type system of the theorem prover. We suspect that working at the representation level, and using L-values, allows one to get some of the benefits of type dependency. Another distinguishing aspect of our work is that our emphasis on filters means that we are primarily interested in the enforcement of semantic properties on message contents rather than encode/decode properties. In future work we expect to be able to leverage this in high performance filter implementations.
8 Conclusion

We have designed, formalized, proved correct, implemented, and applied a specification language for message formats, based on formal languages and the venerable notion of L- and R-values from imperative programming. The notion of contiguity type seems to give a lot of expressive power, sufficient to tackle difficult idioms in self-describing formats. Contiguity types integrate common structuring mechanisms from programming languages, such as arrays, records, and lists while keeping the foundation in sets of strings, which seems appropriate for message specifications.

References
