
Minimum-Norm Load Balancing Is (Almost) as
Easy as Minimizing Makespan
Sharat Ibrahimpur #

Department of Combinatorics and Optimization, University of Waterloo, Canada

Chaitanya Swamy #

Department of Combinatorics and Optimization, University of Waterloo, Canada

Abstract
We consider the minimum-norm load-balancing (MinNormLB) problem, wherein there are n jobs,
each of which needs to be assigned to one of m machines, and we are given the processing times {pij}
of the jobs on the machines. We also have a monotone, symmetric norm f : Rm → R≥0. We seek an
assignment σ of jobs to machines that minimizes the f -norm of the induced load vector

−−→
loadσ ∈ Rm

≥0,
where loadσ(i) =

∑
j:σ(j)=i

pij . This problem was introduced by [4], and the current-best result
for MinNormLB is a (4 + ϵ)-approximation [5]. In the stochastic version of MinNormLB, the job
processing times are given by nonnegative random variables Xij , and jobs are independent; the goal
is to find an assignment σ that minimizes the expected f -norm of the induced random load vector.

We obtain results that (essentially) match the best-known guarantees for deterministic makespan
minimization (MinNormLB with ℓ∞ norm). For MinNormLB, we obtain a (2 + ϵ)-approximation for
unrelated machines, and a PTAS for identical machines. For stochastic MinNormLB, we consider the
setting where the Xijs are Poisson random variables, denoted PoisNormLB. Our main result here is
a novel and powerful reduction showing that, for any machine environment (e.g., unrelated/identical
machines), any α-approximation algorithm for MinNormLB in that machine environment yields a
randomized α(1 + ϵ)-approximation for PoisNormLB in that machine environment. Combining this
with our results for MinNormLB, we immediately obtain a (2 + ϵ)-approximation for PoisNormLB on
unrelated machines, and a PTAS for PoisNormLB on identical machines. The latter result substantially
generalizes a PTAS for makespan minimization with Poisson jobs obtained recently by [6].

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation algorithms, Load balancing, Minimum-norm optimization,
LP rounding

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.81

Category Track A: Algorithms, Complexity and Games

Funding Supported in part by NSERC grant 327620-09 and an NSERC DAS Award.

1 Introduction

In the minimum-norm load-balancing (MinNormLB) problem, we are given a set J of n jobs,
a set of m machines, and nonnegative job processing times (or sizes) {pij}i∈[m],j∈J . We use
[m] to denote {1, . . . , m}. We are also given a monotone, symmetric norm f : Rm 7→ R≥0.
Recall that f being a norm means that: (i) f(x) = 0 iff x = 0; (ii) f(x + y) ≤ f(x) + f(y) for
all x, y ∈ Rm, and (iii) f(θx) = |θ|f(x) for all x ∈ Rm, θ ∈ R. A monotone norm f satisfies
f(x) ≤ f(y) for all 0 ≤ x ≤ y, and symmetry is the property that permuting the coordinates
of x does not change its norm. An assignment σ : J → [m] of jobs to machines induces
the machine-load vector

−−→
loadσ =

(
loadσ(i)

)
i∈[m] ∈ Rm

≥0, where loadσ(i) :=
∑

j:σ(j)=i pij . The

goal in MinNormLB is to find an assignment σ that minimizes the f -norm of
−−→
loadσ.

EA
T
C
S

© Sharat Ibrahimpur and Chaitanya Swamy;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 81; pp. 81:1–81:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sharat.ibrahimpur@uwaterloo.ca
https://orcid.org/0000-0002-1575-9648
mailto:cswamy@uwaterloo.ca
https://orcid.org/0000-0003-1108-7941
https://doi.org/10.4230/LIPIcs.ICALP.2021.81
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

81:2 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

This problem was first considered by [4], as a natural problem in the genre of minimum-
norm optimization problems that they introduce. They gave a (38 + ε)-approximation
algorithm for MinNormLB, and the approximation factor was subsequently improved to
(4 + ε) by [5]. Ibrahimpur and Swamy [12] introduced the genre of stochastic minimum-norm
optimization, and considered StochNormLB, the stochastic generalization of MinNormLB, as
a prominent problem in this genre. In StochNormLB, the job processing times are given by
nonnegative random variables {Xij}i∈[m],j∈J with specified distributions, and the jobs are
independent (but Xij and Xi′j could be correlated); the goal is to find an assignment that
minimizes the expected f -norm of the induced random load vector. As discussed in these
works, one of the chief motivations and benefits of working with the rather broad class of
monotone, symmetric norms is that it captures a variety of appealing objectives, including
the frequently-considered (in both deterministic and stochastic settings) min-max (ℓ∞) and
min-sum (ℓ1) objectives, general ℓp-norms, as also another important class of norms called
Topℓnorms (for x ≥ 0, Topℓ(x) is the sum of the ℓ largest coordinates of x). Moreover,
by exploiting the closure properties of monotone, symmetric norms, one can also model
seemingly more general settings, such as when we have multiple monotone-symmetric-norm
budget constraints fℓ(x) ≤ Bℓ (a flexibility we leverage in Section 3).

The special case of MinNormLB where f = ℓ∞ yields the classical (deterministic) makespan-
minimization problem, which has been well studied for various machine environments. For
unrelated machines, a 2-approximation is known [17, 23], and improving this factor remains
a longstanding open problem, while various PTAS’es are known for identical and related
machines [11, 10, 13, 14]. Similar guarantees are known for MinNormLB with (general) ℓp

norms [2, 16, 20, 1]. Stochastic load balancing is less well-understood than its deterministic
counterpart (even for the makespan objective). Constant-factor approximations are known for
stochastic makespan minimization on identical [15] and unrelated [8] machines, StochNormLB
with ℓp norms [22] and Topℓ norms [12], and StochNormLB with (an arbitrary f and) Bernoulli
job sizes [12]. A common shortcoming of all these works is that the approximation factors
obtained are quite large, at least in the 100s (although these works were not aiming to
optimize the constant). With an eye towards obtaining small approximation factors, Goel and
Indyk [7] considered stochastic makespan minimization on identical machines with structured
distributions. They obtained (among other results) a 2-approximation for StochNormLB with
Poisson job sizes – i.e., where each Xij is a Poisson random variable – and very recently, this
was improved to a PTAS [6].

Our contributions. As suggested by the title of the paper, we obtain results for both
deterministic and stochastic load balancing with approximation factors that (essentially)
match the best-known approximation factors for the deterministic makespan-minimization
problem. Our salient results are as follows.

For MinNormLB, we devise a (2 + ϵ)-approximation for unrelated machines (Theorem 4.1),
and a PTAS for identical machines (Theorem 5.1).
For unrelated machines, this improves upon the previous-best (4 + ϵ)-approximation [5].
We consider StochNormLB with Poisson job sizes, denoted PoisNormLB, and give a novel,
clean, and fairly general reduction showing that, for any machine environment (e.g.,
unrelated/identical machines), any α-approximation algorithm for MinNormLB in that
machine environment can be used to obtain a randomized α(1 + ϵ)-approximation for
PoisNormLB in that machine environment (Theorem 3.1). Combining this with our results
for MinNormLB, we obtain a (2+ϵ)-approximation for PoisNormLB on unrelated machines,
and a PTAS for PoisNormLB on identical machines.

S. Ibrahimpur and C. Swamy 81:3

Our approximation factors (which are for general monotone, symmetric norms) are
considerably smaller than the factors known (even) for stochastic makespan minimization
with general distributions. Our PTAS for PoisNormLB on identical machines substantially
generalizes the PTAS by [6] for stochastic makespan minimization with Poisson jobs. Our
techniques are quite different, and our approach, based on the reduction to MinNormLB,
while being more general, is in fact also simpler and cleaner than the one in [6].

All our algorithms require only a value oracle for the norm f . (In contrast, the results
of [4, 5] need more-sophisticated oracle access to f .)

Our techniques. We briefly discuss the key techniques underlying some of our results.
Consider first the reduction from PoisNormLB to MinNormLB. Let Pois(λ) denote a Poisson

random variable with parameter λ; recall that this has mean λ. The sum Pois(λ1) + Pois(λ2)
of independent Poisson random variables is a Pois(λ1 + λ2) random variable. So given
an assignment σ : J → [m], the load on any machine i is a Pois(Λσ

i) random variable,
where Λσ

i is the expected load on machine i, and the objective value of σ is g(Λσ) :=
E

[
f(Pois(Λσ

1), Pois(Λσ
2), . . . , Pois(Λσ

m))
]
. It is known that if Topi(y) ≤ Topi(y′) for all i ∈ [m]

then g(y) ≤ g(y′) (Theorem 3.3). We argue that g is subhomogeneous, i.e., g(θy) ≤ θ ·g(y) for
any θ ≥ 1, and so one can generalize the above statement to say that if Topi(y) ≤ θ · Topi(y′)
for all i ∈ [m], then g(y) ≤ θ · g(y′). Let Λ∗ denote the Λ-vector of an optimal solution.
The idea now is to “guess” Topℓ(Λ∗) within a (1 + ε)-factor for all ℓ in a certain sparse
set POS ⊆ [m]; let B∗

ℓ denote such an overestimate of Topℓ(Λ∗). We now seek a solution
σ such that Topℓ(Λσ) ≤ αB∗

ℓ for all ℓ ∈ POS, for some α ≥ 1; this will imply that
Topi(Λσ) ≤ α

(
1 + O(ε)

)
Topi(Λ∗) for all i ∈ [m], and hence g(Λσ) ≤ α(1 + O(ε)

)
g(Λ∗). This

is where the generality of monotone, symmetric norms comes in handy. We can cast this
multiple-Topℓ-norm-budgets problem as a MinNormLB problem, with {λij} job sizes, and
monotone, symmetric norm given by h(v) := maxℓ∈POS Topℓ(v)/B∗

ℓ ; we can now use an
α-approximation algorithm for MinNormLB, say ADet, to find σ.

Note that the versatility afforded by MinNormLB as a model is crucial for the reduction,
and we really need ADet to work for an arbitrary monotone, symmetric norm. We need to
have fine-grained control of the Λσ vector (as dictated by the multiple Topℓ-norm budget
constraints), and we define a suitable (monotone, symmetric) norm h to enforce this. In
contrast, De et al. [6], who devise a PTAS for stochastic makespan minimization with Poisson
jobs follow a completely different approach, based on proving suitable concentration results.

Our (2 + ϵ)-approximation for MinNormLB on unrelated machines (Section 4) is based
on rounding the solution to a novel LP-relaxation for the problem. Let σ∗ be an optimal
solution, o⃗ be the induced load vector, and OPT = f(o⃗). It suffices to obtain an assignment σ

such that Topℓ(
−−→
loadσ) ≤

(
2 + O(δ)

)
Topℓ(o⃗) for all ℓ ∈ POS (see Theorem 2.4 and Claim 2.6).

Roughly speaking, for all ℓ ∈ POS, we guess the ℓ-th largest entry of o⃗, and use this to
linearly encode the constraint that Topℓ(

−−→
loadσ) ≤ Topℓ(o⃗). LP-rounding algorithms for the

special case of makespan minimization typically return a guarantee where the load on a
machine is at most its LP-load + (maximum cost (i.e., size) of a job assigned to it). In order
to bound the f -norm of the portion of the load-vector, say P , arising from the most-costly
jobs, we also consider the vector JL∗ comprising the costs of the m most-costly jobs under
σ∗. In [5], it is shown that f(JL∗) ≤ OPT. We indirectly encode that f(P) ≤ f(JL∗) by
guessing the ℓ-th largest entry, say ζℓ, of JL∗ and encoding that there are at most ℓ − 1
jobs of higher cost, for all ℓ ∈ POS. We round a fractional solution to the resulting LP
using iterative rounding to obtain two types of guarantees simultaneously (see Lemma 4.3):

ICALP 2021

81:4 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

(i) similar to above, the load on machine i is at most its LP-load + (1 + δ)×(maximum cost
of a job assigned to i); and (ii) the number of jobs having cost larger then ζℓ is at most
(1 + δ)ℓ − 1. The LP constraints explicitly encode that the Topℓ-norms of the LP-load vector
are roughly speaking at most Topℓ(o⃗), for all ℓ ∈ POS; guarantee (ii) allows us to argue that
f(P) ≤

(
1 + O(δ)

)
OPT. Together, these imply a (2 + ϵ)-approximation.

We remark that the approach taken in the GAP-rounding algorithm of [23] (and also
used for Topℓ-norm minimization in [4]), wherein the problem is essentially reduced to a
bipartite matching problem, does not seem to be helpful in obtaining a (2 + ϵ)-approximation
for MinNormLB. This approach “hard-codes” the distinction between the most-costly job
assigned to a machine and the remaining jobs as a means of bounding the load on a machine
by its LP-load + (maximum cost of a job assigned to it). However, bounding f(P) then entails
solving (to within a (1 + ϵ)-factor) a (bipartite) matching problem with |POS| = O(log m)
side-constraints, or essentially a min-norm matching problem, but neither of these has
(even) an O(1)-approximation. Instead, iterative rounding seems crucial for simultaneously
obtaining guarantees (i) and (ii) above, and (ii) allows us to obtain a sufficiently-tight bound
on the Topℓ-norms (and hence the f -norm) of P and thereby obtain our (2+ϵ)-approximation.

2 Preliminaries

For a vector v ∈ Rm
≥0, we use v↓ to denote v with its coordinates sorted in non-increasing order;

i.e., we have v↓
i = vπ(i), where π is a permutation of [m] such that vπ(1) ≥ vπ(2) ≥ . . . ≥ vπ(m).

We say that v is non-increasing if v1 ≥ . . . ≥ vm (i.e., v = v↓). Whenever we say norm in the
sequel, we always mean a monotone, symmetric norm. The following claim from [12] will be
useful in obtaining bounds on the optimal value.

▷ Claim 2.1 (Claim 3.2 in [12]). Let h : Rm 7→ R≥0 be a monotone, symmetric norm. For

any v ∈ Rm
≥0, we have

∑
i∈[m]

vi

m ≤ maxi∈[m] vi ≤ h(v)
h(1,0,...,0) ≤

∑
i∈[m] vi.

As established in prior work on minimum-norm optimization [4, 12], we can control the
norm of a vector by controlling all its Topℓ norms, which are defined below. Theorem 2.4
makes this notion precise. For x ∈ R, we use (x)+ to denote max{0, x}.

▶ Definition 2.2. Let ℓ ∈ [m]. The Topℓ norm is defined as follows: for v ∈ Rm
≥0, Topℓ(v) is

the sum of the ℓ largest coordinates of v, i.e., Topℓ(v) =
∑ℓ

i=1 v↓
i .

The following ways of reformulating the Topℓ-norm will be useful. For a vector v ∈ Rm

and θ ∈ R, define N>θ(v) :=
∣∣{i ∈ [m] : vi > θ}

∣∣.
▷ Claim 2.3. Let v ∈ Rm

≥0, and ℓ ∈ [m]. Then

Topℓ(v) = min
t≥0

(
ℓt +

∑
i∈[m]

(vi − t)+)
= ℓv↓

ℓ +
∑

i∈[m]

(vi − v↓
ℓ)+ =

∫ ∞

0
min{ℓ, N>θ(v)}dθ.

▶ Theorem 2.4 (Follows from structural result in [4], or majorization theory of [9]). If x, y ∈ Rm
≥0

are such that Topℓ(x) ≤ αTopℓ(y) + β for all ℓ ∈ [m], where α, β ≥ 0, then h(x) ≤
α · h(y) + β · h(1, 0, . . . , 0) for any monotone, symmetric norm h : Rm 7→ R≥0.

Theorem 2.4 will be our chief means for reasoning about the norm of a vector. Our
algorithms will “guess” (i.e., enumerate) the Topℓ norms (or certain associated quantities) of
the load vector o⃗ induced by an optimal solution, and will aim to obtain a solution whose
induced load vector

−−→
load satisfies Topℓ(

−−→
load) = O

(
Topℓ(o⃗)

)
. However, to make this approach

S. Ibrahimpur and C. Swamy 81:5

polynomial time, we will only be able to enumerate the Topℓ norms for a certain sparse
subset of indices POS ⊆ [m]. The next few definitions and results make this precise, and
show that the move to this sparse subset only incurs the loss of a small factor.

Let δ > 0 be a parameter. We define POSm,δ ⊆ [m] iteratively as follows: include the
index 1 in POSm,δ; as long as the largest index ℓ ∈ POSm,δ is such that ⌈(1 + δ)ℓ⌉ ≤ m,
include ⌈(1 + δ)ℓ⌉ (which is larger than ℓ) in POSm,δ. (This definition is mathematically
slightly more convenient to work with than the one in [4], where POSm,δ is defined as{

min{⌈(1 + δ)s⌉ , m} : s ∈ Z≥0
}

, but this change is not crucial.)

▷ Claim 2.5. We have |POSm,δ| ≤ 1 + log1+δ m = O
(log m

δ

)
.

We frequently abbreviate POSm,δ to POS in the remainder of this section, and whenever
m, δ are clear from the context. For i ∈ [m], let next(i) be the smallest index in POS
(strictly) larger than i; if no such index exists, then we define next(i) := m + 1 for notational
convenience. Similarly, let prev(i) be the largest index in POS (strictly) smaller than i; set
prev(1) := 0. It is immediate from the definition of POS that next(ℓ) − 1 ≤ (1 + δ)ℓ for all
ℓ ∈ POS; it follows also that next(i) − 1 ≤ (1 + δ)i for all i ∈ [m]. Claim 2.6 and Lemma 2.7
show that focusing on only the indices in POS only results in a (1 + δ)-factor loss.

▷ Claim 2.6. Let u, v ∈ Rm
≥0 be such that Topℓ(u) ≤ Topℓ(v) for all ℓ ∈ POSm,δ. Then we

have h(u) ≤ (1 + δ)h(v) for any monotone, symmetric norm h : Rm 7→ R≥0.

Proof. Let i ∈ [m] \ POS, and ℓ = prev(i). Then i ≤ (1 + δ)ℓ, and therefore Topi(u) ≤
(1 + δ)Topℓ(u) ≤ (1 + δ)Topℓ(v) ≤ (1 + δ)Topi(v). The claim now follows from Theorem 2.4.

◁

▶ Lemma 2.7. Let u, v ∈ Rm
≥0 be such that u↓

ℓ ≤ v↓
ℓ for all ℓ ∈ POSm,δ. Then, we have

h(u) ≤ (1 + δ)h(v) for any monotone, symmetric norm h : Rm 7→ R≥0.

Proof. By Theorem 2.4, it suffices to show that Topi(u) ≤ (1 + δ)Topi(v) for all i ∈ [m]. So
fix i ∈ [m]. We mimic the proof of Lemma 4.2 in [4]. Define vectors α, β ∈ Rm

≥0 as follows:

αk =
{

u↓
k; if k ∈ {1, . . . , i}

0 otherwise
βk =

{
v↓

k; if k ∈ {1, . . . , i}
0 otherwise.

Clearly, both α and β are non-increasing vectors. For notational convenience, set αk :=
0, βk := 0 for any k > m. We have

Topℓ(u) =
m∑

k=1
αk =

∑
ℓ∈POS

next(ℓ)−1∑
k=ℓ

αk

≤
∑

ℓ∈POS
αℓ

(
(next(ℓ) − 1) − (ℓ − 1)

)
=

∑
ℓ∈POS

(
next(ℓ) − 1

)
(αℓ − αnext(ℓ))

where the inequality follows because α is a non-increasing vector. Now using the fact that
next(ℓ) − 1 ≤ (1 + δ)ℓ for all ℓ ∈ POS, and αℓ ≤ βℓ for all ℓ ∈ POS, we obtain that

Topℓ(u) ≤ (1 + δ)
∑

ℓ∈POS

ℓ(αℓ − αnext(ℓ)) = (1 + δ)
∑

ℓ∈POS

αℓ

(
ℓ − prev(ℓ)

)
≤ (1 + δ)

∑
ℓ∈POS

βℓ

(
ℓ − prev(ℓ)

)
≤ (1 + δ)

∑
ℓ∈POS

ℓ∑
k=prev(ℓ)+1

βk ≤ (1 + δ)
m∑

k=1

βi = (1 + δ)Topℓ(v).

The third inequality above follows because β is a non-increasing vector. ◀

ICALP 2021

81:6 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

In our algorithms, we work with estimates of {o⃗↓
ℓ }ℓ∈POS, where o⃗ is the load vector induced

by an optimal solution. We show that these estimates then allow us to infer an estimate
of h(o⃗) for any monotone, symmetric norm h. We need the following notation. Given a
non-increasing vector v ∈ RPOS

≥0 , we define its expansion to be the vector vexp ∈ Rm
≥0 given by

vexp
i := vi for i ∈ POS, and vexp

i = vprev(i) for i ∈ [m] \ POS.

▶ Lemma 2.8. Let u ∈ Rm
≥0, and v ∈ RPOS

≥0 be a non-increasing vector. Let h : Rm 7→ R≥0
be a monotone, symmetric norm. Let ε, κ > 0.
(a) If u↓

ℓ ≤ vℓ for all ℓ ∈ POS, then Topi(u) ≤ Topi(vexp) for all i ∈ [m], and hence,
h(u) ≤ h(vexp).

(b) If vℓ ≤ (1 + ε)u↓
ℓ + κ for all ℓ ∈ POS, then Topi(vexp) ≤ (1 + δ)(1 + ε)Topi(u) + iκ for

all i ∈ [m], and hence, h(vexp) ≤ (1 + δ)(1 + ε)h(u) + mκ · h(1, 0, . . . , 0).
(c) Let v be as in part (b). Let δ ≤ 1 (in POS = POSm,δ). Let α ∈ Rm be such that α↓

1 ≤ v1
and N>vℓ(α) ≤ (1+δ)ℓ−1 for all ℓ ∈ POS. Then, Topi(α) ≤ (1+4δ)(1+ε)Topi(u)+5iκ

for all i ∈ [m]. Hence, h(α) ≤ (1 + 4δ)(1 + ε)h(u) + 5mκ · h(1, 0, . . . , 0).

Lemma 2.8 (c) can be seen as a generalization of Lemma 2.8 (b): the vector vexp satisfies
N>vℓ(vexp) ≤ ℓ − 1 for all ℓ ∈ POS, while the vector α satisfies a relaxed version of this
bound.

Proof. The inequalities involving h(.) in parts (a)–(c) follow from the corresponding bounds
on the Topi-norms, using Theorem 2.4. So we focus on the proving the bounds for the
Topi-norms.

Let γ = vexp. Part (a) follows immediately from the fact that u↓ ≤ γ. For part (b), define
β ∈ Rm

≥0 to be the expansion of (u↓
ℓ)ℓ∈POS. Then, we have γ ≤ (1 + ε)β + κ · 1, where 1 is

the vector of all 1s, and hence, Topi(γ) ≤ (1 + ε)Topi(β) + iκ, for any i ∈ [m]. Observe that
βℓ ≤ u↓

ℓ for all ℓ ∈ POS. Therefore, by Lemma 2.7, we have Topi(β) ≤ (1 + δ)Topi(u) for
any i ∈ [m].

For part (c), consider an index i ∈ [m]. We use the reformulation Topi(α) =∫ ∞
0 min{i, N>θ(α)}dθ stated in Claim 2.3. Since N>v1(α) = 0, we only need to go up

to v1 in the above integral. Let ℓ = i if i ∈ POS, and ℓ = prev(i) otherwise. Observe that
i ≤ (1 + δ)ℓ. We have the following chain of inequalities.

Topi(α) ≤
∫ v

ℓ

0
idθ +

∑
ℓ∈POS:1<ℓ≤ℓ

∫ vprev(ℓ)

vℓ

N>θ(α)dθ ≤ i · v
ℓ

+
∑

ℓ∈POS:1<ℓ≤ℓ

(vprev(ℓ) − vℓ)N>vℓ (α)

≤ i · v
ℓ

+
∑

ℓ∈POS:1<ℓ≤ℓ

(vprev(ℓ) − vℓ)
(
(1 + δ)ℓ − 1

)
≤ i · v

ℓ
+

∑
ℓ∈POS:1<ℓ≤ℓ

(vprev(ℓ) − vℓ)
(
(1 + δ)2prev(ℓ) + δ). (1)

The second inequality is because N>θ(α) is non-increasing in θ; the third is from condition
(ii) in the lemma statement; and the final inequality (1) follows since ℓ − 1 ≤ (1 + δ)prev(ℓ).
Recall that prev(1) = 0. Continuing, since i ≤ (1 + δ)ℓ ≤ (1 + δ)2ℓ, the RHS of (1) is at most

(1 + δ)2
∑

ℓ∈POS:ℓ≤ℓ

vℓ

(
ℓ − prev(ℓ)

)
+ δv1

≤ (1 + δ)2
∑

ℓ∈POS:ℓ≤ℓ

(
(1 + ε)u↓

ℓ + κ
)(

ℓ − prev(ℓ)
)

+ δ(1 + ε) · Topi(u) + δκ

S. Ibrahimpur and C. Swamy 81:7

. . . ≤ (1 + δ)2(1 + ε)
ℓ∑

i′=1
u↓

i′ + (1 + δ)2ℓκ + δ(1 + ε) · Topi(u) + δκ

≤ (1 + 4δ)(1 + ε)Topi(u) + 5iκ. (since δ ≤ 1) ◀

Our algorithms will often need to estimate a non-increasing vector α (such as (o⃗↓
ℓ)ℓ∈POS).

We show that if we have suitable bounds on the coordinates of α, then one can identify a
(polynomially bounded) set containing a vector close to α.
▶ Lemma 2.9. Let L ⊆ [m] be an index-set. Let α ∈ RL

≥0 be a non-increasing vector, i.e.,
αℓ ≥ αℓ′ for indices ℓ, ℓ′ ∈ L, ℓ < ℓ′. Let ub be such that αℓ ≤ ub for all ℓ ∈ L. Let ε, κ > 0,
and ε′ = min{1, ε}.
(a) Let N1 := (2e)|L| +

(ub
κ

)O(1
ε′). We can construct a set T ⊆ RL

≥0 with |T | ≤ N1 in O(N1)
time, containing a non-increasing vector v ∈ RL

≥0, such that αℓ ≤ vℓ ≤ (1 + ε)αℓ + κ for
all ℓ ∈ L.

(b) Suppose that we also have αℓ ≥ lb for all ℓ ∈ L, where lb > 0. Let N2 := (2e)|L| +(ub
lb

)O(1
ε′). We can construct T ⊆ RL

≥0 with |T | ≤ N2 in O(N2) time, containing a
non-increasing vector v ∈ RL

≥0, such that αℓ ≤ vℓ ≤ (1 + ε)αℓ for all ℓ ∈ L.
Proof. We utilize the following standard result, lifted from [4], that gives a bound on the
number of non-increasing vectors with bounded coordinates.
▷ Claim 2.10. There are at most (2e)max{M,k} non-increasing sequences of k integers chosen
from {0, . . . , M}.

For part (a), consider the set

T :=
{

t⃗ ∈ RL
≥0 : t⃗ is a non-increasing vector,

∀ℓ ∈ L, tℓ = ub
(1+ε)k , where k ∈ Z≥0, tℓ ≥ κ

1+ε

}
.

Each t⃗ ∈ T is a non-increasing vector, and there are I := 1 +
⌊
log1+ε

(1+ε)ub
κ

⌋
= O

(log(ub/κ)
ε′

)
choices for log1+ε

ub
tℓ

for every ℓ ∈ POS. (Recall that ε′ = min{ε, 1}.) So Claim 2.10 implies

that |T | ≤ (2e)max{|L|,I}. We have (2e)I ≤
(ub

κ

)O(1
ε′), so this yields the bound on |T | and

the time to construct T .
Consider the vector v ∈ RL

≥0, where for every ℓ ∈ L, vℓ is the smallest number of the
form ub/(1 + ε)k, k ∈ Z≥0 that is at least max{κ/(1 + ε), αℓ}. Then, v is a non-increasing
vector, v ∈ T , and αℓ ≤ vℓ ≤ (1 + ε)αℓ + κ for all ℓ ∈ L.

Part (b) is proved very similarly. We now take T to be the set of all non-increasing vectors
t⃗ ∈ RL

≥0 satisfying tℓ ≥ lb, tℓ = ub
(1+ε)k where k ∈ Z≥0, for all ℓ ∈ L. As before, one can infer

that the size of T and the time taken to construct it are bounded by (2e)|L| +
(ub

lb
)O(1

ε′)).
Now if v ∈ RL

≥0 is such that, for every ℓ ∈ L, vℓ is the smallest number of the form ub/(1+ε)k,
k ∈ Z≥0 that is at least αℓ, then, v is a non-increasing vector, v ∈ T , and αℓ ≤ vℓ ≤ (1+ε)αℓ

for all ℓ ∈ L. ◀

Poisson random variables. A discrete random variable Z is said to have a Poisson distribu-
tion with parameter λ ≥ 0, denoted Z ∼ Pois(λ), if Pr

[
Z = k

]
= e−λλk/k! for all k ∈ Z≥0.

▶ Fact 2.11. The following facts about Poisson random variables are well known.
(a) The mean and variance of Pois(λ) are both equal to λ.
(b) Let {Zj}j be a collection of independent Poisson variables with parameters {λj}j . Then,

S =
∑

j Zj is distributed as Pois(
∑

j λj).

ICALP 2021

81:8 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

3 Stochastic Minimum Norm Load Balancing with Poisson Jobs

We now consider StochNormLB with Poisson job sizes, denoted PoisNormLB, wherein the
processing time of a job j on machine i is a Pois(λij) random variable and we seek to minimize
the expected f -norm of the load vector. Jobs are independent, but processing times of the
same job could be correlated across machines. Our main result is a novel, clean, and versatile
black-box reduction from PoisNormLB to the deterministic problem, MinNormLB, showing
that, for any machine environment (i.e., unrelated/identical machines), guarantees obtained
for MinNormLB translate to yield essentially the same guarantees for PoisNormLB.

▶ Theorem 3.1. Let IPois = (J, [m], {λij}, f) be an instance of PoisNormLB, and ADet be an
ρ-approximation algorithm for MinNormLB-instances with job-set J , machine-set [m], and
{λij}i∈[m],j∈J job sizes. For any ε, η > 0, we can utilize ADet to obtain an ρ

(
1 + O(ε)

)
-

approximate solution to PoisNormLB with probability at least 1 − η, in time poly
(
m1/ε, n, 1

η

)
.

The run time also bounds the number of calls to ADet and the sample size.

We emphasize that: (a) the above reduction preserves the machine environment: for
instance, if we have identical machines (λij = λj for all i, j), we only need ADet to work for
identical machines; and (b) algorithm ADet is required to work for an arbitrary monotone,
symmetric norm (and not just the norm f): this generality is crucial for the above reduction
and brings to the fore a prime benefit of working at the level of generality of monotone,
symmetric norms. Combining the above reduction with our results for MinNormLB in
Sections 4 and 5 immediately yields the following results as corollaries. (We do not explicitly
indicate the failure probability η below; the sample size, for a fixed ε, is poly(m)/η.)

▶ Theorem 3.2.
(a) (Follows from Theorems 3.1 and 4.1) For any ε > 0, there is a randomized(

2 + O(ε)
)
-approximation algorithm for PoisNormLB on unrelated machines .

(b) (Follows from Theorems 3.1 and 5.1) There is a randomized PTAS for PoisNormLB
on identical machines.

We discuss the chief ideas behind the reduction in Theorem 3.1, deferring some details to
the full version of the paper. Since the sum of independent Poisson random variables is another
Poisson random variable (Fact 2.11 (b)), the objective value of an assignment σ : J → [m]
depends only the aggregate λ-vector Λσ = (Λσ

i)i∈[m], where Λσ
i :=

∑
j:σ(j)=i λij for all

i ∈ [m]. We drop σ in Λσ if the assignment σ is clear from the context. Overloading notation,
for a vector y ∈ Rm

≥0, we use Pois(y) to denote the random vector
(
Pois(y1), . . . , Pois(ym)

)
of independent Poisson random variables. Defining g(y) := E

[
f(Pois(y))

]
for y ∈ Rm

≥0, the
goal in PoisNormLB is to find an assignment σ that minimizes g(Λσ). The function g is not
convex, but it satisfies the following inequality [21] (see Chapter 11, Proposition E.6), which
is closely related to a property called Schur convexity that is satisfied by all symmetric convex
functions. Theorem 3.3 provides a means for controlling g(y), by bounding the Topℓ-norms
of y, and is key to our approach. We give a self-contained proof of Theorem 3.3 in the full
version.

▶ Theorem 3.3. Let y, y′ ∈ Rm
≥0. If Topi(y) ≤ Topi(y′) for all i ∈ [m], then g(y) ≤ g(y′).

To keep notation simple, we assume that f is normalized so that f(1, 0, . . . , 0) = 1;
clearly, this is without loss of generality. Let σ∗ be an optimal solution to the PoisNormLB-
instance IPois. Let Λ∗ := Λσ∗ . The idea underlying our reduction is strikingly simple. Given
Theorem 3.3, we aim to (ideally) find an assignment σ such that Topi(Λσ) ≤ Topi(Λ∗)
for all i ∈ [m]. One of our chief insights is that this amounts to solving a deterministic

S. Ibrahimpur and C. Swamy 81:9

min-norm load balancing problem with job sizes {λij}i,j , and the monotone, symmetric norm
h : Rm → R≥0 given by h(v) := maxi∈[m] Topi(v)/Topi(Λ∗). Now σ∗ yields a solution to
this MinNormLB-instance of cost 1, and so solving this MinNormLB problem optimally, and
utilizing Theorem 3.3, would yield the desired solution.

Further ingredients are needed to make this idea work. We do not know the Topi(Λ∗)
values, and cannot “guess” these values for all i ∈ [m]; moreover, we cannot solve the
MinNormLB problem optimally. We utilize the sparsification tools from Section 2, and, with a
small loss in approximation, move to the sparse set POS = POSm,δ (for, say, δ = min{0.5, ε})
and work with estimates Bℓ of Topℓ(Λ∗) for all ℓ ∈ POS; so the norm in the MinNormLB
instance is now h(v) := maxℓ∈POS Topℓ(v)/Bℓ. Now, using the algorithm ADet with the
correct estimate-vector B∗ ∈ RPOS

≥0 (where each B∗
ℓ overestimates Topℓ(Λ∗) within a (1 + δ)-

factor), we obtain an assignment σ such that Topi(Λσ) ≤ α′Topi(Λ∗) for all i ∈ [m], where
α′ = α

(
1 + O(ε)

)
. Theorem 3.3 then shows that g(Λσ) ≤ g(α′Λ∗), but we need a bound

in terms of g(Λ∗). To this end, we prove the important property that g is subhomogeneous
(Lemma 3.5): g(θy) ≤ θ · g(y) for any θ ≥ 1. Finally, we cannot quite identify the correct
B∗, but we can isolate it in a polynomial-size set. We show how to estimate g(y) using
polynomially many samples (Lemma 3.6), and utilize this estimator to find (loosely speaking)
the best solution among those computed for each candidate estimate-vector in this set.
Combining these various ingredients yields Theorem 3.1.

▶ Lemma 3.4. Let y ∈ Rm
≥0. We have max{f(y), 1 − e−Topm(y)} ≤ g(y) ≤ Topm(y).

Proof. To prove the upper bound on g we use Claim 2.1 (recall that f is normalized) and
Fact 2.11 (a): E

[
f(Pois(y))

]
≤ E

[
Topm(Pois(y))

]
= E

[∑
i∈[m] Pois(yi)

]
= Topm(y). The

first lower bound follows from convexity of norms: E
[
f(Pois(y))

]
≥ f(E

[
Pois(y)

]
) = f(y).

Lastly, for the second lower bound, we use Claim 2.1:

E
[
f(Pois(y))

]
≥ E

[
Top1(Pois(y))

]
≥ Pr

[
Top1(Pois(y)) > 0

]
= 1 −

∏
i∈[m]

Pr
[
Pois(yi) = 0

]
= 1 − e−Topm(y). ◀

▶ Lemma 3.5 (Subhomogeneity). For any y ∈ Rm
≥0 and scalar θ ≥ 1, we have g(θy) ≤ θ ·g(y).

Proof. We prove this for rational θ. The proof for general θ then follows from a continuity
argument, which we defer to the full version. Let θ = a/b for integers a > b ≥ 1. (If
a = b, there is nothing to be shown.) Observe that g(θy) = g(az) and g(y) = g(bz),
where z = y/b. So, for the rational case, it suffices to prove that g(az) ≤ a

b g(bz) holds
for all z ∈ Rm

≥0 and integers a > b ≥ 1. Fix some z ∈ Rm
≥0. Let Z(0), Z(1), . . . , Z(a−1) be

a independent random vectors that are identically distributed copies of Pois(z) (so each
Z

(j)
i is an independent Pois(zi) random variable). For any i ∈ [m], Pois(azi) is identically

distributed as
∑a−1

j=0 Z
(j)
i (Fact b), so g(az) = E

[
f

(
Pois(az)

)]
= E

[
f

(∑a−1
j=0 Z(j))]

. Also, for
any subset S ⊆ {0, 1, . . . , a} with |S| = b, we have E

[
f

(∑
j∈S Z(j))]

= g(bz). Define size-b
index sets Sk := {(k + j) mod a : j = 0, . . . , b − 1}, for k = 0, 1, . . . , a − 1. Note that each
j ∈ {0, . . . , a − 1} is contained in exactly b of these sets.

g(az) = E
[
f

(a−1∑
j=0

Z(j))]
= E

[
f

(1
b ·

a−1∑
k=0

∑
j∈Sk

Z(j))]
≤ 1

b
·

a−1∑
k=0

E
[
f

(∑
j∈Sk

Z(j))]
= a

b
· g(bz). ◀

▶ Lemma 3.6. Let ε, η > 0. Let y ∈ Rm
≥0 be such that Topm(y) ≥ ε. Let N :=

2 max{m2, 4/ε}/(ε2η). Using at most N independent samples from Pois(y), we can compute
an estimate γ satisfying Pr

[
γ ∈ [(1 − ε)g(y), (1 + ε)g(y)]

]
≥ 1 − η.

ICALP 2021

81:10 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

Proof. Let x(1), . . . , x(N) be N independent samples from Pois(y), and let γ :=
1
N

∑N
j=1 f(x(j)) denote the sample f -average. We show that γ is the desired estimator

by using Chebyshev’s concentration inequality. To this end, we need a bound on the variance
of the real-valued random variable f(Pois(y)). We have Var

[
f(Pois(y))

]
≤ E

[
f2(Pois(y))

]
≤

E
[
Top2

m(Pois(y))
]

by Claim 2.1, and E
[
Top2

m(Pois(y))
]

= Var
[
Pois(Topm(y))

]
+(

E
[
Pois(Topm(y))

])2. By Fact b, Topm(Pois(y)) is distributed as Pois(Topm(y)). As the
variance of a Poisson variable with mean λ is λ, we obtain that

Var
[
f(Pois(y))

]
≤ Var

[
Pois(Topm(y))

]
+

(
E

[
Pois(Topm(y))

])2 ≤ 2Topm(y) max(1, Topm(y)).

Since γ is an average of f(Pois(y)) over N independent samples, we have Var
[
γ

]
=

Var
[
f(Pois(y))

]
/N . By Chebyshev’s inequality,

Pr
[
|γ−g(y)| > εg(y)

]
≤

Var
[
γ

]
ε2g2(y) ≤ 2

Nε2 · Topm(y) max(1, Topm(y))
g2(y) ≤ 2 max{m2, 4/ε}

Nϵ2 ≤ η

It remains to justify the penultimate inequality used above. First, observe that
Topm(y)/g(y) ≤ m for any y ∈ Rm

≥0, so the inequality holds when Topm(y) ≥ 1. Sup-
pose Topm(y) ∈ [ε, 1]. We have g(y) ≥ 1 − e−Topm(y) (by Lemma 3.4), which is at least
Topm(y)(1 − Topm(y)/2) ≥ Topm(y)/2. This finishes the proof of the lemma. ◀

Proof of Theorem 3.1. Set ϵ′ = δ = min{0.5, ε}. Let σsum be the assignment that minimizes
the expected sum of machine loads, so σsum(j) = argminiλij for all jobs j. Let Λsum := Λσsum ,
and UB := Topm(Λsum). If UB ≤ ϵ′, then we claim that σsum is a (1+ϵ′)-approximate solution
to PoisNormLB. This is because we have Topm(Λ∗) ≥ UB, and so by Lemma 3.4, we have
that g(Λsum) ≤ UB and g(Λ∗) ≥ 1 − e−UB ≥ UB(1 − UB/2) ≥ UB/(1 + ϵ′), where we use that
UB ≤ ϵ′ ≤ 1.

So suppose that UB ≥ ϵ′ (and so Topm(Λσ) ≥ ϵ′ for every assignment σ). We have
Top1(Λ∗) ≥ Topm(Λ∗)/m ≥ UB/m. Also, Topm(Λ∗) ≤ mTop1(Λ∗), and we have Top1(Λ∗) ≤
f(Λ∗) ≤ g(Λ∗) ≤ g(Λsum) ≤ UB; here, we have used Claim 2.1, Lemma 3.4 (twice), and the
optimality of σ∗. So we obtain that Topm(Λ∗) ≤ m · UB.

Now consider the non-increasing vector u which is (Λ∗
ℓ)ℓ∈POS with its coordinates listed in

decreasing order of ℓ. We apply Lemma 2.9 (b) on u, taking L = POS, and upper and lower
bounds m · UB and UB/m respectively, to obtain a poly(m1/δ)-size set T ⊆ RPOS

≥0 containing
a vector B∗ such that Topℓ(Λ∗) ≤ B∗

ℓ ≤ (1 + δ)Topℓ(Λ∗) for all ℓ ∈ POS.
For each B ∈ T , we do the following. Let hB : Rm → R≥0 be the monotone, symmetric

norm defined as hB(v) := maxℓ∈POS Topℓ(v)/Bℓ. We run ADet on the MinNormLB instance
with {λij}i∈[m],j∈J job sizes and norm hB , to obtain an assignment σB . Let ΛB = ΛσB . We
use Lemma 3.6 to compute an estimate γB such that Pr

[
γB ∈ [(1−ϵ′)g(ΛB), (1+ϵ′)g(ΛB)]

]
≥

1 − η
|T | . We output the assignment σB′ with smallest γB′ value among all B′ ∈ T .

We argue that this is an ρ
(
1+O(ε)

)
-approximation with probability at least 1−η. By the

union bound, with probability at least 1 − η, we have that γB ∈ [(1 − ϵ′)g(ΛB), (1 + ϵ′)g(ΛB)]
for all B ∈ T ; we assume that this event happens. Consider the correct guess B∗ ∈ T . We
have hB∗(Λ∗) ≤ 1, and so the solution σB∗ satisfies Topℓ(ΛB∗) ≤ ρB∗

ℓ ≤ ρ(1 + δ)Topℓ(Λ∗)
for all ℓ ∈ POS. Using Claim 2.6, we have Topi(ΛB∗) ≤ ρ(1 + δ)2Topi(Λ∗) for all i ∈ [m]. By
Theorem 3.3 and Lemma 3.5, we then obtain that g(ΛB∗) ≤ ρ(1 + δ)2g(Λ∗). Accounting for
the error due to the γB estimates, yields g(ΛB′) ≤ 1+ϵ′

1−ϵ′ · g(ΛB∗) ≤ ρ(1 + 15ϵ′)g(Λ∗). ◀

S. Ibrahimpur and C. Swamy 81:11

4 A (2 + ϵ)-approximation for MinNormLB on unrelated machines

▶ Theorem 4.1. For any ε > 0, there is a
(
2+O(ε)

)
-approximation algorithm for MinNormLB

on unrelated machines.

Our algorithm yielding the above theorem is based on LP-rounding. Our relaxation
is different from the LP used in [4] and the convex program used in [5] for MinNormLB.
The latter relaxation, which was used to obtain the previous best (4 + ε)-approximation
has an integrality gap of (roughly) 4 [3], and therefore we need new ideas to obtain our
(2 + ε)-approximation algorithm. Indeed, our LP and rounding algorithm leverage and build
upon the ideas used in the above works in a novel fashion.

Let n = |J | be the number of jobs. Let σ∗ denote an optimal solution, o⃗ :=
(−−→
loadσ∗

)
be

the load vector induced by σ∗, and let OPT = f(o⃗) denote the optimal value. Define the
cost of a job j under σ∗ to be pσ∗(j)j . For any set S ⊆ J of jobs, define the job-cost vector

P ∗
S = P σ∗

S :=
(
pσ∗(j)j

)
j∈S

. Let ε > 0 be a parameter, and let δ = min{ε, 1}. Recall that we
abbreviate POSm,δ to POS. We may assume that n ≥

⌈
2(1 + δ)/δ3⌉

as otherwise we can
simply exhaustively search for the optimal assignment.

LP relaxation. As is standard, our LP has variables xij for every machine i and job j

denoting if job j is assigned to machine i (or, fractionally, the extent of j assigned to
machine i). Constraints (2) enforce that every job is assigned to a machine.

We are guided by Theorem 2.4, which shows that to obtain a solution whose load vector
has f -norm equal to O(OPT), it suffices to show that the Topℓ-norm of the load vector is
O

(
Topℓ(o⃗)

)
for all ℓ ∈ [m]; also, by Claim 2.6, one can focus on indices ℓ ∈ POS. We work with

“guesses” (i.e., estimates) tℓ of o⃗↓
ℓ , for all ℓ ∈ POS. Our LP seeks a fractional solution such

that the resulting load vector has Topℓ-norm at most Topℓ(o⃗) for all ℓ ∈ POS. Using Claim 2.3
and our estimates, we encode this via the constraint ℓtℓ +

∑
i

(∑
j pijxij − tℓ)+ ≤ Topℓ(texp)

for all ℓ ∈ POS; constraints (3), (4) linearize these. (Recall that texp ∈ Rm
≥0 is defined by

texp
i = ti for i ∈ POS, and texp

i = tprev(i) for i ∈ [m] \ POS.)
The last set of constraints of our LP is motivated by an insight in [5]. They show that

if JL∗ ∈ Rm
≥0 is the vector comprising the costs of the m most costly jobs under σ∗, then

we have f(JL∗) ≤ OPT, which also implies that f(P ∗
S) ≤ OPT for any set S of m jobs.

Chakrabarty and Swamy [5] include this (convex) constraint directly in their convex program,
and it plays a crucial role in obtaining their (4 + ε)-approximation for MinNormLB. We
also utilize this constraint, but incorporate it (loosely speaking) in our LP in a more subtle

fashion. We work with guesses ζℓ of JL∗
↓

ℓ for all ℓ ∈ POS, and encode (see constraints (5))
that there are at most ℓ − 1 jobs whose cost is larger than ζℓ, for all ℓ ∈ POS. This can
be seen as an indirect way of capturing f(JL∗) ≤ OPT, and this indirect way is crucial for
us because we show that we can round a fractional solution x with only a (1 + δ)-factor
violation of these constraints. For technical reasons, to facilitate this, we use another
partial enumeration step. Let ℓ0 be the smallest index in POS that is at least 2

δ3 . Note
that ℓ0 ≤

⌈
2(1 + δ)/δ3⌉

≤ n. We will guess the ℓ0 most costly jobs under σ∗ and their
σ∗-assignments. Let C = {(i1, j1), (i2, j2), . . . , (iℓ0 , jℓ0)} denote our guess of these jobs and

their σ∗-assignments. Note that given C, we know that JL∗
↓

ℓ is the ℓ-th largest value in

{pij : (i, j) ∈ C} for all ℓ ∈ [ℓ0], and we therefore set ζℓ = JL∗
↓

ℓ for all ℓ ∈ POS with ℓ ≤ ℓ0.
An important consequence of this enumeration step, which will be crucial in the analysis
(see the proof of Lemma 4.3), is that this fixes the assignment of all jobs whose cost under
σ∗ is larger than ζℓ0 ; we encode this in our LP via constraints (6).

ICALP 2021

81:12 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

This yields the following LP, which is a feasibility LP depending on t⃗, ζ⃗, and C.
Throughout, we use i to index [m], and j to index J .

(LP(⃗t, ζ⃗, C))

x ≥ 0,
∑

i

xij = 1 ∀j ∈ J (2)

ℓtℓ +
∑

i

W ℓ
i ≤ Topℓ(texp) ∀ℓ ∈ POS (3)

W ℓ
i ≥ 0, W ℓ

i ≥
∑

j

pijxij − tℓ ∀i ∈ [m], ℓ ∈ POS (4)

∑
i,j:pij>ζℓ

xij ≤ ℓ − 1 ∀ℓ ∈ POS (5)

xij =
{

1 if (i, j) ∈ C

0 otherwise.
∀i ∈ [m], j ∈ J s.t. pij > ζℓ0 (6)

▷ Claim 4.2. (LP(⃗t, ζ⃗, C)) is feasible whenever: (i) tℓ ≥ o⃗↓
ℓ , ζℓ ≥ JL∗

↓

ℓ for all ℓ ∈ POS; and
(ii) C is the correct guess of the ℓ0 most costly jobs under σ∗ and their σ∗-assignments.

Rounding algorithm. Assume that (LP(⃗t, ζ⃗, C)) is feasible and (x, W) is a feasible solution.
We consider the following auxiliary LP (Aux) for rounding x.

x ≥ 0,
∑

i

xij = 1 ∀j ∈ J,
∑

j

pijxij ≤
∑

j

pijxij ∀i ∈ [m],
∑

i,j:pij >ζℓ

xij ≤ ℓ − 1 ∀ℓ ∈ POS.

Clearly, x is a feasible solution to (Aux). We show that this can be rounded to an integer
solution x̃ so that

∑
i x̃ij = 1 for every job j, the load on each machine is at most its x-load

+ (1 + δ)×(cost of the most-costly job assigned to it), and the remaining constraints are
violated by a small factor. More precisely, in the analysis, we prove the following result.

▶ Lemma 4.3. We can round x efficiently to an integer solution x̃ satisfying the following.
(a) x̃ij = xij for all i, j such that xij ∈ {0, 1};
(b)

∑
i x̃ij = 1 for each job j;

(c)
∑

j pij x̃ij ≤
∑

i pijxij + (1 + δ) max
j:x̃ij=1 pij for every machine i;

(d)
∑

i,j:pij>ζℓ
x̃ij ≤ ℓ − 1 for all ℓ ∈ POS with ℓ ≤ ℓ0; and

(e)
∑

i,j:pij>ζℓ
x̃ij ≤ (1 + δ)ℓ − 1 for all ℓ ∈ POS with ℓ > ℓ0.

We apply the above lemma, and due to Lemma 4.3 (a), the integer solution x̃ yields an
assignment σ̃ of jobs to machines; we return this assignment.

Analysis. We assume again that f is normalized. Lemma 4.3 is the main technical result
that we need to prove. Its proof utilizes an iterative-rounding result of independent interest
(Theorem 4.6) that is very similar to Corollary 11 in [19], wherein iterative rounding is used
to round a point that lies in the base polytope of one matroid M0 and satisfies various other
matroid-independence and knapsack constraints, to a basis of M0 that is “approximately
independent” in the other matroids and violates the knapsack constraints by a certain additive
factor. In (Aux), the job assignment constraints correspond to the base-polytope constraints
(of a partition matroid), and the remaining constraints correspond to knapsack constraints.
First, we establish that, assuming Lemma 4.3, we obtain the stated guarantee.

S. Ibrahimpur and C. Swamy 81:13

Suppose that we have the correct set C, and that t⃗ and ζ are “good” estimates of

(o⃗↓
ℓ)ℓ∈POS and (JL∗

↓

ℓ)ℓ∈POS respectively (we make this precise later). We analyze the load
vector

−−→
load

σ̃
by considering two vectors L = (Li)i∈[m] and P = (Pi)i∈[m]. For each i ∈ [m],

define Li =
∑

j pijxij , and Pi = max
j:σ̃(j)=i

pij ; note that Pi = 0 if there is no job assigned
by σ̃ to machine i. By Lemma 4.3 (c), we have that

−−→
load

σ̃
≤ L + (1 + δ)P , and we bound

both f(L) and f(P) by roughly OPT. Constraints (3), (4) of our LP immediately allow us to
bound Topℓ(L) by Topℓ(texp) for all ℓ ∈ POS, which suffices since t⃗ well estimates (o⃗↓

ℓ)ℓ∈POS
(see Lemma 4.4). For the vector P , parts (d) and (e) of Lemma 4.3 yield the desired bound
on f(P), due to Lemma 2.8 (c) (see Lemma 4.5). Before proving Lemmas 4.4 and 4.5, we
justify, and make precise, the assumption that we have the correct set C (specifying the
ℓ0 most costly jobs under σ∗ and their σ∗-assignments), and good estimates t⃗, JL∗. There
are at most

(
n
ℓ0

)
· mℓ0 choices for the set C. As noted earlier, for all ℓ ∈ POS with ℓ ≤ ℓ0,

this then fixes ζℓ = ζ∗
ℓ = JL∗

↓

ℓ to be the ℓ-th largest entry in {pij : (i, j) ∈ C}. Using
Claim 2.1, if we consider the assignment σsum that minimizes the sum of the machine loads –
so σsum(j) = argminipij for all jobs j – and set UB :=

∑
i loadσsum(i), then we obtain that

UB
m ≤ OPT ≤ UB, and so o⃗1, JL∗

1 ≤ UB. Set κ = εUB/m2. Let POS> := {ℓ ∈ POS : ℓ > ℓ0}.
So using Lemma 2.9 (a) (and since |POS| = O(log m/δ)), we can identify polynomial-size
sets containing vectors t⃗ = t∗ and (ζℓ)ℓ∈POS>

= (ζ∗
ℓ)ℓ∈POS>

such that:
(1) o⃗↓

ℓ ≤ t∗
ℓ ≤ (1 + ε)o⃗↓

ℓ + κ for all ℓ ∈ POS, and t∗ is a non-increasing vector; and

(2) JL∗
↓

ℓ ≤ ζ∗
ℓ ≤ (1 + ε)JL∗

↓

ℓ + κ for all ℓ ∈ POS>, and ζ∗ = (ζ∗
ℓ)ℓ∈POS is non-increasing.

For (1), we take L = POS, ub = UB, and κ as above; for (2), we take L = POS>, ub = JL∗
ℓ0 ,

and κ as above.) Recall that δ = min{ε, 1}.

▶ Lemma 4.4. We have f(L) ≤ (1 + δ)(1 + ε)OPT + mκ ≤ (1 + δ + 3ε)OPT.

Proof. We show that Topi(L) ≤ Topi(t∗exp) for all i ∈ [m]. For any ℓ ∈ POS, this follows
quite directly from constraints (3), (4) of our LP (LP(⃗t, ζ⃗, C)): we have Topℓ(L) ≤ ℓt∗

ℓ +∑
i′∈[m](Li′ − t∗

ℓ)+ ≤ Topℓ(t∗exp). For any i ∈ [m] \ POS, taking ℓ = prev(i), this then implies
that

Topi(L) ≤ it∗
ℓ +

∑
i′∈[m]

(Li′ − t∗
ℓ)+ ≤ Topℓ(t∗exp) + (i − ℓ)t∗

ℓ = Topi(t∗exp),

where the final equality follows because t∗exp
i′ = t∗

ℓ for all i′ ∈ {ℓ, ℓ+1, . . . , next(ℓ)−1}. Hence,
by Theorem 2.4, we have that f(L) ≤ f(t∗exp).

Since t∗
ℓ ≤ (1 + ε)o⃗↓

ℓ + κ for all ℓ ∈ POS, by Lemma 2.8 (b), taking u = o⃗ and v = t∗, we
obtain that f(t∗exp) ≤ (1 + δ)(1 + ε)f(o⃗) + mκ. The final inequality in the lemma statement
follows because mκ ≤ εOPT and (1 + δ)(1 + ε) ≤ (1 + δ + 2ε) as δ ≤ 1. ◀

▶ Lemma 4.5. We have f(P) ≤ (1 + 4δ + 5ε)f(JL∗) + 5mκ ≤ (1 + 4δ + 10ε)OPT.

Proof. We apply Lemma 2.8 (c), taking u = JL∗, α = P , and v = (ζ∗
ℓ)ℓ∈POS. The conditions

in Lemma 2.8 (c) hold due to parts (d) and (e) of Lemma 4.3. This yields that f(P) ≤ (1 +
4δ)(1+ε)f(JL∗)+5mκ. The lemma follows since δ ≤ 1, mκ ≤ εOPT, and f(JL∗) ≤ OPT. ◀

Proof of Theorem 4.1. Recall that σ̃ is the assignment returned by the algorithm. Lem-
mas 4.4 and 4.5 together with the fact that

−−→
load

σ̃
≤ L + (1 + δ)P immediately yield that

f(
−−→
load

σ̃
) ≤ (1 + δ + 3ε)OPT + (1 + δ)(1 + 4δ + 10ε)OPT ≤ (2 + 10δ + 23ε)OPT. ◀

ICALP 2021

81:14 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

Proof of Lemma 4.3
We reproduce the system (Aux) below for easy reference.

(Aux)

x ≥ 0,
∑

i

xij = 1 ∀j ∈ J (7)∑
j

pijxij ≤
∑

j

pijxij ∀i ∈ [m] (8)

∑
i,j:pij>ζℓ

xij ≤ ℓ − 1 ∀ℓ ∈ POS (9)

We utilize the following iterative-rounding result that is quite similar to Corollary 11 in [19].

▶ Theorem 4.6 (Similar to Corollary 11 in [19]). Let Ms = (Ns, Is), for s = 0, . . . , k be
(k + 1) matroids, where each Ns is a subset of N := N0. Let rs be the rank function of
matroid Ms, for s = 0, . . . , k. Let w ∈ RN , A ∈ Rd×N

≥0 , b ∈ Rd
≥0. Consider the following LP.

max wT x (LPmatkn)
s.t. x(N) = r0(N), x(T) ≤ r0(T) ∀T ⊆ N

x(T) ≤ rs(T) ∀s = 1, . . . , k, ∀T ⊆ Ni

Ax ≤ b, x ≥ 0.

Let q1, . . . , qk ≥ 1 be integers, and µ1, . . . , µd ∈ R≥0 be such that:∑
s∈[k]:e∈Ns

1
qs

+
∑

s∈[d]:Ase>0

1
µs

≤ 1 ∀e ∈ N. (10)

If (LPmatkn) is feasible, then we can efficiently obtain a basis R of M0 such that:
(i) |T | ≤ qsrs(T) for all s ∈ [k] and T ⊆ R ∩ Ns;
(ii)

∑
e∈R Ase ≤ bs + µs · maxe∈R Ase for all s ∈ [d]; and

(iii) w(R) ≥ OPTLPmatkn .

▶ Remark 4.7. The statement of Theorem 4.6 differs from that of Corollary 11 in [19] in three
respects. In [19]: (1) µ1, . . . , µd are assumed to be positive integers (but their proof does
not need the integrality requirement); (2) condition (10) is replaced by the weaker condition,∑

s∈[k]:e∈Ns

1
qs

+
∑

s∈[d]
Ase

(maxe∈N Ase)µs
≤ 1 for all e ∈ N ; and (3) one obtains the slightly

weaker additive error of µs · maxe∈N Ase in (ii) for the knapsack constraint for index s ∈ [d].
The proof of Corollary 11 in [19] is however easily adapted to yield the above statement; we
include the proof of Theorem 4.6 in the full version.

For our purposes, we only need a simpler version of Theorem 4.6, where we have only
one matroid M0 and other knapsack constraints. We include the more general statement
above (with its subtly stronger guarantee for the knapsack constraints, which turns out to
be crucial for us; see Remark 4.8) because we believe that this is of independent interest.

Before delving into the details of how we apply Theorem 4.6 to prove our lemma, we briefly
discuss the main idea, which will also elucidate why we need the partial enumeration step of
“guessing” the set C specifying the ℓ0 most costly jobs under σ∗ and their σ∗-assignments.

We can cast (Aux) as an instance of (LPmatkn) as follows. Let U = [m] × J . The
weight vector w is irrelevant. The matroid M0 is the partition matroid over U encoding
that each job j is assigned to at most one machine. It is immediate that (7) shows that

S. Ibrahimpur and C. Swamy 81:15

x lies in the base polytope of M0. Constraints (8) correspond to knapsack constraints in
(LPmatkn). Constraints (9) can be incorporated into (LPmatkn) in three ways: (i) as matroid-
independence constraints in the (single) laminar matroid formed by the nested family of
sets {(i, j) ∈ U : pij > ζℓ}ℓ∈POS; (ii) as multiple matroid-independence constraints, where for
each ℓ ∈ POS, we have a matroid encoding the cardinality bound from {(i, j) ∈ U : pij > ζℓ};
or (iii) as additional knapsack constraints.

But utilizing Theorem 4.6 directly on the above system does not quite work for us. To
elaborate, in order to obtain the guarantee in 4.3 (c), we need to set the µis for the knapsack
constraints (8) to (1 + δ). But then if we view (9) as matroid independence constraints (in
one laminar matroid, or multiple matroids), we need to set the qs value for the corresponding
matroid(s) to be at least 2 in order to satisfy (10) resulting in (at least) a multiplicative
factor-2 violation of constraints (9), which is too large a violation. Suppose we incorporate
(9) as knapsack constraints and, for some constant ρ, take µℓ = ρℓ for constraint (9) for
index ℓ. But to satisfy (10), we need ρ to be at least

(
1 − 1

1+δ

)−1 ·
∑

ℓ′∈POS:ℓ′>1
1
ℓ′ = Ω

(1
δ2

)
,

which again yields too large a violation of (9). (A more accurate estimate of
∑

ℓ′∈POS:ℓ′>1 is
ln(⌈1/δ⌉) + 1 + δ, but this still requires ρ to be large.)

However, a tweak of the latter approach does work, by noting that if xij first appears in
constraint (9) for index ℓ ∈ POS, then to satisfy (10), we really need that ρ ≥

(
1 − 1

1+δ

)−1 ·∑
ℓ′∈POS:ℓ′≥ℓ

1
ℓ′ ; the RHS is at most (1+δ)2

δ2ℓ , which is at most δ for large enough ℓ. This is
precisely where the enumeration of C turns out to be key, since it allows us to eliminate
constraints (9) for ℓ ≤ ℓ0. Recall that C specifies the ℓ0 most-costly jobs under σ∗ and
their σ∗-assignments, where ℓ0 is the smallest index in POS that is at least 2

δ3 . Due to
this enumeration, x is integral whenever pij > ζℓ, and so if we drop integral variables and
corresponding constraints from (Aux), we are left with constraints (9) for indices ℓ > ℓ0 in
POS. Now we can take µℓ = δℓ for all ℓ ∈ POS, ℓ > ℓ0, and these values satisfy (10), since
each ℓ > ℓ0 is large.

We now describe precisely how we utilize Theorem 4.6 to prove our lemma. We apply
Theorem 4.6 to (Aux) after getting rid of all integral variables, and modifying or dropping
constraints to take into account the integral variables. Recall that U = [m] × J . Let
E = {(i, j) ∈ U : xij ∈ (0, 1)}. We retain only the variables in E, and only these will be
rounded, so this takes care of part (a) of the lemma. We drop any constraint that contains
only integral variables. Thus, the POS-constraints (9) for all ℓ ∈ POS, ℓ ≤ ℓ0 are dropped,
and so part (d) holds. Let J ′ be the set of jobs corresponding to the remaining constraints (7);
note that all jobs in J ′ are completely assigned by (the variables in) E, and the remaining jobs
are completely assigned by the integral variables. Let I ⊆ [m] index the machine-constraints
(8) that remain, and IPOS ⊆ {ℓ ∈ POS : ℓ > ℓ0} index the POS-constraints (9) that remain.
This yields the following system of constraints.

(P’)



∑
i:(i,j)∈E

xij = 1 ∀j ∈ J ′

∑
j:(i,j)∈E

pijxij ≤
∑

j

pijxij −
∑

j:xij=1

pij ∀i ∈ I

∑
(i,j)∈E:pij>ζℓ

xij ≤ ℓ − 1 −
∣∣{(i, j) : pij > ζℓ, xij = 1}

∣∣ ∀ℓ ∈ IPOS

x ≥ 0.

ICALP 2021

81:16 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

Clearly, (xij)(i,j)∈E is a feasible solution to (P’). We apply Theorem 4.6 to (P’), taking
M0 to be the partition matroid now with ground set E encoding that every job in J ′ is
assigned to at most one machine, and treating both the machine constraints indexed by I,
and the POS-constraints indexed by IPOS as knapsack constraints. The weight vector w is
irrelevant. We take µi = (1 + δ) for all i ∈ I, and µℓ = δℓ for all ℓ ∈ IPOS, and we claim that
this satisfies condition (10). To see this, consider any (i, j) ∈ E. Let ℓ be the smallest index
in IPOS whose POS-constraint contains the variable xij . Then, xij appears possibly in the
machine constraint for machine i, and the POS-constraints for indices ℓ′ ∈ POS, ℓ′ ≥ ℓ. We
have ∑

ℓ′∈IPOS:ℓ′≥ℓ

1
µℓ′

≤
∑

ℓ′∈POS:ℓ′≥ℓ

1
δℓ′ ≤ 1

δℓ
·
∑
k≥0

(1 + δ)−k = 1
δℓ

· 1 + δ

δ
≤ 1

δ2ℓ0
≤ δ

2 .

Since 1
1+δ + δ

2 ≤ 1, it follows that (10) is satisfied for (i, j).
Finally, we argue that applying Theorem 4.6 with the above parameters yields the lemma.

Let x̃ be the solution obtained by concatenating the integral portion of x, and the integer
solution returned by Theorem 4.6. Part (b) holds because we return a basis of M0, and the
jobs not in J ′ are completely assigned by the integral portion of x. Parts (c) and (e) follow
directly from our choice of the µ values. ◀

▶ Remark 4.8. We note that the subtly stronger guarantee obtained for the knapsack
constraint for index s, in Theorem 4.6, versus Corollary 11 in [19] – i.e., an additive error of
µs · maxe∈R Ase versus an additive error of µs · maxe∈N Ase – is crucial for us. The weaker
guarantee would yield, after dropping integral (and hence 0-valued) variables, that the load
on each machine i is at most

∑
j pijxij + (1 + δ) maxj:xij>0 pij . But it is hard to obtain a

bound on the f -norm of the vector {maxj:xij>0 pij}i∈[m], since multiple coordinates here
could correspond to the same job, and therefore constraints (9) do not help.

5 A PTAS for MinNormLB on identical machines

We now consider the oft-studied and important special case where all machines are identical
– that is, we have pij = pj for all jobs j and machines i – and devise a PTAS in this setting.

▶ Theorem 5.1. There is a PTAS for MinNormLB on identical machines.

The above result substantially generalizes the well-known PTAS by Hochbaum and Shmoys
for minimizing makespan (i.e., the special case of ℓ∞ norm) on identical machines [11]. We
utilize some of their insights, but need to combine them with various novel ideas to handle
the substantial richness of arbitrary monotone, symmetric norms. In the full version, we show
that our PTAS extends to a further generalization of MinNormLB, wherein each machine
incurs a cost given by a “bounded-growth” convex, non-decreasing function µ of its load, and
we seek to minimize the f -norm of the machine-cost vector. We also observe that Graham’s
list-scheduling rule – considering jobs in any sequence, schedule the next job on the currently
least-loaded machine – yields a simple 2-approximation algorithm.

▶ Theorem 5.2. Graham’s list-scheduling rule yields a 2-approximation for MinNormLB on
identical machines.

We defer the proof of Theorem 5.2 to the full version, and discuss the PTAS for MinNormLB
here. It is useful to first recall how the PTAS in [11] for makespan works. Their algorithm
considers a “guess”, say t1 ≥ maxj pj , of the optimal makespan, opt. We classify jobs as large
or small, based on whether pj ≥ εt1 (large jobs) or pj < εt1 (small jobs). A key insight is

S. Ibrahimpur and C. Swamy 81:17

that since the large jobs have pj ∈ [εt1, t1], rounding their pjs to the nearest power of (1 + ε)
yields O

(
log1+ε

1
ε

)
distinct rounded job sizes, and a constant (depending on ε) number of

distinct possibilities, called configurations, for assigning large jobs to a machine so that its
rounded load is at most (1 + ε)t1. One can write an integer program, with a (ε-dependent)
constant number of variables, to determine which configurations are used on the machines,
which can be solved in time poly(m, n) for any fixed ε > 0 using the algorithm of Lenstra [18].
If opt ≤ t1, then this yields an assignment of large jobs having makespan at most (1 + ε)t1.
Finally, one can argue that either the small jobs can be packed (arbitrarily) on the machines
while maintaining a makespan of at most (1 + ε)t1, or we have opt > t1.

Now consider MinNormLB. We may assume that n > m as otherwise it is easy to see that
an optimal solution is to assign each job to a separate machine. Clearly, we may also assume
that pj > 0 for all jobs j. Recall that o⃗ is an optimal load vector, and OPT = f(o⃗). As
before, we assume that f is normalized. Since all machines are identical, it will be convenient
to re-index machines so that o⃗ = o⃗↓. Since we now need to control all Topℓ norms, following
a common theme, it is natural that we now work with guesses tℓ of oℓ (which is o⃗↓

ℓ) for all
ℓ ∈ POS. The chief issue that arises is: how do we now define large and small jobs given
the multiple tℓs? Suppose we choose a threshold of εtℓ, for some ℓ ∈ POS, for this purpose.
For indices ℓ′ < ℓ, the problem then is that we need to consider all jobs with pj ∈ [εtℓ, tℓ′];
this would yield a non-constant number of job types, and hence a non-constant number of
configurations for machines i < ℓ. Machines i > ℓ also present a problem: the packing of
small jobs may cause us to exceed the target load of oi (or rather texp

i) by εtℓ, which can
create too large an error compared to the target load.

We circumvent these issues as follows. We select a specific optimal solution. Given
distinct vectors u, v ∈ Rm, we say that u is lexicographically smaller than v, denoted u ≺ lex v

if there exists some index i ∈ [m] such that ui′ = vi′ for all i′ = 1, . . . , i − 1, and ui < vi.
Let o⃗↓ be the lexicographically smallest sorted load-vector among all optimal solutions, i.e.,
o⃗↓ ≺ lex (

−−→
loadσ)↓ for every optimal solution σ. As before, we may assume that o⃗ = o⃗↓. Let

σ∗ be an optimal solution yielding the load-vector o⃗. Let i∗ be the smallest index such that
machine i∗ has at least two jobs assigned to it under σ∗; this is well defined since n > m.

▷ Claim 5.3. Let o⃗, σ∗ and i∗ be as defined above. Then we have oi ≥ oi∗/2 for all i ≥ i∗.

In addition to our guess t⃗ of (oℓ)ℓ∈POS, we now also guess i∗ and the load oi∗ , and use
εoi∗ as the threshold demarcating large and small jobs. The small jobs are now indeed small
compared to the target load of oi for i ≥ i∗. Also, since machines i < i∗ only have one job
assigned to them, we can infer that these machines are assigned the i∗ − 1 largest jobs.

We describe our algorithm below, and conclude with its analysis.

▶ Algorithm 1 (PTAS for MinNormLB on identical machines).
Input: a non-increasing vector t⃗ ∈ RPOS

≥0 , an index i∗ ∈ [m], θ ∈ R≥0 intended to be a good
overestimate of oi∗ , and a parameter 0 < ε ≤ 1. We set δ = ε in the definition of POS = POSm,δ.
Output: an assignment σ̃ such that (

−−→
load

σ̃
)↓

ℓ ≤ (1 + ε)tℓ + εθ for all ℓ ∈ POS, or that (⃗t, i∗, θ) is an
invalid guess.

P1. Perform the following checks, and if any of these fail, then declare that (⃗t, i∗, θ) is invalid and
return. Define tm+1 := 0 for notational convenience.
(a) If i∗ ∈ POS, then check that θ = ti∗ , otherwise check that tnext(i∗) ≤ θ ≤ tprev(i∗).
(b) For all ℓ ∈ POS, ℓ ≤ i∗, check that there are at most ℓ − 1 jobs with pj > tℓ.
(c) Check that there are at most i∗ − 1 jobs with pj > θ.

P2. Assign the i∗ − 1 largest jobs to machines 1, . . . , i∗ − 1, assigning the largest job to machine 1,
the second-largest job to machine 2, and so on. Let J ′ be the remaining set of jobs. Note that
check (c) in step P1 implies that pj ≤ θ for all j ∈ J ′.

ICALP 2021

81:18 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

P3. Let J ′
L := {j ∈ J ′ : pj ≥ εθ}, and J ′

S := {j ∈ J ′ : pj < εθ}. We refer to the jobs in J ′
L and J ′

S

as large and small jobs respectively.

P4. Round the processing time of each large job to the nearest power of (1 + ε), i.e., for each j ∈ J ′
L,

round its processing time to p′
j := (1 + ε)⌈log1+ε pj⌉. Let R = {p′

j : j ∈ J ′
L} be the distinct

rounded processing times, and N = |R|; note that N ≤ 1 + log1+ε

(
1
ε

)
. For a budget B ≥ 0,

define C(B) :=
{

ν ∈ ZR
≥0 \ {0} :

∑
p∈R

νp · p ≤ B
}

as the set of non-trivial configurations that
yield a total rounded load of at most B. (Observe that C(0) = ∅.)

Recall that texp ∈ Rm
≥0 is the expansion of t⃗, defined by texp

i = ti for i ∈ POS, and texp
i = tprev(i) for

i ∈ [m] \ POS. For notational convenience, define texp
m+1 := 0. For i ∈ {i∗, . . . , m + 1}, define its

load budget to be Bi = (1 + ε) min{θ, texp
i }. (Note that Bm+1 = 0.) For any 0 ≤ B ≤ Bi∗ , any

ν ∈ C(B) and p ∈ R, we have νp ≤ B/p ≤ 1+ε
ε

; so |C(B)| ≤
(

1
ε

+ 2
)N , and we can enumerate

the configurations in C(B) in polynomial time. Assign the large jobs by using the algorithm of
Lenstra [18] to solve the integer program (Config-IP), wherein the integer variable xν specifies
the number of machines in {i∗, . . . , m} for which configuration ν ∈ C(Bi∗) is used.

(Config-IP)

∑
ν∈C(Bi∗)

νp · xν =
∣∣{j ∈ J ′

L : p′
j = p}

∣∣ ∀p ∈ R (11)

∑
ν∈C(Bi∗)\C(Bℓ)

xν ≤ ℓ − i∗ ∀ℓ ∈ POS ∪ {m + 1} : ℓ > i∗ (12)

xν ∈ Z≥0 ∀ν ∈ C(Bi∗) (13)

If (Config-IP) is infeasible, declare that (⃗t, i∗, θ) is invalid and return. Otherwise, suppose that
x̃ is a feasible solution to (Config-IP). Obtain an assignment of the large jobs to machines
i∗, i∗ + 1, . . . , m from x̃ as follows. Let C̃ be the multiset of configurations where we have x̃ν

copies of each configuration ν ∈ supp(x̃). We map each ν ∈ C̃ to a disjoint set Aν of large jobs,
comprising νp large jobs with p′

j = p for every p ∈ R, so that (Aν)
ν∈C̃

forms a partition of J ′
L.

Constraint (11) shows that this is always possible.
We go over the configurations ν ∈ C̃ in non-increasing order of their load,

∑
p∈S

νp · p, and
assign one configuration each to machines i∗, i∗ + 1, . . . , i∗ + |C̃| − 1 in this order, where by
assigning a configuration ν to a machine i, we mean that we assign the jobs in Aν to machine i.
Note that |C̃| =

∑
ν∈C(Bi∗) x̃ν ≤ m + 1 − i∗ due to constraint (12) for index m + 1.

P5. We assign the small jobs to the machines in {i∗, . . . , m} arbitrarily while ensuring that the total
actual load (i.e., under the pj processing times) on each machine i is at most Bi + εθ. If we are
unable to assign all small jobs this way, then we declare that (⃗t, i∗, θ) is invalid, and return.

P6. Return the assignment σ̃ computed in steps P2, P4, and P5.

Analysis. Recall that σ∗ is the optimal solution yielding the sorted load vector o⃗↓ = o⃗. We
first assume that (⃗t, i∗, θ) is such that t⃗ ≥ (oℓ)ℓ∈POS, we have the right i∗, θ ≥ oi∗ , and (⃗t, i∗, θ)
passes the check in step P1(a). Under these assumptions, we show that the algorithm returns
an assignment σ̃, and

−−→
load↓

σ̃
is “close” to texp. This will then imply Theorem 5.1, since we

can find in polytime (t∗, i∗, θ∗) satisfying the above properties, and such that t∗
ℓ ≤ (1 + ε)oℓ

for all ℓ ∈ [m], and θ∗ ≤ (1 + ε)oi∗ .
We begin by observing in Claim 5.4 that (under the above assumptions), (⃗t, i∗, θ) passes

checks (b) and (c) in step P1, and that step P2 is valid. Then, in Lemmas 5.5 and 5.6, we
argue that steps P4 and P5 are successful.

▷ Claim 5.4. (i) (⃗t, i∗, θ) passes checks (b) and (c) in step P1. (ii) The optimal solution σ∗

assigns the i∗ − 1 largest jobs to machines 1, . . . , i∗ − 1, assigning one job per machine.

S. Ibrahimpur and C. Swamy 81:19

▶ Lemma 5.5. Step P4 successfully returns an assignment of large jobs such that every
machine i ∈ {i∗, . . . , m} has (rounded and actual) load at most Bi.

Proof. Consider the following solution to (Config-IP). Each machine i ∈ {i∗, . . . , m} that
has jobs assigned to it under σ∗ naturally maps to a corresponding configuration ν, where νp

is the number of large jobs assigned to i with p′
j = p. We have∑

p∈R

νp · p =
∑

j∈J′
L

:σ∗(j)=i

p′
j ≤ (1 + ε)

∑
j:σ∗(j)=i

pj = (1 + ε)oi ≤ (1 + ε) min{θ, texp
i } = Bi

where the first inequality is because p′
j ≤ (1 + ε)pj for all j ∈ J ′

L. Thus, each machine
i ∈ {i∗, . . . , m} maps to a configuration in C(Bi) ⊆ C(Bi∗). Let x̂ ∈ ZC(Bi∗)

≥0 be the integral
vector, where x̂ν is the number of machines that map to configuration ν, for each ν ∈ C(Bi∗).
By construction, it is easy to see that constraints (11) are satisfied. It is also clear that
constraint (12) holds for index ℓ = m+1. So consider constraint (12) for some index ℓ ∈ POS,
ℓ > i∗. A configuration ν with x̂ν > 0 whose load is larger than Bℓ corresponds to a machine
in {i∗, . . . , m} whose actual load is larger than Bℓ/(1 + ε) ≥ oℓ. There are at most ℓ − i∗

such machines, so (12) holds for index ℓ.
Since (Config-IP) is feasible, it follows that we return an assignment of large jobs to

machines i∗, i∗ + 1, . . . , m where every machine has rounded (and hence, actual) load at
most Bi∗ . Consider a machine i ∈ {i∗, . . . , m} that is assigned a configuration. Let ℓ = i

if i ∈ POS ∪ {i∗}, and ℓ = max{i∗, prev(i)} otherwise; note that Bi = Bℓ. If ℓ = i∗, then
Bi = Bi∗ , and there is nothing left to prove. So suppose ℓ ̸= i∗. Then ℓ ∈ POS, ℓ > i∗. By
constraint (12) there are at most ℓ − i∗ ≤ i − i∗ configurations in C̃ with load larger than Bℓ.
By the way in which we assign configurations to machines, it follows that machine i is not
assigned one of these configurations. Therefore, the total rounded (and hence, actual) load
on machine i is at most Bℓ = Bi. ◀

▶ Lemma 5.6. Step P5 successfully assigns all small jobs. At the end of this step every
machine i ∈ {i∗, . . . , m} has total actual load at most Bi + εθ.

Proof of Theorem 5.1. We can find (t∗, i∗, θ∗) in polytime such that oℓ ≤ t∗
ℓ ≤ (1 + ε)oℓ for

all ℓ ∈ POS, we have the right i∗, oi∗ ≤ θ∗ ≤ (1 + ε)oi∗ , and (t∗, i∗, θ∗) clears check P1 (a).
We prove this momentarily, but first show that this yields the desired performance guarantee.

Recall that ε ≤ 1 and δ = ε. By Lemma 2.8 (b), taking u = o⃗ and v = t∗, we obtain
that f(t∗exp) ≤ (1 + δ)(1 + ε)f(o⃗). Our analysis shows that the algorithm run with input
(t∗, i∗, θ∗) returns an assignment σ̃. Since we pass checks (b) and (c) in step P1, each machine
i ∈ {1, . . . , i∗ − 1} has load (due to the one job assigned to it) oi ≤ t∗exp

i . Lemmas 5.5 and 5.6
show that the total load on each machine i ∈ {i∗, . . . , m} is at most

Bi + εθ∗ ≤ (1 + ε)t∗exp
i + ε(1 + ε)oi∗ ≤ (1 + ε)t∗exp

i + 4εoi ≤ (1 + 5ε)t∗exp
i .

The second inequality follows from Claim 5.3 and since ε ≤ 1, and the last one since
t∗ ≥ (oℓ)ℓ∈POS (and therefore t∗exp ≥ o). It follows that

−−→
load

σ̃
≤ (1 + 5ε)t∗exp, and so

f(
−−→
load

σ̃
) ≤ (1 + 5ε)f(t∗exp). Combining this with the bound on f(t∗exp), and simplifying, we

obtain that f(
−−→
load

σ̃
) ≤ (1 + 23ε)f(o⃗).

We complete the proof by showing how to find (t∗, i∗, θ∗) in polynomial time satisfying
the properties stated at the beginning of the proof. There are only m choices for i∗. Given
the correct i∗, we know that the load on each machine i < i∗ is the processing time of
the i-th largest job. So we know o1, . . . , oi∗−1 exactly, and can set t∗

ℓ = oℓ for all ℓ ∈ POS,
ℓ < i∗. Let POS′ = {i∗} ∪ {ℓ ∈ POS : ℓ > i∗}. Let J ′ be the set of jobs excluding the

ICALP 2021

81:20 Minimum-Norm Load Balancing Is (Almost) as Easy as Minimizing Makespan

i∗ − 1 largest jobs. Let UB′ :=
∑

j∈J′ pj . The jobs in J ′ are assigned by σ∗ to machines
in {i∗, . . . , m}, and we have oi∗ ≥ oi ≥ oi∗/2 for all i ≥ i∗ (Claim 5.3). It follows that

UB′

m−i∗+1 ≤ oi∗ ≤ T := min
{ 2UB′

m−i∗+1 , oi∗−1
}

. So by Lemma 2.9 (b), taking L = POS′, ub = T ,
and lb = UB′

2(m−i∗+1) , we can identify a set of size O
(
mO(1

ε)) containing a non-increasing
vector v ∈ RPOS′

≥0 such that oℓ ≤ vℓ ≤ min{(1 + ε)oℓ, T} for all ℓ ∈ POS′. So the vector
t∗ =

(
(oℓ)ℓ∈POS:ℓ<i∗ , (vℓ)ℓ∈POS:ℓ≥i∗

)
and θ∗ = vi∗ have the desired properties. ◀

References
1 Noga Alon, Yossi Azar, Gerhard J. Woeginger, and Tal Yadid. Approximation schemes for

scheduling on parallel machines. Journal of Scheduling, 1(1):55–66, 1998.
2 Yossi Azar and Amir Epstein. Convex programming for scheduling unrelated parallel machines.

In Proceedings of the 37th STOC, pages 331–337, 2005.
3 Deeparnab Chakrabarty. Personal Communication, 2021.
4 Deeparnab Chakrabarty and Chaitanya Swamy. Approximation algorithms for minimum norm

and ordered optimization problems. In Proceedings of the 51st STOC, pages 126–137, 2019.
5 Deeparnab Chakrabarty and Chaitanya Swamy. Simpler and better algorithms for minimum-

norm load balancing. In Proceedings of the 27th ESA, pages 27:1–27:12, 2019.
6 Anindya De, Sanjeev Khanna, Huan Li, and Hesam Nikpey. An efficient PTAS for stochastic

load balancing with poisson jobs. In Proceedings of the 47th ICALP, pages 37:1–37:18, 2020.
7 Ashish Goel and Piotr Indyk. Stochastic load balancing and related problems. In Proceedings

of the 40th FOCS, pages 579–586, 1999.
8 Anupam Gupta, Amit Kumar, Viswanath Nagarajan, and Xiangkun Shen. Stochastic load

balancing on unrelated machines. In Proceedings of the 29th SODA, pages 1274–1285, 2018.
9 G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge Univ Press, 1934.

10 D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for scheduling on
uniform processors: Using the dual approximation approach. SICOMP, 17(3):539–551, 1988.

11 Dorit Hochbaum and David B. Shmoys. Using dual approximation algorithms for scheduling
problems: practical and theoretical results. J. ACM, 34(1):144–162, 1987.

12 Sharat Ibrahimpur and Chaitanya Swamy. Approximation algorithms for stochastic minimum-
norm combinatorial optimization. In Proceedings of the 61st FOCS, pages 966–977, 2020.

13 K. Jansen. An EPTAS for scheduling jobs on uniform processors: Using an MILP relaxation
with a constant number of integral variables. In Proc. 36th ICALP, pages 562–573, 2009.

14 Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the Gap for Makespan Scheduling
via Sparsification Techniques. In Proceedings of the 43rd ICALP, pages 72:1–72:13, 2016.

15 Jon M. Kleinberg, Yuval Rabani, and Éva Tardos. Allocating bandwidth for bursty connections.
SIAM J. Comput., 30(1):191–217, 2000.

16 V. S. Kumar, Madhav V Marathe, S. Parthasarathy, and A. Srinivasan. A unified approach to
scheduling on unrelated parallel machines. Journal of the ACM, 56(5):28, 2009.

17 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Math. Program., 46:259–271, 1990.

18 Hendrik W. Lenstra Jr. Integer programming with a fixed number of variables. Mathematics
of Operations Research, 8(4):538–548, 1983.

19 André Linhares, Neil Olver, Chaitanya Swamy, and Rico Zenklusen. Approximate multi-
matroid intersection via iterative refinement. Math. Program., 183(1):397–418, 2020.

20 Konstantin Makarychev and Maxim Sviridenko. Solving optimization problems with disec-
onomies of scale via decoupling. J. ACM, 65(6):42:1–42:27, 2018.

21 Albert W Marshall, Ingram Olkin, and Barry Arnold. Inequalities: Theory of Majorization
and Its Applications. Springer series in statistics. Springer, 2011.

22 Marco Molinaro. Stochastic ℓp load balancing and moment problems via the L-function
method. In Proceedings of the 30th SODA, pages 343–354, 2019.

23 David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized assignment
problem. Math. Program., 62:461–474, 1993.

	1 Introduction
	2 Preliminaries
	3 Stochastic Minimum Norm Load Balancing with Poisson Jobs
	4 A (2+{epsilon})-approximation for MinNormLB on unrelated machines
	5 A PTAS for MinNormLB on identical machines

