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Abstract
Data-oblivious algorithms are a key component of many secure computation protocols.

In this work, we show that advances in secure multiparty shuffling algorithms can be used to
increase the efficiency of several key cryptographic tools.

The key observation is that many secure computation protocols rely heavily on secure shuffles.
The best data-oblivious shuffling algorithms require O(n log n), operations, but in the two-party or
multiparty setting, secure shuffling can be achieved with only O(n) communication.

Leveraging the efficiency of secure multiparty shuffling, we give novel, information-theoretic
algorithms that improve the efficiency of securely sorting sparse lists, secure stable compaction, and
securely merging two sorted lists.

Securely sorting private lists is a key component of many larger secure computation protocols. The
best data-oblivious sorting algorithms for sorting a list of n elements require O(n log n) comparisons.
Using black-box access to a linear-communication secure shuffle, we give a secure algorithm for
sorting a list of length n with t ≪ n nonzero elements with communication O(t log2 n + n), which
beats the best oblivious algorithms when the number of nonzero elements, t, satisfies t < n/ log2 n.

Secure compaction is the problem of removing dummy elements from a list, and is essentially
equivalent to sorting on 1-bit keys. The best oblivious compaction algorithms run in O(n)-time,
but they are unstable, i.e., the order of the remaining elements is not preserved. Using black-box
access to a linear-communication secure shuffle, we give an information-theoretic stable compaction
algorithm with only O(n) communication.

Our main result is a novel secure merge protocol. The best previous algorithms for securely
merging two sorted lists into a sorted whole required O(n log n) secure operations. Using black-box
access to an O(n)-communication secure shuffle, we give the first multi-party secure merge algorithm
that requires only O(n log log n) communication. Our algorithm takes as input n secret-shared
values, and outputs a secret-sharing of the sorted list.

All our algorithms are generic, i.e., they can be implemented using generic secure computations
techniques and make black-box access to a secure shuffle. Our techniques extend naturally to the
multiparty situation (with a constant number of parties) as well as to handle malicious adversaries
without changing the asymptotic efficiency.

These algorithm have applications to securely computing database joins and order statistics on
private data as well as multiparty Oblivious RAM protocols.
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1 Introduction

Secure sorting protocols allow two (or more) participants to privately sort a list of n encrypted
or secret-shared [41] values without revealing any data about the underlying values to any
of the participants. Secure sorting is an important building block for many more complex
secure multiparty computations (MPCs), including Private Set Intersection (PSI) [32], secure
database joins [33, 10, 43], secure de-duplication and securely computing order statistics as
well as Oblivious RAMs [38, 24].

Secure sorting algorithms, and secure computations in general, must have control flows
that are input-independent, and most secure sorting algorithms are built by instantiating a
data-oblivious sorting algorithm using a generic secure computation framework (e.g. garbled
circuits [47, 48], GMW [23], BGW [13]). This method is particularly appealing because it is
composable – the sorted list can be computed as secret shares, and used in a further (secure)
computations.

Most existing secure sorting algorithms make use of sorting networks. Sorting networks
are inherently data oblivious because the sequence of comparisons in a sorting network is fixed
and thus independent of the input values. The AKS sorting network [2] requires O(n log n)
comparators to sort n elements. The AKS network matches the lower bound on the number
of comparisons needed for any (not necessarily data independent) comparison-based sorting
algorithm. Unfortunately, the constants hidden by the big-O notation are extremely large,
and the AKS sorting network is never efficient enough for practical applications [3]. In
practice, some variant of Batcher’s sort [9] is often used1. The MPC compilers Obliv-c [49],
ABY [19] and EMP-toolkit [45] provide Batcher’s bitonic sort. Batcher’s sorting network
requires O(n log2 n) comparisons, but the hidden constant is approximately 1/2, and the
network itself is simple enough to be easily implementable.

Although Batcher’s sorting network is fairly simple and widely used, the most efficient
oblivious sorting algorithms make use of the shuffle-then-sort paradigm [31, 30] which builds
on the observation that many traditional sorting algorithms (e.g. quicksort, mergesort,
radixsort) can be made oblivious by obliviously shuffling the inputs before running the
sorting algorithm. Since oblivious shuffling and (non-oblivious) sorting can be done in
O(n log n)-time these oblivious sorting algorithms run in O(n log n) (but unlike AKS the
hidden constants are small).

Although the shuffle-then-sort paradigm is extremely powerful, improvements in shuffling
(below O(n log n)) are unlikely to improve these protocols because of the O(n log n) lower-
bound on comparison-based sorting.

In the context of secure multiparty computation, however, sorting can often be reduced to
the simpler problem of merging two sorted lists into a single sorted whole. Each participant
in the computation, sorts their list locally, before beginning the computation, and the secure
computation itself need only implement a data-oblivious merge.

Merging is an easier problem than sorting, and even in the insecure setting it is known
that any comparison-based sorting method requires O(n log n) comparisons, whereas (non-
oblivious) linear-time merging algorithms are straightforward. Unfortunately, no data-
oblivious merge algorithms are known with complexity better than simply performing a
data-oblivious sort, and the best merging networks require O(n log n) comparisons.

Our main result is a secure multiparty merge algorithm, for merging two (or more) sorted
lists (into a single, sorted whole) that requires only O(n log log n) secure operations. This is
the first secure multiparty merge algorithm requiring fewer than O(n log n) secure operations.

1 For example, hierarchical ORAM [38, 24] uses Batcher’s sort.
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The crucial building block of our algorithm is a linear-communication secure multiparty
shuffle. Although no single-party, comparison-based shuffle exists using O(n) comparisons,
such shuffles exist in the two-party and multiparty setting (see Section 3), and this allows us
to avoid the O(n log n) lower bound for comparison-based merging networks that exists in
the single-party setting.

Our secure multiparty merge algorithm makes use of several novel data-oblivious al-
gorithms whose efficiency can be improved through the use of a linear-communication secure
multiparty shuffle.

These include
Securely sorting with large payloads: In Section 4 we show how to securely sort t

elements (with payloads of size w) using O(t log t + tw) communication. Previous sorting
algorithms required O(tw log(tw)) communication.
Securely sorting sparse lists: In Section 5 we show how to securely sort a list of size
n with only t nonzero elements in O(t log2 n + n) communication. This beats naïvely
sorting the entire list whenever t < n/ log2 n.
Secure stable compaction: In Section 6.1 we show how to securely compact a list
(i.e., extract nonzero elements) in linear time, while preserving the order of the extracted
elements. Previous linear-time oblivious compaction algorithms (e.g. [6]) are unstable
i.e., they do not preserve the order of the extracted values.
Secure merge: In Section 7 we give our main algorithm for securely merging two lists
with O(n log log n) communication complexity. Previous works all required O(n log n)
complexity.

All the results above crucially rely on a linear-communication secure multiparty shuffle.
Outside of the shuffle, all the algorithms are simple, deterministic and data-oblivious and
thus can be implemented using any secure multiparty computation protocol.

In the two-party setting, we give a protocol for a linear-communication secure shuffle
using any additively homomorphic public-key encryption algorithm with constant ciphertext
expansion (Section 3.3). In the multiparty setting, a linear-communication secure shuffle can
be built from any one-way function [34].

By making black-box use of a secure shuffle, our protocols can easily extend to different
security models. If the shuffle is secure against malicious adversaries, then the entire protocol
can achieve malicious security simply by instantiating the surrounding (data oblivious)
algorithm with an MPC protocol that supports malicious security. One benefit of this
is that our protocols can be made secure against malicious adversaries without changing
the asymptotic communication complexity. Similarly, as two-party and multi-party linear-
communication shuffles exist, all our algorithms can run in the two-party or multi-party
settings simply by instantiating the surrounding protocol with a two-party or multi-party
secure computation protocol (e.g. Garbled Circuits or GMW).

2 Preliminaries

2.1 Secure multiparty computation

Secure multiparty computation (MPC) protocols allow a group of participants to securely
compute arbitrary functions of their joint inputs, without revealing their private inputs to
each other or any external party. Secure computation has been widely studied in both theory
and practice.

ITC 2021
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Different MPC protocols provide security in different settings, depending on parameters
like the number of participants (e.g. two-party or multiparty), the amount of collusion (e.g.
honest majority vs. dishonest majority), and whether the participants are semi-honest, covert
[15, 7] or malicious.

In this work, we focus on creating data-oblivious algorithms that can be easily implemented
using a variety of MPC protocols.

2.2 Oblivious algorithms
Secure and oblivious algorithms have been widely studied, it is instructive to differentiate
between three types of data oblivious algorithms [37].

1. Deterministically data independent: In these algorithms, the control flow is determ-
inistic and dependent only on public data. Most sorting networks are deterministically
data independent.

2. Data independent: In these algorithms, the control flow is determined completely by
the public data as well as additional (data-independent) randomness.

3. Data oblivious: In these algorithms, data can be “declassified” during the computation,
and the control flow can depend on public data, as well as on previously declassified
data. To ensure privacy, we require that the distribution of all declassified data (and the
point at which it was declassified) is independent of the secret (input) data. The sorting
algorithms of [31] are data oblivious, as are many ORAM constructions [38, 24].

All three of these types of algorithms can be easily implemented using generic MPC
protocols.

2.3 Secure sorting
One common technique for secure sorting is to implement a sorting network under a generic
MPC protocol. Since the sequence of comparisons in a sorting network is data-independent,
if each comparison is done securely, the entire sorting procedure is secure.

In practice, many secure sorting algorithms are built on Batcher’s sorting network
[9]. Batcher sorting networks require O(n log2 n) comparisons to sort n entries, and is
straightforward to implement, and is provided by MPC compilers like EMP-toolkit [45]
and Obliv-c [49]. In the two-party setting, when each individual’s list is pre-sorted, then
the final round of the Batcher sort can be omitted, and Batcher’s Bitonic sort provides
an efficient merge algorithm with O(n log n) complexity. The AKS sorting network [2] and
its improvements [39, 40] are asymptotically better than a Batcher’s, and requires only
O(n log n) comparisons, but the hidden constants are enormous and the AKS network is not
efficient for practical applications [3].

Zig-zag sort [27] is a deterministic data-independent sorting method, requiring O(n log n)
comparisons, but the hidden constants are much smaller than those in AKS. Unfortunately,
Zig-zag sort has a depth of O(n log n) (instead of O

(
log2 n

)
for Batcher’s sorting network),

and this high depth makes it less appealing for some applications.
A randomized version of the Shellsort algorithm can be made data-oblivious, and gives

an O(n log n) randomized algorithm that can be made either Monte Carlo or Las Vegas [25].
In a 2-party computation, when both parties hold their data in the clear, each party

can locally sort his or her data, and then apply Batcher’s bitonic sorting network to merge
the two sorted lists. This results in an algorithm that runs in O(n log n) time (with small
constants). This trick was used, for instance, in private set intersection [32]. Unfortunately,
this trick does not apply when the two halves of the list cannot be pre-sorted, e.g. when the
list is the (secret-shared) output of a prior computation.
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Although sorting networks of size O(n log n) with a small hidden constant are unknown,
secure sorting can be achieved in O(n log n) time (with a small constant) by combining secure
shuffles and a generic sorting algorithm [31]. The core idea is that if the underlying data are
randomly shuffled, then the sequence of comparisons in any sorting algorithm (e.g. mergesort,
quicksort) are independent of the underlying data.

More concretely, to securely sort a list, data owners can first securely shuffle their lists,
then apply an O(n log n) sorting algorithm (e.g. merge sort) to their shuffled list. Each
comparison in the sorting algorithm will be computed under MPC, but the result of the
comparison is then revealed, and the players can order the (secret) data based on the output
of this public comparison. The Waksman permutation network [44] requires O(n log n) swaps,
to implement a shuffle, so the entire shuffle-then-sort procedure only requires O(n log n)
operations (with small constants). This idea has been implemented using the Sharemind
platform [14] and to build efficient mix-nets [4]. These protocols are not data-independent
(since the exact sequence of comparisons depends on the underlying data), but instead they
are data-oblivious which is sufficient for security.

Building on this shuffle-then-sort paradigm, oblivious radix sort [30] requires O(n log n)
communication, but only a constant number of rounds, and is efficient in both theory and
practice. This was later improved (in the multiparty setting) [17] by incorporating the
linear-time multiparty shuffle algorithm of [34] we review this shuffle in Section 3.2.

See [21] for a survey of data-oblivious sorting methods.

Sorting provides a method for computing all the order statistics of the joint list. If,
however, only a single order statistic (e.g. the kth largest element) is needed, there are more
efficient secure protocols that only require O(log n) secure comparisons to compute the kth
order statistic [1]. The protocols of [1] reveal the order statistics in the clear, and it is not
clear how to modify them to reveal only secret shares of the relevant order statistic, Thus
they are not applicable in scenarios where computing order statistics is merely the first step
in a larger secure computation. Another way of viewing this distinction is that the algorithms
presented in [1] are not data-oblivious – the sequence of comparisons depends on the output –
but since the output is revealed by the protocol the entire sequence of comparisons could be
simulated by a simulator who only sees the protocol’s output.

Merging two sorted lists is potentially easier than sorting, and when data-obliviousness is
not needed merging can be done in linear-time using a single-scan over each list.

In the deterministic data independent setting, Batcher’s merging networks are known to
be optimal when one list is small [5]. In the (probabilistic) data independent setting, [35]
gives a randomized variant of Batcher’s odd-even mergesort using O(n log n) comparisons
(with hidden constant less than one).

In the three-party setting, there is a linear-communication secure merge protocol [16], but
no similar result is known in the two-party setting.

The main contribution of this work is to provide a new, multiparty secure merge algorithm
that only requires O(n log log n) secure operations (with small constants). Our construction
avoids the lower bound of [35] by using an efficient secure shuffle (see Section 3) that is
not comparison-based. Our construction immediately yields efficient, secure algorithms for
sorting and obliviously computing order statistics in both the two-party and multiparty
settings, and these constructions can easily be made secure against malicious adversaries
using standard techniques.

ITC 2021
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3 Shuffling secret shares

3.1 O(n log(n))-oblivious shuffles
Secure shuffles can be done in O(n log n)-time using a Waksman permutation network [44, 12].
Waksman permutation networks are built using “controlled-swap-gates” which take two inputs
and a “control bit” that determines whether to swap the two inputs. Although the Waksman
network guarantees that every permutation can be realized through a choice of control bits, a
uniformly random choice of control bits does not result in a uniformly random permutation
[12]. On the other hand, given a permutation, the specific control bits required to realize
this permutation can be calculated efficiently.

Waksman networks can be used to facilitate a secure m-party shuffle by simply having
each player separately input their control bits and performing m (sequential) shuffles. The
resulting shuffle will be random as long as one player was honest, and the entire cost of the
protocol is O(mn log n). Alternatively, the control bits can be set within the MPC [42], but
this requires O

(
n2) secure multiplications, and is thus less efficient than simply repeated

executing a Waksman permutation with different control bits provided by each party when
the number of players, m, is constant.

Asymptotically efficient oblivious shuffles can also be performed using more complex
ORAM-based techniques [6, 20], but these are not nearly as efficient as Waksman shuffles in
practice.

3.2 Multiparty secure shuffles
In this section, we review the linear-communication secure multiparty shuffle of [34]. A
similar, multiparty secure shuffle was used for efficient multiparty ORAM [16]. The protocol
is an information-theoretic protocol for executing a pseudo-random shuffle. An overview of
the multiparty shuffle is given in Figure 1.

The group of participants, C, generates a permutation, σ(C). Since σ(C) is hidden from
players outside C, and every coalition of size t is outside some subset, the final permutation
(which is the composition of all the permutations σ(C)) is hidden from all players [34, Section
4.3].

As noted in [34], simply sharing the (public) permutation among members of C requires
O(n log n) communication. If, however, the players share a pseudorandom permutation,
this communication cost is essentially eliminated and the total communication complexity
becomes O(n) as claimed. This can also be made secure against malicious adversaries, while
retaining its O(n) communication complexity [34, Section 4.4].

▶ Lemma 1 (Multiparty secure shuffle [34]). If there exists a Pseudorandom permutation
(PRP) with λ-bit keys, then for any m ≥ 3 and any t < m− 1, then then there is an m-party
secure shuffling protocol that remains secure against t corrupted players, that can shuffle
vectors of length m, where each player’s communication is(

m

m− t

)
n(m− t) +

(
m− 1

m− t− 1

)
(nm + λ).

In particular, if the number of players, m, is constant, the total communication per player is
linear in the database size, n.

Although the communication complexity of this re-sharing based protocol is linear in the
database size, n, repeating the resharing procedure for every subset of size t makes the overall
communication exponential in the threshold size, t. Thus if t = Θ(m), the communication
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MultiPartyShuffle

Input: m parties hold secret shares of a vector v⃗ of length n. Let t < m− 1 be the
desired corruption threshold.

Output: Secret shares of the shuffled vector v⃗.

1. For every subset, C, of m− t players, the protocol does the following:
a. The players re-share the secret shares of v⃗ to members of C.
b. The members of C reconstruct shares of v⃗ from the shares of shares of v⃗ using the

linearity of the secret sharing scheme.
c. The members of C choose a (pseudorandom) permutation σ(C) : [n]→ [n], known

to all members of C.
d. The members of C shuffle the shares of v⃗ according to this public permutation.
e. The members of C re-share the shares of σ(C)(v⃗) to the entire group of players.
f. The players reconstruct shares of σ(C)(v⃗) from the shares of shares of σ(C)(v⃗)

using the linearity of the secret sharing scheme.

Figure 1 The secure m-party shuffle of [34]. This shuffle provides security against semi-honest
adversaries when the corruption threshold is t < m − 1.

will be exponential in the number of players, m. Thus it only retains asymptotic efficiency for
small (constant) m. From an asymptotic standpoint, this is not a restriction, because if m is
super-constant, simply secret-sharing the input data among all the participants requires ω(n)
communication per party, so we can’t hope to get O(n) communication whenever m = ω(1).

3.3 2-party secure shuffles
In this section, we give a simple two-party shuffle that relies on an additively homomorphic
cryptosystem. Such a cryptosystem is not information-theoretically secure, and currently
there is no known, linear-communication information-theoretic secure shuffle. We note,
however, that all our protocols use only black-box access to the underlying shuffle, and thus
if the underlying shuffle could be made information-theoretically secure, then the entire
protocol would inherit this security.

If the cryptosystem has constant ciphertext expansion, then the resulting shuffle re-
quires only O(n) communication. This is essentially the two-party variant of the linear-
comumunication multiparty shuffle [34] described in Section 3.2. A similar 2-party shuffle
was described in [22].

Using a lattice-based scheme with ciphertext packing, this can be made extremely efficient
in practice. To demonstrate the practical efficiency of this scheme, we implemented it using
the PALISADE [18] FHE library, to show that it is dramatically more communication efficient
than a simple Waksman shuffle (implemented in EMP [45]). We chose to implement our
scheme using lattice-based FHE because ciphertext packing makes these schemes extremely
efficient (in terms of ciphertext expansion, and the cost of additively homomorphic operations)
when used to encrypt blocks of data. See Appendix C for details.

▶ Lemma 2 (2-Party secure shuffle). If PKE is an additively homomorphic, semantically
secure cryptosystem with constant ciphertext expansion, then the shuffle TwoPartyShuffle
outlined in Figure 2 is secure against passive adversaries, and requires O(n) communication.

ITC 2021
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TwoPartyShuffle

Input: Alice and Bob hold secret shares of vector v⃗. Let v⃗a and v⃗b denote the shares.
Assume that the secret sharing is additive over a group G, i.e., v⃗a[i] + v⃗b[i] = v⃗[i]
where arithmetic is done over G.

Output: Additive secret shares of the shuffled vector v⃗.

1. Alice generates a key for an additively homomorphic PKE. pka $← Gen. Suppose
PKE is additively homomorphic over a group, G.

2. Bob generates a key for an additively homomorphic PKE. pkb $← Gen.
3. For each block i = 1, . . . , n, Alice encrypts her share vector v⃗a[i], setting ca[i] =

Enc(pka, v⃗a[i]). Alice sends these ciphertexts to Bob.
4. For each block i = 1, . . . , n, Bob encrypts his share vector v⃗b[i]. cb[i] = Enc(pkb, v⃗b[i]).
5. Bob locally shuffles the 2n ciphertexts, keeping both (encrypted) shares of each

element together.
6. Bob re-randomizes the ciphertexts and the shares and sends them to Alice.
7. Alice locally shuffles the 2n ciphertexts, keeping both (encrypted) shares of each

element together.
8. Alice re-randomizes the ciphertexts and the plaintext shares.
9. Alice sends Bob his encrypted ciphertexts.

10. Bob decrypts his shares.

Figure 2 A 2-party shuffle based on additively homomorphic encryption, secure against semi-
honest adversaries.

The proof is straightforward, but for completeness we provide it in Appendix B.
Two-party shuffles of this type can be made secure against malicious adversaries, while

retaining their asymptotic efficiency [29, 11].
The linear-communication multiparty secure shuffle in Section 3.2 has been used to

create extremely efficient sorting algorithms in the multiparty setting [17]. Using our
linear-communication secure 2-party shuffle, TwoPartyShuffle described in Figure 2, the
shuffle-then-sort construction of [17] can be extended to the 2-party setting.

4 Securely sorting with large payloads

In this section, we give a simple, linear-communication algorithm for sorting keys with large
payloads that makes black-box use of a linear-communication secure shuffle. In large-payload
sorting, we have a collection of blocks data (payloads), and each block is tagged with a
key. Each payload must be put into the position determined by its key, but the position of
elements within each payload remains unchanged. Like all our constructions, this algorithm
crucially relies on a black-box access to a linear-communication shuffle (Section 3).

Oblivious sorting algorithms [31] and sorting networks [2] can sort n elements using
O(n log n) comparisons. Now, imagine that instead of n elements, we have n/w blocks, each
of size w, and the n/w blocks need to be (obliviously) sorted based on n/w (short) keys.
In the insecure setting, this requires O (n/w log (n/w)) comparisons. In the secure setting,
using an existing oblivious sorting algorithm, requires O (n/w log (n/w)) secure comparisons.
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LargePayloadSort

Input: A secret-shared vector Jx⃗K of keys with |x⃗| = n/w. A secret-shared vector
of payloads, Jy⃗K with y⃗ ∈ ({0, 1}w)n/w of payloads. The vector y⃗ is viewed as n/w

payloads, each of size w.
Output: Sorted lists Jx⃗K and Jy⃗K, sorted by x⃗.

1. For i = 1, . . . , n/w, generate a random “tag,” JriK, with ri ∈ {0, 1}λ (ri is the tag
associated to xi and block yi).

2. Shuffle the list ((Jx1K, Jy1K, Jr1K), . . . , (Jxn/wK, Jyn/wK, Jrn/wK)).

((Jx̃1K, Jỹ1K, Jr̃1K), . . . , (Jx̃n/wK, Jỹn/wK, Jr̃n/wK))
= SHUFFLE

(
((Jx1K, Jy1K, Jr1K), . . . , (Jxn/wK, Jyn/wK, Jrn/wK))

)
3. Sort the (shuffled) list ((x̃1, r̃1), . . . , (x̃n/w, r̃n/w)), based on their keys x⃗.

((Jx̄1K, Jr̄1K), . . . , (Jx̄n/wK, Jr̄n/wK)) = SORT
(
((Jx̃1K, Jr̃1K), . . . , (Jx̃n/wK, Jr̃n/wK))

)
4. Reveal the tags (r̃1, . . . , r̃n/w), and (r̄1, . . . , r̄n/w).
5. Move ((r̃1, Jỹ1K), . . . , (r̃n/w, Jỹn/wK)) so that the r̃i are in the same order as r̄i. Let

(Jȳ1K, . . . , Jȳn/wK) denote this ordered list.
6. Return (Jx̄1K, . . . , Jx̄n/wK) and (Jȳ1K, . . . , Jȳn/wK).

Figure 3 Securely sorting keys with large payloads.

Unfortunately, obliviously swapping two blocks (based on the result of the secure comparison)
requires O(w) controlled swap gates. Thus the entire process requires O (n log (n/w)) secure
operations.

Note that since a secure comparison of λ-bit keys requires λ secure AND gates to
implement as a circuit, whereas a controlled-swap gate only requires one, sorting n elements
(based on λ-bit keys) requires O(nλ log n) secure AND gates, whereas sorting n/w blocks,
requires O

(
n
(

λ
w + 1

)
log (n/w)

)
secure AND gates, so sorting on blocks is actually somewhat

faster (although still not linear).
Given a linear-communication secure shuffle, the problem of sorting with large payloads

can be reduced to the problem of sorting with small payloads as follows. Each key and
its corresponding payload (“block”) are tagged with a random tag. Then the keys are
sorted together with their (short) tags, and the (sorted) tags are revealed. The blocks are
shuffled together with their tags, and the tags are revealed. Finally, the blocks are moved
into the ordering given by the tags. The key obsevrvation is that shuffle ensures that this
final data-movement is independent of the underlying data. The full algorithm is given by
LargePayloadSort in Figure 3.

▶ Lemma 3 (Securely sorting with large payloads). The sorting algorithm, LargePayloadSort,
outlined in Figure 3 can be instantiated using O(n/w log(n/w) + n) communication, and is
(t, m)-secure against semi-honest adversaries if m = 2, or t < m− 1.

Proof. First, note that the probability that ri collides with another rj is at most n
w2λ , so a

union bound shows that with probability at least 1− n2

w22λ , all the ri will be distinct. Note
that if the ri are not distinct, correctness may fail, but privacy will still be preserved.

ITC 2021
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If we choose w = ω(log n), then n2

w22λ will be negligible, and for the rest of the argument,
we assume we are in the case where all the ri are distinct.

First, note that the vectors x⃗ and y⃗ can be tagged using a single linear pass (requiring
O(nλ/w) secure operations). Sorting the vector x⃗ requires O (n/w log (n/w)) operations,
using a standard oblivious sorting algorithm (e.g. [31]). The shuffling algorithm requires
O(n) secure operations, and the final step of moving the data can be done in linear time,
since it does not need to be done obliviously.

To see that this protocol is secure, note that each player’s view consists of the {ri}
associated with the sorted x⃗, and the {ri} associated with the shuffled y⃗. These distributions
can be simulated as follows: the simulator chooses n/w ri uniformly from {0, 1}λ. The
simulator reveals {ri} as associated with x⃗, then the simulator shuffles the {ri} and reveals
the shuffled set as associated with y⃗. Since the protocol chooses the {ri} uniformly, their
distribution is unchanged after sorting them based on x⃗. Since the shuffle is secure, the {ri}
associated with the shuffled y⃗ are simply a random permutation of the {ri} associated with
x⃗. ◀

5 Sorting sparse lists

The algorithm LargePayloadSort provides a method for sorting sparse lists with linear com-
munication. The idea is to divide the list into blocks. Then, with a single pass, we can
count the number of nonzero elements in each block. Using LargePayloadSort, we can sort
the blocks based on the number of nonzero elements. If the list is sparse enough (relative
to the blocksize), we can be sure that only a small fraction of blocks have nonzero entries.
These blocks will appear first (after sorting blocks based on the number of nonzero entries),
thus it only remains to sort these “top” blocks (using on O(n log n)-sorting algorithm). The
complete algorithm is outlined in Figure 4.

▶ Lemma 4. If V⃗ is a list of length n with t nonzero entries, then V⃗ can be securely sorted
using O

(
t log2(n) + n

)
secure operations, which is linear in n when t < n/ log2(n).

Proof. The algorithm, SparseSort is provided in Figure 4.
First, we note that this algorithm is correct. Since V⃗ has at most t nonzero elements, at

most t blocks of B⃗ contain nonzero elements. Thus after sorting B⃗ (Step 3) all the nonzero
elements are in the top t blocks, and after sorting the top t blocks (Step 5) the entire list is
sorted.

Next, we analyze the running efficiency. Step 2 requires a linear pass over the list, and
requires O(n) communication. Step 3 calls LargePayloadSort which requires O(n/w log(n/w)+
n) communication to sort blocks of size w. Step 5 requires sorting a list of length tw which can
be done in time O(tw log(tw)). If w = log(n), then Step 3 requires O(n) secure operations,
and Step 5 requires O(t log2(n)) = O(n) secure operations. ◀

6 Oblivious Compaction

In this section, we review the notion of oblivious compaction. The goal of compaction is to
remove a set of marked element from a list. Given a secret shared list, where each element is
tagged with secret share of 0 or 1, an oblivious compaction procedure removes all elements
tagged with a 0, and returns the new (secret shared) list containing only those elements
tagged with a 1.
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SparseSort

Input: A secret-shared list, JV⃗ K, of length n. An upper bound, t < n, on the number
of nonzero elements of V⃗ .

Output: Secret shares of the sorted list JV⃗ K.

1. Break V⃗ into blocks: Set the blocksize, w = O(polylog n). Let JB⃗K denote a
secret-shared vector of length n/w, where

B⃗i = [Viw+1, . . . , V(i+1)w]

is the ith block of V⃗ .
2. Count entries in blocks: For i = 1, . . . , n/w

Set JCiK = J0K
For j = 1, . . . , w

If V(i−1)w+j ̸= 0 then JCiK = JCi + 1K.
3. Sort blocks:((

JC̄1K, JB̄1K
)

, . . . ,
(
JC̄n/wK, JB̄n/wK

))
= LargePayloadSort

(
(JC1K, JB1K) , . . . ,

(
JCn/wK, JBn/wK

))
4. Merge blocks: Merge the blocks B̄i into a list of n individual elements, let Wi

denote the ith element in this list, i.e.,

(JW1K, . . . , JWnK) =
(
JB̄1K, . . . , JB̄n/wK

)
.

5. Sort top blocks:(
JW̄1K, . . . , JW̄twK

)
= SORT (JW1K, . . . , JWtwK)

6. Return:
(
JW̄1K, . . . , JW̄twK, JWtw+1K, . . . , JWnK

)

Figure 4 Securely sorting a sparse list of length n with t nonzero entries using O(t log2(n) + n)
communication.

ITC 2021



7:12 Secure Merge with O(n log log n) Secure Operations

The first oblivious compaction algorithm was probabilistic and ran in O(n log log λ)
time with failure probability that was negligible as a function of λ [35]. Follow-up works
[37, 36] also gave probabilistic algorithms for solving the problem of oblivious compaction
with running time O(n log log n). The first deterministic, O(n)-time compaction algorithm
appeared in [6].

The compaction algorithms of [35, 6, 20] use expander graphs, and while they are
asymptotically efficient, the hidden constants in the big-O are large,2 and the algorithms are
likely to be inefficient for lists of reasonable size. The compaction algorithms of [37] and [36]
are data independent and run in time O(n log log n), (with reasonable constants) and thus
are suitable for our purposes. In Appendix D, we review the algorithm of [37] and give a
tight analysis of its error probability and running time.

When the list is sparse (i.e., it has O(n/ polylog(n)) nonzero elements), the problem of
compaction is much simpler, and in Appendix E we give a simple algorithm for compacting
sparse lists.

A sorting algorithm is called stable if the order of elements with equal keys is retained. In
general, 0-1 principle [8] for sorting networks tells us that any deterministic, data-independent
stable compaction algorithm is in fact a sorting algorithm. Thus the lower bounds on the
size of comparison-based sorting algorithms tell us that any deterministic, comparison-based
compaction algorithm with o(n log n) complexity must be unstable.

In Section 6.1, we show that, given black-box access to a linear-communication shuffle,
stable compaction with complexity O(n) is achievable. This does not violate the sorting
lower bounds since the underlying shuffle is a multiparty protocol.

6.1 Stable compaction

Using the a linear-communication secure shuffle (see Section 3), we give a simple, linear-time
stable compaction algorithm. Our stable compaction algorithm takes three arguments, a
public bound, t, a secret-shared vector of “tags,” s⃗, and a secret shared vector of “payloads,” x⃗.

Jy⃗K = StableCompaction (t, Js⃗K, Jx⃗K) .

▶ Lemma 5 (Stable compaction). Algorithm, StableCompaction, outlined in Figure 5 is stable,
secure against passive adversaries, and requires O(n) communication.

Proof. It is straightforward to see that if the shuffle can be done with linear time and
communication, the entire protocol can be done with linear time and communication.

To see that the protocol is secure, we construct a simulator that simulates the players’
views. First, note that, essentially, the players’ views consist of the revealed vector y⃗.
Consider the following simulator, S. On inputs n, t, the simulator, S, generates a vector z⃗

such that zi = i for i = 1, . . . , n− t, and zi = 0 for i > n− t. Then S shuffles z⃗, and outputs
the shuffled vector y⃗. It is straightforward to check that this has the same distribution as in
the real protocol. ◀

2 The smallest constant being ∼ 16, 000 in [20].
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StableCompaction

Input: Secret shares of a vector Js⃗K of length n of “tags”. Secret shares of a vector
Jx⃗K of length n of “payloads”. An integer t < n, such that the number of nonzero
elements in s⃗ is t. Note that in compaction the value t is publicly known.

Output: Secret shares of a list of length n consisting of the t nonzero elements in x⃗,
followed by the n− t “dummy” elements.

1. Using a linear pass, tag the real and dummy elements using two distinct counters, c

and d, so that the tags of the dummy elements all appear before the real elements.
Initialize JcK = 1.
Initialize JdK = t + 1.
For i = 1, . . . , n,

If JsiK = J⊥K, set JyiK = JdK, and set JdK = Jd + 1K.
If JsiK ̸= J⊥K, set JyiK = JcK, and set JcK = Jc + 1K.

2. Shuffle the vector x⃗ together with the tags y⃗, using a linear-communication secure
shuffle (see Section 3).

((Jx̃1K, Jỹ1K), . . . (Jx̃nK, JỹnK)) = SHUFFLE ((Jx1K, Jy1K), . . . (JxnK, JynK))

3. Reveal the tags ỹ.
4. For i = 1, . . . , n, move Jx̃iK to location, yi, i.e., set Jx̄yi

K = Jx̃iK.
5. The first t elements of Jx̄K are the “true” values and the last n − t entries are the

“dummy” elements.

Figure 5 Stable compaction.

7 Securely merging private lists

7.1 Construction overview
In this section, we describe our novel data-oblivious merge algorithm. Our algorithm requires
a linear-communication algorithm for shuffling secret shares (see Section 3), an oblivious
sorting algorithm, SORT (e.g. [2, 27, 31, 30]) that requires sort(·) secure operations, and
an oblivious, stable compaction algorithm (see Section 6) The rest of the operations are
standard operations (e.g. equality test, comparison) that can be easily implemented in any
secure computation framework.

At a high-level, the merging algorithm proceeds as follows:
The input is two (locally) sorted lists, which are then concatenated.
The players divide the list into blocks of size w = O(polylog(n)). We call the first element
of each block a “pivot” element. Then the players sort these blocks based on their
pivots using LargePayloadSort. (For efficiency, this step requires the linear-communication
shuffle).
At this point, because the initial lists were sorted, most elements are “close” to their true
location in the list. In fact, we can concretely bound the number of “strays” (i.e., the
number of elements that may be far from their true location).
After extracting the strays, every wth element is declared to be a pivot for some parameter
w = O(polylog n).
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The players obliviously extract these strays, and match them to their “true” pivots. Since
the number of strays and pivots is not too large, this can be done using a linear number
of secure operations using the sparse sorting algorithm SparseSort (described in Figure 4).
The players reinsert the strays next to their true pivot. To avoid revealing the number of
strays associated with each pivot, the number of strays associated to each pivot must be
padded with “dummy” elements.
The players use a linear-communication stable compaction algorithm to remove the
dummy elements that were inserted with the strays.
The players sort using polylog(N)-sized sliding windows again. At this point, all the
elements will be in sorted order, but there will be many dummy elements.

The details of this construction are described in Section 7.2.

7.2 Oblivious merge with O(n log log n) secure operations
In this section, we provide the details of our oblivious-merge algorithm.

1. Public parameters: A length, n ∈ Z. A blocksize w ∈ Z, such that w | n (we will set
w = O(polylog(n))). A parameter δ, with 0 < δ < 1.

2. Inputs: Sorted, secret-shared lists (Ja1K, . . . , JaℓK), and (Jb1K, . . . , Jbn−ℓK). We let v⃗

denote this list,

Jv1K, . . . , JvnK def= Ja1K, . . . , JaℓK, Jb1K, . . . , Jbn−ℓK.

3. Creating pivot tags: For every pivot, assign a random identifier r from the set
1, . . . , n/w as follows(

Jr1K, . . . , Jrn/wK
)

= SHUFFLE (J1K, . . . , Jn/wK) .

At this point, the “identifier” or “tag” ri remains hidden (secret-shared), and will be
assigned to the ith pivot in the next step.
Secure Operations: O (n/w)

4. Sorting based on pivots: This step uses LargePayloadSort to sort blocks of size w

based on their leading entry as follows. Define Bi to be the ith block of size w,

Bi
def=
(
v(i−1)w+1 . . . , vi·w

)
,

and define pi
def= v(i−1)w+1 for i = 1, . . . , n/w to be the leading element of each block.(

J⃗̃pK,
((

Jr̃1K, JB̃1K
)

, . . . ,
(
Jr̃n/wK, JB̃n/wK

)))
= LargePayloadSort

(
Jp⃗K,

(
(Jr1K, JB1K) , . . . ,

(
Jrn/wK, JBn/wK

)))
.

At this point, the blocks of the vector v⃗ are sorted according to the leading element in
each block,

(v1, . . . , vn) def= B̃1 · · · B̃n/w.

Secure Operations: O(n/w log(n/w) + n)
5. Revealing pivot Tags: For i = 1, . . . , n/w, reveal r̃i. Note that since each pivot, pi,

was assigned a random tag ri (which remains hidden), revealing {r̃i}, which are sorted
based on the pi reveals no information about the set of pivots, {pi}.
Secure Operations: O (n/w)
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6. Tagging: Using a linear pass, tag each element with its initial index, i.e., the ith element
in the list is tagged with a (secret-shared) value i. For i = 1, . . . , n set JeiK = JiK. Note
that since the tags are publicly known, this step can be done without communication.
Secure Operations: O(n)

7. Sorting sliding windows: Fix a threshold, δ > 0 (the exact value of δ is calculated in
Lemma 11). Sort the list Jv⃗K together with the tags e⃗, based on windows of size 4δ−1w

as follows: For i = 1, . . . , n/(2δ−1w)− 1,((
Jv2(i−1)δ−1w+1K, Je2(i−1)δ−1w+1K

)
, . . . ,

(
Jv2(i+1)δ−1wK, Je2(i+1)δ−1wK

))
= SORT

((
Jv2(i−1)δ−1w+1K, Je2(i−1)δ−1w+1K

)
, . . . ,

(
Jv2(i+1)δ−1wK, Je2(i+1)δ−1wK

))
Secure Operations: O

((
n/
(
2δ−1w

))
sort

(
4δ−1w

))
8. Identifying “strays” For each element in v⃗, if its initial index (stored in its tag e) differs

from its current position by more than δ−1w, then mark the element with a (secret-shared
tag “stray”).
For i = 1, . . . , n,

JsiK =
{

J1K if |ei − i| > δ−1w

J0K otherwise.

and

JviK =
{

J⊥K if |ei − i| > δ−1w

JviK otherwise.

Secure Operations: O (n)
9. Extracting strays At this point, each stray is tagged with the (secret-shared) tag

(JsiK = J1K) and we can extract these strays using a compaction algorithm.

(Jz1K, . . . , JzbK) = StableCompaction (Js⃗K, Jv⃗K) .

For an appropriate choice of parameters, δ, w, Lemma 6 shows that the number of strays
will be less than b.
Secure Operations: O (n)

10. Sorting pivots and strays: Sort pivots together with strays, using SORT. There are
n/w pivots, and the list of strays has b elements, so this list has b + n/w elements. Pivot
i, p̃i is tagged with its tag, r (from Step 4), and each stray is tagged with 0.

((Jz1K, Jρ1K), . . . , (Jzb+n/wK, Jρb+n/wK)
)

= SORT
(
((Jz1K, J0K), . . . , (JzbK, J0K)) ||

(
(Jp̃1K, Jr̃1K), . . . , (Jp̃n/wK, Jr̃n/wK)

))
Secure Operations: sort(b + n/w)

11. Adding pivot IDs to strays After step 10, the players hold a (sorted) list, Jz⃗K, of
pivots and strays, and a list of “tags” Jp⃗K, where pivot pi is tagged with ri and each
stray is tagged with 0. Both lists are of length b + n/w. In this step, they will tag each
stray in this list with its corresponding pivot ID as follows. Initialize JcK = Jρ̃1K. For
i = 1, . . . , b + n/w.
a. If ρi ̸= 0 (i.e., zi is a pivot), then JcK = JρiK, JρiK = J0K.
b. If ρi = 0 (i.e., zi is not a pivot) , then JρiK = JcK.
At the end of this process, each of the strays is tagged with a (secret-shared) ID of the
nearest pivot above it. To make this step oblivious, the conditional can be implemented
with a simple mux. Secure Operations: O(b + n/w)
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12. Counting number of strays associated to each pivot: Initialize JcK = J0K. Define
the share vector Js⃗K as follows. For i = b + n/w, . . . , 1
a. If ρi ̸= 0 (i.e., zi is not a pivot), then set JcK = Jc + 1K, and JsiK = J0K.
b. If ρi = 0 (i.e., zi is a pivot) , then set JsiK = JcK, JcK = J0K.
At the end of this process, if zi is a pivot, then si stores the number of strays associated
with that pivot.
Secure Operations: O(n)

13. Removing pivots from stray list: Using the sparse compaction algorithm SparseCom-
paction (described in Figure 8), extract a list of b strays, together with their tags (recall
the “tag” ρi gives the pivot ID rj of the nearest pivot preceding the ith stray). Note that
this compaction does not need to be stable.

(((Jz1K, Jρ1K), . . . , (JzbK, JρbK))
= SparseCompaction

(
b, Jρ⃗K, ((Jz1K, Jρ1K), . . . , (Jzb+n/wK, Jρb+n/wK)

)
Secure Operations: O

(
b log2(n)

)
14. Extracting pivot counts: After Step 12 the s⃗ is a vector of length b + n/w containing

the number of strays associated with each of the n/w pivots, and 0s in the locations
corresponding to strays. Set

Js⃗K = StableCompaction (n/w, Js⃗K, Js⃗K) .

At this point, s⃗ is a vector of length n/w, and for i = 1, . . . , n/w, si is the number of
strays associated with pivot i.
Secure Operations: O (b + n/w)

15. Padding lists of strays: Although the total number of strays, b, is known, revealing the
number of strays associated with each pivot would leak information. Thus the number of
strays associated with each pivot must be padded to a uniform size. Note that every wth
element in the sorted inputs J⃗aK and J⃗bK was defined to be a pivot, thus if the list were
completely sorted, there could be at most 2(w − 1) elements between any two adjacent
pivots.
a. For i = 1, . . . , n/w, for j = 1, . . . , w,

B(i−1)·w+j =
{

(1, (⊥, ri)) if j ≤ JsiK
(0, (⊥, ri)) otherwise.

The elements tagged with 1 are the “dummy” elements. Note that among all the Bi,
there are at most b elements tagged with a 0. The elements tagged with a 0 will be
removed in the next step.

b. Using the algorithm SparseSort (described in Figure 4), sort the Bi.((
JB̃1,1K,

(
JB̃1,2K, JB̃1,3K

))
, . . . ,

(
JB̃2n(w−1)/w,1K,

(
JB̃2n(w−1)/w,2K, JB̃2n(w−1)/w,3K

)))
= SparseSort

(
(JB1,1K, (JB1,2K, JB1,3K)) , . . . ,

(
JB2n(w−1)/w,1K,

(
JB2n(w−1)/w,2K, JB2n(w−1)/w,3K

)))
c. We remove the first components, B̃i,1, and set(

(JC1,1K, JC1,2K) , . . . ,
(
JC2(w−1)n/w−b,1K, JC2(w−1)n/w−b,2K

))
=
((

JB̃1,2K, JB̃1,3K
)

, . . . ,
(
JB̃2n(w−1)/w−b,2K, JB̃2n(w−1)/w−b,3K

))
Secure Operations: O (n)
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16. Merging strays and pads Concatenate the list of b strays, (Jz⃗K, Jρ⃗K) (from Step 13)
along with the 2(w− 1)n/w−b pads JC⃗K from the previous step. Shuffle this list, keeping
the associated tags, then, reveal the tags and move strays and pads to the positions given
by their tags. This is accomplished as follows.
a. ((

JC̃1,1K, JC̃1,2K
)

, . . . ,
(
JC̃(2w−1)n/w,1K, JC̃(2w−1)n/w,2K

))
= SHUFFLE

(
(Jz⃗K, Jρ⃗K) ||JC⃗K

)
b. For each element in this shuffled list, reveal the associated tag, C̃i,2. Note that by Step

15 exactly 2(w − 1) (secret-shared) elements will have each tag.
c. For each i, move the block C̃i,1 of size 2(w−1) to the location where C̃i,2 = r̃j (revealed

in Step 5). At the end of Step 8, Jv1K, . . . , JvnK was the list of elements with the strays
set to ⊥. To accomplish this, define the function f(r̃j) def= j for j = 1, . . . , n/w, for the
public r̃j (revealed in Step 5).

for i = 0, . . . , n/w − 1 do
Define di = 1.

for j = 1, . . . , w do
set Jṽi(3w−1)+jK = Jviw+jK.

end for
end for
for i = 1, . . . , (2w − 1) do

Let j = f(C̃i,2).
Set Jṽ(j−1)(3w−1)+w+dj

K = JC̃i,1K.
Set dj = dj + 1.

end for
Secure Operations: O(n)

17. Compacting: Now, we need to remove the 2(w − 1)n/w dummy elements. We cannot
use an off-the-shelf compaction algorithm [37, 6, 36] because these algorithms are not
stable, Instead, we use the stable compaction algorithm StableCompaction (described in
Figure 5).
For i = 1, . . . , (3w − 1)n/w, if JṽiK = J⊥K, then set JziK = J0K, otherwise set JziK = J1K

J⃗̃vK = StableCompaction
(
n, Jz⃗K, J⃗̃vK

)
.

Secure Operations: O(n)
18. Sorting sliding windows At this point, the players have a (secret-shared) list, J⃗̃vK,

consisting of n elements, and all elements are in approximately their correct positions.
In this step, sort overlapping blocks of size 4

((
δ−1 + 4

)
w + 2

)
using a secure sorting

algorithm SORT.
For i = 1, . . . ,

⌈
n

2(δ−1+4)w+2

⌉
, set(

Jṽ(i−1)2((δ−1+4)w+2)+1K, . . . , Jṽ(i+1)2((δ−1+4)w+2)+1K
)

= SORT
(
Jṽ(i−1)2((δ−1+4)w+2)+1K, . . . , Jṽ(i+1)2((δ−1+4)w+2)+1K

)
At this point all the elements will be sorted.
Secure Operations: O

(⌈
n

2(δ−1+4)w+2

⌉
sort

(
4
((

δ−1 + 4
)

w + 2
)))

19. Return: The sorted, secret shared list, J⃗̃vK.

See Appendix A for a concrete calculation of the communication cost. See Appendix B
for a proof of security.
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8 Correctness

8.1 Bounding the number of strays
In order to analyze the running time of our algorithm, we need to bound the number of
“strays” that appear in Step 8.

▶ Lemma 6 (Bounding the number of strays). Suppose a list, L, is created as follows
1. L is composed of two sorted sublist L = a⃗||⃗b with |⃗a| = ℓ, and |⃗b| = n − ℓ. We assume

w | ℓ and w | n− ℓ.
2. Break the sorted list a⃗ into blocks of size w. Call the first element ( i.e., the smallest

element) in each block a “pivot.”
3. Break the sorted list b⃗ into blocks of size w. Call the first element ( i.e., the smallest

element) in each block a “pivot.”
4. Alice and Bob sort their joint list of blocks based on their pivots.

We call an element a “stray” if it is more than tw positions above its “true” position ( i.e.,
its position in the fully sorted list of Alice and Bob’s entries). Then there at most n

t strays.

Proof. Call the elements with indices [iw + 1, . . . , (i + 1)w] in L a “block.” Let Bi denote
the ith block for i = 1, . . . , n/w. Notice that
1. The elements within each block are sorted i.e., L[iw+j] ≤ L[iw+k] for each 0 ≤ j ≤ k ≤ w

and all i.
2. The lead elements in each block are sorted i.e., L[iw] ≤ L[jw] for i ≤ j.
3. Each element is less than or equal to all pivots above it i.e., L[iw + j] ≤ L[kw] for all

j < w, k > i.
4. All entries provided by a single party are in sorted order.
With these facts, notice that the only way an element’s index in L can be greater than its
true position is if it was in a block where the preceding block was provided by the other party.
Similarly, for an element to be more than tw from its true position, it must be in a block
preceded by t consecutive blocks provided by the other party. If we label blocks provided by
Alice with an a, and blocks provided by Bob with a b, then in order for w elements to be
more than tw out position, we need a sequence of a, · · · , a︸ ︷︷ ︸

t

, b or b, . . . , b︸ ︷︷ ︸
t

, a. There can only

be n
tw such sequences, so at most n

t elements can be strays. ◀

Note that the sequence of operations described in Lemma 6 exactly corresponds to the
process in the merging algorithm. In Step 2, the initial list is created as the concatenation of
a⃗ and b⃗. In Step 3, every wth element is tagged as a pivot, and in Step 4, the blocks are
sorted based on their pivots. Lemma 6 gives a bound on the number of elements that can be
more than tw positions away from their “true” location at the end of this process. In Step 7
(Sorting sliding windows), every element that is more than tw from its true location will
move at least tw positions, and thus will be tagged as a “stray” in Step 8. Conversely, every
element that moves more than tw positions in Step 7 must have been at least tw positions
from its true location, and thus the set of “strays” found in Step 8 will exactly correspond
to the set of elements that were tw positions from their true location, and this number is
exactly what is bounded in Lemma 6.

▶ Theorem 7 (Correctness of the merge). If the input lists J⃗aK and J⃗bK in Step 2 are locally
sorted, then the output list Jv⃗K in Step 19 is globally sorted.

Proof. At the end of Step 2, the two parts of the list v⃗, (v1, . . . , vℓ) and (vℓ+1, . . . , vn)
are locally sorted.
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At the end of Step 4 blocks of size w are sorted according to their leading (smallest)
elements. Note that if these blocks were non-overlapping (i.e., viw < viw+1 for i =
1, . . . , n/w − 1), the entire list would already be sorted at this point. In general, however,
there may be considerable overlap in the blocks provided from the a⃗ and those from b⃗.
At the end of Step 8, Lemma 10 tells us that all elements that are more than δ−1w from
their true (final) location will be tagged as “stray.”
Corollary 9 shows that after Step 8, no pivot will be tagged as “stray,” so no strays will
be extracted in Step 9, and thus concatenating the lists of pivots and strays in Step 10
will not introduce any duplications.
At the beginning of Step 18, Lemma 10 shows that every non-stray will be within δ−1w

of its true location. Lemma 8 shows that at the end of Step 4, every pivot is within w of
its true location. By Step 16, every stray is within 3w + 2 of its true pivot (based on the
pivot’s location after Step 4. Thus at the beginning of 18, every stray is within 4w + 2 of
its true location. Putting this together, every element is within (δ−1 + 4)w + 2 of its true
location. Since the sorting windows are chosen so that every element is sorted along with
all elements within a distance of (δ−1 + 4)w + 2 on either side, at the end of Step 18 all
the elements are sorted. ◀

▶ Lemma 8. Let v(i−1)w+1 denote the ith pivot at the end of Step 4. The true index, j∗, of
v(i−1)w+1 (in the completely sorted list) satisfies

(i− 2)w < j∗ < (i− 1)w + 1

Proof. At the end of Step 4 the pivots are all in sorted order relative to one another, and all
the blocks between the pivots are locally sorted.

First, notice that if (i− 1)w + 1 < j < w, the vj ≥ v(i−1)w+1, since the ith block is locally
sorted. Next, notice that if (i− 1)w + 1 ≤ j, then

v(i−1)w+1 ≤ v(⌈ j
w ⌉−1)w+1 ≤ vj (1)

where the first inequality holds because the pivots are sorted, and the second inequality holds
because vj is in the

⌈
j
w

⌉
th block which is locally sorted. Thus the true index j∗ of v(i−1)w+1

satisfies j∗ ≤ (i− 1)w + 1.
To see the other side of Equation 1, recall that the list v⃗ was composed of blocks from

two sources a⃗, and b⃗ which were locally sorted. Without loss of generality, assume block i

came from source a⃗. Now, consider the i′th block for i′ < i. If the i′th block came from the
same source as the ith block (⃗a), then since the original lists a⃗ was sorted, all elements of the
i′th block are less than or equal to v(i−1)w+1. If the i′th block came from the other source, b⃗,
then the elements v(i′−1)w+2, . . . , vi′·w could be out of order relative to v(i−1)w+1. On the
other hand, if there exists an i′′ with i′ < i′′ < i, with i′′ also from the source b⃗, then since b⃗

was locally sorted, all elements of the i′th block are less than or equal to those of the i′′th
block, in particular, they are less than or equal to the i′′th pivot which is less than or equal to
the ith pivot v(i−1)w+1. Thus only one block from b⃗ can be out of order relative to v(i−1)w+1.
Thus at most w − 1 elements vj with j < (i− 1)w + 1 can satisfy vj > v(i−1)w+1. ◀

▶ Corollary 9. In Step 8, no pivot will be tagged as a “stray.”

Proof. In Step 8, an element will be tagged as a stray if it is more than δ−1w from its true
location. Lemma 8 shows that a pivot is at most w from its true location, and thus can move
at most w positions when we sort on sliding windows in Step 7. ◀
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▶ Lemma 10. After Step 8 every element that was more than δ−1w from its true location
before Step 7 will be tagged as a “stray.”

Proof. To show this, it suffices to show that at the beginning of Step 7, if an element is
more than δ−1w from its true location (in the globally sorted list) then it will move at least
δ−1w during the sorting procedure of Step 7.

First, note that (as in the proof of Lemma 6) the only way an element can be more than
δ−1w from its true position is if

⌊
δ−1⌋ consecutive, adjacent blocks were provided by the

other party. By the choice of sliding windows, every element will be sorted within a window
containing at least δ−1w elements on either side of it. Thus any element that is directly
preceded or followed by δ−1w “out-of-order” elements will move at least δ−1w and thus be
tagged as a stray. ◀

9 Extensions

Malicious adversaries: Our secure-merge algorithm outlined in Section 7 is “MPC-friendly,”
and aside from the O(n)-communication shuffle (discussed in Section 3), the entire algorithm
can be naturally represented as an O(n log log n)-sized circuit. For this reason, extending
our merge protocol to provide malicious security requires (1) a linear-communication shuffle
and (2) a generic MPC protocol that both provide security against malicious adversaries.

The multiparty shuffle of [34] can be modified to provide security against malicious
adversaries, and several generic MPC protocols (e.g. [46, 28]) provide security against
malicious adversaries. In the two-party setting, the literature on efficient, verifiable shuffles
(e.g. [29, 11]) provide methods for making homomorphic encryption-based shuffles (like
that of Section 3.3) secure against malicious adversaries without affecting its asymptotic
communication complexity.

Merging more than two lists. Our protocol can also be modified in a straightforward
manner to support more than two parties, by merging multiple lists recursively.
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Appendix

A Protocol analysis

A.1 Efficiency analysis
In this section, we examine the efficiency of our construction.

Our algorithm requires a data-oblivious sorting routine, SORT. Sorting networks like
Batcher’s and the AKS network are deterministic data-independent sorting algorithms.
Batcher’s sorting network requires O(n log2(n)) comparisons to securely sort n elements, and
the AKS sorting network [2] uses only O(n log(n)) comparisons, the hidden constants are so
large that it only begins to beat Batcher’s sort for n > 1052 [3] and is hence impractical.
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The work of [31, 30] provide a data-oblivious sorting routines that requires O(n log n)
comparisons (with small constants) by combining a permutation network, and (public) sorting
algorithm. To the best of our knowledge, this is the fastest data-oblivious sort in practice,
and has optimal asymptotic guarantees.

Throughout the rest of the analysis, we assume that the subroutine SORT is a data-
oblivious sorting algorithm that requires sort(n) = O(n log(n)) secure operations.

▶ Lemma 11. The merging algorithm in described in Section 7.2 requires O(n log log(n))
secure operations.

Proof. Lemma 6 tells us that the maximum number of strays, b, is δn. In order for Step
15 to run in linear time, we set δ = O

(
log−2(n)

)
. Note, however, that if we use the

asymptotically efficient linear-time compaction algorithm from [6], we can choose a larger
value for δ, (i.e., δ = O(1)). With this choice of δ, the runtime is dominated by Steps 10
and 18. Step 10 takes time sort(b + n/w). Setting t = δ−1, Lemma 6 gives b = δn, so
b + n/w = O (n/w). Since sort(n) = O(n log(n)) operations, setting w = O

(
log2(n)

)
, step

10 takes O(n) secure operations. Step 18 takes O
(⌈

n
2(δ−1+4)w+2

⌉
sort

(
4
((

δ−1 + 4
)

w + 2
)))

.

With our choices of δ = O
(
log−2(n)

)
, and w = O

(
log2(n)

)
,
⌈

n
2(δ−1+4)w+2

⌉
= O

(
nlog−4(n)

)
,

and 4
((

δ−1 + 4
)

w + 2
)

= O
(
log4(n)

)
. Since sort(n) = O(n log(n)) operations, Step 18 takes

time O(n log log(n)). ◀

B Obliviousness

In this section, we show that the algorithm given in Section 7 is data oblivious.

▶ Lemma 12 (Obliviousness). The merge algorithm given in Section 7 is data oblivious.

Proof. Showing data-obliviousness requires showing
1. All values that affect the control flow are independent of the inputs
2. The value, and time of revelation of all revealed values are independent of the inputs

It is straightforward to check that all revealed values are uniformly and independently
chosen, and that the time of their revelation is deterministic (and hence input-independent).

Data are revealed at Steps 4 and 16. At Step 4, the pivot-IDs that are revealed are
uniformly random and independent of the input. The pivot locations are deterministic (every
wth element).

At Step 16, the same number of pivot IDs of each type are revealed (2w − 1) because of
the padding, and their locations are data-independent because of the secure shuffle.

Thus the entire algorithm is data-oblivious as long as the secure shuffle is data oblivious.
◀

With the exception of an asymptotically efficient secure shuffling algorithm, all the steps
of our sorting algorithm can be implemented with generic secure computation techniques,
and hence can easily be made secure against malicious parties or extended to the multiparty
setting.

Note that three steps require the asymptotically efficient secure shuffle. These are Steps 4
(“Sorting based on pivots”), 16 (“Merging strays and pads”) and 17 (“Compacting”).

In Section 3 we give standard algorithms for instantiating a two-party data-oblivious
shuffle (using additively homomorphic encryption) and a multi-party data-oblivious shuffle
(using one-way functions).
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C Shuffling times

Our secure sorting algorithm requires an efficient method for secure shuffling with payloads.
We give a simple, linear-time algorithm for this in Figure 2 based on additively homomorphic
encryption. To demonstrate the practical performance of this shuffle, we implemented and
benchmarked it using the PALISADE FHE library [18].

We used PALISADE version 1.6, with the “BFVrns” cryptosystem with a security level
set to “HEstd_128_classic.” This scheme uses the plaintext modulus 536903681, which
can encode plaintexts of length 29 bits. In this scheme, each ciphertext can be “packed”
with 16384 plaintexts, so each ciphertext holds 29 · 16384 = 475136 plaintext bits. Each
ciphertext required 1053480 bytes to store, so the ciphertext expansion with these parameters
is approximately 17.7.

We benchmarked the running time and communication cost of this scheme, and the
results are presented in Figure 6.

For comparison, we also implement the Waksman permutation network [44] using the
semi-honest 2pc provided by EMP [45]. The Waksman permutation network has complexity
O(n log n), where n is the number of bits being shuffled, rather than the number of blocks.
Because a uniform setting of control bits in the Waksman network does not yield a uniform
permutation, in practice, the Waksman network would usually be run twice (where each
player inputs control bits for one of the shuffles). These benchmarks only show a single run
of Waksman network.
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Figure 6 The communication cost of the FHE-based secure shuffling protocol in Section 3. Note
that both the x and y axes are on a log scale, and in such a scale, the function y = x log x, will
appear as y = x + log x, which is why the O(n log n) Waksman shuffle appears linear.
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D The [37] compaction algorithm

In this section, we review a data independent compaction algorithm described in [37, Theorem
14]. The algorithm runs in O(n log log n) time, and works by recursively peeling off 1/6th of
the remaining elements (depending on whether the majority of the remaining elements are
zero or one).

Algorithm 3 describes a simple randomized procedure that takes an array, v⃗, of length
n with the promise that at least n/2 of the elements in v⃗ are 0. Algorithm 3 reorganizes v⃗

such that the first n/6 elements of v⃗ are 0 with high probability. The algorithm makes use of
a deterministic O(n log(n)) partitioning algorithm, partition, e.g. that of [26] that requires
exactly n log(n) comparisons.

The full algorithm is described in Algorithm 2.

Algorithm 1 The [37] data-independent partitioning algorithm that runs in O(n log log n) time.

Private input: A list v⃗ ∈ {0, 1}n

Initialize a0 = 0
for i = 0, . . . , n− 1 do ▷ Count the number of 1s in v⃗

a0 = a0 + v[i]
end for
return MZ(v⃗, a0)
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Figure 7 The running time of the FHE-based secure shuffling protocol. Both parties were run
on the same machine, so networking costs were minimized.
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Algorithm 2 The [37] data-independent partitioning algorithm that runs in O(n log log n) time.

Private input: A list v⃗ ∈ {0, 1}n

Private input: a, the number of 1’s in v⃗

if n < 4s then
return partition(v⃗)

end if
Initialize flipped = 0

if a > n/2 then ▷ If majority ones, flip the bits of v⃗

flipped = 1
end if
v⃗ = flipped · (v⃗ ⊕ 1n) + (1− flipped) · v⃗ ▷ If flipped = 1, invert bits of v⃗

v⃗ = MZInner(v⃗, a) ▷ First n/6 bits are now 0 w.h.p.
Define v⃗l = (v[0], . . . , v[⌊n/6⌋]) ▷ ⃗⃗

lv is sorted portion of list
Define v⃗r = (v[⌊n/6⌋+ 1], . . . , v[n− 1]) ▷ v⃗r is unsorted portion of list
a = flipped · (n− a) + (1− flipped) · a ▷ Number of 1s remaining in v⃗r

v⃗r = MZ(v⃗r, a) ▷ Recurse
v⃗u = v⃗l||v⃗r

v⃗f = reverse (1n ⊕ v⃗u) ▷ Flip bits and reverse list
return flipped · v⃗f + (1− flipped) · v⃗u

Algorithm 3 The inner step of the [37] algorithm that moves n′/6 elements of type 0 to the
beginning of the list.

Input: A list v⃗ ∈ {0, 1}n′
with the promise that majority(v⃗) = 0

for i from 0 to n′/3− 1 do ▷ Boost probability that v⃗[i] = 0
for j from 0 to c− 1 do

r
$← [n′/3, n′ − 1]

if v⃗[r] = 0 then
swap(v⃗[i], v⃗[r])

end if
end for ▷ At this point, Pr [v⃗[i] = 0] > 1−

( 1
2
)c+1

end for
for i from 0 to n′/(3s)− 1 do

partition(v⃗[i · s, . . . , (i + 1) · s− 1]) ▷ Sort blocks of size s

for j from 0 to s/2 do
swap(v⃗[i · s/2 + j], v⃗[(2 · i) · s/2 + j]) ▷ Move first half of each block to the

beginning of the list
end for

end for
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▶ Lemma 13 (Algorithm 1 correctness). The probability that Algorithm 1 fails to correctly
compact a list is

6n− 20s

3s
e−2( 1

2 −( 3
4 )c)2

s

A straightforward calculation shows that for c = 6, setting s = log(n)2, gives a failure
probability of less than 2−40 for all n > 212.

Proof. At each iteration through the loop, the size of the remaining list drops by a factor
of 5/6. The loop terminates when the list size reaches 4s. If we let t denote the number of
iteration of the algorithm, we have 4s =

( 5
6
)t

n, which means

t =
log
(

n
4s

)
log 6

5

and
( 5

6
)t = 4s

n .
First, notice that

t∑
i=0

(
5
6

)i

=
(

1−
( 5

6
)t+1

1− 5
6

)

= 6
(

1− 5
6 ·
(

5
6

)t
)

= 6
(

1− 5
6 ·

4s

n

)
= 6n− 20s

n
.

A given block of size s will fail if it has more than s
2 zeros. The right half is guaranteed to

have at least n′

2 −
n′

3 = n′

6 zeros, so at least 1
4 of the elements on the right hand side are zero.

For a given ai, after making c attempted swaps, the probability that ai is zero is at least
1−

( 3
4
)c. Thus by the Hoeffding bound, the probability that a given block fails is at most

e−2( 1
2 −( 3

4 )c)2
s

Taking a union bound over the n′

3s blocks of size s, and then summing over the n′, we have
the total failure probability is bounded by

n

3s
e−2( 1

2 −( 3
4 )c)2

s

◀

▶ Lemma 14 (Algorithm 1 runtime). Algorithm 1 obliviously compacts a list using
6n− 14s

3 log s + 6n− 20s

3 · (c + 6)

comparisons.

Proof. Algorithm 1 uses n comparisons to compute a before calling Algorithm 2.
Each iteration of the loop (Algorithm 3) requires n′

3s calls to partition (on sets of size s).
At iteration i, n′ =

( 5
6
)i

n, which gives

n

3s

t∑
i=0

(
5
6

)i

= 6n− 20s

3s
.
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So there are a total of 6n−20s
3s calls to partition of size s.

At each iteration of the loop (Algorithm 3) there are also n′·c
3 controlled swaps.

Thus the total number of controlled swaps in is

n · c
3

t∑
i=0

(
5
6

)i

= 6n− 20s

3 · c

At every call to Algorithm 2 there are 2n + log(n) swaps. Finally, there is one call to
partition of size 4s.

Thus total runtime is

6n− 20s ·
(

1
3s

partitionTime(s) + c

3
6n− 20s

3 + 2
)

+ partitionTime(4s)

Where partitionTime(n) denotes the number of swaps needed to partition a set of size s.
There are many options for the partition algorithm used here. In our implementation, we use
the simple, deterministic, data independent partitioning algorithm from [26], which requires
n log n controlled swaps.

Thus the total number of comparisons is

6n− 14s

3 log s + 6n− 20s

3 · (c + 6).

As noted above, setting c = 6, and s = log2 n gives a failure probability below 2−40, for all
n > 212, so with these parameters, the overall number of comparisons is

4n log log n + 14n. ◀

The deterministic data independent partitioning algorithm from [26] runs in time requires
exactly n log n, secure comparisons, so the [37] compaction algorithm will start to beat the
deterministic [26] solution when 4n log log n < n log n, i.e., when n > 216.

E Sparse compaction

The sparse sorting algorithm of Figure 4 can also be used for extracting a small number of
nonzero values from a list. The resulting sparse compaction algorithm takes three arguments,
a public bound, t, a secret-shared vector of “tags,” s⃗, and a secret shared vector of “payloads,”
x⃗.

Jy⃗K = SparseCompaction (t, Js⃗K, Jx⃗K) .

We outline our sparse compaction algorithm in Figure 8.

▶ Corollary 15 (Sparse compaction). Given a secret-shared list of length n with at most t

nonzero elements, the non-zero elements can be extracted in O
(
t log2(n) + n

)
time using the

algorithm given in Figure 8.

F Security proofs

▶ Lemma 16 (Secure shuffling). If PKE = (Gen, Enc, Dec) is a CPA-secure additively-
homomorphic cryptosystem, over the group G, and the scheme is rerandomizable, then secure
shuffling algorithm in Figure 2 securely implements a 2-party shuffle in the honest-but-curious
setting.
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SparseCompaction

Public parameters: An integer, n, and a bound t < n.
Input: A secret-shared list, Jx⃗K, of length n, each element of Jx⃗K is tagged with a

(secret-shared) tag JyiK with yi ∈ {0, 1}. The guarantee is that at most t tags are 1.
Output: A secret shared list, Jw⃗K of length t containing all the nonzero elements of x⃗.

1. Sorting: Use the sparse sorting algorithm, SparseSort to sort the n elements of V⃗

based on their tags.

((Jx̄1K, Jȳ1K), . . . , (Jx̄nK, JȳnK)) = SparseSort ((Jx1K, Jy1K), . . . , (x̄n, ȳn))

2. Extraction: Return the top t elements of the sorted list (Jx̄1K, . . . , Jx̄tK).

Figure 8 Sparse compaction.

Proof. First, we note that if Alice or Bob, generates a random permutation, the resulting
permutation will be random. Second, note that since Alice and Bob are honest-but-curious,
at every step the ciphertexts they provide correctly encode some ordering of the secret shares.

Consider a series of Bob’s views. Let viewb
0 denote Bob’s view in the real protocol. Let

viewb
1 be the protocol where, instead of encrypting her shares under pka, Alice encrypts the

0 vector. The semantic security of PKE ensures that viewb
0 and viewb

1 are indistinguishable.
Let viewb

2 be the protocol where, instead of shuffling the pairs of ciphertexts, Alice simply
re-randomizes Bob’s shares (through the homomorphic encryption). Since the encryption
is re-randomizable, and the plaintext shares are re-randomized over the group G, both the
ciphertexts and the decrypted plaintexts are indistinguishable from in viewb

1. Thus, Alice’s
security is preserved.

The proof of security from Bob’s side is essentially identical.
◀
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