
The k-Mappability Problem Revisited∗

Amihood Amir #Ñ

Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
Georgia Tech, Atlanta, GA, USA

Itai Boneh #

Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel

Eitan Kondratovsky #Ñ

Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
Cheriton School of Computer Science, Waterloo University, Waterloo, Canada

Abstract
The k-mappability problem has two integers parameters m and k. For every subword of size m in
a text S, we wish to report the number of indices in S in which the word occurs with at most k

mismatches.
The problem was lately tackled by Alzamel et al. [1]. For a text with constant alphabet Σ and

k ∈ O(1), they present an algorithm with linear space and O(n logk+1 n) time. For the case in which
k = 1 and a constant size alphabet, a faster algorithm with linear space and O(n log(n) log log(n))
time was presented in [2].

In this work, we enhance the techniques of [2] to obtain an algorithm with linear space and
O(n log(n)) time for k = 1. Our algorithm removes the constraint of the alphabet being of constant
size. We also present linear algorithms for the case of k = 1, |Σ| ∈ O(1) and m = Ω(

√
n).

2012 ACM Subject Classification Theory of computation → Pattern matching; Theory of computa-
tion → Sorting and searching

Keywords and phrases Pattern Matching, Hamming Distance, Suffix Tree, Suffix Array

Digital Object Identifier 10.4230/LIPIcs.CPM.2021.5

Funding Amihood Amir : Partly supported by ISF grant 1475/18, BSF grant 2018141 and the
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme grant agreement No 683064.
Itai Boneh: Partly supported by ISF grant 1475/75.
Eitan Kondratovsky: Partly supported by ISF grant 1475/18.

Acknowledgements We warmly thank Tomasz Kociumaka for useful discussions.

1 Introduction

Many real world applications need to identify events that repeat very often. Examples of
such applications are road traffic peaks [12], load peaks on web servers [9], monitoring events
in computer networks [3], life event histories [10] and many others. Finding such events often
leads to useful insights by shedding light on the structure of the data, and giving a basis
to predicting future events and behavior. Moreover, in some applications frequent events
can point out a problem. In a computer network, for example, repeating error messages can
indicate a misconfiguration, or even a security intrusion such as a port scan [7].

In Stringology, the problem of counting the occurrences of every subword of length m that
appears in text S is a well-known exercise in the power of suffix trees [13] or suffix arrays [6,8].
However, in reality one seldom finds exact repetitions of a substring. The situation becomes
more complex when we seek the most frequent subword that approximately occurs in the
string.

∗ This work is part of the second author’s Ph. D. dissertation.

© Amihood Amir, Itai Boneh, and Eitan Kondratovsky;
licensed under Creative Commons License CC-BY 4.0

32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021).
Editors: Paweł Gawrychowski and Tatiana Starikovskaya; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir@esc.biu.ac.il
https://u.cs.biu.ac.il/~amir/
mailto:itai.bone@biu.live.ac.il
mailto:e2kondra@uwaterloo.ca
https://u.cs.biu.ac.il/~kondrae/
https://doi.org/10.4230/LIPIcs.CPM.2021.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 The k-Mappability Problem Revisited

Let S[1 . . . n] be a text and k and m two integers. The k-mappability problem is defined
as follows:

▶ Definition 1. For every index i ∈ [1 . . . n − m + 1], report the number of indices j such
that HD(S[i . . . i + m − 1], S[j . . . j + m − 1]) ≤ k. With HD(X, Y) denoting the Hamming
distance between X and Y .

The k-mappability problem was lately tackled by Alzamel et al. [1]. For a text with
constant alphabet and k ∈ O(1), they present an algorithm with linear space and O(n logk+1 n)
time. Additionally, they present a quadratic algorithm for reporting the k-mappability for a
fixed value of k and every m ∈ [k . . . n] or a fixed value of m and every k ∈ [0 . . . m]. Finally,
they show that the k-mappability problem can not be solved in truly subquadratic time
unless the Strong Exponentional Time Hypothesis is false. For the case in which k = 1 and a
constant size alphabet, a faster algorithm with linear space and O(n log(n) log log(n)) time
was presented in [2]. [2] also presented an algorithm with average case linear time for k = 1,
and provided some experimental results.

Our results:
1. By enhancing the techniques of [2], we construct an algorithm for k-mappability with

linear space and O(n log n) time for k = 1 and infinite integer alphabet. This is an
improvement over the O(n logk+1 n) time achieved by [1] for k ∈ O(1). It also improves
the faster O(n log(n) log log(n)) time for k = 1 achieved by [2]. In the settings in which
infinite integer alphabet is allowed, our algorithm is optimal.

2. We present a linear time algorithm for k-mappability in the case in which k = 1, the
alphabet size is constant and m ∈ Ω(

√
n).

The paper is organized as follows. In Section 2 we define the basic notions used. Section 3
presents a linear space O(n log n) time algorithm for 1-mappability. In Section 4 we present
a linear algorithm for 1-mappability with constant sized alphabet and m ∈ Ω(

√
n).

2 Preliminaries

Let Σ be an alphabet. A string S over Σ is a finite sequence of characters from Σ. By S[i],
for 1 ≤ i ≤ |S|, we denote the ith character of S. The empty string is denoted by ϵ. By
S[i . . . j] we denote the string S[i] . . . S[j] called a substring, or factor, of S (if i > j, then
the substring is the empty string). A substring is called a prefix if i = 1 and a suffix if
j = |S|. The prefix of length j is denoted by S[. . . j], while by S[i . . .] we denote the suffix
which starts from index i in S. We say that a string S of length n has a period p, for some
1 ≤ p ≤ n

2 if S[i] = S[i + p] for every i ∈ [1 . . . n − p]. The period of S, denoted as per(S), is
the smallest p that is a period of S. We say that a substring of S, denoted as A = S[a . . . b] is
a run with period p if its period is p, but S[a − 1] ̸= S[a − 1 + p] and S[b + 1] ̸= S[b + 1 − p].
This means that no substring containing A has a period p. The Hamming distance of two
n-length strings, S1, and S2, denoted as HD(S1, S2), is the number of indices in which they
differ. We say that an m-length word w has a k-ham occurrence in location i of string S if
HD(w, S[i . . . i + m − 1]) ≤ k.

The longest common prefix (suffix) of two indexes i, j ∈ [1 . . . n] is the maximal integer ℓ

such that S[i . . . i + ℓ − 1] = S[j . . . j + ℓ − 1] (S[i − ℓ + 1 . . . i] = S[j − ℓ + 1 . . . j]). We denote
the LCP (i, j) = ℓ (LCS(i, j) = ℓ). LCP and LCS are collectively referred to as longest
common extensions (LCE).

A. Amir, I. Boneh, and E. Kondratovsky 5:3

The suffix tree [13] is a useful string data structure.

▶ Definition 2. Let S1, . . . , Sk be strings over alphabet Σ and let $ ̸∈ Σ.
An uncompacted trie of strings S1, . . . , Sk is an edge-labeled tree with k leaves. Every

path from the root to a leaf corresponds to a string Si with a $ symbol appended to its end.
The edges on this path are labeled by the symbols of Si. Strings with a common prefix start at
the root and follow the same path of the prefix, the paths split where the strings differ.

A compacted trie is the uncompacted trie with every chain of edges connected by degree-2
nodes contracted to a single edge whose label is the concatenation of the symbols on the edges
of the chain.

Let S = S[1], . . . , S[n] be a string over alphabet Σ. Let {S1, . . . , Sn} be the set of suffixes
of S, where Si = S[i . . .], i = 1, . . . , n. A suffix tree of S is the compacted trie of the suffixes
S1, . . . , Sn.

For every node u, we call the concatenation of the labels on the path from the root to u

the locus of u denoted as L(u). For an edge e in the compact trie, we use the same notation
L(e) to denote the label (or the locus) of e. Finally, for a downwards path P in the compact
trie, the locus L(P) is the concatenation of the loci of the edges in P . In a compact trie, an
edge e can have label s.t. |L(e)| > 1. We refer to the symbol L(e)[1] as the symbol of e.

▶ Theorem 3 (Weiner [13]). For finite alphabet Σ, the suffix tree of a length-n string can
be constructed in time O(n). For general alphabets it can be constructed in time O(n log σ),
where σ = min(|Σ|, n).

The suffix tree can be preprocessed in O(n) [4] to be used as a data structure for LCE

queries with O(1) query time.
We assume that every node u in the suffix tree contains some auxiliary information about

L(u), that is the number of occurrences of L(u) in the text S and a pointer to the list of
indices in which L(u) occurs. This information can be evaluated for all the nodes of a given
suffix tree ST in O(|ST |) time and require an additional O(|ST |) space.

Over finite alphabet Σ, the adjacency list of a node u ∈ ST is represented as an array
Au[1 . . . |Σ|] with the edge with symbol σ ∈ Σ in Au[σ] (or an emptiness indicator if there is
no edge with that symbol).

Over infinite alphabet, the adjacency list of u ∈ ST is represented as a balanced search
tree storing the edges emerging from u in a sorted order of their symbols. In our algorithm,
we assume that the representation of the adjacency list allows linear time DFS iteration on
the subtree rooted in a node u ∈ ST . This is indeed the case for most balanced trees.

▶ Definition 4. The suffix array of a string S, denoted as SA(S), is an integer array of size
n + 1 storing the starting positions of all (lexicographically) sorted non-empty suffixes of S,
i.e. for all 1 < r ≤ n + 1 we have S[SA(S)[r − 1]..n] < S[SA(S)[r]..n]. Note that the empty
suffix is explicitly added to the array.

The suffix array of S corresponds to a pre-order traversal of all the leaves of the suffix
tree of S. Various algorithms exist for efficient time and space construction of the suffix
array [5, 6, 11]. In particular, the suffix array over a fixed finite alphabet can be constructed
in linear time.

CPM 2021

5:4 The k-Mappability Problem Revisited

3 O(n log(n)) time and O(n) space algorithm for k = 1

3.1 An overview of the O(n log(n) log log(n)) algorithm for k = 1
We start with an overview of the ideas for the O(n log(n) log log(n)) algorithm of [2]. They
present an algorithm for counting the number of occurrences with exactly one mismatch,
for every word of size m. Since there is a textbook algorithm for counting the number of
exact occurrences of every word, this is sufficient for solving the 1-mappability problem.

They start by evaluating the suffix tree T of S and trimming the tree at word length
m. That is, every node v with |L(v)| > m is removed. Implicit nodes with |L| = m are
made explicit leaves in the trimming process. They proceed to evaluate the heavy paths
decomposition of T .

▶ Definition 5 (Heavy Path Decomposition). Let T be a rooted tree. For every non-leaf vertex
u, the edge (u, v) is heavy if |Iu| < 2|Iv| with Ix denoting the set of leaves in the subtree
rooted in the vertex x. An edge that is not heavy is called a light edge. The heavy path of a
vertex v is the maximal path of heavy edges going through v (it may contain 0 edges). For
every heavy path P , a vertex u ∈ P , and a light edge (u, v) emerging from u, we call T (v) a
sidetree of P (emerging from u).

It is easy to observe that every root-to-leaf path in T consists of at most log(n) heavy
paths and log(n) light edges. The following observation is the key for the complexity achieved
by [2]:

▶ Observation 6. For every w = S[i . . . i + m − 1], every 1-ham occurrence of w w′ =
w[1 . . . x − 1]σw[x + 1 . . . m] with a mismatch in index x corresponds to a node u in T with
L(u) = w[1 . . . x − 1]. u must have two edges e1, e2 s.t. there is a downwards path starting
with e1 (resp. e2) and ending in a leaf with path label w[x . . . m] (resp. σw[x + 1 . . . n]).

Consider the following procedure: For every node u ∈ T with path label w, let the heavy
edge emerging from u be eh with label d. Inspect every light edge e = (u, v) with label c

emerging from u. For every leaf z ∈ T (v) with label L(z) = w · c · wz and for every c′ ≠ c ∈ Σ,
find the leaf z′ with label L(z′) = w · c′ · wz, if it exists. If it does, add the number of
occurrences of L(z′) to a counter associated with z. For the leaf zd with L(zd) = w · d · wz,
also increment a counter associated with zd by the amount of occurrences of L(z).

It is straightforward from Observation 6 that for every index i, every 1-ham occurrence is
counted by the above procedure. As for complexity - every leaf z is iterated once per light
edge in the path from the root to z. A single iteration on a leaf z consists of a constant
number of counter increments and a single query for finding z′ with L(z′) = w · c′ · wz per
symbol c′ ∈ Σ. Since |Σ| = O(1), the bottleneck of the iteration is finding z′. The following
is proven in [2]:

▶ Theorem 7. A text S[1 . . . n] can be preprocessed in time O(n log log n) and linear space
to allow the following query in O(log log n) time:

Given a node u in the suffix tree of S with L(u) = w1 · c · w2 (w1, w2 ∈ Σ∗ and c ∈ Σ)
and a symbol c ̸= c′ ∈ Σ, find the node u′ with L(u′) = w1 · c′ · w2 if it exists.

We call the queries described in Theorem 7 concatenation queries.
With Theorem 7 the final complexity is clear – every leaf is iterated O(log n) times and

the iteration costs O(log log n) after an O(n log log n) preprocessing time. The overall time
complexity is O(n log(n) log log(n))

A. Amir, I. Boneh, and E. Kondratovsky 5:5

3.2 Linear space O(n log n) algorithm for k = 1

Intuition: Our algorithm is based on the ideas of [2]. For every light edge (u, v) we iterate
every leaf z ∈ T (v) and wish to find the vertices corresponding to a 1-ham occurrence of L(z)
with a mismatch in index |L(u)| + 1. Instead of using concatenation queries, we construct
a lexicographically sorted array of the words W we need to find. Given the sorted array
of words, finding the vertices corresponding to these words in the suffix tree can be done
in O(|W |). If we manage to construct this sorted array in O(|W |), the amortized time for
inspecting a leaf is constant (rather than O(log log n)).

Terminology. Let P = (u1, u2, . . . ux) be a heavy path in the heavy path decomposition of
the suffix tree ST of S. Let L(ui) = wi and let ei = (ui, ui+1) be the i’th heavy edge in P

with symbol di. Let (ui, v) be a light edge emerging from ui with symbol c and let z ∈ T (v)
be a leaf. It holds that L(z) = wi · c · sz for some suffix sz ∈ Σ∗.

▶ Definition 8. The node z′ ∈ ST is a P -light occurrence of z if L(z′) = wi · c′ · sz for
some c′ ∈ Σ \ {c, di}. We call the word hw(z) = wi · di · sz the P -heavy word of z. The node
z′ ∈ ST is a P -heavy occurrence of z if L(z′) = hw(z).

Note that the above definitions are with respect to a heavy path P . z may be a leaf in
the sidetrees of multiple heavy paths. In every such path, the P -light occurrences, P -heavy
occurrence and the P -heavy word of z are different. Also note that the P -heavy word and
the P -heavy occurrence are undefined for leaves in the sidetrees emerging from ux, as the
last heavy edge in P is ex−1.

In our algorithm, we count the P -heavy occurrences and the P -light occurrences of every
node z in a sidetree of P independently. For every heavy occurrence z′, we also count the
occurrences of w(z) as 1-ham occurrences of w(z′). We do this for every heavy path P .
Surely, this process counts all the 1-ham occurrences.

We start by showing how to efficiently count the P -light occurrences.

▶ Observation 9. For every vertex z with L(z) = w in a sidetree T (v) emerging from ui,
all the P -light occurrences of z are also leaves in (different) sidetrees emerging from ui.
Furthermore, a leaf z′ with L(z′) = w′ in a sidetree T (v′) ̸= T (v) emerging from ui is a light
occurrence of z iff w[|wi + 2| . . . m] = w′[|wi + 2| . . . m].

Observation 9 is directly derived from the definition of a light occurrence. For every
ui ∈ P , we wish to construct a sorted array consisting of the suffixes starting in index |wi| + 2
of the labels of the leaves of the sidetrees emerging from ui.

We present the following routine:

Algorithm 1 Suffix Sorting.

As a preprocess procedure, construct the suffix array SA of S.

Initialize an array A of size n consisting of empty lists

Alignment step: Iterate the leaves in the sidetrees of ui. For every leaf z, extract jz - a
starting index of L(z). We add z to A[jz + |wi| + 2].

Insertion step: Initialize an empty list L. Iterate SA from left to right. When iterating
SA[j], add all the nodes in A[SA[j]] to the end of L.

CPM 2021

5:6 The k-Mappability Problem Revisited

▷ Claim 10. After running Suffix Sorting, L is sorted by the lexicographic order of the
suffixes starting in index |wi| + 2 of z. The running time is O(n + |SE|) with SE being the
set of sorted elements.

Proof. leaf z with L(z) = wz occurring in index jz is inserted to L before the leaf y

with L(y) = wy occurring in index jy only if the suffix of S starting in jz + |wi| + 2 is
lexicographically smaller or equal to the suffix of S starting in jy + |wi| + 2. Therefore, it
can not be the case that wz[|wi| + 2 . . . m] >L wy[|wi| + 2 . . . m].

As for complexity- the alignment step takes O(|SE|) time as it executes a constant amount
of list insertions and basic arithmetic operations for every leaf. The insertion step takes
O(|SE| + n) time as it iterates over the entire suffix array. The sum of the sizes of the lists
in A is identical to the amount of iterated leaves in the alignment step. We assume that
the suffix array was evaluated prior to the run of Suffix Sorting. Therefore, we exclude the
complexity of computing the suffix array from our running time. ◁

This is not exactly what we want. If we execute Suffix Sorting for every node, the n

factor will dominate the complexity and the overall time will be quadratic. To avoid that,
we present the following algorithm for sorting a batch of sidetrees.

Algorithm 2 Batched Suffix Sorting.

As a preprocess procedure, construct the suffix array SA of S.

Input: A batch of vertices v1, v2 . . . vb

Initialize an array A of size n consisting of empty lists.

Batched Alignment step:

For every i ∈ [1 . . . b]:
1. Initialize an empty list Li

2. Iterate the leaves in the sidetrees of vi with L(vi) = wi. For every leaf z, extract jz - a
starting index of L(z). Add the pair (z, Li) to A[jz + |wi| + 2].

Batched Insertion step: Iterate SA from left to right. When iterating SA[j], for every
(z, L) ∈ A[SA[j]], add z to the end of L.

The same arguments as in the proof of claim 10 can be made to prove the following:

▷ Claim 11. After running Batched Suffix Sort, every list Li has the leaves in the sidetrees
of vi sorted by the lexicographic order of the suffixes starting in index |wi| + 2 of z. The
running time is O(n + |SE|) with SE being the set of sorted elements in the batch.

To sort the sidetrees in amortized linear time, we set a counter se = 0 for the amount of
leaves in the sidetrees that need to be sorted and an empty list Sort. We iterate the vertices
in ST . For every vertex u, we count the number of leaves in the sidetrees of u, add this
number to se and add u to Sort. Once se > n, we execute Batched Suffix Sort on Sort.

Since the number of leaves in the sidetrees of a vertex u never exceeds n, it is guaranteed
that se ≤ 2n when we execute Batched Suffix Sorting. Therefore, the overall complexity is
O(n + 2n) = O(n). Since we only execute the batched insertion with se ≥ n, the amortized
time for placing every leaf in the sorted list is constant.

Once we have the sorted list L = z1, z2 . . . zt of the leaves in the sidetrees emerging from
ui ∈ P , a simple iteration can be implemented to count the number of P -light occurrences
for every node in L. We start by preprocessing S for constant time lcp queries. We iterate

A. Amir, I. Boneh, and E. Kondratovsky 5:7

L. For every consecutive pair of leaves za and za+1 with L(za) = s1 occurring in j1 and
L(za+1) = s2 occurring in j2, we query l = lcp(j1 + |wi| + 2, j2 + |wi| + 2). If we have
l ≥ m − |wi| − 1, then za and za+1 are P -light occurrences of each other (Observation 9).
Once we identify a pair za, za+1 of P -light occurrences, we proceed in L until we reach a
leaf zb+1 that is not a P -light occurrence. Of course, all the pairs zx, zy with x ̸= y and
x, y ∈ [a . . . b] are P -light occurrences of each other. We evaluate the sum Oc of occurrences
of L(zx) for x ∈ [a . . . b] and increment the counter of ham-1 occurrences of zx by Oc−Oc(zx)
with Oc(zx) being the number of occurrences of L(zx).

It can be easily verified that the iteration is linear. For every leaf we execute a single lcp
query and a constant number of basic arithmetic operations. We conclude the handling of
P -light occurrences with the following theorem:

▶ Theorem 12. The 1-ham occurrences of L(z) that are corresponding to P -light occurrences
of some heavy path P can be computed for every leaf z ∈ ST , in O(n log n) time and linear
space.

Proof. For every heavy path P and vertex ui ∈ P , we compute the sorted list of the suffixes
starting in |wi| + 2 of the words of the leaves of the sidetrees emerging from ui. We use the
sorted list to find the P -light occurrences of the leaves in the sidetrees of ui. Sorting the
leaves is done using Batched Suffix Sorting with batches of size between n and 2n and takes
a constant amortized time per sorted leaf. There may be one ’remainder’ batch with size
se < n that takes an additional O(n) time to sort. Given the sorted lists, finding the P -light
occurrences is linear in the number of leaves in the sidetrees of ui. Every leaf z participates
in at most log(n) different sidetrees, so the overall time is O(n log n). We also build the
Suffix array as a preprocess step, which takes an additional O(n log n) time.

As for space - the only non-trivially linear part of our solution is the array A used in
Batched Suffix Sort. Since we never let se the number of sorted elements exceed 2n, the
lists in A never contain more than 2n elements collectively. So the size of A is always
linear. After executing the Batched Suffix Sorting, we iterate the sorted lists to count the
P -light occurrences and then reuse the space occupied by these lists as they are no longer
required. ◀

We are left with the task of counting the P -heavy occurrences of every leaf z. Consider a
heavy path P = u1, u2 . . . ux. Our key sub-task for finding all the P -heavy occurrences of
all the leaves in the sidetrees of P is constructing a sorted list of the P -heavy words of the
leaves.

Note that unlike P -light occurrences, P -heavy occurrences of a leaf z of a sidetree emerging
from ui can not be in a sidetree emerging from ui. However, they must be leaves of a sidetree
emerging from uj for some j > i.

The process of building the sorted list of P -heavy words relies on the same principles we
used for the P -light occurrences. However, there is a further difficulty to tackle. With P -light
occurrences that lie on the same ui - we have a guarantee that the words match until the
index |wi|. Therefore, it is sufficient to sort by the suffixes starting right after the mismatch
in index |wi| + 2. With the P -heavy words, we may have to compare P - heavy words from
sidetrees of different nodes ui and uj with i < j. In this case, there is no guarantee that the
words match in the indices in [|wi + 1| . . . |wj |].

To handle this difficulty, we partition the leaves into classes prior to sorting them. Our
partition will have the property that the P -heavy words of leaves in the same class have a
certain common prefix that exceeds the index in which the error occurs (c is replaced by di).
This property will allow us to sort the P -heavy words in every class using Batched Suffix
Sorting.

CPM 2021

5:8 The k-Mappability Problem Revisited

The first step for sorting the P -heavy words is to partition the leaves in the sidetrees of
P = u1, u2 . . . ux by the lcp of their P -heavy words with wx. This is done with the following
procedure:

Algorithm 3 LCP Partition.
Input: A heavy path P = u1, u2 . . . ux

Initialize an array LCP [1 . . . m] of size m of empty lists. Let jx be an index in which wx

occurs.

Alignment Step: For every i ∈ [1 . . . x]:
For every leaf z in a sidetree emerging from ui:
1. Extract an index jz in which L(z) occurs in S.
2. Find lz = lcp(hw(z), wx) by computing lz = min(|wi| + 1 + lcp(jz + |wi| + 2, jx + |wi| +

2), |wx|).
3. Compare between the symbols in index lz + 1 in hw(z) and in wx in order determine

the lexicographical order oz ∈ {<, >, =} between hw(z) and wx (For example, oz =< if
hw(z) <L wx). If lz = |wx|, oz is set to ′ =′.

4. Add the tuple (z, oz) to LCP [lz].
Insertion Step:
For every l ∈ [1 . . . |wx| − 1] (in increasing order):
1. If the list L = LCP [l] is empty - do nothing.
2. Otherwise, create 2 lists L>

l and L<
l .

3. For every tuple (z, oz), add z to Loz

l .

If L = LCP [|wx|] is not empty, construct a new list L|wx| and add z to L|wx| for every pair
(z, =) ∈ L.

Note that lz ≥ |wi|+1 since hw(z)[1 . . . |wi|] = wi = wx[1 . . . |wi|] and hw(z)[|wi +1|] = di.
With that observation, it is clear that the formula for finding lz in Step 2 works.

We make the following observation:

▶ Observation 13. For every list L>
l (or L<

l or L|wx|), every vertex z ∈ L>
l has

lcp(hw(z), wx) = l and hw(z)[l + 1 . . . m] = L(z)[l + 1 . . . m]. The running time of LCP
partition is O(m + |SE|) with SE being the set of leaves in sidetrees of P .

Proof. The lcp property is derived directly from the construction of LCP [1 . . . m]. As for
complexity, every leaf is processed with a single lcp query and a constant amount of basic
operations. The iteration and construction of LCP takes an additional O(m) ◀

It follows from Observation 13 that the lexicographical order between the P -heavy words
of the vertices in L>

l (or L<
l or Lwx

) are determined by the suffixes starting in index l + 1 of
L(z). Therefore, sorting L>

l by the lexicographical order of the heavy words can be done
using the algorithm Batched Suffix Sorting.

▶ Theorem 14. The lexicographically sorted list of P -heavy words of a heavy path P can be
evaluated in O(|SL|) amortized time with SL the set of leaves in the sidetrees of P

Proof. We want to use LCP Partition on a batch of heavy paths. Transforming LCP
Partition to a batched algorithm can be done with the same technique that was used to
generate Batched Suffix Sorting from Suffix Sorting.

A. Amir, I. Boneh, and E. Kondratovsky 5:9

As in the Batched Suffix Sorting algorithm, we execute the alignment step of LCP Partition
for possibly multiple heavy paths P until the collective amount of leaves considered is between
n and 2n. Once this amount is met, we construct the lists L>

l , L<
l and L|wx| for all the paths

in the batch by applying the insertion step. We then sort the lists by the lexicographic order
of hw(z) with Batched Suffix Sorting. The overall time is O(n + m) = O(n).

We are left with the task of merging the sorted lists L>
l ,L<

l and L|wx| into a single sorted
list L containing all the P -heavy words. This is done by applying the following observation:

▶ Observation 15. Let l1, l2, . . . lc be the set of indices for which either L<
li

or L>
li

is
constructed for the path P by LCP Partition. The sorted list L of the P -heavy words is of the
form L = L<

l1
, L<

l2
, . . . L<

lc
, L|wx|, L>

lc
, L>

lc−1
. . . L>

l1
. (If Lli

was not constructed, it is considered
as an empty list)

Proof. We start by showing that the lists L<
li

must appear in increasing order of li in L. Let
a, b ∈ {l1, l2 . . . lc} be two indices for which a < b. Let wa ∈ L<

a and wb ∈ w<
b . Since the

LCP of wb and wx is b ≥ a + 1, we have wb[a + 1] = wx[a + 1]. Since the LCP of wa and
wx is a and wa <L wx, we have lcp(wa, wb) = a and wa[a + 1] <L wx[a + 1] = wb[a + 1]
and therefore wa <L wb. Similar arguments can be made to prove that wb <L wa for every
wa ∈ L>

li
and wb ∈ L>

b . It is straight forward from the construction of the lists L<
li

and L>
li

that for every li and every W ∈ L>
li

, w ∈ L<
li

and w′ ∈ L|wx| we have w <L w′ <L W . ◀

With Observation 15, the construction of the sorted P -heavy words list is completed.
Observe that LCP Partition naturally generates L>

l and L<
l in increasing order of l. Therefore,

the concatenation of the lists in the order dictated by Observation 15 does not require
any further sorting and can be executed in linear time, and the proof of Theorem 14 is
completed. ◀

Given the sorted list LP [1 . . . h] of the P -heavy words, we are interested in finding the
node z′ with L(z′) = hw(z) for every word hw(z) ∈ LP . We can do this in linear time as
follows: First, observe that every P -heavy word has the prefix w1. So z′ ,if it exists, must be
a descendant of u1 and therefore is a leaf in a sidetree of P . Let L[1 . . . l] be the sorted list
of occurrences of w1 stored in u1. These are actually all the leaves in the sidetrees of P . The
following procedure matches every hw(z) ∈ LP with its corresponding z′:

Algorithm 4 Count P -Heavy.

Input: The lexicographically sorted lists LP [1 . . . h] of P -heavy words and L[1 . . . l] the list of
lexicographically sorted vertexes in the sidetrees of P

Initialize two indices i = j = 1.

While i ≤ h and j ≤ l:
1. Let hw(z) = LP [i] and L(z′) = L[j]
2. If hw(z) = L(z′):

a. Increase the counter associated with z by Oc(z′).
b. Increase the counter associated with z′ by Oc(z).
c. Increase i by 1.

3. If hw(z) <L L(z′): Increase i by 1.
4. If hw(z) >L L(z′): Increase j by 1.

CPM 2021

5:10 The k-Mappability Problem Revisited

It can be easily verified that Count P -Heavy counts the P -heavy occurrence z′ of every
leaf z in a sidetree of P . Notice that double counting will not occur. That is due to the
following:

▶ Fact 16. Let z and z′ be two leaves in sidetrees of P emerging from ui and uj respectively
such that hw(z) = L(z′). It must be the case that i < j.

Fact 16 guarantees that if we count the occurrences of z as 1-ham occurrences of z′ and vice
versa when hw(z) and L(z′) are be visited in Count P -Heavy, we will not count them as
1-ham occurrences of each other again, because it can’t be the case that hw(z′) = L(z).

The lexicographic comparisons between hw(z) and L(z′) can be executed in constant time
using lcp queries. To efficiently execute an lcp query with a P -heavy word, we store the
P -heavy word hw(z) as a pair (z, i) with i the index in which L(z) is modified. With that
representation, two lcp queries can be used to find a = lcp(hw(z), L(z′)) in a ’kangooroo’
jump manner. If a < m, the following symbol can be compared to determine the lexicographic
order between hw(z) and L(z′). With the constant time lexicographic comparing, it is easy
to see that the complexity of Count P -Heavy is O(|LP | + |L|) = O(|SE|) with SE being the
set of leaves in the sidetrees of P .

Note that when the equality hw(z) = L(z′) is met, it is crucial to increase i rather than
j. That is due to the fact that LP may contain duplicates while L does not. Alternatively,
LP can be preprocessed to group duplicates together. We conclude the counting of P -heavy
occurrences with the following:

▶ Theorem 17. The P -heavy occurrences of every leaf z can be counted over all the heavy
paths P such that z is a leaf in a sidetree of P in O(n log n) time and linear space.

Proof. For every heavy path P = u1, u2 . . . ux, we use Theorem 14 to obtain the list LP of
sorted P -heavy words and obtain L from u1. We then apply Count P -Heavy on LP and
P to match every hw(z) ∈ LP with its P -heavy occurrence z′ if exists, and update the
corresponding counters accordingly.

The amortized time for applying Theorem 14 for a path P is O(|SE(P)|) with SE(P)
being the set of leaves in the sidetrees of P . Every leaf in ST is a leaf in the sidetree of at
most log(n) heavy paths, so the overall complexity is O(n log n). We also construct the suffix
array as a preprocess procedure, which takes an additional O(n log n) time.

As for space, the only non-trivially linear part is the array LCP [1 . . . m] used in LCP
Partition. As before, we apply LCP Partition on batches of size at most 2n, so the collective
size of the lists in LCP [1 . . . m] never exceeds O(n). After obtaining LP for all the paths in
the batch, we apply Count P -Heavy for every path in the batch and then reuse the space
occupied by the sorted lists LP as they are no longer required. ◀

When put together, Theorem 12 and Theorem 17 yield the main result of this section:

▶ Theorem 18. The 1-mappability problem can be solved using O(n log n)-time and linear
space on a text with infinite integer alphabet.

Note that for infinite integer alphabet, better time can not be achieved unless certain
values of m are excluded. For example:

▶ Observation 19. For a text S over infinite integer alphabet and m = 2, there is an index
i ∈ [1 . . . n] with at least 1-ham occurrence iff the symbols of S · σ′ are not distinct for some
σ′ /∈ Σ.

A. Amir, I. Boneh, and E. Kondratovsky 5:11

The above straight forward observation shows a trivial relation between the k-mappability
problem and reporting whether or not all the elements of a set are distinct - which can not
be done in o(n log n). It can be easily generalized for every fixed value of m.

4 O(n2

m2 + n) and Linear Space Algorithm for 1-Mappability with
Constant sized Alphabet

As a warm up, we present a technique for counting the 1-ham occurrence of a word with size
m in O(n

m) time. Applying this technique to every m-sized word yields an O(n2

m) algorithm
for 1-mappability. We then proceed to show how to process all the words of size m not one
by one, but in batches of size O(m). We extend the technique used in the warm up to handle
a batch in O(n

m + m) time. Since there are O(n
m) batches, this yields an O((n

m)2 + n) time
algorithm.

4.1 Warm up – O(n2

m
+ n)

Let w = S[i . . . i + m − 1] be a subword of S with length m.

▶ Definition 20. Let w1 = S[j . . . j+m−1] be a 1-ham occurrence of w. w1 is an l-occurrence
of w if w1[1 . . . ⌈ m

2 ⌉] = w[1 . . . ⌈ m
2 ⌉]. w1 is an r occurrence of w if w1[⌈ m

2 ⌉ + 1 . . . m] =
w[⌈ m

2 ⌉ + 1 . . . m]. We respectively denote as Lo(w) and Ro(w) the sets of l-occurrences and
r-occurrences of w in S.

It is easy to see that |Lo(w)| + |Ro(w)| − #w is the number of 1-ham occurrences of w,
with #w denoting the number of proper occurrences of w in S. In this section, we show how
to evaluate the number of l-occurrences of a given word w in O(n

k) time. A symmetrical
approach can be applied to count the number of r-occurrences of w. #w can be evaluated
for all the subwords of S in O(n) time using the suffix tree.

▶ Theorem 21. All the occurrences of a string w of size m in a text of size n can be represented
by a set of O(n

m) arithmetic progressions of the form A = (s, e, d) such that A = (s, e, d)
represent a sequence of occurrences with starting indexes {ix = s + d · x|x ≥ 0, ix ≤ e}. If
w is periodic, every arithmetic progression A = (s, e, d) has d = per(w). |A| = e − s + 1
represents the number of occurrences represented by A. Every arithmetic progression that has
A > 1 corresponds to a periodic set of instances contained within a run with period d. This
representation is called the periodic occurrences representation of w and it can be obtained in
O(n

m) time from the suffix tree following an O(n) time preprocessing.

A proof for the above can be found in Section A.2.
Given a words w = S[i . . . i + m − 1], we use Theorem 21 to obtain all the occurrences of

wL = w[1 . . . ⌈ m
2 ⌉] in periodic occurrences representation. For every occurrence of wL in this

representation, we wish to check if it is a prefix of an l-occurrence.
We process every arithmetic progression A = (s, e, d) of occurrences of wL. If A only

represents a single occurrence of wL in index s, we query l1 = LCP (s, i). If l1 ≥ m,
we have a proper instance of w. Otherwise, we have a mismatch. Proceed to query
l2 = LCP (s + l1 + 1, i + l1 + 1). If it is the case that l2 + l1 + 1 ≥ m, we count s as an
l-occurrence of w.

If A = (s, e, d) represents multiple occurrences of wL, then wL must have a period d. We
exploit the periodic structure of the occurrences represented by A to compute l2 for all the
occurrences in A using constant time. The following lemma proven in Section A.2 is the key
for doing so.

CPM 2021

5:12 The k-Mappability Problem Revisited

▶ Lemma 22. Let A = (s, e, d) be an arithmetic progression representing a set of indexes
sj = s + j · d for j ∈ [0 . . . |A| − 1] within a run with period d.

Let i ∈ [1 . . . n] be an index and let lp = lcp(i, s). Let Exi be the maximal extension of a
run with period d containing i to the right of i (regardless of periodicity, Exi ≥ d), and let
Exs be the maximal extension of the period d to the right of s.

1. If lp < d: LCP (i, sj) = lp for every j ∈ [0 . . . |A| − 2].
2. Otherwise, LCP (i, sj) = min(Exi, Exs − j · d) for every j ∈ [0 . . . |A| − 1] such that

Exi ̸= Exs − j · d.

We exploit Lemma 22 to efficiently implement the following subroutine (details proof for
the following can be found in Section A.2.

▶ Lemma 23. Given an arithmetic progression A = (s, e, d) representing the indexes {sj =
i + j · d|j ∈ [0 . . . |A| − 1]} that are contained within the same run with period d, and an
index s ∈ [1 . . . n]. The values lcpj = LCP (s, sj) can be evaluated and represented in O(1)
following O(n) preprocess time on S.

The representation consists of pairs (I, L) such that I = [a . . . b] is a consecutive interval of j

values and L is an integer such that one of the following holds:
1. lcpj = L for every j ∈ I

2. lcpj = L − j · d for every j ∈ I.
Every pair is stored alongside with a bit indicating which one of the above holds for this pair.

In the process of evaluating the representation of lcpj for A = (s, e, d) and i, at most one
of the indexes in A is called the aligned index. In the case in which lp < d, the aligned index
is |A| − 1. In the case in which lp ≥ d, j∗ such that Exs − j∗ · d is the aligned index, provided
that it is an integer. We mark the pair representing the LCP value of the aligned index.

We employ Lemma 23 to obtain a representation of lj
1 for every j ∈ [0 . . . |A| − 1]. After

obtaining this representation, we are left with the task of applying a second LCP query
after the mismatch index for every sj (That will be the equivalent of finding l2). Namely, for
every sj we need to compute lj

2 = LCP (i + lj
1 + 1, sj + lj

1 + 1). More precisely , we need to
count the number of j values for which lj = lj

1 + lj
2 + 1 ≥ m.

For every pair (I = [a . . . b], L), we wish to evaluate lj
2 for j ∈ I by employing Lemma 23

again. In order to do that, we first need to prove that the settings of Lemma 23 are satisfied
in the second evaluation. We prove the following lemma in Section A.2.

▶ Lemma 24. For every pair (I, L) in the output of Lemma 23 on A = (s, e, d) and i that is
not corresponding to an aligned occurrence, one of the below holds for j ∈ I.
1. i + lcpj + 1 is a fixed value and sj + lcpj + 1 is an arithmetic progression of indexes within

a run with period d with difference d.
2. i + lcpj + 1 is an arithmetic progression of indexes within a run with period d with

difference d and sj + lcpj + 1 is a fixed value

It follows from Lemma 24 that Lemma 23 can be applied to each of the pairs representing
the non aligned indexes to evaluate a representation of lcpj

2 for every non aligned index j in
O(1) time. The aligned index, if exists, has its lj

2 evaluated individually.
The above process outputs a set of (at most) 4 non-singular intervals for which the values

of lj
2 and lj

1 are represented either as an arithmetic progression or as a fixed value. We can
easily deduce the amount of occurrences sj with lj

1 + lj
2 + 1 ≥ m from this representation. We

sum the amount of occurrences of wL with lj
1 + lj

2 +1 ≥ m over all the arithmetic progressions
of occurrences to obtain |Lo(w)|. A symmetric procedure can be constructed to evaluate

A. Amir, I. Boneh, and E. Kondratovsky 5:13

|Ro(w)| using occurrences of wR = w[⌈ m
2 + 1⌉ . . . m]. We can use the suffix tree to obtain

#w (the number of occurrences of w within S) for every m-length word in S in O(n) time.
The number of occurrences of w with at most one mismatch is |Ro(w)| + |Lo(w)| − #w.
substracting #w is required to omit double counting. We do this process for every word of
size m.

Complexity. For a word w of size m, we process the arithmetic progressions of occurrences
of wL. For every arithmetic progression A, we evaluate a representation of lcpj

1 and lcpj
2 in

constant time using Lemma 23. We deduce the number of l-occurrences corresponding to
the occurrence of wL represented by A from the representation of lcpj

1 and lcpj
2 in constant

time. We execute a symmetric procedure to deduce the number of r-occurrences of w as
well. There are O(n

m) arithmetic progressions in periodic occurrences representation of wL,
so counting the 1-ham occurrences of a single word takes O(n

m). We do this for every word
of size m, so it adds up to O(n2

m). There is an additional O(n) preprocessing time prior to
the iteration on the words to enable LCP queries, suffix tree construction and access to the
periodic occurrences representation. The overall complexity is O(n2

m + n) = O(n2

m).

4.2 Reducing the complexity to O(n2

m2 + n)

For reducing the complexity by a factor of m, we present a technique for obtaining |Lo(w)| for
a batch containing O(m) words in O(n

m +m) time. Consider the consecutive set of words with
length m starting in the indices [i . . . i+ m

4]. For every word wt = S[i+ m
4 −t . . . i+ m

4 −t+m−1]
with t ∈ [0 . . . m

4] in this set, the left half of wt denoted as wt
L = S[i+ m

4 −t . . . i+ m
4 −t+⌈ m

2 ⌉]
contains the word wi

L = S[i + m
4 . . . i + m

2 − 1]. We use the occurrences of wi
L to evaluate

|Lo(wt)| for every t ∈ [0 . . . m
4] as we did in the previous section. A symmetric process can

be constructed for computing |Ro(w)|.
We start by finding the arithmetic progression representation of the occurrences of wi

L.
For simpler notation, we denote the starting and ending indices of wi

L as wi
L = S[si . . . ei].

For every cluster A with occurrences {sj = s + d · j|j ∈ [0 . . . |A| − 1]}, let rj
1 = lcp(sj , si)

and rj
2 = lcp(sj + rj

1 + 1, si + rj
1 + 1). As in the previous section, we use Lemma 23 to obtain

a compact representation of rj = rj
1 + rj

2 + 1 for every index sj represented by A.
Using the following Lemma ,that can be proved similarly to Lemma 23, we obtain a

compact representation of lj = LCS(si − 1, sj − 1) for every j ∈ [0 . . . |A| − 1].

▶ Lemma 25. Given an arithmetic progression A = (s, e, d) representing the indexes {sj =
i + j · d|j ∈ [0 . . . |A| − 1]} that are contained within the same run with period d, and an
index s ∈ [1 . . . n]. The values lcsj = LCS(s, sj) can be evaluated and represented in O(1)
following O(n) preprocess time on S.

The representation consists of pairs (I, L) such that I = [a . . . b] is a consecutive interval of j

values and L is an integer such that one of the following holds:
1. lcsj = L for every j ∈ I

2. lcsj = L + j · d for j ∈ I.

After obtaining the values of lj and rj , our next task is deducing for every sj represented
by A, what are the values of t for which sj is corresponding to an l-occurrence of wt. The
following observation is the key for doing so.

▶ Observation 26. sj − t is an l-occurrence of wt iff rj ≥ m − t and lj ≥ t.

CPM 2021

5:14 The k-Mappability Problem Revisited

Observation 26 allows us to associate every occurrence sj with a continuous interval
I = [a . . . b] such that sj is extendable to an l-occurrence of wt for and only for t ∈ I.

We initialize a data structure D for maintaining m
4 counters C0, C1, C2 . . . C m

4
. Ct counts

l-occurrences of wt. Initially, Ct = 0 for every t ∈ [0 . . . k
4]. We already know from observation

26 that for every sj , the indexes Ct with t ∈ [m − rj . . . lj] need to be increased by 1. We call
this type of updates, in which a consecutive interval of counters is increased by a constant
value, an interval increment update. There are folklore techniques for applying this kind of
updates to an array of counters efficiently.

Unfortunately, an efficient data structure for applying interval increment updates will not
be sufficient for our cause, as we wish to process the effect of a set of occurrences on D. We
therefore need to explore the structure of the set of updates [m − rj . . . lj] derived from the
occurrences sj represented by a cluster A.

We present the following types of updates to be applied to an array of counters D.

▶ Definition 27. An interval increment is represented by a triplet (a, b, x). Applying (a, b, x)
to D results in every counter Ct with t ∈ [a . . . b] being increased by x.

An increasing stairs update is represented by a triplet (a, b, p). The update requires
applying the following modifications on D:

For every d ∈ 1 . . . ⌊ b−a+1
x ⌋ Counters Ci with i ∈ [a + p · (d − 1) . . . a + p · d − 1] are

increased by d. The counters with t ∈ [a + p · ⌊ b−a+1
x ⌋ . . . b] are increased by ⌊ b−a+1

x ⌋ + 1
A decreasing stairs update is also represented by a triplet (a, b, p). The update requires

applying the following modifications on D:
For every d ∈ 1 . . . ⌊ b−a+1

x ⌋ Counters Ci with i ∈ [b − p · d + 1 . . . b − p · (d − 1)] are
increased by d. The counters with t ∈ [a . . . b − p · ⌊ b−a+1

x ⌋] are increased by ⌊ b−a+1
x ⌋ + 1

We call the interval [a . . . b] the span of the stairs. We call the interval that is increased
by d the dth step of the update. p is called the width of the stairs update.

A negative stairs update (either increasing or decreasing) is a stairs update in which the
counter in the dth step is decreased by d rather than being increased by d.

▶ Example 28. Let x = 10 and an array D = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0). An increasing
stairs update (3, 8, 2) on D will result in the counters being set to (0, 0, 1, 1, 2, 2, 3, 3, 4, 0, 0).
Applying a decreasing stairs update (1, 5, 2) on the updated counters in D will result in the
counters being set to (3, 2, 3, 2, 3, 2, 3, 3, 4, 0, 0).

It turns out that a constant number of interval updates and stairs updates can be used to
express the updates derived from the occurrences sj represented by a cluster A. In Section
A.2, we prove the following:

▶ Lemma 29. Given a cluster A of occurrences of wi
L, the set of updates that need to be

applied to D in order to represent the l-occurrences corresponding to occurrences sj with
j ∈ [0 . . . |A| − 1] can be represented by a constant number of stairs updates and interval
increment updates. Given A and the representation of lj and rj , this set of stairs and interval
increment updates can be retrieved in O(1) time.

Over all the clusters representing occurrences of wi
L, every stairs update (a, b, p) in the

representation has the same stairs width p which is the period of wi
L.

Our algorithm runs as follows: Initialize a data structure D for maintaining a set of m
4

counters. Find all the occurrences of wi
L in arithmetic progression representation. For every

one of the O(n
m) arithmetic progressions, find the arithmetic progressions representing rj

and lj . Apply Lemma 29 to obtain an O(1) size set of interval increment update and stairs
update that represents the required modifications to be applied to D. The final ingredient
for our algorithm is a data structure that enables the efficient application of these updates.
In the full version of this paper, we prove the following.

A. Amir, I. Boneh, and E. Kondratovsky 5:15

▶ Theorem 30. An array of t counters can be maintained to support stairs updates in O(1)
time per update. Retrieving the values of all the counters in the array takes O(t+u) time with
u being the amount of applied updates. The data structure works in the restricted settings in
which every update (a, b, p) has the same p value.

Note that the restriction on the queries hold in our case, since the step width is always p

the period of wi
L in all the stairs updates constructed in Lemma 29.

Every update corresponding to a set of occurrences of a certain type is applied to D in
O(1) by employing the data structure of Theorem 30 all the updates take O(n

m) by applying
Theorem 30.

Note that we need a data structure for handling interval increment updates with the same
complexities as the data structure of Theorem 30. The construction of such a data structure
is quite simple and may be considered folklore. We therefore omit the implementation details
of this data structure.

After applying the updates, we query our data structure for the values of all the counters.
This process takes O(m + n

m) time. This is done for batches of m
4 consecutive indices.

The indices of S are partitioned to 4 n
m such batches. We also preprocess the text for

constant time lcp and lcs queries and construct the suffix tree. The total running time is
O(n + n

m (m + n
m)) = O(n + n2

m2). Recall that we described a procedure for evaluating |Lo(w)|.
A symmetric procedure can be constructed to evaluate |Ro(w)|.

Note that for m ∈ Ω(
√

n), O(n2

m2 + n) is dominated by O(n). The main result of this
section immediately follows.

▶ Theorem 31. For constant size alphabet and m ∈ Ω(
√

n), the 1-mappability problem can
be solved in time O(n).

References
1 Mai Alzamel, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Tomasz Kociumaka, Solon P.

Pissis, Jakub Radoszewski, and Juliusz Straszynski. Efficient computation of sequence mappab-
ility. In Travis Gagie, Alistair Moffat, Gonzalo Navarro, and Ernesto Cuadros-Vargas, editors,
String Processing and Information Retrieval - 25th International Symposium, SPIRE 2018,
Lima, Peru, October 9-11, 2018, Proceedings, volume 11147 of Lecture Notes in Computer
Science, pages 12–26. Springer, 2018. doi:10.1007/978-3-030-00479-8_2.

2 Mai Alzamel, Panagiotis Charalampopoulos, Costas S. Iliopoulos, Solon P. Pissis, Jakub
Radoszewski, and Wing-Kin Sung. Faster algorithms for 1-mappability of a sequence. Theor.
Comput. Sci., 812:2–12, 2020. doi:10.1016/j.tcs.2019.04.026.

3 S. Bagchi, E. Hung, A. Iyengar, N. G. Vogl, and N. Wadia. Capacity planning tools for web
and grid environments. In Proc. 1st International Conference on Performance Evaluation
Methodolgies and Tools (VALUETOOLS), 2006. ISBN = 1-59593-504-5, article number 25,
http://doi.acm.org/10.1145/1190095.1190127.

4 Farach-Colton M. Bender M.A. The level ancestor problem simplified. Theoretical Computer
Science, 321(1):5–12, 2004. Latin American Theoretical Informatics. doi:10.1016/j.tcs.
2003.05.002.

5 L. Foschini, R. Grossi, A. Gupta, and J. S. Vitter. When indexing equals compression:
Experiments with compressing suffix arrays and applications. ACM Transactions on Algorithms,
2(4):611–639, 2006.

6 J. Kärkkäinen and P. Sanders. Simple linear work suffix array construction. In Proc. 30th
International Colloquium on Automata, Languages and Programming (ICALP 03), pages
943–955, 2003. LNCS 2719.

CPM 2021

https://doi.org/10.1007/978-3-030-00479-8_2
https://doi.org/10.1016/j.tcs.2019.04.026
https://doi.org/10.1016/j.tcs.2003.05.002
https://doi.org/10.1016/j.tcs.2003.05.002

5:16 The k-Mappability Problem Revisited

7 S. Ma and J.L. Hellerstein. Mining partially periodic event patterns with unknown periods.
In Proc. 17th International Conference on Data Engineering (ICDE), pages 205–214. IEEE
Computer Society, 2001.

8 U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches. In Proc.
1st ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 319–327, 1990.

9 V. V. Panteleenko. Instantaneous Offloading of Web Server Loads. PhD thesis, University of
Notre Dame, 2002.

10 G. Ritschard, R. Bürgin, and M. Studer. Exploratory mining of life event histories. In
J.J.McArdle and G. Ritschard, editors, Contemporary Issues in Exploratory Data Mining in
Behavioral Sciences, pages 221–253. Routeledge, New York, 2013.

11 K. Sadakane. A fast algorithm for making suffix arrays and for burrows-wheeler transformation.
In Proc. Data Compression Conference (DCC), pages 129–138, 1998.

12 Federal Highway Administration U.S. Department of Transportation. Conjestion: a national
issue. http://www.ops.fhwa.dot.gov/aboutus/opstory.htm, August 2011.

13 P. Weiner. Linear pattern matching algorithm. Proc. 14 IEEE Symposium on Switching and
Automata Theory, pages 1–11, 1973.

A Appendix

A.1 Complementary Figures

wi
L

sa

k

4

3

4
k

ra
e

la
e

sa+1 ra+1
e

la+1
e

sb−1 rb−1
e

lb−1
e

sb rb
e

lb
e

p

Figure 1 An illustration of the stairs update derived from a set of type 2 occurrences. Note that
for every type 2 occurrence, the red arrow representing lj represents the interval of values of t for
which Ct should be incremented due to an occurrence of wt in sj − t. The p indices that are only
contained by the lowest step will be increased by 1. The next p indices are contained within two
stairs and will be increased by 2. And so on.

A. Amir, I. Boneh, and E. Kondratovsky 5:17

wi
L

sj

m

4

3

4
m

wt

t

rj

lj

Figure 2 A demonstration of wi
L aligned with an occurrence sj . Every m sized word that fits

within the interval spanned by lj and rj (Red arrow and blue arrow, respectively) is an l-occurrence
of a word wt that occurs in sj − t.

A.2 Complementary Proofs For Section 4
Proof for Theorem 21. The existence of the representation specified by Theorem 21 follows
directly from the following facts:

▶ Fact 32. An aperiodic string of length m can have up to O(n
m) occurrences in a string S

of length n

▶ Fact 33. Let w be a periodic word with period p and length k. The distance between the
starting points of two occurrences of w in a string S is either p or greater than m

2 .

As for efficiently obtaining the periodic occurrences representation from the suffix tree,
we present the following algorithm for preprocessing the suffix tree.

Algorithm 5 Periodic Occurrences Representation Preprocess.

Input: A suffix tree ST

For every node v ∈ ST with |L(v)| = m:
1. Initialize an empty list Lv that is linked to v.
2. Initialize a period pv = −1
3. Initialize two auxiliary integers prev = 0 and runstartv = 0.

Initialize an array A[1 . . . n − m + 1] with A[i] = v such that v is the node in ST with
L(v) = S[i . . . i + m − 1].

For every i ∈ [1 . . . n]:
1. Let v = A[i]
2. If prev = 0, set prev = i and runstartv = i.
3. Otherwise:

a. If i−prev > m
2 , add the pair (runstartv, prev) to Lv and set prev = i and runstartv =

i.
b. Otherwise, set i − prev = pv and prev = i.

For every Lv:
1. Add the pair (runstartv, prev) to Lv.
2. Replace every pair (s, e) ∈ Lv with the tuple (s, e, pv).

CPM 2021

5:18 The k-Mappability Problem Revisited

▷ Claim 34. Lv contains the periodic occurrences representation of L(v).

Proof. For a periodic L(v), the correctness of Claim 34 directly follows from Fact 32 and
the value of pv is irrelevant since every arithmetic progression will be a singleton. If L(v)
is periodic, every sequence of occurrences such that every occurrence starts p = per(L(v))
indexes to the right of the previous one will be represented as a single arithmetic progression.
According to Fact 33, the distance between the starting indexes of two such sequences of
occurrences is at least m

2 , and therefore |Lv| ∈ O(n
m). ◁

A can be initialized in time O(n) using the suffix tree. The rest of the algorithm is obviously
linear. With that, the proof of Theorem 21 is complete. ◀

Proof for Lemma 22. The correctness of the first case follows from the fact that every sj

within the run has the same d symbols to its right, possibly excluding the rightmost sj .
As for the second case, note that the extension of the period from occurrence sj is

Exs − j · d. It holds that S[i + x] = S[sj + x] for every d ≤ x < min(Exi, Exs − j · d).
This is due to the fact that for every such x , S[i + x − d] = S[i + x]. And the first d

symbols to the right of sjand i are equal. If Exi < Exs − j · d, The equality is broken in
S[i + Exi] ̸= S[sj + Exi] since S[sj + Exi] = S[sj + Exi − d] = S[i + Exi − d] ̸= S[i + Exi].
Symmetrical arguments can be made for the case in which Exi > Exs − j · d. ◀

Proof for Lemma 23. We preprocess S for constant time LCP queries. Given A and s,
we evaluate lp = lcp(s, i) using an lcp query. We find the extension of the period d to the
right from i and to the right from s in constant time by querying Exi = LCP (i, i + d) and
Exs = LCP (s, s + d) respectively.

If lp < d, Observation 22 suggests that lcpj = lp for [1 . . . |A| − 2]. lcp|A|−1 can be
evaluated independently using an additional LCP query. Our representation consists of the
pairs ([1 . . . |A| − 2], lp) and (|A − 1 . . . |A| − 1], l|A|−1). Both are pairs of type (1).

In the case in which lp ≥ d, let j∗ be the number satisfying Exi = Exs − j∗ · d. The
following fact is directly derived from Lemma 22:

▶ Fact 35.
1. lcpj = Exi for j ∈ [0 . . . min(⌈j∗⌉ − 1, |A| − 1)]
2. lcpj = Exs − j · d for j ∈ [max(⌊j∗⌋ + 1, 0) . . . |A| − 1]

The above fact provides a representation for lcpj for every j ̸= j∗. Specifically, the pair
([0 . . . min(⌈j∗⌉−1, |A|−1)], Exi) of type (1) and the pair ([max(⌊j∗⌋+1, 0) . . . |A|−1], Exs)
of type (2). In the case in which j∗ is an integer, another pair of type (1) with a singleton
interval is required to represent lcpj∗ . lcpj∗ can be independently evaluated using an LCP
query.

The evaluation of lp, Exs, Exi, lcp|A|−1 and lcpj∗ is done using a constant LCP query
each and therefore consumes constant time. j∗ can be calculated from Exs, Exi and d

using a constant number of basic arithmetic operations. The overall time for obtaining the
representation of lcpj is constant. ◀

Proof of Lemma 24. In the case in which lp < d, we have one pair (I = [0 . . . |A| − 2], lp)
that is corresponding to the non aligned occurrences. i + lp + 1 is a fixed value and sj + lp + 1
is an arithmetic progression with difference d. Let R be the run with period d containing
the indexes of A. Since lp < d, and I does not contain the rightmost index in the run , for

A. Amir, I. Boneh, and E. Kondratovsky 5:19

every j ∈ I sj has at least d indexes to its right contained within R. Therefore, the index
sj + lp + 1 ≤ sj + d is within R for every j ∈ I and condition (1) in the statement of the
lemma holds.

In the case in which lp ≥ d, we distinguish between the two pairs corresponding to the
non-aligned indexes in the representation of lcpj .

The indexes represented by the pair (I = [0 . . . min(⌈j∗⌉ − 1, |A| − 1)], Exi) have Exi <

Exs − j · d. Since lcpj = Exi is a fixed value for j ∈ I, the sequence i + lcpj + 1 is fixed and
sj + lcpj + 1 is an arithmetic progression with difference d. we also have sj + lcpj + 1 =
sj + Exi + 1 ≤ Exs − j · d = s + Exs. Recall that s + Exs is the right border of R, so
s ≤ sj + lcpj + 1 ≤ sExs suggests that sj + lcpj + 1 is within R. We therefore proved that
condition (1) holds in this case.

The indexes represented by the pair (I = [max(⌊j∗⌋ + 1, 0) . . . |A| − 1], Exs) have Exi >

Exs − j · d. Since lcpj = Exs − j · d is an arithmetic progression with difference −d for j ∈ I,
i + lcpj + 1 is an arithmetic progression with difference −d and sj + lcpj + 1 is a fixed value.
Symmetric arguments to the ones in the previous case can be made to show that the indexes
i + lcpj + 1 are within the run with period d containing i and condition (2) holds. ◀

Proof for Lemma 29. We partition the occurrences sj into four distinct types:
1. sj with rj ≥ m and lj

e ≥ m
4 . According to Observation 26, sj − t is an l-occurrence of wt

for every t ∈ [0 . . . m
4].

2. sj with rj ≥ m and lj < m
4 . According to Observation 26, sj − t is an l-occurrence of wt

for t ∈ [0 . . . lj].
3. sj with rj < m and lj ≥ m

4 . According to Observation 26, sj − t is an l-occurrence of wt

for t ∈ [m − rj . . . m
4] in this case.

4. sj with rj < m and lj ≥ m
4 . According to Observation 26, sj − t is an l-occurrence of wt

for t ∈ [m − rj . . . lj] in this case.
Fig. 2 demonstrates the fourth type listed above and can be used to understand the rest of
the types. Recall that rj (resp. lj) is partition into a constant number of intervals of values
of j. For every such interval I = [s . . . e], an arithmetic progression represents the values of
rj (resp. lj) with j ∈ I. This representation can be easily processed in O(1) time to obtain
a partition P of the values of j into a constant number of intervals, such that every interval
I = [a . . . b] ∈ P contains occurrences of exactly one of the types listed above.

We treat every type independently.

Type 1: An interval I = [a . . . b] of type 1 occurrences contributes b − a + 1 l-occurrences
of wt for every t ∈ [0 . . . m

4]. This is naturally represented by the interval increment update
(0, m

4 , b − a + 1)

Type 2: Consider an interval I = [a . . . b] of type 2 occurrences. sj − t with j ∈ I is an
l-occurrence for every wt with t ∈ [0 . . . lj]. Recall lj is either an increasing arithmetic
progression or a fixes value in [a . . . b]. If it is a fixed value l′, every occurrence sj with
j ∈ I contributes an l-occurrence of wt for the same interval of t values [0 . . . l′]. The
overall contribution of all the occurrences in I can be therefore represented with the interval
increment update (0, l′, b − a + 1).

The more complicated case is the case in which lj is an increasing arithmetic progression.
Recall that the difference p of this arithmetic progression is the period of wi

L. The occurrence
sb with the maximal LCP value lb contributes an l-occurrence of wt for t ∈ [0 . . . lb]. The
occurrence sb−1 contributes an l-occurrence for wt for t ∈ [0 . . . lb − p] and so on. The effect
of the entire progression on the counters Ct can be described as follows: The counters Ct

CPM 2021

5:20 The k-Mappability Problem Revisited

for t ∈ [lb − p + 1 . . . lb] are increased by 1, the counters with t ∈ [lb − 2p + 1 . . . lb − p] are
increased by 2 and so on. In general: the counters Ct with t ∈ [lb − x · p + 1 . . . lb − (x − 1) · p]
are increased by x for x ∈ [1 . . . b − a] and the counters Ct with t ∈ [0 . . . la] are increased
by b − a + 1. The modification of indexes in [la + 1 . . . lb] can be equivalently described as
an application of a decreasing stairs update (la + 1, lb, p). The modification of the indexes
[0 . . . la] can be described as an interval increment update (0, la, b − a + 1). See Fig. 1 for an
illustration of the stairs update derived from type 2 occurrences.

Type 3: Having a symmetric structure to an interval of type 2 occurrences, the effect of an
interval of type 3 occurrences on D can be represented by a stairs update and an interval
increment update as well.

Type 4: Consider a consecutive interval I = [a . . . b] of type 4 occurrences. Recall that,
similarly to lj , the arithmetic progression rj must be either decreasing or a fixed value. If
both lj and rj are fixed in I, the counters Ct with t ∈ [m − rb . . . la] need to be increased
by a − b + 1 which can be represented with an interval increment update. If either lj or rj

are fixed, and the other is an increasing or decreasing arithmetic progression, the required
modification for D can be represented with a stairs update and an interval increment update
similarly to the representation of type 2 updates.

If both rj and lj are arithmetic progressions, the updates to Ct have a “sliding window”
structure. Namely, Counters with t ∈ [m − ra . . . la] are increased due to occurrence sa.
Counters with t ∈ [m − ra + p . . . la + p] are increased due to occurrence sa+1 and so on
(Notice that these intervals may overlap). We proceed to show how to represent this kind of
modification to the clusters using a constant number of stairs updates and interval increment
updates.

For clearer presentation, assume that the required modification to be applied to the
counters is given as a pair (x, y) such that for every j ∈ [0 . . . |I| − 1] the interval [x + j ·
p . . . y + j · p] is increased by 1. Every such interval [x + j · p . . . y + j · p] is called a window,
with x + j · p being the start of the window and y + j · p being the end of the window. We
represent the modification to the updates using two increasing stairs updates and one interval
increment update.

The first increasing stairs update is Starts = (x, x + (|I| − 1) · p − 1, p). Note the the d-th
step of Starts starts in the same index as the start of the d-th window. The second update
is a negative increasing stairs updates Ends = (y + 1, y + (|I| − 1) · p, p). Note that the d-th
step of Ends starts one index to the right of the end of the d-th window. Finally, we have the
interval increment update Remainder = (x + (|I| − 1) · p, y + (|I| − 1) · p, |I|) which can be
considered an extended last step for Starts. It is easy to see that all the updates only apply
to the indexes affected by the sliding window. Furthermore, a counter Ct is increased by
Starts (or by Remainders) by the number of starting indexes of windows that are not to the
right of t. Ct is decreased by Ends by the number of windows with ending indexes strictly
to the left of t. Overall, the counter Ct is increased by the number of windows containing
it. With this, we proved that Starts, Ends and Remainders are equivalent to the sliding
window update given as (x, y).

Every stairs or interval update we constructed in the above discussion can be easily
obtained in O(1) time from I and from the representation of lj and rj . The proof of the
Lemma 29 is completed. ◀

	1 Introduction
	2 Preliminaries
	3 O(nlog(n)) time and O(n) space algorithm for k = 1
	3.1 An overview of the O(nlog(n)log log(n)) algorithm for k = 1
	3.2 Linear space O(nlog n) algorithm for k = 1

	4 O({n^2over m^2} + n) and Linear Space Algorithm for 1-Mappability with Constant sized Alphabet
	4.1 Warm up – O(frac{n^2}{m} + n)
	4.2 Reducing the complexity to O(frac{n^2}{m^2} + n)

	A Appendix
	A.1 Complementary Figures
	A.2 Complementary Proofs For Section 4

