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Abstract
In this work, we present Vicuna, a timing-predictable vector coprocessor. A vector processor
can be scaled to satisfy the performance requirements of massively parallel computation tasks,
yet its timing behavior can remain simple enough to be efficiently analyzable. Therefore, vector
processors are promising for highly parallel real-time applications, such as advanced driver assistance
systems and autonomous vehicles. Vicuna has been specifically tailored to address the needs
of real-time applications. It features predictable and repeatable timing behavior and is free of
timing anomalies, thus enabling effective and tight worst-case execution time (WCET) analysis
while retaining the performance and efficiency commonly seen in other vector processors. We
demonstrate our architecture’s predictability, scalability, and performance by running a set of
benchmark applications on several configurations of Vicuna synthesized on a Xilinx 7 Series FPGA
with a peak performance of over 10 billion 8-bit operations per second, which is in line with existing
non-predictable soft vector-processing architectures.
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1 Introduction

Worst-Case Execution Time (WCET) analysis, which is essential to determine the maximum
execution time of tasks for real-time systems [46], has struggled to keep up with the advances
in processor design. Numerous optimizations such as caches, branch prediction, out-of-order
execution, and speculative execution have made the timing analysis of processing architectures
increasingly complex [45]. As a result, the performance of processors suitable for real-time
systems usually lags behind platforms optimized for average computational throughput at
the cost of predictability. Yet, the performance requirements of real-time applications are
growing, particularly in domains such as advanced driver assistance systems and self-driving
vehicles [23], thus forcing system architects to use multi-core architectures and hardware
accelerators such as Graphics Processing Units (GPUs) in real-time systems [13]. Analyzing
the timing behavior of such complex heterogeneous systems poses additional challenges as it
requires a timing analysis of the complex interconnection network in addition to analyzing
the individual processing cores of different types and architectures [36, 9].

However, current trends motivated by the quest for improved energy-efficiency and the
emergence of massively data-parallel workloads [8] have revived the interest in architectures
that might be more amenable to WCET analysis [29]. In particular, vector processors are
promising improved energy efficiency for data-parallel workloads [7] and have the potential
to reduce the performance gap between platforms suitable for time-critical applications and
mainline processors [29].
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1:2 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

Vector processors are single-instruction multiple-data (SIMD) architectures, operating on
vectors of elements instead of individual values. The vector elements are processed simultan-
eously across several processing elements as well as successively over several cycles [2]. A single
vector instruction can operate on a very large vector, thus amortizing the overhead created
by fetching and decoding the instruction, which does not only increase its efficiency [4] but
also means that complex hardware-level optimizations become less effective [29]. Therefore,
vector processors can drop some of these optimizations and thus improve timing predictability
without notable performance degradation.

While vector processors have the potential to greatly simplify timing analysis compared to
other parallel architectures, existing vector processing platforms retain features that impact
timing-predictability, such as out-of-order execution or banked register files [5]. Even if some
vector architectures have simple in-order pipelines, they still exhibit timing anomalies (i.e.,
undesired timing phenomena which threaten timing predictability). Timing anomalies occur,
for instance, when memory accesses are not performed in program order [16], such as when
memory accesses by the vector unit interfere with accesses from the main core.

In this paper, we present a novel vector coprocessor addressing the needs of time-critical
applications without sacrificing performance. Our key contributions are as follows:

1. We present a timing-predictable 32-bit vector coprocessor implemented in SystemVerilog
that is fully compliant with the version 0.10 draft of the RISC-V vector extension [34].
All integer and fixed-point vector arithmetic instructions, as well as the vector reduction,
mask, and permutation instructions described in the specification, have been implemented.
Vicuna is open-source and available at https://github.com/vproc/vicuna.

2. We integrate our proposed coprocessor with the open-source RISC-V core Ibex [37] and
show that this combined processing system is free of timing anomalies while retaining a
peak performance of 128 8-bit multiply-accumulate (MAC) operations per cycle. The
combined processing system runs at a clock frequency of 80 MHz on Xilinx 7 Series
FPGAs, thus achieving a peak performance of 10.24 billion operations per second.

3. We evaluate the effective performance of our design on data-parallel benchmark ap-
plications, reaching over 90 % efficiency for compute-bound tasks. The evaluation also
demonstrates the predictability of our architecture as each benchmark program always
executes in the exact same number of CPU cycles.

This work is organized as follows. Section 2 introduces prior work in the domains of
parallel processing and vector architectures. Then, Section 3 presents the design of our
vector coprocessor Vicuna and Section 4 analyzes the timing behavior of our processing
system. Section 5 evaluates its performance on several benchmark algorithms, and Section 6
concludes this article.

2 Background and Related Work

This section gives an overview of existing parallelized computer architectures and vector
processors in particular and compares them to our proposed timing-predictable vector
coprocessor Vicuna. Table 1 summarizes the main aspects.

2.1 Parallel Processing Architectures
In the mid-2000s, power dissipation limits put an end to the acceleration of processor clock
frequencies, and computer architects were forced to exploit varying degrees of parallelism
in order to further enhance computational throughput. A relatively simple approach is to
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Table 1 Performance and timing predictability of parallel computer architectures.

Processor
Architecture

Multi-
Core
CPU

General-
purpose

GPU

Domain-
Specific

Accelerators

Existing
Vector

Processors

Timing-
Predictable
Platforms

Vicuna
(Our
work)

General-
purpose ✓ ✓ ✓ ✓ ✓

Efficient
parallelism ✓ ✓ ✓ ✓

Timing-
predictable ✓ ✓ ✓

Max. OPs
per sec (·109)
FPGA / ASIC

2.2∗ /
1 200∗∗

3.2† /
35 000††

5 000‡ /
45 000‡‡ 15§ / 128§§ 2.4¶ / 49¶¶ 10 / —

∗ 16-core Cobham LEON3
∗∗ 344-core Ambric Am2045B

† FlexGrip soft GPU [1]
†† NVIDIA RTX 3090

‡ Srinivasan et al. [42]
‡‡ Google TPU [21]
§ 32-lane VEGAS [6]

§§ 16-lane PULP Ara [5]

¶ 15-core T-CREST Patmos [38]
¶¶ 8-core ARM Cortex-R82

replicate a processor core several times, thus creating an array of independent cores each
executing a different stream of instructions. This multiple-instruction, multiple-data (MIMD)
paradigm [11] is ubiquitous in today’s computer architectures and has allowed a continued
performance increase. Timing-predictable multi-core processors have been proposed for
time-critical parallel workloads, most notably the parMERASA [43] and the T-CREST [38]
architectures, which demonstrated systems with up to 64 and 15 cores, respectively. A
similar timing-predictable multi-core architecture utilizing hard processing cores connected
by programmable logic has been implemented recently on an Multiprocessor System-on-
Chip (MPSoC) platform [14]. However, several of the workloads capable of efficiently
exploiting this parallelism are actually highly data-parallel, and as a consequence, the many
cores in such a system frequently all execute the same sequence of instructions [7]. The
fetching and decoding of identical instructions throughout the cores represent a significant
overhead and increase the pressure on the underlying network infrastructure connecting
these cores to the memory system [28, 41]. Consequently, the effective performance of a
multi-core system does not scale linearly as more cores are added. For the T-CREST platform,
Schoeberl et al. report that the worst-case performance for parallel benchmark applications
scales only logarithmically with the number of cores [38]. As an alternative to multi-core
architectures, some timing-predictable single-core processors exploit parallelism by executing
multiple independent hardware threads [26, 50], thus avoiding the overhead of a complex
interconnection network. Yet, the scalability of this approach is limited since it does not
increase the available computational resources.

An architecture that overcomes many of the limitations of multi- and many-core systems
for highly parallel workloads are general-purpose GPUs (also referred to as GPGPUs) [31].
GPUs utilize data-parallel multithreading, referred to as the single-instruction multiple-
threads (SIMT) paradigm [27], to achieve unprecedented energy-efficiency and performance.
GPUs are used as data-parallel accelerators in various domains and have found their way
into safety-critical areas such as autonomous driving [23, 13]. However, their use in hard
real-time systems still poses challenges [9]. GPUs are usually non-preemptive, i.e., tasks
cannot be interrupted, which requires software-preemption techniques to be used instead [13].
Also, contention among tasks competing for resources is typically resolved via undisclosed
arbitration schemes that do not account for task priorities [10].
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1:4 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

Recently, special-purpose accelerators emerged as another type of highly parallel platform
that sacrifices flexibility and often precision [42] to achieve impressive performance for domain-
specific tasks. For instance, the Tensor Processing Unit (TPU) [21] is capable of 65536
8-bit MAC operations in one cycle, achieving a peak performance of 45 · 1012 operations per
second at a clock frequency of 700 MHz. Due to their simple application-specific capabilities,
the timing behavior of these accelerators is generally much easier to analyze [29]. While
domain-specific accelerators achieve impressive performance for a small subset of applications,
they are very inefficient at or even incapable of running other important algorithms, such
as Fourier Transforms, motion estimation, or encryption with the Advanced Encryption
Standard (AES). By contrast, a vector processor can execute any task that can be run on a
conventional processor.

As an alternative to parallelizing tasks across several cores or threads, single-instruction
multiple-data (SIMD) arrays have been added to several Instruction Set Architectures (ISAs).
These are usually fixed-size arrays using special functional units, one for each element in the
array, to apply the same operation to the entire array at once. However, array processors
require that the computational resources are replicated for each element of the longest
supported array [5].

2.2 Vector Processors
Vector processors are a time-multiplexed variant of array processors. Instead of limiting the
vector length by the number of processing elements, a vector processor has several specialized
execution units that process elements of the same vector across multiple cycles, thus enabling
the dynamic configuration of the vector length [7]. Fig. 1 shows how an instruction stream
with interleaved scalar and vector instructions executes on an array processor and a vector
processor, respectively. In an array processor, the entire vector of elements is processed at
once, and the processing elements remain idle during the execution of scalar instructions. In
the vector processor, functionality is distributed among several functional units, which can
execute in parallel with each other as well as concurrently with the scalar units.

Vector processors provide better energy-efficiency for data-parallel workloads than MIMD
architectures [7] and promise to address the van Neumann bottleneck very effectively [4]. A
single vector instruction can operate on a very large vector, which amortizes the overhead
created by fetching and decoding the instruction. In this regard, vector processors even
surpass GPUs, which can only amortize the instruction fetch over the number of parallel
execution units in a processing block [5].

Several supercomputers of the 1960s and 1970s were vector processors, such as the
Illiac IV [19] or the Cray series [35]. These early vector processors had functional units spread
across several modules containing thousands of ICs in total. At the end of the century, they
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Figure 1 Comparison of the execution patterns of array and vector processors. Instructions
prefixed with a v operate on a vector of elements, while the rest are regular scalar instructions.
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were superseded by integrated microprocessor systems, which surpassed their performance
and were significantly cheaper [2]. While disappearing from the high-performance computing
domain, vector processors have continued their existence as general-purpose accelerators
in Field-Programmable Gate Arrays (FPGAs). Several soft vector processors have been
presented, such as VESPA [48], which adds a vector coprocessor to a 3-stage MIPS-I pipeline,
VIPERS [49], a single-threaded core with a vector processing unit, VEGAS [6], a vector
coprocessor using a cacheless scratchpad memory, VENICE [39], an area-efficient improved
version of VEGAS, or MXP [40], which added additional support for fixed-point computation.

In addition to FPGA-based accelerators, vector processors have also been explored as
energy-efficient parallel computing platforms. Lee et al. [25] proposed a vector architecture
named Hwacha, which is based on the open RISC-V ISA. The instruction set for Hwacha has
been implemented as a custom extension. Despite sharing some features, it is incompatible
with the more recent official RISC-V vector extension. One of the first vector processors
based on the new RISC-V V extension is Ara, developed by Cavalcante et al. [5], as a
coprocessor for the RISC-V core Ariane. Another recent architecture implementing the
RISC-V V extension named RISC-V2 has been proposed by Patsidis et al. [32].

While existing vector processors are less complex and easier to analyze than other parallel
architectures, they still use speed-up mechanisms which are a source of timing anomalies,
such as run-time decisions for choosing a functional unit [44], banked register files, and greedy
memory arbitration [16]. By contrast, our proposed vector processor avoids such mechanisms,
with negligible impact on its performance thanks to the vector processing paradigm’s inherent
effectiveness. Vicuna is free of timing anomalies and hence suitable for compositional timing
analysis.

3 Architecture of Vicuna

This section introduces the architecture of Vicuna, a highly configurable, fully timing-
predictable 32-bit in-order vector coprocessor implementing the integer and fixed-point
instructions of the RISC-V vector extension. The RISC-V instruction set is an open standard
ISA developed by the RISC-V foundation. It consists of a minimalist base instruction set
supported by all compliant processors and several optional extensions. The V extension
adds vector processing capabilities to the instruction set. RISC-V and the V extension are
supported by the GNU Compiler Collection (GCC) and the LLVM compiler.

Vicuna is a coprocessor and must be paired with a main processor. We use the 32-bit
in-order RISC-V core Ibex, developed initially as part of the PULP platform under the
name Zero-riscy [37], as the main processor. Ibex is a small core with only two pipeline
stages: an instruction fetch stage and a combined decode and execute stage. Ibex executes
all non-vector instructions, which we refer to as scalar instructions.

Vicuna is connected to the main core with a coprocessor interface through which instruc-
tion words and the content of registers are forwarded from the main core to the coprocessor,
and results can be read back. We added a coprocessor interface to Ibex to extend it with
Vicuna. Instruction words are forwarded to the vector core via this interface if the major
opcode indicates that it is a vector instruction. In addition to the instruction word, scalar
operands from the main core’s register file are also transmitted to the coprocessor since these
are required by some vector instructions which use the scalar registers as source registers,
such as for instance, a variant of the vector addition which adds a scalar value to every
element of a vector or the vector load and store instructions which read the memory address
from a scalar register.
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1:6 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

An overview of the architecture of Vicuna and its integration with Ibex as the main core
is shown in Fig. 2. Vicuna comprises a decoder for RISC-V vector instructions, which parses
and acknowledges valid vector instructions. Once Vicuna’s decoder has successfully decoded
a vector instruction, it acknowledges its receipt and informs the main core whether it needs
to wait for a scalar result. If the vector instruction produces no scalar result but instead
only writes to a vector register or memory, then the main core can proceed with further
instructions in parallel with the vector instruction’s execution on the coprocessor. However,
when a vector instruction writes back to a register in the main core, then the main core stalls
until the coprocessor has completed that instruction. Only four RISC-V vector instructions
produce a scalar result. Hence this scenario occurs rarely. Decoded vector instructions
are placed in an instruction queue where they await execution on one of the vector core’s
functional units. Vicuna is a strictly in-order coprocessor: Vector instructions from the
instruction queue are issued in the order they are received from the main core. A vector
instruction is issued as soon as any data hazards have been cleared (i.e., any instructions
producing data required by that instruction are complete) and the respective functional unit
becomes available.

Since our main goal is to design a timing-predictable vector processor, we refrain from
any features that cause timing anomalies, such as run-time decisions for choosing functional
units [44]. Both cores share a common 2-way data cache with a least recently used (LRU)
replacement policy, which always gives precedence to accesses by the vector core. Once a
vector instruction has been issued for execution on one of the functional units, it completes
within a fixed amount of time that depends only on the instruction type, the throughput of
the unit, and the current vector length setting. For vector loads and stores, the execution
time additionally depends on the state of the data cache, which is the only source of timing
variability. However, in-order memory access is guaranteed for scalar and vector memory
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Figure 2 Overview of Vicuna’s architecture and its integration with the main core Ibex. Both
cores share a common data cache. To guarantee in-order memory access, the memory arbiter delays
any access following a cache miss by the main core until pending vector load and store operations
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operations by delaying any access following a cache miss in the main core until pending vector
load and stores are complete. Note that vector load and store instructions stall the main core
for a deterministic, bounded number of cycles since no additional vector instructions can
be forwarded to the vector core while the main core is stalled. This method is an extension
of the technique introduced by Hahn and Reineke [15] for the strictly in-order core SIC.
Due to the simple 2-stage pipeline of Ibex, conflicting memory accesses between its two
stages become visible simultaneously. In that situation, the memory arbiter maintains strict
ordering by serving the data access first.

Vicuna comprises several specialized functional units, each responsible for executing
a subset of the RISC-V vector instructions, which allows executing multiple instructions
concurrently. The execution units do not process an entire vector register at once. Instead,
during each clock cycle, only a portion of the vector register is processed, which may contain
several elements that are processed in parallel. Most array processors and several vector
processors are organized in lanes. Each lane replicates the computational resources required
to process one vector element at a time. In such a system, the number of lanes determines
the number of elements that can be processed in parallel, regardless of the type of operation.
By contrast, Vicuna uses dedicated execution units for different instruction types that each
process several elements at once. The ability to individually configure the throughput for
each unit improves the performance of heavily used operations by increasing the respective
unit’s data-path width (e.g., widening the data-path of the multiplier unit).

Some of the RISC-V vector instructions do not process the vector registers on a regular
element-wise basis. Instead, they feature an irregular access pattern, such as indexed
instructions, which use one vector register’s values as indices for reading elements from
another register, or the slide instructions, which slide all elements in a vector register up
or down that register. Vicuna uses different functional units for each vector register access
pattern, which allows us to implement regular access patterns more efficiently and hence to
improve the throughput of the respective unit, while complex access patterns require more
cycles.

Vicuna comprises the following execution units:
A Vector Load and Store Unit (VLSU) interfaces the memory and implements the vector
memory access instructions.
The Vector Arithmetic and Logical Unit (VALU) executes most of the arithmetic and
logical vector instructions.
A dedicated Vector Multiplier (VMUL) is used for vector multiplications.
The Vector Slide Unit (VSLDU) handles vector slide instructions that move all vector
elements up or down that vector synchronously.
A Vector Indexing Unit (VIDXU) takes care of the indexing vector instructions. It is the
only unit capable of writing back to a scalar register in the main core.

The VALU uses a fracturable adder for addition and subtraction, that consists of a series
of 8-bit adders whose carry chains can be cascaded for wider operations. Four cascaded
8-bit adders perform four 8-bit, two 16-bit, or one 32-bit operation depending on the current
element width. Similarly, the VMUL unit uses a fracturable multiplier to perform 8-bit,
16-bit, and 32-bit multiplications on the same hardware. Fracturable adders and multipliers
are commonly used for FPGA-based vector processors. We base our implementation on the
resource-efficient design that Chou et al. proposed for the VEGAS vector processor [6].

Selecting a relatively large sub-word from a large vector register consumes a substantial
amount of logic resources. Therefore, we avoid sub-word selection logic for all functional
units with a regular vector register access pattern. Instead, these units read the whole source
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1:8 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

vector registers into shift registers, as shown in Fig. 3 (a). The content of these is then shifted
by the number of elements that can simultaneously be processed by the unit each cycle, thus
making the next elements of the source vector register available to the processing pipeline.
Similarly, the results are aggregated into another shift register that saves the computed
elements until the entire vector is complete, upon which the whole vector register is written
back to the register file. The amount of combinatorial logic resources consumed by the shift
registers is less than those that are required by an index-based subword selection (they do,
however, require some extra flip-flops for buffering the whole vector register).

Vicuna’s vector register file contains 32 vector registers of configurable width. Multiple
read and write ports are required in order to supply the execution units operating in parallel
with operands and consume their results. We take advantage of the functional unit’s shift
registers, which fetch entire vector registers at once and accumulate results before storing a
whole register, to implement both read and write port multiplexing. Each functional unit
has a dedicated read port used to fetch the operand registers sequentially, storing them in
shift registers from where they are consumed iteratively. This adds one extra cycle when
fetching two operand registers but avoids the need for two read ports on each unit. As the
only exception, the VMUL unit has two read ports to better support the fused multiply-add
instruction, which uses three operands. Also, write ports are shared between units using
the circuitry shown in Fig. 3 (b). Due to the accumulation of results in shift registers
prior to write-back, a unit cannot write to the vector register file for two subsequent cycles.
Hence, whenever a collision between two units occurs on a shared write port, one unit
takes precedence and writes its result back first while the other unit writes its result into
a temporary buffer, from where it is stored to the register file in the subsequent cycle. A
second write request from the first unit cannot immediately follow the previous write. Hence
this delayed write-back is guaranteed to succeed. Regardless of whether the write-back is
delayed by one cycle or not, any data hazards of operations on units not taking precedence
on their shared write port are cleared one cycle after the operation completes to maintain
predictable instruction timings while accounting for a potentially delayed write-back.

Operand Shift Registers

Result Shift Register

Operand A Operand B

Result

Vreg read

Vreg write

(a) Organization of the vector ALU. Oper-
and registers are read sequentially into shift
registers and consumed over several cycles
by processing a fixed-width portion each
cycle. Results are again accumulated into a
shift register before write-back.
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VLSU

write enable

write enable

VREG addr & data

VREG addr & data
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Register

File } further
write ports{further
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&

≥1
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(b) The VALU and VLSU share a common write port,
with the VLSU always taking precedence. In case of a
collision, the value and address of the VALU write request
are temporarily saved and written to the vector register file
in the next cycle. Neither unit can write for two subsequent
cycles. Hence the delayed write always succeeds.

Figure 3 Reading and writing whole registers from the vector register file avoids subword selection
logic and allows multiplexing of read and write ports without affecting timing predictability.
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Although multiplexing of both read and write ports is used to reduce the required number
of ports, the vector register file must still provide several concurrent ports. We decided
against banked registers, which allow concurrent access to registers of different banks but
introduce interdependencies between execution units which are a potential source of timing
anomalies in case two registers within the same bank are accessed simultaneously. Since a
large flip-flop-based register file does not scale well, we implemented it as multi-ported RAM.
The design has been inspired by work from Laforest et al. [24], who investigated ways of
constructing efficient multi-ported RAMs in FPGAs. We implemented it as an XOR-based
RAM since this allows selectively updating individual elements of a vector register for masked
operations.

4 Timing-Predictability

In this section, we analyze the timing-predictability of Vicuna and argue that it is free of
timing anomalies, thus enabling compositional timing analysis.

Timing predictability and timing compositionality are both essential properties to avoid
the need for exhaustively exploring all possible timing behaviors for a safe WCET bound
estimation. In particular, timing compositionality is necessary to safely decompose a timing
analysis into individual components and derive a global worst case based on local worst-case
behavior [18]. The presence of timing anomalies can violate both timing predictability and
compositionality.

A timing anomaly can either be a counterintuitive timing effect or a timing amplification.
Counterintuitive timing anomalies occur whenever the locally better case leads to a globally
worse case, such as a cache hit leading to increased global timing, thus inverting the expected
behavior. Amplification timing anomalies occur when a local timing variation induces a
larger global timing variation. While counterintuitive timing anomalies threaten the timing
predictability, amplification timing anomalies affect the timing compositionality [20].

Counterintuitive timing anomalies can occur, for instance, when an execution unit is
selected at run-time rather than statically [44]. In-order pipelines can also be affected by this
kind of anomalies for instructions with multi-cycle latencies [3]. While vector instructions
executed within Vicuna can occupy the respective functional unit for several cycles, there is
only one unit for each type of instruction, and hence there is no run-time decision involved
in the choice of that unit. The execution time of all vector instructions is completely
deterministic, thus avoiding counterintuitive timing anomalies.

Amplification timing anomalies can be more subtle to discover, as recently shown by
Hahn et al. [17], who identified the reordering of memory accesses on the memory bus as
another source for timing anomalies. The presence of amplification timing anomalies is due
to the non-monotonicity of the timing behavior w.r.t. the progress order of the processor
pipeline [15].

We show that Vicuna is free of amplification timing anomalies by extending the formalism
introduced by Hahn and Reineke [15] for their timing-predictable core SIC to our vector
processing system. A program consists of a fixed sequence of instructions I = {i0, i1, i2, . . . }.
During the program’s execution, the pipeline state is a mapping of each instruction to its
current progress. The progress P := S × N0 of an instruction is given by the pipeline stage
s ∈ S in which it currently resides, as well as the number n ∈ N0 of cycles remaining in that
stage. For our processing system, comprising the main core Ibex and the vector coprocessor
Vicuna, we define the following set of pipeline stages:

S = {pre, IF , ID+EX , VQ, VEU , postS , postV }

ECRTS 2021



1:10 Vicuna: A Timing-Predictable RISC-V Vector Coprocessor

Analogous to the pipeline model used by Hahn and Reineke [15], we use the abstract
stages pre and post to model instructions that have not yet entered the pipeline or have
already left the pipeline, respectively. However, we distinguish between completed regular
(scalar) instructions and completed vector instruction by dividing the post stage into postS

and postV , respectively. IF is the main core’s fetch, while ID+EX denotes its combined
decode and execute stage. The vector coprocessor is divided into two abstract stages: VQ
represents the vector instruction queue, and VEU comprises all the vector execution units.
Vector instructions awaiting execution in the vector queue remain in program order, and
once a vector instruction has started executing on one of the vector core’s functional units, it
is no longer dependent on any other instruction since there are no interdependencies between
the individual vector units. Hence we do not need to explicitly model each of the concrete
stages in the vector core.

Guaranteeing the strict ordering of instructions requires the following ordering ⊏S of
these pipeline stages:

pre ⊏S IF ⊏S ID+EX
⊏S

⊏
S

postS

VQ ⊏S VEU ⊏S postV

Non-vector instructions exit the pipeline after the ID+EX stage, while vector instructions
enter the vector queue and eventually start executing on a vector execution unit. An
instruction that has fewer remaining cycles in a stage or is in a later stage than another
instruction has made more progress. Hence, for two instruction with current progress
(s, n), (s′, n′) ∈ P respectively, an order on the progress is defined as:

(s, n) ⊑P (s′, n′)⇔ s ⊏S s′ ∨ (s = s′ ∧ n ≥ n′)

The cycle behavior of a pipeline is monotonic w.r.t. the progress order ⊑P , if an instruc-
tion’s execution cannot be delayed by other instructions making more progress. For this
property to hold, an instruction’s progress must depend on previous instructions only and
never on a subsequent instruction [20]. Instructions are delayed by stalls in the pipeline.
Hence any pipeline stage must only be stalled by a subsequent stage.

The vector execution units cannot stall, except for the vector load and store unit in case
of a cache miss. Due to the strict ordering of memory accesses, the vector core cannot be
delayed by a memory access of the main core. Hence the VEU stage cannot be stalled by
any other stage. The vector queue holds instructions that await execution on a vector unit.
Thus the VQ stage can only be stalled by the VEU stage. The ID+EX stage, in turn, can
be stalled by an ongoing memory access of the vector core (the VEU stage), by a vector
instruction writing back to a scalar register, when a vector instruction has been decoded, but
the vector queue is full, or during memory loads and stores. Loads and stores are executed
while the IF stage fetches the next instruction. Hence in case of an instruction cache miss
on the subsequent instruction, a memory access by the ID+EX takes precedence over the
IF stage. Finally, the IF stage can be stalled by the ID+EX or by a memory access of
the vector core. Therefore, any pipeline stage of our processing system can only be stalled
by a subsequent stage. Hence, the progress order ⊑P of instructions is always maintained,
and instructions can only be delayed by previous instructions, but not by subsequent ones.
Consequently, the cycle behavior of our architecture is monotonic and hence free of timing
anomalies, which in turn is a sufficient condition for timing compositionality [20].



M. Platzer and P. Puschner 1:11

5 Evaluation

This section evaluates our vector coprocessor’s performance by measuring the execution
time of parallel benchmark applications on a Xilinx 7 Series FPGA with an external SRAM
with a 32-bit memory interface and five cycles of access latency. We evaluate a small,
medium, and fast configuration of Vicuna with vector register lengths of 128, 512, and 2048
bits, respectively. Table 2 lists the parameters for each configuration, along with the peak
multiplier performance and the maximum clock frequency.

The performance of parallel computer architectures on real-world applications is often
degraded by various bottlenecks, such as the memory interface. While a large number of
parallel cores or execution units might yield an impressive theoretical performance figure,
efficiently utilizing these computing resources can be challenging. The roofline model [47]
visualizes the performance effectively achieved by application code w.r.t. a processor’s peak
performance and memory bandwidth. The model shows the theoretical peak performance in
operations per cycle in function of the arithmetic intensity, which is the ratio of operations
per byte of memory transfer of an application. According to the roofline model, an algorithm
can be either compute-bound or memory-bound [30], depending on whether the memory
bandwidth or the computational performance limits the effectively achievable performance.
The computational capability of a core can only be fully utilized if the algorithmic intensity
of an application is larger than the core’s performance per memory bandwidth.

Fig. 4 shows the roofline performance model of each of the three configurations of Vicuna,
along with the effectively achieved performance for three benchmark applications, namely
weighted vector addition, matrix multiplication, and the 3 × 3 image convolution. The
dashed lines show each configuration’s performance boundary, i.e., the maximum theoretical
performance in function of arithmetic intensity. The horizontal part of these boundaries
corresponds to the compute-bound region, where the throughput of the multipliers limits
the performance. The diagonal portion of the performance boundary shows the memory-
bound region, where the memory bandwidth limits the performance. Applications with
a high arithmetic intensity are compute-bound, while memory-intensive applications with
a low arithmetic intensity are memory-bound. Markers indicate the effectively achieved
performance for each benchmark program.

The first benchmark is AXPY, a common building block of many Basic Linear Algebra
Subroutine (BLAS). AXPY is defined as Y ← αX + Y , where X and Y are two vectors, and
α is a scalar. Hence, this algorithm adds the vector X weighted by α to the vector Y . We
implement AXPY for vectors of 8-bit elements. For a vector of length n, it requires n 8-bit
MAC operations and 3n bytes of memory transfer, which gives the algorithm an arithmetic
intensity of 1/3, thus placing it in the memory-bound region for all three configurations.

Table 2 Configurations of Vicuna for evaluation on a Xilinx 7 Series FPGA. Note that for larger
configurations, the maximum clock frequency decreases slightly as these require more resources
which complicates the routing process.

Config.
Name

Configuration Parameters 8-bit
MACs

per cycle

Clock
frequency

(MHz)
Vector Reg. Multiplier Data- Data-Cache
Width (bit) Path Width (bit) Size (kB)

Small 128 32 8 4 100
Medium 512 128 64 16 90
Fast 2048 1024 128 128 80
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Figure 4 Roofline plot of the performance results for the benchmark algorithms for each of
Vicuna’s three configurations listed in Table 2. The dashed lines are the performance boundaries
of each configuration, and the markers show the measured effective performance. The percentages
indicate the ratio of effective vs. theoretical performance.

The next benchmark program that we consider is the generalized matrix multiplication
(GEMM) C ← AB + C, which adds the product of two matrices, A and B, to a third matrix,
C. The arithmetic intensity of this algorithm depends on the size n× n of the matrices. It
requires loading each of the matrices A, B, and C and storing the result, which corresponds
to a minimum of 4n2 values that must be transferred between the core and memory. The
matrix multiplication itself requires n3 MAC operations. We again use 8-bit values, which
gives an arithmetic intensity of n/4 MACs per byte transferred. We evaluate Vicuna’s
performance for two matrix sizes, 256× 256 and 1024× 1024, with an arithmetic intensity of
64 and 256, respectively, which are heavily compute-bound.

Finally, we use the 3× 3 image convolution, which is at the core of many convolutional
neural networks (CNNs). This algorithm loads an input image, applies a 3× 3 convolution
kernel, and then stores the result back to memory. Hence, each pixel of the image must be
transferred through the memory interface twice, once for loading and once for storing. A
total of 9 MACs are applied per pixel. Thus the arithmetic intensity is 4.5.

The benchmark programs have been executed on all three configurations of Vicuna, and
the execution times were measured with performance counters. Table 3 lists the recorded
execution times. For all measurements, both data and instruction caches were initially cleared.
The results show that the performance of Vicuna scales almost linearly w.r.t. the maximum
throughput of its functional units, which is consistent with the capabilities observed in
high-performance vector processors. For highly compute-bound applications, such as the
matrix multiplication of size 1024× 1024, the multipliers are utilized over 90 % of the time
for the fast configuration and over 99 % of the time for the smaller variants.

The resource usage of Vicuna is similar to that of other FPGA-based vector processors.
Fig. 5 shows a radar chart that compares the fast configuration of Vicuna to the VESPA [48]
and the VEGAS [6] architectures (we compare configurations that have the same theoretical
peak performance of 128 8-bit operations). Other FPGA-based vector architectures, such
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Table 3 Execution time measurements of the benchmark applications for each configuration.

Benchmark Execution time in CPU cycles on the respective configuration
Small Medium Fast

AXPY 108 985 58 693 41 989
CONV 214 486 92 852 61 719
GEMM 256 × 256 4 758 824 1 164 797 665 596
GEMM 1024 × 1024 268 277 942 67 467 224 9 182 492

as VIPERS or VENICE, have only demonstrated smaller configurations and thus are not
included in this comparison. While the amount of logic resources consumed by Vicuna is
similar to that of the other soft vector processors, its minimum clock period is larger. This is
primarily due to the latency of the vector register file’s read and write ports. VESPA can
only execute one operation at a time and does not support a fused multiply-add instruction,
thus requiring much fewer register file ports than Vicuna. VEGAS replaces the vector register
file with a scratchpad memory with only two read and write ports. Despite its lower clock
frequency, Vicuna achieves a higher effective performance than VESPA and VEGAS because
of its ability to execute several operations in parallel, which allows it to better utilize its
computational resources. For VEGAS, Chou et al. report an execution time of 4.377 billion
cycles for a 4096× 4096 matrix multiplication on a 32-lane configuration, which corresponds
to a multiplier utilization of only 49 %. Vicuna achieves an efficiency of over 90 % for
compute-bound workloads.

The efficiency of Vicuna is more in line with recent ASIC-based vector architectures, such
as Cavalcante et al.’s Ara [5] and Lee et al.’s Hwacha [25]. Both of these architectures achieve
over 90 % utilization of computational units, with Ara reaching close to 98 % for a 256× 256

Lookup Tables
(×103)

Flip-flops
(×103)

DSP blocks
(hardware multipliers)

On-chip RAM
(kbit)

Multiplier
idle time for

compute-bound
workload (%)

Clock period
(ns)

30

60

90

15 30 45

60

120

180

500

1000

1500

204060

4

8

12

32-lane VESPA

32-lane VEGAS

Vicuna
(fast config.)

Lower values are
better for all
parameters.

Figure 5 Resource utilization and performance of the FPGA-based vector processors Vicuna,
VESPA, and VEGAS (each configured for a peak performance of 128 8-bit operations per cycle).
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matrix multiplication on a configuration with 16 64-bit lanes. Yet, both Ara and Hwacha
use features that are a source of timing anomalies. Ara resolves banking conflicts for its
banked vector register file dynamically with a weighted round-robin arbiter that prioritizes
arithmetic operations over memory operations. Therefore, run-time decisions are involved
in the progress of instructions, and slow memory operations can be delayed by subsequent
arithmetic instructions. Hence, Ara likely exhibits both counterintuitive and amplification
timing anomalies [44]. While Hwacha sequences the accesses of vector register elements
in a way that avoids banking conflicts, it uses an out-of-order write-back mechanism and
consequently also suffers from timing anomalies. In addition, none of the existing vector
processors that we investigated maintains the ordering of memory accesses, particularly when
the main core and the vector core both access the same memory. Thus all these architectures
are plagued by amplification timing anomalies [16].

A feature distinguishing Vicuna from other vector processors is its timing-predictability
and compositionality. Vicuna is free of timing anomalies, enabling compositional timing
analysis required for efficient WCET estimation in real-time systems. While the performance
figures for Vicuna were obtained via measurements instead of a timing analysis, the predictable
nature and low timing variability of Vicuna, as well as the absence of data-dependent control-
flow branches in the benchmark programs, implies that their execution time is constant
(assuming that the cache is initially idle). Hence, the measured execution times in Table 3
are equal to the respective WCET. Repeating the measurements with varying input data
does not alter the timing and always yields the same execution times.

In contrast to timing-predictable multi-core architectures, Vicuna’s performance scales
significantly better. The performance of multi- and many-core systems typically does not
scale linearly with the number of cores since contention on the underlying network connecting
these cores to the memory interface becomes a limiting factor [28, 41]. This is particularly
true in real-time systems where tasks require guarantees regarding the bandwidth and latency
available to them [22, 33]. Schoeberl et al. found that the worst-case performance of the
T-CREST platforms scales only logarithmically with the number of cores [38]. Similar results
have been reported for the parMERASA multi-core architecture [12]. By contrast, the
fast configuration of Vicuna achieves over 90 % multiplier utilization for compute-bound
workloads, thus scaling almost linearly with the theoretical peak performance.

The combination of timing-predictability, efficiency, and scalability for parallel workloads
makes Vicuna a prime candidate for time-critical data-parallel applications. Besides, Vicuna
uses the RISC-V V extension as its instruction set, rather than custom extensions, as do
most vector processors, which eases its adoption.

6 Conclusion

The performance-enhancing features in modern processor architectures impede their timing-
predictability. Therefore, the performance of architectures suited for time-critical systems lags
behind processors optimizing for high computational throughput. However, the increasingly
demanding tasks in real-time applications require more powerful platforms to handle complex
parallel workloads.

In this work, we presented Vicuna, a timing-predictable, efficient, and scalable 32-bit
RISC-V vector coprocessor for massively parallel computation. We have integrated Vicuna
with the Ibex processor as the main core and demonstrated that the combined processing
system is free of timing anomalies, thus enabling compositional timing analysis.



M. Platzer and P. Puschner 1:15

The inherent efficiency of the vector processing paradigm allows us to drop common
micro-architectural optimizations that complicate WCET analysis without giving rise to a
significant performance loss. Despite its timing predictability, the effective performance of
Vicuna scales almost linearly w.r.t. the maximum throughput of its functional units, in line
with other high-performance vector processing platforms. Therefore, our vector coprocessor is
better suited for time-critical data-parallel computation than the current timing-predictable
multi-core architectures.
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