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Abstract
Given 2n-to-n compression functions h1, h2, h3, we build a new 5n-to-n compression function T5,
using only 3 compression calls:

T5(m1, m2, m3, m4, m5) := h3(h1(m1, m2) ⊕ m5, h2(m3, m4) ⊕ m5) ⊕ m5

We prove that this construction matches Stam’s bound, by providing Õ(q2/2n) collision security
and O(q3/22n + nq/2n) preimage security (the latter term dominates in the region of interest, when
q < 2n/2). In particular, it provides birthday security for hashing 5 inputs using three 2n-to-n
compression calls, instead of only 4 inputs in prior constructions. Thus, we get a sequential variant
of the Merkle-Damgård (MD) hashing, where t message blocks are hashed using only 3t/4 calls to
the 2n-to-n compression functions; a 25% saving over traditional hash function constructions. This
time reduces to t/4 (resp. t/2) sequential calls using 3 (resp. 2) parallel execution units; saving a
factor of 4 (resp. 2) over the traditional MD-hashing, where parallelism does not help to process one
message. We also get a novel variant of a Merkle tree, where t message blocks can be processed
using 0.75(t − 1) compression function calls and depth 0.86 log2 t, thereby saving 25% in the number
of calls and 14% in the update time over Merkle trees. We provide two modes for a local opening of a
particular message block: conservative and aggressive. The former retains the birthday security, but
provides longer proofs and local verification time than the traditional Merkle tree. For the aggressive
variant, we reduce the proof length to a 29% overhead compared to Merkle trees (1.29 log2 t vs
log2 t), but the verification time is now 14% faster (0.86 log2 t vs log2 t). However, birthday security
is only shown under a plausible conjecture related to the 3-XOR problem, and only for the (common,
but not universal) setting where the root of the Merkle tree is known to correspond to a valid t-block
message.
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24:2 T5: Hashing Five Inputs with Three Compression Calls

1 Introduction

A fundamental problem in cryptography is the construction of a hash function using idealized
building blocks. A natural way to approach this problem is to use λn-to-n-bit compression
functions. Two well-known and widely-deployed constructions follow this approach:

the Merkle-Damgård construction [10, 21], a sequential construction that is used in hash
functions such as MD5, SHA-1 and SHA-2, and
the Merkle tree [20], a parallel construction used in hash-based signatures (of interest due
to their post-quantum security), version control systems such as git, and cryptocurrencies
such as Ethereum.

The collision resistance of the Merkle-Damgård construction and the Merkle tree can
be proven, based on the collision-resistance of the compression functions. The number of
compression function calls is (essentially) the same for both constructions. For example,
setting λ = 2, which is the focus of this work,1 they both process t message blocks using t

and (t− 1) compression function calls, respectively.

m1 m2 m3 m4

h1 h2

h3

m5

Figure 1 The T5 construction with five message blocks m1, m2, m3, m4, m5 and three compression
function calls.

New Compression Function T5. In this paper, we introduce the T5 construction (see
Fig. 1) that processes five message blocks using three 2n-to-n-bit compression function calls,
thereby improving over the state-of-the-art of Merkle-Damgård (with IV counted as message
block) and Merkle trees by processing an additional message block with the same number of
compression function calls and essentially the same level of collision security.

Although T5 is of independent theoretical interest to the construction of a compression
function, we will also investigate Merkle-Damgård and Merkle trees when instantiated with
T5.

T5 with Merkle-Damgård. Our variant of the Merkle-Damgård construction, depicted in
Figure 4, processes t message blocks using 3t/4 calls to the 2n-to-n compression functions. If
the chaining value is provided as m5 in T5, then h1 and h2 can not only be computed in

1 Without loss of generality, all our results easily generalize to any λ ≥ 2.
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parallel, but independently of the chaining value. This allows a fully parallel implementation
of h1, h2, and h3 (with h3 “one-round behind”), which is four times faster than MD which
requires four sequential compression function calls to process a single input of the same
length.

T5 with Merkle Trees. For our variant of Merkle trees, depicted in Figure 5, we will
consider how they are often used in practice: for proof-of-inclusion of data in a larger set.

A full opening of a Merkle tree corresponds to the list of all message blocks, which can be
used to verify that the message corresponds to a given hash value. An advantage of Merkle
trees is it is possible to provide a local opening: to verify that one message block belongs to
the tree, it suffices to provide a list of compression function outputs that is proportional to
the depth of the tree.

These two types of openings give rise to three different notions of collision resistance for
trees:

full-full collision resistance, the “traditional” notion that requires finding two distinct
messages that result in the same hash value,
local-local collision resistance, where the goal is to find two local openings with the same
hash value,
full-local collision resistance, the setting of finding a collision between a full tree and a
local opening.

The full-local setting is relevant in the common scenario where a hash value is honestly
computed, but the proof is composed by an untrusted party. This happens, for example,
when a user sends a message to a cloud server after hashing it, and then later wants to
retrieve some message block from the server. Another natural application is the Merkle
accumulator, where a protocol accumulates message blocks using a Merkle tree, and later
parties provide proofs that a message block is in the tree.

Standard Merkle trees provide the same level of security under all three notions of collision
resistance, and the same holds for our Merkle tree variant using T5 if all four siblings are
opened. In this case, our variant of the Merkle tree will process t message blocks using
0.75(t− 1) instead of t− 1 compression function calls, and depth 0.86 log2 t instead of log2 t.
Due to the need to open four siblings, the opening proof will increase from log2 t to 1.72 log2 t,
and the verification time increases as well from log2 t to 1.29 log2 t

However, we also propose an aggressive variant of our construction that only opens three
siblings. See Figure 3. When this saving of one element for T5 is translated to the whole
Merkle tree, one gets a smaller local opening proof of 1.29 log2 t, and a shorter verification
time of 0.86 log2 t. We prove that this more aggressive variant nevertheless provides the
same full-local collision resistance, under a conjecture related to the 3-XOR problem. For
local-local collision resistance, we prove security up to 2n/3 under a conjecture related to the
4-XOR problem. The k-XOR problem is the subject of the well-studied generalized birthday
problem by Wagner [33], and used in proof-of work algorithms such as Equihash. A full
comparison of these three constructions will be given in Table 1 of Section 7.2.

Our Results for T5. We prove the following security results for T5 in terms of adversarial
advantage after q queries to the inner compression functions:2

2 For simplicity of reading, we only list dominant terms, and ignore constant and even small poly(n)
factors; i.e., omit Õ notation below.
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24:4 T5: Hashing Five Inputs with Three Compression Calls

q2/2n collision resistance, i.e., full-full collision resistance (CR) security (Theorem 2);
q3/22n + q/2n preimage resistance (Theorem 3).
q2/2n full-local CR security under a conjecture related to the 3-XOR problem (Proposi-
tion 7);
q3/2n full-local CR security unconditionally, i.e., 128-bit security for n = 384 (Theorem 4);
q3/2n local-local CR security under a conjecture related to the 4-XOR problem (Proposi-
tion 10);
q4/2n local-local CR security unconditionally, i.e., 128-bit security for n = 512 (Theo-
rem 4).

These results almost immediately imply corresponding security claims for our Merkle-Damgård
variant (see Section 6) and our Merkle tree variant (see Section 7 and Table 1). Matching
attacks for these security results are provided in the full version of this paper [11].

2 Related Work

The design of a hash function is usually based on one or more primitives with fixed-length
inputs and outputs. Historically, the most common choice for these primitives were block
ciphers. This gives rise to the following question: how can we construct a hash function with
the minimum number of block cipher calls?

This question motivated a significant research effort into efficient block-cipher-based hash
function constructions. Block ciphers such as Triple-DES and AES have a block size of 64
and 128 bits respectively, which may not provide sufficient collision security when used in
the Merkle-Damgård construction. Therefore, one line of work focuses on combining smaller
primitives to produce a wider hash function. Results of interest include the Knudsen-Preneel
construction based on linear error correcting codes [16], and a double-length construction by
Nandi et al. [22] that was generalized by Peyrin et al. [26], and by Seurin and Peyrin [28],
which interestingly also links the security to a conjecture related to the 3-sum problem.

A related line of research attempted to improve upon the Merkle-Damgård construction to
process additional message blocks. A brief overview of some constructions and an impossibility
result was given by Black et al. [6, 7]. More specifically, they considered hash functions that
make one block cipher call (under a small set of keys) for each message block to be hashed,
and showed that all such constructions are vulnerable to a simple attack.

This work was later generalized by Rogaway and Steinberger [27], and refined in subsequent
papers by Stam [29], and by Steinberger et al. [30, 31]. This result, commonly known as
“Stam’s bound,” puts a limit on the efficiency (in terms of primitive calls) of any secure hash
function construction.

Stam’s bound states that there always exists a collision attack and a preimage attack with
at most 2n(λ−(t−0.5)/r) and 2n(λ−(t−1)/r) queries respectively on a tn-to-n-bit hash function
making r calls to λn-to-n-bit compression functions. We have t = 5, λ = 2, and r = 3 in the
case of T5, thereby showing that we cannot hope to do better than 2n/2 collision and 22n/3

preimage security.
As explained by Stam [29], the bound applies to hash functions that satisfy the uniformity

assumption, and applies to cryptographic permutations (λ = 1) as well as compressing
primitives (λ ≥ 1). However, the main focus of this line of work had been on combining
smaller non-compressing primitives (see e.g., Mennink and Preneel [18,19]).

Recently, McQuoid et al. [17] provided a general framework to prove the collision and
second-preimage security of various hash functions. Our T5 construction is covered by their
framework. Unfortunately, their framework does not provide tight collision and second-
preimage security bounds for T5.
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Lastly, we recall that a series of papers have investigated optimal trade-offs between time
and space for Merkle tree traversal, e.g., Jakobsson et al. [15], Szydlo [32], and Berman et
al. [4]. Given that we propose T5 inside a standard Merkle tree, these trade-offs can also be
directly applied to the constructions in this paper. We would also like to mention Haitner et
al. [13]’s construction which only has depth one, at the cost of making significantly more
calls than the standard Merkle tree.

3 Preliminaries

3.1 Notation
If S is a set, x

$← S denotes the uniformly random selection of an element from S. We
let y ← A(x) and y

$← A(x) be the assignment to y of the output of a deterministic and
randomized algorithm A(x), respectively.

For positive integers m, n, we let Func(m, n) denote the set of all functions mapping
{0, 1}m into {0, 1}n. We write h

$← Func(m, n) to denote random sampling from the set
Func(m, n) and assignment to h, and say that h is modeled as an ideal hash function. For
fixed m and n, such modeling is attempting to approximate the security of real-world, keyless,
fixed-input-size compression functions, such as the compression function of SHA-2.

3.2 Security Definitions of Hash Functions
An adversary A is a probabilistic algorithm, possibly with access to oracles O1, . . . ,Oℓ

denoted by AO1,...,Oℓ . Our definitions of collision (Coll), and preimage (Pre) security are
given for any general fixed-input length hash function H built upon the compression functions
hi for i = 1, . . . , ℓ where hi are modeled as ideal functions. Namely, for a fixed adversary A
and for all i = 1 to ℓ with hi

$← Func(2n, n), we define the following advantage functions:

AdvColl
H (A) = Pr

[
Hh1,...,hℓ(M) = Hh1,...,hℓ(M ′) and M ̸= M ′

| (M, M ′) $← Ah1,...,hℓ()
]

and

AdvPre
H (A) = Pr

[
Hh1,...,hℓ(M) = Hh1,...,hℓ(M ′)

|M $←MH , M ′ $← Ah1,...,hℓ(Hh1,...,hℓ(M))
]

We define the Advatk
H (q) against the atk = {Coll, Pre}-security of H as the maximum

advantage over all adversaries making at most q total queries to its oracles.

3.3 Local Opening Security
We define local opening security of a hash function output (viewed as a commitment of a
message). Given a function H built upon compression functions h1, h2, . . . where hi are all
modeled as ideal functions, a local opening Openh1,...(·, ·) for Hh1,... maps a pair (M, i) to π

(called proof) where M = (m1, m2, . . . , mc) is a message (a tuple of blocks) and 1 ≤ i ≤ c is
an index.

ITC 2021



24:6 T5: Hashing Five Inputs with Three Compression Calls

Correctness of Local Opening. There is an efficient function Verh1,... such that for all
message M , all index i,

Verh1,...(i, mi, Openh1,...(M, i), H(M)) = 1.

Security of Local Opening. We provide two notions of local opening security. For the
stronger variant, which we call “local-local,” the adversary wins if it produces an output f

corresponding to two contradicting local openings for some position i. For the weaker variant,
which we call “full-local,” the adversary wins if it produces an output f corresponding to a
local opening contradicting a full opening.

▶ Definition 1 (local-local and full-local opening advantage). Let H be a hash function and
Open is a correct local opening for H with Ver is the verification function. For any adversary
A, we define the local-local opening advantage as

Advlocal-local
H (A) = Pr

[
Ver(i, m, π, f) = Ver(i,m′, π′, f) = 1, m ̸= m′

| (i, m, m′, π, π′, f) $← Ah1,...
]

We define full-local opening advantage (a weaker variant of the above) of A as

Advfull-local
H (A) = Pr

[
Ver(i, m′, π′, H(M)) = 1, m′ ̸= mi

| (i, M, m′, π′) $← Ah1,...
]

And finally, for a function H with local opening algorithms (Open, Ver) and attack z ∈
{local-local, full-local}, we define Advz

H(q) = maxA Advz
H(A) as the maximum advantage

over all adversaries making at most q total queries to its oracles.

Intuitively, the weaker definition protects against situations where the initial commitment
f was honestly produced, using some long message M . Thus, a contradictory local opening
will result in finding a collision between a local opening and a full opening. In contrast,
the (traditional) stronger definition is directly concerned with somebody producing two
contradictory local openings.

By-Pass Hash Computation. We say that H has a by-pass computation Hi corresponding
to a local opening Open for a fixed index 1 ≤ i ≤ c, if for all M ,

Hh1,...
i (mi, Openh1,...(M, i)) = Hh1,...(M).

In other words, given a proof (output of the Open) and the message block for the index (for
which the proof is produced), we can compute the hash output of the message (without
knowing the other blocks of the message).

The presence of by-pass computationsH = {Hi} for all indices lead to a natural verification
algorithm as follows: Ver(i, m, π, f) = 1 whenever Hh1,...

i (m, π) = f . For a fixed index i, we
define the cross-collision advantage between the hash function H and a by-pass computation
Hi as

AdvColl
H,Hi

(A) = Pr
[

H(M) = Hi(m′, π) and Mi ̸= m′ | (M, m′, π) $← Ah1...
]

Similarly, we define the inter-collision advantage for by-pass computation Hi as

AdvColl
Hi

(A) = Pr
[

Hi(m, π) = Hi(m′, π′) and m ̸= m′ | (m, π, m′, π) $← Ah1...
]
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Let H = {Hi} be the family of by-pass computations for all indices i. We define

AdvColl
H,H(q) = max

A
max

i
AdvColl

H,Hi
(A) and AdvColl

H (q) = max
A

max
i

AdvColl
Hi

(A)

as the maximum advantage over all by-pass computations for all adversaries making at most
q total queries to its oracles.

Now we make a simple observation when by-pass computations H = {Hi} for all indices
exist for a hash function H, the induced verification procedure Ver satisfies

Advfull-local
H (q) ≤ AdvColl

H,H(q) and Advlocal-local
H (q) ≤ AdvColl

H (q) (1)

The above observation helps us to reduce the local opening security to cross-collision or
inter-collision security problem for the family H. As all the function Hi in this family are
often symmetric, a proof for a fixed function Hi implies the one for the entire family H.

4 Construction T5

We define T5 : {0, 1}5n → {0, 1}n based on the 2n-to-n-bit compression functions h1, h2, h3
as follows:

T5(m1, m2, m3, m4, m5) := h3(h1(m1, m2)⊕m5, h2(m3, m4)⊕m5)⊕m5

For all our proofs we will assume that the compression functions hi for i = 1 to 3 are
ideal functions.

m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

f

Figure 2 Modified 2-level Merkle tree T5(m1, m2, m3, m4, m5) with an extra input m5 for the
same 3 hash calls.

Notation. As shown in Figure 2, we use the variables
m1 and m2 (resp. m3 and m4) to denote the left and right halves of various inputs to h1
(resp. h2);
a (resp. b) to denote various outputs of h1 (resp. h2);
c and d to denote the left and right halves of various inputs to h3;
e to denote various outputs of h3;
M = (m1, m2, m3, m4, m5) to denote various inputs to T5;
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24:8 T5: Hashing Five Inputs with Three Compression Calls

f to denote various outputs of T5.
Hence, a valid computation of T5(M) = T5(m1, . . . , m5) proceeds as follows:
1. Set a = h1(m1, m2), b = h2(m3, m4).
2. Set c = a⊕m5, d = b⊕m5.
3. Set e = h3(c, d), and output f = e⊕m5.
We say that a triple of queries ((m1, m2), a) to h1, ((m3, m4), b) to h2, and ((c, d), e) to h3 is
consistent if

a⊕ b = c⊕ d, (2)

in which case we define m5 = a ⊕ c = b ⊕ d, and say that this consistent triple of queries
(uniquely) defines a valid T5 evaluation (M, f), where M = (m1, m2, m3, m4, m5) and
f = e⊕ a⊕ c = e⊕ b⊕ d.

Main Results of the Section. The main result of this paper is to provide the collision and
preimage security of the T5 hash function. The following theorem shows that T5 achieves
nearly birthday collision security, despite hashing one more input than the traditional
Merkle-Damgård function of depth 2.

▶ Theorem 2. The T5 construction achieves nearly birthday-bound collision security:

AdvColl
T5

(q) ≤ (n2 + 10)q2

2n
(3)

The full formal proof of this result is somewhat subtle, and will be given in the full version
of this paper [11]. But an informal proof intuition for a representative special case will be
given in Section 4.1.

As our second main result, we also show that T5 maintains nearly optimal preimage
security Õ(q/2n) for q < 2n/2, which means it offers optimal preimage and collision-resistance
security in the common range of q < 2n/2.

However, even when q grows above 2n/2, T5 still offers non-trivial security O(q3/22n) for
values of q < 22n/3−1, which is likely sufficient for most applications. As we show in the full
version of this paper [11], T5 is indeed not preimage resistant when q > 22n/3, so our result
is tight.

▶ Theorem 3. Assuming q ≤ 22n/3−1, the T5 construction achieves the following preimage
security:

AdvPre
T5

(q) ≤ 2q3

22n
+ O

(qn

2n

)
(4)

We give a formal proof in the full version of this paper [11], but present some proof intuition
(for an important special case) in Section 4.2, similar to what was done in Section 4.1.

4.1 Proof Intuition for Collision Resistance of T5

Below we give the proof intuition for the simple, but natural special case where the adversary
A makes all of its queries to h1 and h2 before any query to h3 is made. As we explain in the
formal proof in the full version of this paper [11], this assumption is with a significant loss of
generality, and several special arguments are needed to cover the fully general case. However,
this simplified case will already demonstrate some of the main arguments of our analysis.

The proof will roughly consist in arguing that A, making q total hash queries, is unlikely
– up to birthday advantage – to succeed in the following four tasks.
(These tasks are formalized in the full version of this paper [11].)
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1. Task 1: finding any simple collision in h1 or h2.3
2. Task 2: finding some value z for which there exist more than n distinct pairs of queries

((m1, m2), (m3, m4)) to h1 and h2 result in4

h1(m1, m2)⊕ h2(m3, m4) = z

3. Task 3: generate more than nq valid evaluations of T5.
4. Task 4: generate a non-trivial collision of T5.
The argument of each subsequent task will inductively assume that the adversary indeed
failed in the previous task.

For Task 1, this is the trivial birthday bound on h1 or h2.
For Task 2, we will formally define the set C12(z) to consist of pairs of queries ((m1, m2), a)

to h1 and ((m3, m4), b) satisfying a⊕ b = z. Using the fact that no simple collisions in h1
and h2 are found, it is easy to see that each of the n queries to h1 and h2 inside C12(z) must
be distinct. Moreover, the latter of the two queries ((∗, a), (∗, b)) ∈ C12(z) must collide with
a fixed value z plus the former of the two queries. E.g., if the query (∗, a) to h1 was made
before (∗, b) to h2, this tuple will fall inside C12(z) only if b = z ⊕ a, which happens with
probability 2−n. Taking the union bound over all values z and all possible choices of 2n out
of q queries to be included inside C12(z), we see that

Pr [ ∃z s.t. |C12(z)| ≥ n ] ≤ 2n · q2n ·
(

1
2n

)n

≤
(

2q2

2n

)n

≪ O

(
q2

2n

)
For Task 3, we will use our simplifying assumption that A makes all of its queries to h1

and h2 before any query to h3 is made. In this case, all consistent triples of queries to h1,
h2 and h3 defining a valid input-output (M, f) to T5 get created by making a call to h3.
For each of at most q such queries to h3 on some input (c, d), we claim that this query will
“match up” with a pair of earlier queries (∗, a) to h1 and (∗, b) to h2 only if m5 = a⊕c = b⊕d,
which is equivalent to a⊕ b = c⊕ d, which means that

((∗, a), (∗, b)) ∈ C12(c⊕ d)

But we already assumed that |C12(z)| ≤ n for all z, meaning that each query (c, d) can form
a consistent tuple with at most n pairs of queries to h1 and h2. Summing over all (up to) q

queries to h3, the total number of evaluations will be at most nq.5
Finally, for Task 4 that we care about, we will once again use our simplifying assumption.

In particular, under our assumption, such a collision can only be caused by a call to h3 on
some input (c, d). From the previous argument, we already know that this query will “match
up” with a pair of earlier queries (∗, a) to h1 and (∗, b) to h2 only if ((∗, a), (∗b)) ∈ C12(c⊕d),
meaning there are at most n new evaluations of T5 caused by this query. Also, any two of these
n new evaluations cannot collide among themselves, as they have two different values a ̸= a′

(remember, no collisions in h1), so the final outputs f = h3(c, d)⊕c⊕a ̸= h3(c, d)⊕c⊕a′ = f ′.
Thus, the only chance the adversary has is if one of these n new evaluations of T5 (call the
output f) collides with one of at most nq already defined previous evaluations f ′ of T5.

But each of the n new output values f will be individually random, as it is equal to
random e = h3(c, d) plus m5 = a ⊕ c. Hence, this individually random f can collide with

3 For the general case, we will also need no collisions in a slightly modified variant of h3.
4 For the general case, we will also need similar guarantees for the combinations of h1 + h3 and h2 + h3.
5 As we will see, in the general case a very different proof strategy will be needed to extend this argument

to valid evaluations of T5 completed by calls to h1 and h2.
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24:10 T5: Hashing Five Inputs with Three Compression Calls

the previously defined output f ′ of T5 with probability at most nq/2n, because from failing
Task 3 we know there are at most nq previous evaluations of T5 completed so far. Taking
the union bound over n values of f , and q queries to h3, the final bound O(n2q2/2n) follows.

General Case. We will not fully detail the general case (see full argument in the full version
of this paper [11]), but briefly demonstrate that making queries to h1 or h2 after some queries
to h3 could be potentially helpful to the adversary, and will require adjustments to our proof
strategy above.

For example, our proof sketch above showed that, modulo very rare events, the number of
valid evaluations of T5 can increase by at most n for each new query to h3. However, imagine
that A first makes a query to h2 with output b. Then A can make Ω(q) queries (ci, di) all
satisfying ci ⊕ di = z (for some z). Now, a query to h1 (made after these Ω(q) queries to h3)
has a chance to simultaneously match with Ω(q)≫ n tuples ((∗, b), ((ci, di), ∗). Of course, in
order for this to happen, the random answer a must match b⊕ z, which happens with tiny
probability. In fact, we could apply Markov’s equality to argue that the probability a query
to h1 will produce more than n new evaluation points is at most (what turns out to be by an
easy calculation) O(q2/2n). By itself, this is good enough, but it will not “survive” a union
bound over up to q potential queries to h1. Instead, we will use linearity of expectation to
make a global, “stochastic” argument that all such (up to) q queries to h1 and h2 will define
more than nq new evaluations with at most “birthday” probability. See the full version of
this paper [11] for the details.

Overall, the full proof in the general case will be noticeably more subtle than the proof
intuition given above, but will still follow the same high-level structure.

4.2 Proof Intuition for Preimage Resistance of T5

As in Section 4.1, we will only consider the special case when the adversary A makes all of
its queries to h1 and h2 before any query to h3 is made, as it will contain most of the ideas
needed in the general proof. Also, we will assume that q = Ω(

√
n · 2n/2), as this is the case

where the “unexpected” term q3/22n appears.6
In this setting, there are several differences from the case of collision-resistance we

considered so far. First, A is given a specific target f to invert. In particular, we will not
care about local collisions in functions h1, h2, and the c- or d-“shifted” versions of h3, as
such collisions will happen, but will not help the adversary invert f . Instead, we will care
that in each new call to h3(c, d), the number of valid new evaluations of T5 will be not much
higher than what we expect. Recall, in our special case of only h3 queries causing all new
evaluations of T5, this number of new evaluations is bounded by |C12(c⊕ d)|, where C12(z)
is the set of pairs of queries ((m1, m2), a) to h1 and ((m3, m4), b) satisfying a⊕ b = z. And
since each such evaluation defines an individually random output value f ′ = h3(c, d)⊕ c⊕ a,
the probability this f ′ matches f is 2−n, meaning A’s overall chance to invert f in this query
is |C12(c⊕ d)|/2n.

Of course, the adversary can select any value of z = c⊕ d to make sure it chooses the
largest set C12(z). Thus, if we want to upper bound A’s probability of success, we must
argue that K = maxz |C12(z)| is not much higher than its expectation with high probability.
In the collision resistance proof, we manage to upper bound K ≤ n with “good enough”

6 Our general proof will not treat this case separately, but the calculations are slightly easier to write for
the “beyond-birthday” case.
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probability (q2/2n)n. Indeed, this was enough to withstand the union bound over z to give
the final probability (2q2/2n)n ≤ 2q2/2n that K ≥ n in that setting.

We will do a similar union bound in our case as well, except that we have q ≫ 2n/2, so
even in the best case scenario we expect |C12(z)| ≥ q2/2n ≫ n for any given z, let alone
the z chosen by the adversary. Moreover, the final birthday bound will not be good enough
for us in this setting as well. But first let us optimistically assume that for any fixed z, we
managed to get the following very strong concentration bound:7

Pr
[
|C12(z)| ≥ 2q2

2n

]
≤ 1

22n
(5)

Then we will be done, because we can take the union bound over z to conclude that
Pr

[
K ≥ 2q2/2n

]
≤ 2−n. And, finally, there will be at most 2q2/2n new evaluations f ′ per

each query to h3. Thus, taking the union bound over at most q such queries, A’s overall
inversion probability (ignoring 2−n failure event above) is upper bounded by:

q · 2q2

2n
· 1

2n
= 2q3

22n

High Concentration Bound via Tabulation Hashing. So it remains to argue the high
concentration bound in (5). This turns out to be much harder than in the collision-resistance
case, where the bound we needed was the much weaker O((q2/2n)n), which is meaningless
when q > 2n/2.

The next naive attempt is to write |C12(z)| as a sum of q2 indicator variables Xij , equal to
1 is the i-th output ai of h1 and the j-th output bj of h2 satisfy ai ⊕ bj = z. And then try to
use a Chernoff bound to argue that the probability that the sum of these indicator variables
is twice as large as its expectation is exponentially low. Unfortunately, the random variables
Xij are not even 4-wise independent; e.g., (a1⊕ b1)⊕ (a1⊕ b2)⊕ (a2⊕ b1)⊕ (a2⊕ b2) = 0. So
we cannot apply the Chernoff bound, and the Chebyshev inequality for pairwise independent
random variables is not strong enough. Indeed, the question of getting our concentration
bound turned out to be quite deep.

Fortunately, the setting we need turns out to be equivalent to the classical hashing
problem, called simple tabulation hashing, introduced in the seminal paper of Carter and
Wegman [9]. Applied to our setting, given two random “hash tables” T1 and T2 with range of
size N = 2n, tabulation hashing would map a “ball” y = (u, v) into a “bin” z = T1[u]⊕ T2[v].
The classical question studied by tabulation hashing is to upper bound occupancy of any
such bin z after some Q balls are thrown using tabulation hashing. We defer the details to
the formal proof in Section 4.2, but point out that in our setting the tables are implemented
using hash functions h1 and h2, and the number of balls Q ≤ q2 corresponds to all pairs of
queries to h1 and h2.

Designing strong enough concentration bound for tabulation hashing (which is exactly
what we need!) was an open problem for many years, until the breakthrough result of
Pǎtraşcu and Thorup [24] showed a Chernoff-type concentration bound which enables us to
show (5), and thus complete the proof.

7 This bound, as stated, is only true if q = Ω(
√

n · 2n/2). In the general case the term becomes
|C12(z)| ≥ Ω(n) + 2q2/2n, as we expect Ω(n) multi-collisions already when q ≈ 2n/2.
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5 Aggressive Opening for T5

In this section we describe a non-trivial opening for T5. We first note that a straightforward
way to open a block mi in T5 is to provide all four siblings mj ̸=i. For a single T5 the full-local
and the local-local security (Section 3.3) definitions are the same and correspond to the
collision security of T5 which we have already studied. The performance of this method in
a full tree is somewhat less attractive and is given in detail in Section 7.2. Thus we call it
conservative.

Now we provide another point on the security-performance tradeoff for T5, which we call
aggressive. We see that even though the provable security bounds decrease, the heuristic
security (as the complexity of best attacks) remains the same under plausible conjectures.
Both openings are depicted in Figure 3.

m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

Conservative Aggressive

Figure 3 Conservative and aggressive openings for T5. Green m1 is opened. Red are opening
elements (4 vs 3) and recomputed compression functions (3 vs 2).

Our (aggressive) local opening Open for T5 is defined as follows, where we have m =
(m1, m2, m3, m4, m5).
1. Openh1,h2,h3(1, m) = (m2, m5, h2(m3, m4)⊕m5).
2. Openh1,h2,h3(2, m) = (m1, m5, h2(m3, m4)⊕m5).
3. Openh1,h2,h3(3, m) = (m4, m5, h1(m1, m2)⊕m5).
4. Openh1,h2,h3(4, m) = (m3, m5, h1(m1, m2)⊕m5).
5. Openh1,h2,h3(5, m) = (m1, m2, h2(m3, m4)⊕m5).
We first show that the above defined opening has a by-pass computation T′

5 for index 1 (one
can similarly show for the other indices) and hence it satisfies the correctness condition of an
opening. For the sake of simplicity, we skip the hash oracles notation h1, h2, h3. We define
T′

5 : {0, 1}4n → {0, 1}n based on the 2n-to-n-bit compression functions h1, h3 as follows:

T′
5(m′

1, m′
2, m′

3, m′
4) := h3(h1(m′

1, m′
2)⊕m′

3, m′
4)⊕m′

3

A straightforward calculation shows that T′
5(m1, Open(1, m)) = T5(m). Hence T′

5 is a
by-pass computation of T5 for the opening function defined above.

▶ Theorem 4.

Advfull-local
T5

(q) ≤ AdvColl
T5,T′

5
(q) ≤ nq3 + 9q2

2n
(6)
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and

Advlocal-local
T5

(q) ≤ AdvColl
T′

5
(q) ≤ q4

2n
(7)

We note that the relation between the collision advantage and the opening advantage is
already described in (1). So it only remains to bound the cross-collision probability and
the collision probability for a family of by-pass hash computations. The full formal proof
of the cross-collision bound is somewhat similar to the collision security analysis of T5,
and is provided in the full version of this paper [11]. But an informal proof intuition for a
representative special case will be given in Section 5.1 below. However, the bound for collision
advantage of the by-pass family is more or less straightforward and described afterwards.

5.1 Proof Intuition for Theorem 4 (Cross-Collision Bound)
Here, we give a proof sketch of the cross-collision advantage between T5 and T′

5. We first
note that in the case of T′

5, all queries are consistent. Hence q queries each to h1 and h3 can
generate a maximum of q2 T′

5 evaluations. And, as we have already seen before, q oracle
queries can generate at most nq evaluations of T5 if bad events B1 and B2 don’t happen.
Now, we approach as in the earlier theorem. We break the event that a collision between T5
and T′

5 has occurred into three parts, depending upon which oracle was queried by the i-th
query and give an upper bound to the collision probability. Then, we apply a union bound
over the q queries to give the intended result. Let Xi be the event that none of bad events
B1, B2 or B3 happened. The three cases are as follows:

The i-th query is ((m1, m2), a) to h1. As in the earlier proof, a collision can happen in
two ways, either this output a induces a T5 tuple and a T′

5 tuple which collide, or there
is some previous value (∗, f) ∈ Evali−1 such that the random answer h1(m1, m2) = a

caused the collision with this f . The former case implies only the trivial collision, which
we have ruled out. In the latter case, for a collision to happen, there are two subcases
depending on whether (∗, f) comes from a previous evaluation of T5 or T′

5 evaluation.
If (∗, f) comes from a T5 evaluation, the random answer a can combine with any of the
queries ((c, d), e) of h3 such that f = a⊕ c⊕ e. We note that there are a maximum of nq

prior T5 evaluations, and q h3 queries. The probability that f = a ⊕ c ⊕ e is 1/2n for
each such query. Therefore,

Pr[Xi] ≤ nq · q · 1
2n

= nq2

2n

If (∗, f) comes from a T′
5 evaluation, we note that there are at most q2 such evaluations.

There exist tuples ((∗, b), ((c, d), e)) ∈ C23(f), which can be at most n in number, and
the random answer a = h1(m1, m2) should be equal to b⊕ c⊕ d. This again gives

Pr[Xi] ≤ q2 · n · 1
2n

= nq2

2n

The i-th query is ((m3, m4), b) to h2. The only way this query can cause a collision is that
there exists some previous value (∗, f) ∈ Evali−1

T′
5

such that the random answer creates a
T5 output equal to f . This case is exactly the same as the first subcase of Case 1.
The i-th query is ((c, d), e) to h3. The case generated by this query is the same as that
in the first case. If this query generates a T5 tuple and a T′

5 tuple that collide, we again
get only the trivial collision. If there is some previous T5 evaluation with which this
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query collides, then again, q such queries can combine with n evaluations of T5, and the
collision probability for each combination is 1/2n, resulting in the same probability as in
the first case. If this query collides with some previous T′

5 evaluation, which are nq in
number, we note that there exist tuples ((∗, a), (∗, b)) ∈ C12(c⊕ d) which can be at most
n in number. Again, we get the same probability.

Taking a union bound over the q queries, we find that

Pr
[

B4 ∩B1 ∩B2 ∩B3
]
≤ q ·max

i
Pr[Xi] ≤

nq3

2n
.

5.2 Proof of (7) (Collision Bound of Family of By-Pass Hash)
Now we prove the second part of the result (collision of by-pass hash family). Here we show the
collision probability for T′

5 (i.e., for the index 1). The proof for the other indices will be very
similar and will have the same bound. As we take the maximum collision probability for all
indices, the result will follow. Following a similar notation, let h1(m1, m2) = b, h1(m′

1, m′
2) =

b′, c = b ⊕ m5 and c′ = b′ ⊕ m′
5. So, the hash outputs are T′

5(m1, m2, m5, d) = f =
h3(c, d)⊕m5 and T′

5(m′
1, m′

2, m′
5, d′) = f ′ = h3(c′, d)⊕m′

5. If f = f ′ with (m′
1, m′

2, m′
5, d′) ̸=

(m1, m2, m5, d) (i.e., collision happens) then we have

h1(m′
1, m′

2)⊕ h1(m′
1, m′

2)⊕ (c⊕ h3(c, d))⊕ (c′ ⊕ h3(c′, d′)) = 0 (8)

Let us write h3(x, y) ⊕ x as h′
3(x, y). It is obvious that h′

3 behaves exactly like a random
function (independent with h1, h2). Thus, we have shown that collision problem of T′

5 is
reduced to finding ((m1, m2), (c, d)) ̸= ((m′

1, m′
2), (c′, d′)) such that

h1(m1, m2)⊕ h1(m′
1, m′

2)⊕ h′
3(c, d)⊕ h′

3(c′, d′) = 0 (9)

We call this problem 4-XOR′ (a variant of 4-XOR problem described in the following section).
It is also not difficult to construct a collision pair from four pairs satisfying a 4-XOR′ relation.
In other words, 4-XOR′ is equivalent to finding a collision of T′

5. Now, by applying a union
bound, the collision probability can be simply bounded above by q4/2n.

5.3 Reduction of Local Opening Security to 3-XOR/4-XOR Problem
k-XOR Problem. Let F1, F2, . . . , Fk be k oracles that output strings of n bits. Find
x1, x2, . . . , xk such that

F1(x1)⊕ F2(x2)⊕ · · ·Fk(xk) = 0.

Reduction for full-local. When k = 3, the k-XOR problem has an information-theoretical
security of n/3-bits, however the best algorithm requires more than 2n/2/

√
n time (ignoring a

log n factor) and queries [8,23]. Bridging this gap would imply a solution to the long-standing
3-XOR problem, which would be a substantial breakthrough.

▶ Conjecture 5. (3-XOR Hardness.) For any algorithm A that makes less than q < 2n/2

queries to F1, F2, F3 and runs for time q, the probability that for randomly chosen F1, F2, F3
it solves the 3-XOR problem is at most n2q2/2n.

Note that we have kept some margin on the power of n in our conjecture. Until now we
have attack with advantage about nq2/2n. Now we provide a heuristic reduction of full-local
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security to the 3-XOR problem. Let us look at the full-local security definition. To break it,
we are required to find (m1, m2, m3, m4, m5, m′

1, m′
2, m′

5, d′) such that

T5(m1, m2, m3, m4, m5) = h3(h1(m′
1, m′

2)⊕m′
5, d′)⊕m′

5

or equivalently

T5(m1, m2, m3, m4, m5) = h3(c′, d′)⊕ h1(m′
1, m′

2)⊕ c′. (10)

In our reduction we consider only algorithms which we call valid-aware. Those (1) make
all queries to h1, h2 before h3 and (2) for any query (c, d) they make to h3 are aware of all
valid T5 executions that are created this way. Concretely, with any query (c, d) they attach
(a potentially empty) list of all pairs h1, h2 that are valid with c, d. This list cannot be long
as we had argued for Theorem 2 where there cannot be more than n of them. We stress that
this is a natural assumption as every valid execution ever considered by an algorithm must
be discovered in some way, and if all h3 queries are made last, it only makes sense to make
queries that yield valid executions. The speculative nature of this argument makes us claim
that the reduction is only heuristic.

▶ Lemma 6. Given any valid-aware algorithm A, which makes at most q queries to oracles
h1, h2, h3, which solves (10) with probability ϵ, there is an algorithm A′ making at most
q < 2n/2 queries to oracles F1, F2, F3 (with runtime almost the same as A) that solves 3-XOR
problem with probability at least ϵ/(4n).

Proof. First we note that a solution to (10) must have (c, d) ̸= (c′, d′), i.e., h3 gets a non-zero
difference. Indeed, otherwise the output e of h3 and thus m5 must both have a zero difference,
which in turn implies that a and b have a zero difference, i.e., we have found a collision in h1
or h2 which we are ruling out (or we can extend our reduction with this outcome).

Now, A works as follows:
It calls A to find a collision between T5 and T′

5.
When A queries h1(m1, m2) it is given F1(0||m1||m2).
When A queries h2(m3, m4) it is given F1(1||m3||m4).
When A queries h3(c, d) with list L of valid tuples (m1, m2, m3, m4) such that h1 ⊕ h2 =
c⊕ d. If the list is empty, A′ returns F2(c||d)⊕ c to A. Otherwise A′ flips a coin:

For tails A′ selects a random entry of L and returns F3(c||d)⊕ c⊕ F1(0||m1||m2) to A.
For heads A′ returns F2(c||d)⊕ c to A.

Now suppose A finds a solution to (10). This implies that

h1(m1, m2)⊕ h3(c, d)⊕ c = h1(m′
1, m′

2)⊕ h3(c′, d′)⊕ c′.

Recall that (c, d) ̸= (c′, d′). Now note that:
(c, d) yields a valid execution of T5. Note that the validity was known at the time of
query.
With probability at least 1/(2n) the value for h3(c, d) is selected as F3(c||d) ⊕ c ⊕
F1(0||m1||m2) (i.e., we had selected the same m1, m2 as in h1 of the solution) since we
have at most n pairs (h1, h2) with given difference c⊕ d.
With probability 1/2 the value for h3(c′, d′) is selected as F3(c′||d′)⊕ c′.
The value for h1(m1, m2) is F1(0||m1||m2) and should cancel out due to our outcome for
h3(c, d).
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Therefore with total probability at least 1/(4n) the solution found by A is translated into

F3(c||d) = F1(0||m′
1||m′

2)⊕ F2(c′||d′)

which yields a solution for the 3-XOR problem. ◀

Together with the hardness conjecture, we obtain the following proposition.

▶ Proposition 7. Assuming the 3-XOR hardness and that the best algorithm that breaks
full-local aggressive collision security is valid-aware, the adversary that runs in time q finds
a full-local collision with probability at most 4n3q2/2n.

Reduction for Local-Local. The best known algorithm for solving 4-XOR problem runs
in O(n2n/3) time and O(2n/3) queries [33]. So, we pose a similar conjecture for the 4-XOR
problem.

▶ Conjecture 8. (4-XOR Hardness.) For any algorithm A that makes q < 2n/3 queries
to random oracles F1, F2, F3, F4, runs for time q, the probability that it solves the 4-XOR
problem is at most q3/2n.

Now we consider a simple variant of 4-XOR problem, called 4-XOR′, which uses two lists.
Let F, F ′ be oracles that output random n-bit strings. Find x, y, z, w with (x, y) ̸= (z, w)
such that

F (x)⊕ F (y)⊕ F ′(z)⊕ F ′(w) = 0.

▶ Lemma 9. Given any algorithm A′ making at most q queries to all its oracles which solves
the 4-XOR′ problem with probability ϵ there is an algorithm A making at most q queries to all
its oracles (with run time almost same as A′) which solves 4-XOR problem with probability
at least ϵ/4.

Proof. The reduction from A′ to A works as follows. We run A′ and it makes two types of
queries, namely to F and to F ′. For each query we choose b randomly from {1, 2}. If it is an
F (x) query, then A returns Fb(x). Similarly, if it is an F ′(z) query, A returns F2+b(z) to A′.
Finally, A′ returns (x, y, z, w) such that F (x)⊕ F (y)⊕ F ′(z)⊕ F ′(w) = 0. Now, A succeeds
if F (x) = Fb(x), F (y) = F3−b(y) and F ′(z) = F2+b′(z), F ′(w) = F5−b′(w). We note that the
b values are chosen randomly. As F and F ′ are independent random functions, the output
to A′ is independent of b. In other words, the view of A′ remains independent with the b

values chosen by A. Thus, A succeeds with probability 1/4 given that A′ succeeds. ◀

We have already seen that given a collision adversary B of T′
5 we can construct an

algorithm A′ for solving the 4-XOR′ problem and hence we can construct an algorithm A
solving the 4-XOR problem. Moreover the success probability of solving the 4-XOR is at
least 1

4 ·AdvColl
T′

5
(B). This leads us to conclude with the following claim.

▶ Proposition 10. Assuming the 4-XOR hardness and that the best algorithm that breaks
local-local aggressive collision security is valid-aware, the adversary that runs in time q finds
a local-local collision with probability at most 4q3/2n.

6 Merkle-Damgård Variant

We can plug in our 5-to-1 compression function to the standard Merkle-Damgård (MD) mode
to get a sequential hash t-to-1 function making only 3t/4 calls to the underlying 2n-to-n
compression functions h1, h2 and h3, and inheriting the birthday security of T5. This function
is depicted in Figure 4.



Y. Dodis, D. Khovratovich, N. Mouha, and M. Nandi 24:17

h1

h2

h3

IV0 IV1

m1

m2

m3

m4

T5

m1

m2

m3

m4

IV0

T5

m5

m6

m7

m8

IV1

T5

m4k−3

m4k−2

m4k−1

m4k

IVk−1

IVk = y

Hashing t = 4k inputs

using 3
4t = 3k calls

to h1, h2, h3.

IV0 is a fixed
randomly chosen
constant

Figure 4 Merkle-Damgård Hash based on T5.

Parallel Implementation. In addition to providing a 25% speedup when compared to the
traditional MD mode applied to a 2n-to-n-compression function h, another advantage of our
new variant is that it is easily parallelizable for architectures that support parallel execution.

For example, if we have three execution units P1, P2, P3, the unit Pi can be responsible
for all hi computations. This allows to compute a hash of t = 4k message blocks using
only (k + 2) = (t/4 + 2) parallel rounds of hashing, saving a factor (almost) 4 over the
traditional MD mode. The execution unit P3 will be “one-round behind” units P1 and P2
(so that in the first round only P1 and P2 hash (m1, m2) and (m3, m4), and in the last
round only P3 produces the final hash). Namely, when P3 just completed the computation
of the previous initial value IVj , P1 completed aj = h1(m4j+1, m4j+2), and P2 completed
bj = h2(m4j+3, m4j+4), in the next round P3 will set the next initial value

IVj+1 = h3(IVj ⊕ a, IVj ⊕ b)⊕ IVj ,

while P1 and P2 respectively compute aj+1 = h1(m4j+5, m4j+5) and bj+1 = h2(m4j+6, m4j+7).
Similarly, two execution units P ′

1, P ′
2 can perform the same task in only 2k = t/2 parallel

rounds, saving a factor 2 over the traditional MD mode.

Larger Compression. Although our results are stated for 2n-to-n compression functions, we
can also easily extend them to the λn-to-n case, by simply adding (λ− 2) “dummy” inputs
to each of h1, h2, h3. For example, for λ = 3, this gives us an 8n-to-n analog of T5, using
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three calls to some 3n-to-n hash function. Which gives a new MD mode for t = 7k block
messages, using only 3k = 3t/7 compression calls. In contrast, a naive MD mode will use t/2
calls, saving a factor (1− (3t/7)/(t/2)) = 1/7 ≈ 14.2%. Similar calculations can be done for
larger λ.

7 Merkle Tree Variant

Our 2-level construction extends straightforwardly to a full-blown t-to-1 tree H. In Section 7.1
we briefly recall how to build Merkle Trees (MT) from smaller compression functions (such as
T5). We then present our faster and shallower MT variant and its properties in Section 7.2.

7.1 General Merkle Trees and Their Security
The Merkle tree is a data structure to store long lists of t n-bit elements, so that insertion,
deletion, update, or proof of membership for an element need only O(log t) time and space.
It is built on a λn-to-n compression function Hλ (typically λ = 2 but other values are used
too) and retains all its security properties regarding collision and preimage resistance from
the compression function. The tree is defined recursively:

MTλ(m1, . . . , mλ︸ ︷︷ ︸
m[1:λ]

) = Hλ(m1, . . . , mλ);

MTλt(m[1:λt]) = Hλ(MTλ(m[1:λ]), . . . , MTλ(m[λt−t+1:λt]))

where t = λk ≥ 2, with the last hash called a root and mi called leafs.
As for the compression function, we define the terms full opening and local opening for

the entire MT, with the former being all t elements and the latter for a leaf in a tree is a
sequence of logλ t local openings of an element in all compression functions on the path from
the leaf to the root. In the simplest case λ = 2 an opening is one element per tree layer,
whereas for wider compression functions it is λ − 1 or fewer (in case Hλ has “aggressive”
local opening). The full-local security for the tree is defined analogously to the compression
function and corresponds to the case of a public tree to which an adversary makes a forged
membership proof. The local-local security matches the case when the adversary provides
two valid openings for an alleged tree root but the full tree is unknown. Both full-local and
local-local security for the tree follows from their compression function counterparts. So
overall we have the following parameters:

Efficiency E(t) as the number of compression function calls is (t− 1)/(λ− 1).
Depth D(t) of the tree is logλ t.
Update/insert/delete complexity as the number of compression function recomputations
equals D(t).
The total length of conservative opening L(t) is (λ− 1) logλ t.
In case Hλ might have a more compact (i.e., “aggressive”) local opening of length
ℓ ≤ λ − 1, then the total length of the resulting “aggressive” local opening for MTλ

becomes L(t) = ℓ logλ t.
Number of calls to F needed to verify the opening: V (t) = logλ t.
Collision, full-local, and local-local opening security the same as that of Hλ (ideally 2n/2,
if one uses a 2n-to-n hash function as last building block).
Preimage security the same as that of Hλ (ideally 2n, if one uses 2n-to-n hash function
as last building block).



Y. Dodis, D. Khovratovich, N. Mouha, and M. Nandi 24:19

Table 1 We compare standard Merkle trees to two variants of Merkle trees with T5. The
conservative variant requires opening four siblings in a local opening proof, compared to three
siblings in the aggressive variant. The boxed formulas are conjectures based on the 3-XOR and
4-XOR problems. We have 2/ log2 5 ≈ 0.86, 3/ log2 5 ≈ 1.29, 4/ log2 5 ≈ 1.72. Note that full-full
collision resistance (CR) security is listed for completeness, this is the “traditional” collision resistance
involving two distinct messages (and the entire corresponding Merkle trees).

Standard Merkle Merkle with T5 Merkle with T5

(conservative) (aggressive)

build calls/t 1 0.75 0.75

update/log2 t 1 0.86 0.86

verify/log2 t 1 1.29 0.86

opening/log2 t 1 1.72 1.29

full-full CR security n/2 n/2 n/2

full-local CR security n/2 n/2 n/3 → n/2

local-local CR security n/2 n/2 n/4 → n/3

7.2 Faster and Shallower Merkle Tree based on T5

m1 m2 m3 m4

h1 h2

h3

m5

a b

c d

e

f

T5

m2 m4m3 m5 m7 m9m8 m10m6m1
mt−3 mt−1

mt−2 mtmt−4

H

update: 0.86 log2 t calls

build: 0.75t calls to h

T5 T5

T5T5

T5

opening length:

1.72 log2 t conservative

1.29 log2 t aggressive

calls for verification:

1.29 log2 t conservative

0.86 log2 t aggressive

Figure 5 Full-blown tree based on T5. Security is 2n/2 (tight) for conservative openings, 2n/3

provable and 2n/2 heuristic for full-local aggressive opening, 2n/4 provable and 2n/3 heuristic for
local-local aggressive opening.

Our construction extends straightforwardly to a full-blown t-to-1 tree H of any depth
k, as depicted in Figure 5, with optimal t = 5k. Notice, unlike our compression function
T5 for H, which needed domain separation for functions h1, h2, h3 (see the full version of
this paper [11]), the final tree H can reuse the same h1, h2, h3 across all invocations, which
follows from general security properties of standard Merkle trees.

The overall trade-offs of our construction are summarized in Table 1, but we expand on
it below.

Efficiency. Let us summarize the performance of our tree construction:
Build: In H we compress every 5 inputs using our 5n-to-n compression function T5,
therefore using (t− 1)/4 calls to T5, which is equivalent to

E(t) = 0.75(t− 1)

ITC 2021
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calls to the hj ’s, thus giving us 25% improvement over the regular Merkle tree.
Depth/update: The depth D(t) of the tree, measured in the calls to the hj ’s, reduces
from log2 t to

D(t) = 2 log5 t ≈ 0.86 log2 t

which is a 14% saving compared to standard Merkle trees.
Opening length (conservative): In the conservative opening we open all 4 siblings,
thus L(t) increases from log2 t of standard Merkle trees to 4 log5 t ≈ 1.72 log2 t (loss of
72%). It is still useful though when bandwidth is not critical which is sometimes the case.
Opening length (aggressive): In the aggressive opening we open 3 elements, thus
L(t) increases to only 3 log5 t ≈ 1.29 log2 t (loss of 29%, which may be tolerated for some
applications).
Verification time (conservative): the number of hi calls needed to verify the proof
increases to V (t) = 3 log5 t ≈ 1.29 log2 t.
Verification time (aggressive): the number of hi calls needed to verify the proof
decreases to V (t) = 2 log5 t ≈ 0.86 log2 t. This is very handy in applications when opening
verification time is crucial (such as zero-knowledge membership proofs where proving
time linearly depend on the circuit size needed for the opening verification). However we
pay for this with security (see below).

Security. Since our construction applies the standard Merkle paradigm to the 5-to-1 com-
pression function T5, the resulting hash function H inherits the same global (or local opening)
collision and preimage security as the compression function T5:

Full-local (aggressive) security: provable security up to (taking poly(n) factors aside)
2n/3 queries (Theorem 4), heuristic security up to 2n/2 running time (Proposition 7).
Local-local (aggressive) security: provable security up to 2n/4 queries (Theorem 4),
heuristic security up to 2n/3 running time (Proposition 10).
Both full-local and local-local (conservative) security: provable security up to
2n/2 queries (Theorem 2).

Additionally, non-trivial preimage security holds up to 22n/3 queries (and at optimal level
O(q/2n), in the region of interest where q ≤ 2n/2).

Applications. Merkle trees are used in a number of protocols, but their exhaustive list
is beyond the scope of this paper. To name just a few: anonymous cryptocurrencies and
mixers [14, 25], interactive oracle proof (IOP) compilers [2, 3], and post-quantum hash-
based signatures [5]. Among them, cryptocurrencies and mixers are the examples of publicly
controlled Merkle trees, i.e., where the full-local opening makes sense and where the aggressive
opening with its improved verification time is appealing.

From all this diverse range of applications, the ones who benefit also from the conservative
opening strategy are those for which the performance and depth are more important than
the local opening size. Of course, basic hashing by itself is a very important example of such
an application. The next examples are zero-knowledge proof systems where circuit depth is
a major performance factor [34, 35]. Finally, a more speculative area where our construction
could help is multiparty computation protocols applied to functionalities involving hashing,
whose complexity depends on the circuit depth (e.g., variants of the original BGW [1] and
GMW [12] protocols).
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Summary. Our construction has clear advantage over the regular Merkle tree in build and
update efficiency, but loses in the opening length. For the verification time and security
we have a tradeoff: an aggressive opening needs fewer hi calls but only heuristic security
argument of 2n/2 with provable security reaching 2n/3 only, whereas the conservative opening
has the same security properties as in the regular tree but requires 30% more verification
calls. Thus whether or not our construction outperforms the regular Merkle tree depends on
the setting.

8 Generalizations and Future Work

Our construction is likely to be extended to wider compression functions. For example,
a natural generalization of our construction can hash T = 3 · 2k − 1 inputs using only
E = 2 · 2k − 1 = (2T − 1)/3 evaluations, where standard 2n-to-n hash h corresponds to
k = 0, and our T5 corresponds to k = 1. As k increases, E(k)/T (k)→ 2/3, which matches
Stam’s bound for building Tn-to-n hash functions from 2n-to-n compression functions.
Unfortunately, as k grows, the local opening size also grows, so it is unclear if this overall
hash saving is worthwhile for applications. We leave the security analysis of this, and other
optimized hashing constructions to future work.

Finally, it remains to prove the reduction of the full-local aggressive security to the 3-XOR
problem unconditionally, i.e., without restrictions on the adversary.
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