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Abstract
We give a quantum logspace algorithm for powering contraction matrices, that is, matrices with
spectral norm at most 1. The algorithm gets as an input an arbitrary n × n contraction matrix A,
and a parameter T ≤ poly(n) and outputs the entries of AT , up to (arbitrary) polynomially small
additive error. The algorithm applies only unitary operators, without intermediate measurements.
We show various implications and applications of this result:

First, we use this algorithm to show that the class of quantum logspace algorithms with only
quantum memory and with intermediate measurements is equivalent to the class of quantum logspace
algorithms with only quantum memory without intermediate measurements. This shows that the
deferred-measurement principle, a fundamental principle of quantum computing, applies also for
quantum logspace algorithms (without classical memory). More generally, we give a quantum
algorithm with space O(S + log T ) that takes as an input the description of a quantum algorithm
with quantum space S and time T , with intermediate measurements (without classical memory),
and simulates it unitarily with polynomially small error, without intermediate measurements.

Since unitary transformations are reversible (while measurements are irreversible) an interesting
aspect of this result is that it shows that any quantum logspace algorithm (without classical memory)
can be simulated by a reversible quantum logspace algorithm. This proves a quantum analogue of the
result of Lange, McKenzie and Tapp that deterministic logspace is equal to reversible logspace [15].

Finally, we use our results to show non-trivial classical simulations of quantum logspace learning
algorithms.
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1 Introduction

Quantum computers hold great promise, but in the near future their memory is likely to
be limited to a small number of qubits. This motivates the study of quantum complexity
classes with bounded space. The most important of these classes is the class of problems
solvable in quantum logarithmic space and polynomial time, first studied by Watrous [28].
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In the literature, there are several variants of this class. One variant, BQL, is the class of
problems solvable in quantum logarithmic space and polynomial time when intermediate
measurements are allowed. Another variant, BQUL, is the class of problems solvable in
quantum logarithmic space and polynomial time when only unitary operators are allowed
and intermediate measurements are not allowed. We note that in most previous works, the
class BQL allows a quantum algorithm to use both quantum and classical memory (see for
example [17, 27, 6]).

Our first main result, Theorem 18, gives a quantum logspace algorithm for powering
matrices, a fundamental problem in computational complexity, which is not known to be in
classical (deterministic or probabilistic) logspace. Our algorithm uses only unitary operators,
without intermediate measurements, and hence it places the problem of powering matrices in
the class BQUL.

The algorithm gets as an input an arbitrary n× n matrix A, a parameter T ≤ poly(n)
and two indices i, j ∈ {1, . . . , n} and outputs the entry (AT )i,j , up to an additive error of

∥A∥T

poly(n) + 1
poly(n) , where ∥A∥ is the spectral norm of the matrix A. In particular, if A is a

contraction matrix, that is, a matrix with spectral norm at most 1, the additive error is just
1

poly(n) .
We note that by an easy reduction, our algorithm can also solve another fundamental

problem in computational complexity, the problem of iterative matrix multiplication. In this
problem, the input is T matrices A1, . . . , AT of size n× n each, and the algorithm outputs
the entries of the product A1 · . . . ·AT .

Besides giving a quantum logspace algorithm for a basic computational problem, our results
shed light on several fundamental issues regarding bounded-space quantum computations,
and have additional applications.

BQQL is Equal to BQUL

We consider the class of quantum logspace algorithms with only quantum memory and with
intermediate measurements and refer to it by BQQL. We use our algorithm for powering
matrices to show that the two classes BQQL and BQUL are exactly equal (Theorem 12).
Moreover, the way that this equality is proved is by a simulation. Our second main result,
Theorem 16, proves that there is a quantum logspace algorithm without intermediate
measurements, that is, a BQUL algorithm, that gets the description of a quantum logspace
algorithm with intermediate measurements, without classical memory, that is, a BQQL
algorithm, and simulates it with polynomially small error. Theorem 16 is even more general
and shows how to simulate a quantum logspace algorithm with unital channels that are given
as an input, while even the very restricted special case of simulating an arbitrary unitary
operator within BQUL seems to us interesting.

The Deferred-Measurement Principle

The deferred measurement principle is a fundamental result in quantum computing which
states that delaying measurements until the end of a computation doesn’t affect the output.
In order for the principle to hold, the qubits that were supposed to be measured cannot
further participate in the computation from that point on. However, a BQQL algorithm can
only store a logarithmic number of qubits, while the number of intermediate measurements
is potentially polynomial, and hence excluding the qubits that are supposed to be measured
from further participating in the computation is infeasible.
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Nevertheless, Theorem 12 and Theorem 16 imply that intermediate measurements are
not necessary even when the space used by the quantum algorithm is logarithmic, but the
way to eliminate the intermediate measurements is not as straightforward.

Reversible Computation

Landauer introduced the concept of time-reversible computation and argued that any irre-
versible operation must be accompanied by entropy increase [14] (see also [2]). An interesting
aspect of Theorem 12 and Theorem 16 is that they show that any quantum logspace al-
gorithm (without classical memory) can be implemented using only time-reversible operations
(except for the final measurement that gives the final output). This is a quantum analogue
of the result of Lange, McKenzie and Tapp that deterministic logspace algorithms can be
implemented using only time-reversible operations [15].

Classical Simulations of Quantum Learning with Bounded Memory

A line of recent works studied the power of (classical) algorithms for online learning, under
memory constraints, where a bounded-space learner tries to learn a concept class from a
stream of samples. These works showed that for a large class of online learning problems, any
classical learning algorithm requires either super-linear memory size or a super-polynomial
number of samples (see for example [24, 26, 22, 13, 21, 18, 1, 8] and the references therein).

Here, we study the relative power of quantum and classical algorithms for online learning,
under memory constraints. More concretely, we study the task of distinguishing between two
families of distributions over the possible samples. Corollary 23 proves that any quantum
algorithm with time T and space S for distinguishing between arbitrary two families of
distributions, can be simulated classically in time poly(2S2+log2 T ) and space O(S2 + log2 T ).
Moreover, Theorem 24 proves that if one family is a singleton, that is, the task is to distinguish
between one distribution over the samples and a family of different distributions, then any
quantum learning algorithm with time T and space S can be simulated classically in time
poly(2S · T ) and space O(S + log T ).

Thus, an intriguing open problem is whether any quantum algorithm with time T and
space S for distinguishing between two arbitrary families of distributions, can be simulated
classically in time poly(2S · T ) and space O(S + log T ). Theorem 22 proves that this holds if
and only if promiseBQUL = promiseBPL.

1.1 Techniques
We start by proving a lemma that shows how to implement an arbitrary contraction matrix
A as a subsystem of a unitary quantum circuit (Lemma 6). Since A is not necessarily unitary,
rather than implementing A, the lemma implements the unitary matrix

UH =
(

H
√

I2m −H2
√

I2m −H2 −H

)

where H is the Hermitian contraction
(

A

A†

)
. That is, the lemma shows how to apply

the transformation UH on a unit vector (quantum state) that is also given as an input. The
unitary matrix UH is called a block-encoding of A in some literature [4, 10], which admits
various constructions (see [9] for an exhibition). In particular, our construction in Lemma 6
is in unitary quantum logspace.

ICALP 2021
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The proof of Lemma 6 is inspired by, and uses techniques from, Ta-Shma’s algorithm
that inverts well-conditioned matrices in quantum logspace [27], whose general framework
traces back to [12]. In particular, as in [27], the proof goes according to the following lines:
Given a Hermitian matrix H,

First apply the phase estimation over the unitary eiH so that it maps |uλ⟩ to |uλ⟩|λ⟩,
where uλ is an eigenvector of H with eigenvalue λ.
For each eigenvector apply the unitary transformation |λ⟩ → λ|0⟩|λ⟩ +

√
1 − λ2|1⟩|λ⟩

according to the eigenvalue λ. This is where contraction matrices come into play, as the
eigenvalues of H are required to be in [−1, 1].
Uncompute the eigenvalues by reversing the phase estimation over eiH .

As a special case of Lemma 6, when we take the contraction A to be unitary, we get a
space-efficient unitary implementation of any unitary matrix (Corollary 7).

We get our algorithms for powering contraction matrices (Theorem 10 and Corollary 15) by
iteratively applying the unitary matrix UH of Lemma 6. However, since Lemma 6 implements
the matrix UH , rather than A, we need to “throw away” the unwanted dimensions introduced
by UH , by permuting them into additional dimensions.

We get our algorithm for powering arbitrary matrices (Theorem 18), by a reduction to the
algorithm for powering contraction matrices, by dividing the matrix by its norm. However,
the known algorithm for computing the spectral norm of a matrix, by Ta-Shma [27], only
works for contraction matrices. To bypass this, we apply Ta-Shma’s algorithm on the matrix
A divided by its Frobenius norm (which is always larger than the spectral norm).

Finally, we get our algorithms for simulating quantum logspace algorithms with inter-
mediate measurements, or even unital channels that are given as an input (Lemma 11 and
Theorem 16), by reducing any unital quantum algorithm to the contraction powering problem
in the m2-dimensional space of the m×m entries of the density matrix, where m = 2S and
S is the space used by the algorithm. Note that this step already doubles the space used. At
the end of this step, we only get polynomially small success probability, but that success
probability can be amplified to a constant using a Grover-type technique inspired by [6],
resulting in Lemma 11 that simulates the computation with constant error. The error is
further reduced to be polynomially small in Theorem 16. Interestingly, to reduce the error
and prove Theorem 16, we use Theorem 12, so, in a way, the results are used to improve
themselves.

1.2 Related Work
Independently of our work, Fefferman and Remscrim have proven closely related results to
ours [7]. They took a different route from ours by proving L-reductions between several
well-conditioned versions of matrix problems which turned out to be BQUL-complete. In
particular, they obtained a stronger version of our Theorem 12, showing that BQL = BQUL.

2 Preliminaries

For an integer n, let [n] = {0, 1, . . . , n− 1}. Let C denote the set of complex numbers, and
Cm×n denote the set of m by n complex matrices. For a matrix A ∈ Cm×n, let vec(A) be
the vectorization of A, which is a vector of dimension mn formed by stacking the columns of
A on top of each other, that is

vec(A)i+jm = Ai,j , ∀i ∈ [m], j ∈ [n].
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Let Um be the set of m by m unitary matrices, and Dm be the set of m by m density matrices,
i.e. positive semidefinite Hermitians of trace 1. The m by m identity matrix is denoted
by Im. Let ∥A∥ denote the spectral norm of a complex matrix A, and ∥A∥F denote the
Frobenius norm.

We use ε to denote small real numbers, and |ϵ⟩ to denote vectors with small norms.
When we talk about errors, approximations and ε-closeness of matrices, they are measured
in spectral norms.

As we work mostly with complex numbers, we often need corresponding concentration
bounds. The following is a direct corollary of the Chernoff-Hoeffding inequality:

▶ Lemma 1. Let X be a random complex number with |X| ≤ 1, and X1, . . . , Xn are n

independent copies of X. Then

Pr
[∣∣∣∣ 1n (X1 + · · · +Xn) − E[X]

∣∣∣∣ ≥ ε

]
≤ 4e−2nε2

.

2.1 Contraction Matrices
We introduce contraction matrices and provide some useful properties, which can be found
in [29, Chapter 6]:

▶ Definition 2. A matrix A ∈ Cm×m is a contraction if ∥A∥ ≤ 1. Alternatively, A is a
contraction if A is in the convex hull of Um.

Any eigenvalue λ of a contraction must have |λ| ≤ 1. If A ∈ Cm×m is a contraction, then the
following matrix is unitary:

UA =
(

A
√

Im −AA†√
Im −A†A −A†

)

In particular, when A = a is a real number in [−1, 1], Ua =
(

a
√

1 − a2
√

1 − a2 −a

)
is a

reflection. Finally, in a product of multiple contractions, individual errors will not propagate
much, as we have the following lemma:

▶ Lemma 3. If A1, . . . , Ak ∈ Cm×m are contractions, and B1, . . . , Bk ∈ Cm×m satisfy
∥Ai − Bi∥ ≤ ε for every i, then ∥A1 · · ·Ak − B1 · · ·Bk∥ ≤ (1 + ε)k − 1. Furthermore, if
B1, . . . , Bk are also contractions, then ∥A1 · · ·Ak −B1 · · ·Bk∥ ≤ kε.

2.2 Quantum Channels
A quantum channel (or operation), in its most general form, is a completely-positive trace-
preserving (CPTP) map Φ : Dm → Dn that maps a density matrix ρ to a density matrix
Φ(ρ). We denote the set of such channels as Cm,n. The Kraus representation of the quantum
channel Φ is a set of matrices {E1, . . . , Ek} such that

∑k
i=1 E

†
iEi = Im, and

Φ(ρ) =
k∑

i=1
EiρE

†
i .

The natural representation of Φ, denoted as K(Φ), is a matrix in Cn2×m2 such that
vec(Φ(ρ)) = K(Φ)vec(ρ) for any ρ ∈ Dm. Given the Kraus representation {E1, . . . , Ek} of Φ,
one can easily compute the natural representation K(Φ) =

∑k
i=1 Ei ⊗ Ei.

ICALP 2021



73:6 Quantum Logspace Algorithm for Powering Matrices with Bounded Norm

A quantum channel Φ is unital, if it maps the identity to the identity of the same dimension.
The Kraus representation of a unital channel is a set of square matrices {E1, . . . , Ek} that
additionally satisfies

∑k
i=1 EiE

†
i = Im. In the language of natural representation, it is known

that Φ is unital if and only if K(Φ) is a contraction [20]. Notice that unitary operators and
projective measurements are all unital. Our paper shows the following: one can construct
in logspace a quantum circuit to simulate any arbitrary unital channel with ancillas, but
without intermediate measurements.

2.3 Quantum Algorithms
A generic quantum algorithm with time T and space S = logm is specified by T quantum
channels Φ1, . . . ,ΦT ∈ Cm,m, which might depend on the inputs. We also require the channels
Φ1, . . . ,ΦT to be efficiently constructible, whose meaning may differ for different types of
quantum algorithms, and will be specified below.

The algorithm starts from the fixed initial state ρ0 = |0S⟩⟨0S |, and in the i-th step applies
Φi on the current state, so that the state after the i-th step can be described as

ρi = Φi(ρi−1) = Φi ◦ Φi−1 ◦ · · · ◦ Φ1(ρ0).

At the end the first qubit of the final state ρT is measured in the computational basis of the
first qubit, where the measurement can be represented as M0 = |0⟩⟨0| ⊗ Im/2. The quantum
algorithm outputs 0 with probability Tr[ρTM0], and 1 with probability 1 − Tr[ρTM0]. The
quantum algorithm is called unitary (resp. unital), if every channel Φi is unitary (resp.
unital).

Quantum circuit

Fix a universal quantum gate set G, for instance Hadamard and Toffoli gates [25], and let GS

be the set of gates in G on S qubits. Let MS be the set of single-qubit measurements on S

qubits.
When the input of the problem is from domain X, the quantum circuit is specified by a

mapping ΦD : X × [T ] → GS ∪ MS such that Φi+1 = ΦD(x, i) for every i ∈ [T ], where x ∈ X

is the input, and ΦD can be computed deterministically in time O(T ) and space O(S). The
quantum algorithm decides a function f : X → {0, 1} with error ε if:

∀x ∈ X, |Tr[ρTM0] − f(x)| ≤ ε.

Now, BQQL is the class of boolean-function families where fn : {0, 1}n → {0, 1} can be
decided by a quantum circuit with time poly(n), space O(logn) and error 1/3. The function
is further in the class BQUL if there is no intermediate measurements, i.e. the range of ΦD is
GS . We define promiseBQQL and promiseBQUL similarly, but the domain of each fn can be a
subset of {0, 1}n.

Quantum learning algorithm

For a quantum online learning algorithm with Γ being the set of samples, there exists a
mapping ΦL : Γ → Cm,m such that Φi = ΦL(zi) where zi ∈ Γ is the sample received in the
i-th step, and each entry of K(ΦL(zi)) can be computed deterministically in time O(T ) and
space O(S).
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Let P(Γ) be the collection of all probability distributions over Γ. For any distribution
D ∈ P(Γ), let DT be T i.i.d copies of D, so that z ∼ DT means that each sample zi is
independently drawn from D. Let X ,Y be two disjoint subsets of P(Γ). The quantum
learning algorithm distinguishes X and Y with error ε if:

∀D ∈ X , E
z∼DT

[Tr[ρTM0]] ≥ 1 − ε

∀D ∈ Y, E
z∼DT

[Tr[ρTM0]] ≤ ε.

And for ε = 1/3, we simply say that the quantum learning algorithm distinguishes X and Y .

Other specifications

Notice that even in the unitary algorithms where intermediate measurements are not generally
allowed, a constant number of intermediate measurements are still available because of the
principle of deferred measurements (see e.g. [19, Section 4.4]), which will only increase the
time and space by a constant. This means the error ε in both definitions above can be safely
amplified to any constant power, and the specific constant error 1/3 can be replaced by any
constant in [0, 1/2).

For constructible functions t(n) = Ω(n) and s(n) = Ω(logn), define BPTISP(t(n), s(n))
as the class of boolean functions families that can be decided by a classical random-
ized algorithm with time O(t(n)) and space O(s(n)), and promiseBPTISP(t(n), s(n))
accordingly. The classical randomized logspace class is defined as (promise)BPL =
(promise)BPTISP(poly(n), log(n)).

Phase estimation

Given the dimension m and the error parameter ε > 0, the phase estimation circuit (see
e.g. [19, Section 5.2]) acts on an input register of dimension m and an estimation register of
dimension 2ℓ = O(1/ε). The circuit is with time O(2ℓ) and space O(ℓ+logm), and accesses 2ℓ

oracle calls to the controlled-U gates, where U ∈ Um is an arbitrary unitary matrix. For each
j ∈ [2ℓ], define λ(j) = 2jπ/2ℓ−π, and for any λ ∈ [−π, π], let J(λ) = {j ∈ [2ℓ] | |λ(j)−λ| ≤ ε}.
If v is a unit eigenvector of U with eigenvalue eiλ, the circuit maps v ⊗ |0ℓ⟩ to

2ℓ−1∑
j=0

αjv ⊗ |j⟩,

so that∑
j∈J(λ)

|αj |2 ≥ 1 − ε2.

Given a Hermitian contraction H ∈ Cm×m, let PH be the above phase estimation circuit
with U = eiH , and PH,ε be the above phase estimation circuit where U is replaced with the
Hamiltonian simulation circuit presented in [27] which differs from eiH by an error of 2−ℓε.
Notice that PH,ε is a unitary quantum circuit with poly(m/ε) and space O(log(m/ε)), and
by Lemma 3 we have ∥PH,ε − PH∥ ≤ ε.

Since H only has eigenvalues in [−1, 1], we slightly modify the definition of λ(j) so that
it’s truncated at ±1, that is

λ(j) =
{

2jπ/2ℓ − π if 2jπ/2ℓ − π ∈ [−1, 1]
sgn(2jπ/2ℓ − π) otherwise

which will only make J(λ) larger for λ ∈ [−1, 1].

ICALP 2021
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Every unit eigenvector v of H with eigenvalue λ is also a unit eigenvector of eiH with
eigenvalue eiλ. Therefore for any two unit eigenvectors u, v of H, we have

(
u† ⊗ ⟨j|

)
PH

(
v ⊗ |0ℓ⟩

)
=
{
αj if u = v

0 if u ⊥ v.

In other words, since PH is unitary,

(
u† ⊗ ⟨0ℓ|

)
P−1

H

(
v ⊗ |j⟩

)
=
{
αj if u = v

0 if u ⊥ v.

That means the projection of P−1
H

(
v⊗ |j⟩

)
onto Cm ⊗ |0ℓ⟩ is along v⊗ |0ℓ⟩ and has amplitude

αj . Combing the above observations we get the following lemma:

▶ Lemma 4. Given a Hermitian contraction H ∈ Cm×m and ε > 0, there is a unitary
quantum circuit PH,ε with time poly(m/ε) and space O(log(m/ε)) that is ε-close to a unitary
operator PH , which satisfies the following: There is a parameter ℓ = O(log(1/ε)), such that
if v is a unit eigenvector of H with eigenvalue λ ∈ [−1, 1], then

PH(v ⊗ |0ℓ⟩) =
2ℓ−1∑
j=0

αjv ⊗ |j⟩, where
∑

j∈J(λ)

|αj |2 ≥ 1 − ε2.

Moreover, for every j ∈ [2ℓ],

P−1
H (v ⊗ |j⟩) = αjv ⊗ |0ℓ⟩ + |⊥⟩,

where |⊥⟩ is a vector orthogonal to Cm ⊗ |0ℓ⟩.

Pure State Preparation

Our results involve the simplest form of the quantum state preparation problem, which is to
map the initial state |0S⟩ to a given pure state. With the efficient Solovay-Kitaev Theorem
in [17], we have the following:

▶ Lemma 5. Given m = 2S, a unit vector v ∈ Cm and ε > 0, there is unitary quantum
circuit Qv on S qubits with time O(m · polylog(1/ε)) and space O(log(m/ε)) such that
∥Qv|0S⟩ − v∥2 ≤ ε.

3 Quantum Implementations of Contractions

▶ Lemma 6. Given a contraction A ∈ Cm×m and ε > 0, there is a unitary quantum circuit
QA with time poly(m/ε) and space O(log(m/ε)), and a parameter ℓ = O(log(1/ε)), such
that for unit vector v of dimension 4m, ∥QA(v ⊗ |0ℓ⟩) − (VAv) ⊗ |0ℓ⟩∥2 ≤ ε, where

VA = diag(UA, UA†) =


A

√
Im −AA†√

Im −A†A −A†

A†
√

Im −A†A√
Im −AA† −A


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Proof. Let H be the Hermitian contraction
(

A

A†

)
. Notice that

UH =
(

H
√

I2m −H2
√

I2m −H2 −H

)

=


A

√
Im −AA†

A†
√

Im −A†A√
Im −AA† −A√

Im −A†A −A†


which differs from VA only by permutations:

VA =


Im

Im

Im

Im

 · UH ·


Im

Im

Im

Im


Since the permutations are only on two qubits, it suffices to implement UH on v up to error ε.

Let v =
(
v1
v2

)
where both v1 and v2 are of dimension 2m. Suppose H has the eigen

decomposition H =
2m∑
k=1

λku
†
kuk, and v1, v2 are decomposed into this eigenbasis as

v1 =
2m∑
k=1

ω
(0)
k uk, v2 =

2m∑
k=1

ω
(1)
k uk, where

2m∑
k=1

∣∣∣ω(0)
k

∣∣∣2 +
2m∑
k=1

∣∣∣ω(1)
k

∣∣∣2 = 1.

Since v can be written as |0⟩ ⊗ v1 + |1⟩ ⊗ v2, applying the phase estimation circuit PH,ε1 in
Lemma 4 on v ⊗ |0ℓ⟩ results in:

2m∑
k=1

2ℓ−1∑
j=0

ω
(0)
k αj,k|0⟩ ⊗ uk ⊗ |j⟩ +

2m∑
k=1

2ℓ−1∑
j=0

ω
(1)
k αj,k|1⟩ ⊗ uk ⊗ |j⟩ + |ϵ1⟩

=
2m∑
k=1

∑
j∈J(λk)

ω
(0)
k αj,k|0⟩ ⊗ uk ⊗ |j⟩ +

2m∑
k=1

∑
j∈J(λk)

ω
(1)
k αj,k|1⟩ ⊗ uk ⊗ |j⟩ + |ϵ2⟩.

where for each k it holds
∑

j∈J(λk) |αj,k|2 ≥ 1 − ε2
1. Here ε1 is an error parameter to be

determined later, and ℓ = O(log(1/ε1)). The error vector |ϵ1⟩ is introduced due to the
difference between PH,ε1 and PH , and thus ∥|ϵ1⟩∥2 ≤ ∥PH,ε1 − PH∥ ≤ ε1. The error vector
|ϵ2⟩ − |ϵ1⟩ is a weighted sum of 4m orthogonal error vectors, with lengths at most ε1 and
weights ω(0)

k , ω
(1)
k , and thus has length at most ε1. Therefore ∥|ϵ2⟩∥2 ≤ 2ε1.

Now apply the following unitary transformation on the first qubit and last ℓ qubits:

|0⟩|j⟩ → λ(j)|0⟩|j⟩ +
√

1 − λ(j)2|1⟩|j⟩

|1⟩|j⟩ →
√

1 − λ(j)2|0⟩|j⟩ − λ(j)|1⟩|j⟩

which gives
2m∑
k=1

∑
j∈J(λk)

ω
(0)
k αj,k

[
λ(j)|0⟩ +

√
1 − λ(j)2|1⟩

]
⊗ uk ⊗ |j⟩

+
2m∑
k=1

∑
j∈J(λk)

ω
(1)
k αj,k

[√
1 − λ(j)2|0⟩ − λ(j)|1⟩

]
⊗ uk ⊗ |j⟩ + |ϵ3⟩
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This unitary transformation can be implemented as a serial combination of 2ℓ single-qubit
unitaries Uλ(j) controlled by the last ℓ qubits representing j. Each one of them can be
constructed up to error 2−ℓε1 in time polylog(1/ε1) and space O(log(1/ε1)) by [17, Theorem 7].
Therefore by Lemma 3 we have ∥|ϵ3⟩∥2 ≤ ∥|ϵ2⟩∥2 + ε1 ≤ 3ε1.

Finally applying the reverse phase estimation P−1
H,ε1

gives the following state, where |⊥⟩
is orthogonal to C2 ⊗ C2m ⊗ |0ℓ⟩:

2m∑
k=1

∑
j∈J(λk)

|αj,k|2ω(0)
k

[
λ(j)|0⟩ +

√
1 − λ(j)2|1⟩

]
⊗ uk ⊗ |0ℓ⟩

+
2m∑
k=1

∑
j∈J(λk)

|αj,k|2ω(1)
k

[√
1 − λ(j)2|0⟩ − λ(j)|1⟩

]
⊗ uk ⊗ |0ℓ⟩ + |ϵ4⟩ + |⊥⟩

=
2m∑
k=1

∑
j∈J(λk)

|αj,k|2ω(0)
k

[
λk|0⟩ +

√
1 − λ2

k|1⟩
]

⊗ uk ⊗ |0ℓ⟩

+
2m∑
k=1

∑
j∈J(λk)

|αj,k|2ω(1)
k

[√
1 − λ2

k|0⟩ − λk|1⟩
]

⊗ uk ⊗ |0ℓ⟩ + |ϵ5⟩ + |⊥⟩

=
2m∑
k=1

ω
(0)
k

[
λk|0⟩ +

√
1 − λ2

k|1⟩
]

⊗ uk ⊗ |0ℓ⟩

+
2m∑
k=1

ω
(1)
k

[√
1 − λ2

k|0⟩ − λk|1⟩
]

⊗ uk ⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩

=
2m∑
k=1

ω
(0)
k

[
UH(|0⟩ ⊗ uk)

]
⊗ |0ℓ⟩ +

2m∑
k=1

ω
(1)
k

[
UH(|1⟩ ⊗ uk)

]
⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩

=
[
UH(|0⟩ ⊗ v1)

]
⊗ |0ℓ⟩ +

[
UH(|1⟩ ⊗ v2)

]
⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩

=(UHv) ⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩.

Here ∥|ϵ4⟩∥2 ≤ ∥|ϵ3⟩∥2 + ∥P−1
H,ε1

− P−1
H ∥ ≤ 4ε1. Also, similar to the reasoning for |ϵ2⟩ − |ϵ1⟩,

since for every k, 1 − ε2
1 ≤

∑
j∈J(λk) |αj,k|2 ≤ 1, and for every j ∈ J(λk), ∥Uλ(j) − Uλk

∥2 ≤
|λ(j) − λk| ≤ ε1, we have

∥|ϵ6⟩∥2 ≤ ∥|ϵ5⟩∥2 + ε2
1 ≤ ∥|ϵ4⟩∥2 + ε1 + ε2

1 ≤ 6ε1.

Finally, notice that both (UHv) ⊗ |0ℓ⟩ and (UHv) ⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩ are unit vectors, while
|⊥⟩ is orthogonal to (UHv) ⊗ |0ℓ⟩, so we have∣∣((UHv)† ⊗ ⟨0ℓ|

)(
(UHv) ⊗ |0ℓ⟩ + |ϵ6⟩ + |⊥⟩

)∣∣ =
∣∣1 +

(
(UHv)† ⊗ ⟨0ℓ|

)
|ϵ6⟩
∣∣ ≥ 1 − ∥|ϵ6⟩∥2,

which implies that ∥|ϵ6⟩ + |⊥⟩∥2 ≤
√

2∥|ϵ6⟩∥2. Therefore it suffices to take ε1 ≤ ε2/12, and
the theorem follows. ◀

As a by product, when we take the contraction A in Lemma 6 to be unitary, we get the
unitary implementation of any unitary matrix, with the number of ancillas only depending
on the error:

▶ Corollary 7. Given a unitary matrix U ∈ Um and ε > 0, there is a unitary quantum circuit
QU with time poly(m/ε) and space O(log(m/ε)), and a parameter ℓ = O(log(1/ε)), such
that for any unit vector v of dimension m, ∥QU (v ⊗ |0ℓ⟩) − (Uv) ⊗ |0ℓ⟩∥2 ≤ ε.
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Proof. Use the exact same circuit in Lemma 6 by adding two ancilla qubits to v initialized
at |00⟩. Notice that VU = diag(U,−U†, U†,−U), and thus the output state is ε close to
[VU (|00⟩ ⊗ v)] ⊗ |0ℓ⟩ = |00⟩ ⊗ (Uv) ⊗ |0ℓ⟩. Rearranging the order of qubits and the claim
follows. ◀

Finally, for permutation matrices, we present a simple unitary implementation without
any ancillas by decomposing it into transpositions.

▶ Lemma 8. Given a permutation σ ∈ Sm and ε > 0, there is a unitary quantum circuit U
with time poly(m/ε) and space O(log(m/ε)), such that ∥U −Pσ∥ ≤ ε, where Pσ ∈ {0, 1}m×m

is the matrix representation of σ.

4 Contraction Powering in Quantum Logspace

▶ Definition 9 (Contraction Powering). Given m = 2S, a contraction A ∈ Cm×m, a positive
integer T in unary, and two vectors v, w ∈ Cm with ∥v∥2 = ∥w∥2 = 1 as the input, it is
promised that |w†AT v|2 is either in [0, 1/3] or [2/3, 1], and the goal of the Contraction-
Powering problem is to distinguish between the two cases.

▶ Theorem 10. ContractionPowering ∈ promiseBQUL. Moreover, given the same input
(m,A, T, v, w) but without the promise on |w†AT v|2, while also given an error parameter ε > 0,
there is a unitary quantum circuit W with time poly(mT/ε) and space S′ = O(log(mT/ε))
such that |⟨0S′ |W |0S′⟩|2 is ε-close to |w†AT v|2.

Proof. First, let Qv and Qw be the circuits preparing states v and w with error ε/8 in
Lemma 5 respectively. Since∣∣∣|⟨0S |Q†

wA
TQv|0S⟩|2 − |w†AT v|2

∣∣∣ ≤ 4∥Qv|0S⟩ − v∥2 + 4∥Qw|0S⟩ − w∥2 ≤ ε/2,

in the rest of the proof we can safely assume that Qv|0S⟩ = v and Qw|0S⟩ = w while
halving ε.

Let ℓ = O(log(T/ε)) be the one in Lemma 6 with error parameter (2T )−1ε. The circuit
works on three parts of qubits: the counter register C of dimension 2T , the vector register of
dimension m, and ℓ ancilla qubits. The circuit starts by preparing |0⟩C ⊗ v⊗ |0ℓ⟩ by applying
Qv. Then repeat the following two steps for T times:
1. Apply VA on the last two qubits of the timer register and the entire vector register by

Lemma 6;
2. Apply the permutation |0⟩ → |0⟩, |2T − 2⟩ → |1⟩, |2T − 1⟩ → |2⟩, |i⟩ → |i + 2⟩, ∀i =

1, . . . , 2T − 3. on the counter register by Lemma 8.
Finally, apply Q†

w on the vector register and measure with the projection onto |0⟩C ⊗|0S⟩⊗|0ℓ⟩.
To prove the correctness of the algorithm, we first assume that all the implementations

in Lemma 6 and Lemma 8 are errorless, i.e. the evolution is completely within the subspace
C2T ⊗Cm ⊗|0ℓ⟩. Then it suffices to notice that VA is block-diagonal, so that step 1 acts locally
on the T subspaces spanned by |2i⟩C and |2i+ 1⟩C . Therefore after the i-th application of
VA, the projection of the current state onto |j⟩C is always 0 for j ≥ 2i, and thus before each
application of VA, the projection onto |1⟩C is always 0. So the state after the i-th repetition
is |0⟩C ⊗ (Aiv) + |⊥⟩, where |⊥⟩ is orthogonal to |0⟩C . The output probability is then∣∣∣(⟨0|C ⊗ ⟨0S |

)(
I2T ⊗ U†

w

)(
|0⟩C ⊗ (AT v) + |⊥⟩

)∣∣∣2 = |w†AT v|2.

ICALP 2021



73:12 Quantum Logspace Algorithm for Powering Matrices with Bounded Norm

Now each step in the repetition introduces an error of (2T )−1ε. Therefore, by Lemma 3,
the total error of the unitary quantum circuit W , compared to the above ideal case, is at
most ε. ◀

5 Equivalence of Unital and Unitary Quantum Logspace

5.1 Simulating Unital Quantum Logspace with Constant Error
▶ Lemma 11. Given a unital quantum algorithm with time T and space S = logm specified
by the natural representations K(Φ1), . . . ,K(ΦT ) ∈ Cm2×m2 , and an error parameter ε > 0,
there is a unitary quantum circuit with time poly(mT/ε) and space O(log(mT/ε)), such that
if the original unital circuit outputs 0 with probability p, then the unitary circuit outputs 0
with probability sin2(p+ α), where |α| ≤ ε.

Proof. We can always assume that S is an odd number and m ≥ max(4ε−1, 8) by adding
dummy dimensions. As each K(Φi) is a contraction, the following matrix A of dimension
m2T is also a contraction:

A =


K(ΦT )

K(Φ1)
K(Φ2)

. . .
K(ΦT −1)


Since the final state of the unital quantum algorithm is ρT = ΦT ◦ · · · ◦Φ1(ρ0), we can rewrite
the output probability of the unital quantum algorithm as

p = Tr[ρTM0] = vec(M0)†vec(ρT ) = vec(M0)†K(ΦT ) · · ·K(Φ1)vec(ρ0)

=
(
vec(M0)† ⊗ ⟨0|

)
AT
(
vec(ρ0) ⊗ |0⟩

)
Let v = vec(ρ0) ⊗ |0⟩ which is already a unit vector. Since ∥vec(M0)∥2 =

√
m/2,

let w =
√

2
m vec(M0) ⊗ |0⟩. Let ε1 be the error parameter to be determined later. The-

orem 10 constructs a unitary quantum algorithm W with time poly(mT/ε1) and space
S′ = O(log(mT/ε1)), such that |⟨0S′ |W |0S′⟩|2 is ε1-close to 2p2/m. Therefore |⟨0S′ |W |0S′⟩|
is √

ε1-close to
√

2
mp.

Let

R =
(

IS′ − 2W |0S′
⟩⟨0S′

|W †
)(

IS′ − 2|0S′
⟩⟨0S′

|
)

be the rotation on the subspace spanned by |0S′⟩ and W |0S′⟩, of degree 2 cos−1 |⟨0S′ |W |0S′⟩|.
By the estimation

π

2 − x− 1
4x

3 ≤ cos−1 x ≤ π

2 − x, ∀x ∈ [0, 1],

and since (x+ y)3 ≤ 4(x3 + y3) for non-negative x, y, it can be calculated that the degree of
the rotation R is in the range[

π − 2
√

2
m
p− 4

√
ε1 − 4

m

√
2
m
, π − 2

√
2
m
p+ 2

√
ε1

]
.
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Since S is an odd number, k =
√
m/8 is an integer. Applying R for k times will rotate

|0S′⟩ by a degree of kπ − p − α, where |α| ≤
√

2mε1 + 2m−1. Therefore the projective
measurement of the state Rk|0S′⟩ onto the subspace orthogonal to |0S′⟩ outputs 0 with
probability sin2(p+ α). Let ε1 = (8m)−1ε2, and notice that 2m−1 ≤ ε/2, so that we have
|α| < ε, and the circuit Rk is unitary with time poly(mT/ε) and space O(log(mT/ε)). ◀

▶ Theorem 12. BQQL = BQUL, and promiseBQQL = promiseBQUL.

Proof. Clearly BQQL ⊇ BQUL, and promiseBQQL ⊇ promiseBQUL. To prove the other
direction, notice that quantum circuits are unital, therefore by Lemma 11 with ε = 0.01 they
can be simulated by unitary quantum circuits with polynomial time and logarithmic space.
Since the original output probability p is promised to be in [0, 1/3] or [2/3, 1], the value of
sin2(p+ α) is in [0, 0.12] or [0.37, 1] respectively, and thus it suffices to perform a constant
rounds of amplification in order to bring the error down to less than 1/3. ◀

▶ Remark 13. Though we proved Theorem 12 via the contraction powering algorithm,
the unitary quantum circuit that simulates a given quantum circuit with intermediate
measurements can be more simply constructed without using Lemma 6. In details, given
a channel Φ in the quantum circuit, we can directly write out the natural representations
K(Φ), and apply the matrix on the vectorized density matrix vec(ρ):

If Φ is a unitary quantum gate U , then K(Φ) = U ⊗ U which can be implemented by
applying U and then U ;
If Φ is a single-qubit measurement, then K(Φ) is a diagonal matrix with diagonal entries
in {0, 1}. It can be implemented using a similar “permute and throw away” technique
as in Theorem 10, which after applied T times increases the dimension (instead of the
space!) by a factor of T .

And the resulting circuit can be amplified in the same way as in Lemma 11.

5.2 Simulating Unital Quantum Logspace with Small Error
Now we can improve the result in Lemma 11 to arbitrarily small error (namely the probability
of outputting 0 is (p+ α) instead of sin2(p+ α)). Interestingly, the improvement relies on a
stronger version of Theorem 10, which in turn relies on Theorem 12. In a way, we use these
results to improve themselves!

We start with the stronger version of Theorem 10, which outputs the numerical value of
|w†AT v|2 instead of outputting 0 with such probability. Here the quantum circuit outputs a
number by a final measurement over the computational basis.

▶ Lemma 14. Given m = 2S, a contraction A ∈ Cm×m, a positive integer T , two unit
vectors v, w ∈ Cm and an error parameter ε > 0, there is a unitary quantum circuit with time
poly(mT/ε) and space O(log(mT/ε)) such that with probability 1 − 2−poly(mT/ε), it outputs
|w†AT v|2 with additive error ε.

Proof. Theorem 10 provides a unitary quantum circuit W with time poly(mT/ε) and space
O(log(mT/ε)) which outputs 0 with probability p such that

∣∣p − |w†AT v|2
∣∣ ≤ ε/2. By

Marriott-Watrous amplification [16, Theorem 3.3], there is a quantum circuit W ′ with time
poly(mT/ε) and space O(log(mT/ε)) with intermediate measurements, that uses W and
W−1 as sub-circuits, and with probability 1 − δ = 1 − 2−poly(mT/ε) outputs a value p̃ such
that |p̃− p| ≤ ε/4.
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Since the resulting circuit W ′ is not unitary, we would like to use Theorem 12 to compute
unitarily each bit in the output value p̃ of W ′. Furthermore, using the result in [5] that
BQUL = QUL(1 − 2−poly(n), 2−poly(n)) (which stands for unitary quantum logspace with
exponentially small error) the total error probability can be reduced down to 2−poly(mT/ε).
Assuming that every bit in p̃ is 0 with probability either in [0, 1/3] or [2/3, 1], then for
1 ≤ i ≤ ⌈log(1/ε)⌉ + 2, we let Wi be the unitary quantum circuit that computes the i-th
bit of p̃ with exponentially small error. Ideally, the outputs of Wi combined together would
ε-approximate |w†AT v|2.

However, the value p̃ outputted by the Marriott-Watrous amplification might be different
in each Wi, so the final approximation assembled can be totally wrong (for instance, when
p = 0.5, the outputs p̃ = 0.1000 . . . and p̃ = 0.0111 . . . might be assembled to 0.1111 . . .).
Moreover, the error reduction in [5] may have unpredictable results, as the promises on the
distributions of the bits in p̃ are not guaranteed (again when p = 0.5, the most significant bit
of p̃ is equally distributed on 0 and 1).

Fortunately, we can solves both problems by computing from the most significant bit to
the least significant bit. We maintain a value q ∈ [0, 1] which is initialized to 0. For each
i = 1 to ⌈log(1/ε)⌉ + 2 do the following: Run the modified circuit Wi which outputs the i-th
bit of (p̃− q) instead of p̃. To deal with case when p̃− q is outside of [0, 2−i+1), if p̃− q < 0
it outputs 0, and if p̃ − q ≥ 2−i+1 it outputs 1. Let the output bit be bi and update q to
q + bi · 2−i.

We claim that with probability 1 − 2−poly(mT/ε), |q − p| ≤ ε/2. First notice that, if every
bit in p̃ is 0 with probability in [0, 2δ] ∪ [1 − 2δ, 1], then the error reduction will work as
intended, while with probability 1 −O(δ log(1/ε)) = 1 − 2−poly(mT/ε) the value p̃ is the same
in each circuit Wi, so that q is also the same as p̃.

Now let i be the first index such that the i-th bit of p̃ is 0 with probability in [2δ, 1 − 2δ].
As the Marriott-Watrous amplification outputs incorrectly with probability at most δ, it
means that there are two valid outputs p̃1 and p̃2, both are ε/4-close to p, and they coincide
in the first i− 1 bits but differs at the i-th bit. Let qi be the value of q at that step, which
consists of the first i− 1 bits of p̃1 and p̃2, then |qi + 2−i − p| ≤ ε/4. Therefore the remaining
bits of q could only be 011 . . . 11, 100 . . . 00 or 100 . . . 01, which means |qi + 2−i − q| ≤ ε/4
and thus |q − p| ≤ ε/2. Notice that on the i-th (and the last bit when bi = 1) the error
reduction may fail and arbitrarily output 0 or 1, but it does not matter as both 0 and 1 are
viable in these cases.

As a conclusion, the value q is an ε-approximation of |w†AT v|2 with probability 1 −
2−poly(mT/ε). The above circuit that outputs q is clearly with time poly(mT/ε) and space
O(log(mT/ε)) as we use constructions in Theorem 12 and [5]. Finally, the the circuit is
unitary since the O(log(1/ε)) measurements that output bi’s can be deferred, and each Wi

can be uncomputed by implementing the circuit in reverse. ◀

▶ Corollary 15. Given m = 2S, a contraction A ∈ Cm×m, a positive integer T , two unit
vectors v, w ∈ Cm and an error parameter ε > 0, there is a unitary quantum circuit with time
poly(mT/ε) and space O(log(mT/ε)) such that with probability 1 − 2−poly(mT/ε), it outputs
w†AT v with additive error ε.

Proof. Let A1 =
(
A

1

)
, v1 =

(
v/

√
2

1/
√

2

)
, v′

1 =
(
v/

√
2

i/
√

2

)
and w1 =

(
w/

√
2

1/
√

2

)
. Since we have

w†AT v = 1
2

(
4|w†

1A
T
1 v1|2 − |w†AT v|2 − 1

)
+ i

2

(
4|w†

1A
T
1 v

′
1|2 − |w†AT v|2 − 1

)
,

computing |w†AT v|2, |w†
1A

T
1 v1|2 and |w†

1A
T
1 v

′
1|2 each up to error ε/2 gives w†AT v with

error ε. ◀
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Figure 1 The quantum operator U in the preparation circuit controlled by an entry uj of u, in
binary representation with classical bits. We replace the classical control by first implementing the
circuit Qj , applying the controlled-U operator, and implementing Qj in reverse.

Notice that one can instead achieve 1/poly(mT/ε) error probability without using the
exponential error reduction in [5], by simply repeating the decision circuit in BQUL for
O(log(mT/ε)) rounds. Nevertheless, it is enough for proving the following theorem, which
states that unitary quantum circuits can simulate any unital quantum algorithm by computing
its output distribution with arbitrarily small error.

▶ Theorem 16. Given a unital quantum algorithm with time T and space S = logm
specified by the natural representations K(Φ1), . . . ,K(ΦT ) ∈ Cm2×m2 , where ρT = ΦT ◦
ΦT −1 ◦ · · · ◦ Φ1(|0S⟩⟨0S |) is its final state, a multi-outcome measurement {M0, . . . ,Mr−1}
over the computational basis, and an error parameter ε > 0, there is a unitary quantum
circuit W with time poly(mT/ε) and space S′ = O(log(mT/ε)) such that if w ∈ C2S′

is
the vector representation of W |0S′⟩ in computational basis, for every j ∈ [r] it holds that∣∣|wj |2 − Tr[ρTMj ]

∣∣ ≤ ε.

Proof. For every j ∈ [r], let mj be the dimension of the subspace that Mj projects onto. In
other words, mj = ∥vec(Mj)∥2

2. As in the proof of Lemma 11, we can construct a contraction
A ∈ Cm2T ×m2T and unit vectors v, w ∈ Cm2T such that w†AT v = Tr[ρTMj ]/√mj . By
Corollary 15, for every j ∈ [r] there is a unitary quantum circuit Qj with time poly(mT/ε)
and space O(log(mT/ε)) such that with probability 1 − 2−poly(mT/ε), it gives an (2m)−3ε2-
approximation of Tr[ρTMj ]/√mj , which implies an (2m)−1ε-approximation of

√
Tr[ρTMj ].

Consider the preparation circuit constructed in Lemma 5 which prepares the unit vector

u =
(√

Tr[ρTM0],
√

Tr[ρTM1], . . . ,
√

Tr[ρTMr−1]
)
.

with error ε/2. By construction, the preparation circuit can be viewed as a composition of
r − 1 unitary operators, each controlled by a different entry in u. Since u is not explicitly
given, we instead control these unitary operators with the output qubits of Qj , but without
measurements. Each circuit Qj is applied in reverse after the control, so that the space can
be reused.

It is clear that the entire circuit is with time poly(mT/ε) and space O(log(mT/ε)). The
error introduced by replacing each of th r − 1 unitary operators is at most (2m)−1ε +
2−poly(mT/ε), therefore the total error is at most ε/2 + (r − 1)((2m)−1ε+ 2−poly(mT/ε)) < ε.
See Figure 1 for an illustration. ◀

ICALP 2021



73:16 Quantum Logspace Algorithm for Powering Matrices with Bounded Norm

The measurement {M0, . . . ,Mr−1} in Theorem 16 could be over any subset of the qubits.
In particular, when it is a two-outcome measurement over one qubit, we have the following
direct corollary which improves Lemma 11:

▶ Corollary 17. Given a unital quantum algorithm with time T and space S = logm specified
by the natural representations K(Φ1), . . . ,K(ΦT ) ∈ Cm2×m2 , and an error parameter ε > 0,
there is a unitary quantum circuit with time poly(mT/ε) and space O(log(mT/ε)), such that
if the original unital circuit outputs 0 with probability p, then the unitary circuit outputs 0
with probability p+ α, where |α| ≤ ε.

6 Powering of Non-Contraction Matrices

In this section we extend the result of Corollary 15 to matrices that may not necessarily be
contractions. We state the result for general square matrices, while the additive error can be
exponentially large with respect to the spectral norm:

▶ Theorem 18. Given m = 2S, an arbitrary matrix A ∈ Cm×m, a positive integer T , two
unit vectors v, w ∈ Cm and an error parameter ε > 0, there is a unitary quantum circuit W
with time poly(mT/ε) and space O(log(mT/ε)) such that with probability 1 − 2−poly(mT/ε),
it outputs w†AT v with additive error ε · max(1, ∥A∥T ).

Proof. Ideally, we would like to apply the contraction powering algorithm on A/∥A∥ and
multiply the result by ∥A∥T . However, the current best quantum algorithm for computing
the spectral norm is [27, Theorem 5.2] which approximates ∥A∥ with additive error ε1 within
time poly(m/ε1) and space O(log(m/ε1)) and only works for contractions A. We use this
algorithm to approximate ∥A∥ for arbitrary A with multiplicative error as follows1: First
compute ∥A∥F in O(logm + log ∥A∥F ) = O(log(m∥A∥2)) space. Notice that A/∥A∥F is a
contraction since ∥A∥F ≥ ∥A∥. Therefore, let σ be the approximation of ∥A/∥A∥F∥ with
additive error ε1 by [27], then σ∥A∥F approximates ∥A∥ since∣∣∣σ∥A∥F − ∥A∥

∣∣∣ = ∥A∥F ·
∣∣∣σ −

∥∥A/∥A∥F

∥∥∣∣∣ ≤
√
mε1∥A∥.

Let ε1 = (3T
√
m)−1, and let α = (1 −

√
mε1)−1σ∥A∥F . Then

∥A∥ ≤ α ≤ 1 +
√
mε1

1 −
√
mε1

∥A∥ ≤ (1 + T−1)∥A∥.

Now let Ã = α−1A so that Ã is always a contraction. Applying the contraction powering
algorithm in Corollary 15 on Ã with error ε/3 results in a unitary quantum circuit with
time poly(mT/ε) and space O(log(mT/ε)) which outputs w†ÃT v with additive error ε/3.
Multiplying it by αT gives the desired result, while the error is at most αT ε/3 ≤ ε · ∥A∥T . ◀

7 Classical Simulation of Quantum Learning

7.1 Equivalence of Classical Simulation in Decision and Learning
▶ Theorem 19. If there are functions t(·, ·) and s(·, ·), such that every unitary quantum
learning algorithm with time T and space S can be simulated classically with time t(T, S)
and space s(T, S), then

promiseBQUL ⊆ promiseBPTISP(t(poly(n), O(logn)), s(poly(n), O(logn))).

1 During the analysis we assume without loss of generality that ∥A∥ ≥ 1, since otherwise it can always be
relaxed to 1 whenever necessary.
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Specifically, if every unitary quantum learning algorithm in time T and space S can be
simulated classically with time poly(2ST ) and space O(S + log T ), then promiseBQUL =
promiseBPL.

Proof. Suppose that we have a unitary quantum circuit with time T (n) = poly(n) and space
S(n) = O(logn) that decides a partial function f : X → {0, 1}, where X ⊆ {0, 1}n. Let
ΦD(x, i) be the unitary gate at the i-th step of the decision algorithm with input x, which
can be constructed in time poly(n) and space O(logn).

We can convert the quantum circuit to a learning algorithm as follows. Use X directly
as the sample space, while the samples are always constant x for some fixed x ∈ X. The
learning task is to distinguish between x ∈ f−1(0) or x ∈ f−1(1). Upon receiving the sample
x, the learning algorithm simply applies the following unitary operator on C2S(n) ⊗ CT (n):

|ψ⟩|i⟩ →
(
ΦD(x, i)|ψ⟩

)
|(i+ 1) mod T (n)⟩

so that after T (n) steps it computes in the first register the same state as in the quantum
circuit. Therefore it computes f(x) and distinguishes between the two cases. Using the
premises, we have a classical learning algorithm with time t(poly(n), O(logn)) and space
s(poly(n), O(logn)) that accomplishes the same task. The classical learning algorithm can
be viewed as a randomized decision algorithm that computes f(x) by self-constructing the
stochastic matrices in the same time and space. ◀

▶ Theorem 20. If ContractionPowering ∈ promiseBPTISP(t(n), s(n)), where t(n) ≥
Ω(n) and s(n) ≥ Ω(logn), then every unital quantum learning algorithm with time T and
space S can be simulated classically with time t(poly(2ST )) and space s(poly(2ST )).

Proof. Suppose that we have a unital quantum learning algorithm with time T and space
S = logm that distinguishes between two distribution families X and Y. Let ΦL(z) be the
unital channel applied when receiving the sample z. With the sample distribution D, let
A = E

z∼D
[K(ΦL(z))]. We note that A is a contraction matrix of dimension m2 ×m2 as every

K(ΦL(z)) is a contraction. Similar to proof of Lemma 11, the probability of the learning
algorithm outputting 0 is

E
z∼DT

[
vec(M0)†K(ΦT ) · · ·K(Φ1)vec(ρ0)

]
= vec(M0)†AT vec(ρ0).

What’s different from Lemma 11 is that here A is not explicitly given. Instead, by Lemma 1,
each time an entry of A is requested, it takes poly(mT ) samples z to approximate the
entry to at most O((m2.5T )−1) error, so that the approximated matrix Ã differs from
the actual matrix A by at most ∥Ã − A∥ ≤ O((

√
mT )−1). By Lemma 3 it means that

∥ÃT −AT ∥ ≤ O(m−1/2). Therefore applying the contraction powering algorithm on Ã gives
a classical learning algorithm that distinguishes X and Y in time t(poly(mT )) and space
s(poly(mT )).

The above scheme has two problems. First, a fixed matrix Ã cannot be directly stored,
and if every time the same entry is requested, the entry is approximated as the average of a
different batch of samples, it may result in different requested values for the same entry (even
though the difference is small with high probability), similar to the problem in Lemma 14.
However, unlike the case in Lemma 14, here the classical contraction powering algorithm is
not explicitly given, and may not be robust against changing inputs.

The solution to this problem is the shift and truncate method by Saks and Zhou[23], which
has found numerous applications in space-bounded algorithms [27] and derandomizations
[3, 11]. Concretely, let P = t(poly(mT )) be the largest number of possible requests to entries

ICALP 2021
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of A in the contraction powering algorithm, and take a uniform random number ζ ∈ [8L].
For simplicity let L = 12

√
2mT and N = 24m2.5T . When the entry Ajk is requested, the

algorithm takes t(poly(mT )) samples zi and calculate the average value a of the (j, k)-entries
of K(ΦL(zi)), so that |a−Ajk| < 1

8NP with probability at least 1 − 2−P . The value fed back
for the request is

Ãjk = 1
N

⌊
N · Re(a) + ζ

8P

⌋
+ i
N

⌊
N · Im(a) + ζ

8P

⌋
.

We claim that with high probability, this value coincides with the fixed value

1
N

⌊
N · Re(Ajk) + ζ

8P

⌋
+ i
N

⌊
N · Im(Ajk) + ζ

8P

⌋
.

For the real part, as |N · Re(a) −N · Re(Ajk)| < 1
8P , there is at most one possibility for ζ

such that
⌊
N · Re(a) + ζ

8P

⌋
̸=
⌊
N · Re(Ajk) + ζ

8P

⌋
, which is of probability 1

8P , and the same
holds for the imaginary part. By the union bound on the bad events during all L requests,
with probability

1 −
(

2−P + 1
4P

)
P ≥ 2

3

for every (j, k) the value Ãjk are always the same, and |Ãjk − Ajk| ≤
√

2
N = 1

m2L , so
∥Ã−A∥ ≤ L−1.

The second problem is that because of the approximation error, Ã might not be a
contraction matrix. This is easily fixed by using the matrix Ã′ = L

L+1 · Ã as the input. Since
∥Ã−A∥ ≤ L−1 with probability 2/3, it is implied that

∥Ã′∥ = L

L+ 1 · ∥Ã∥ ≤ L

L+ 1 ·
(
1 + L−1) = 1,

∥Ã′ −A∥ ≤ ∥Ã−A∥ + 1
L+ 1∥Ã∥ ≤ 2

L
.

Since ∥vec(M0)∥2 =
√
m/2, ∥vec(ρ0)∥2 = 1, in this case we have (by Lemma 3)∣∣∣vec(M0)†(Ã′T −AT )vec(ρ0)

∣∣∣ ≤
√

2mT
L

= 1
12 .

Since the error of the original quantum learning algorithm can be amplified to 1/4 so
that vec(M0)†AT vec(ρ0) is in [0, 1/4] or [3/4, 1], we conclude that with probability 5/6,

vec(M0)†Ã′T vec(ρ0) ∈ [0, 1/3] or [2/3, 1]

Therefore the two cases can be distinguished by the classical contraction powering algorithms
on Ã′, and it can be repeated for constant rounds so that the total error rate is brought
down to 1/3. ◀

▶ Corollary 21. If ContractionPowering ∈ promiseBPL, then every unital quantum
learning algorithm with time T and space S can be simulated classically with time poly(2ST )
and space O(S + log T ).

Since by Theorem 10 we already know ContractionPowering ∈ promiseBQUL, com-
bined with Theorem 19, we get the equivalence between efficient simulations of decision
problems and learning problems:



U. Girish, R. Raz, and W. Zhan 73:19

▶ Theorem 22. Every (unital) quantum learning algorithm with time T and space S

can be simulated classically with time poly(2ST ) and space O(S + log T ), if and only if
promiseBQUL = promiseBPL.

Also, as we already know promiseBQUL ⊆ promiseL2 [28], we have the following unconditional
result:

▶ Corollary 23. Every unital quantum learning algorithm with time T and space S can be
simulated classically with time 2O(S2+log2 T ) and space O(S2 + log2 T ).

7.2 Classical Simulation when One Family is Singleton
▶ Theorem 24. If Y = {Y }, then any quantum learning algorithm that distinguishes between
X and Y within time T and space S can be simulated classically in time poly(2ST ) and space
O(S + log T ).
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