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—— Abstract

In self-encryption, a device encrypts some piece of information for itself to decrypt in the future. We

are interested in security of self-encryption when the state occasionally leaks. Applications that use
self-encryption include cloud storage, when a client encrypts files to be stored, and in 0-RTT session
resumptions, when a server encrypts a resumption key to be kept by the client. Previous works
focused on forward security and resistance to replay attacks. In our work, we study post-compromise
security (PCS). PCS was achieved in ratcheted instant messaging schemes, at the price of having
an inflating state size. An open question was whether state inflation was necessary. In our results,
we prove that post-compromise security implies a super-linear state size in terms of the number of
active ciphertexts which can still be decrypted. We apply our result to self-encryption for cloud
storage, 0-RTT session resumption, and secure messaging. We further show how to construct a
secure scheme matching our bound on the state size up to a constant factor.
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1 Introduction

In many deployed applications, the design of the application involves various devices
communicating with each other securely. They sometimes require one of the devices to
encrypt some piece of information that will be used in the future by itself. We call this
self-encryption. One application is massive client-server connections where millions of clients
connect to a server, causing the server being unable to afford to store any client-specific
information. On the other hand, recent protocols such as TLS 1.3 offers an alternate way to
make the server to resume past sessions without going through a new round-trip handshake
when a client reconnects to the server.! While clients would surely benefit from a smooth
connection experience, the server has to “remember” each session in a secure manner, possibly
by keeping a (small or big) size of state. More precisely, when a client connects to a website
for the first time, the web server generates a ticket for the client. This ticket is a piece
of information that helps the server to remember the session. Somehow, this is a helper
that the server encrypts for itself which is to be kept by the client like cookies. When the
client reconnects to the same website with her ticket, the server may use the information
contained in the ticket to resume their session. As desired, it gives the freedom not to store
any client-specific information on the server-side. However, the server needs a secret state for

L As of November 2019, 34% of TLS connections use session resumption [11].
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the cryptographic operations which are used in generating and decrypting tickets. From the
security point of view, then, the concern becomes to provide security against replay attacks
or occasional exposures of the internal state of the server.

In general, the internal state is any type of information that would let a device decrypt
(some part of) the communication. In this work, we investigate the security of self-encryption
which comes in two forms: forward security (FS) and post-compromise security (PCS).
Intuitively, forward security provides security for the past communication when exposure
happens, whereas post-compromise security aims to heal the future communication when
exposure occurs [6]. Before going forward with security, we list three applications.

O-RTT in TLS 1.3

In the TLS 1.3 protocol, a client connects to a server and establishes a common secret key
through a handshake key agreement protocol. This is succeeded with a full round trip time
(1-RTT) communication. Ideally, when the client reconnects to the same server after a while,
the connection should be resumed with no round trip time (0-RTT). 0-RTT has been an
active research domain in the last few years [2, 7, 10]. It is achieved in practice through
two elementary approaches called session caches and session tickets as described by Aviram,
Gellert, and Jager (AGJ) [2]. In the former technique, the server resumes the session by
assigning a different resumption key for each connection and sending the client a look-up
index that links to the resumption key. The ticket is that index. When the client comes back,
it includes the ticket and the payload data. This provides forward security. Nevertheless, the
solution depends on maintaining a big database on the server, which is not alluring.

The other approach for 0-RTT in TLS 1.3 configurations is to create session tickets for
each client by using a long-term secret key K (the ticket encryption key). Therefore, instead
of storing a unique key for each session, the server generates a secret material for each client
and encrypts it under K. The secret material is called resumption key whereas the encrypted
resumption key is the ticket. The client stores both the resumption key and the ticket.
Later on, the client encrypts the payload with the resumption key and includes her ticket in
0-RTT message to remind herself. The server can decrypt the ticket with K and retrieve the
resumption secret to decrypt the payload. This approach avoids storing a big database; it is
easy to implement and to integrate in existing systems, yet, it does not provide any kind of
security in the case of a key exposure.?

In their recent work, Aviram, Gellert, and Jager (AGJ) [2] studied the forward security
and the resistance to replay attacks of session resumption, specifically focusing on session
tickets. However, they did not consider PCS in their security model.

Cloud Storage

In a single client-server cloud storage, the client wants to outsource her files in a remote
storage (cloud) in an encrypted form. The encryption of the files occurs locally on the client
who keeps the secret decryption material. The adversary has full access to the cloud and
can also keep archives of removed storage. If the client encrypts all files with the same key,
the leakage of the key becomes catastrophic as all files (even the removed ones) become
compromised. Besides, the client aims to minimize the storage on her local while maintaining

2 In TLS 1.3, it is considered good practice to rotate the long-term key K every few hours by assuming
that all the clients will resume their sessions in the “life-time” of K. Nevertheless, as soon as the key K
is compromised, there is neither FS nor PCS during the active period of K.
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strong security in case of a compromise of her internal state. This cloud storage problem
shares similarities with the 0-RTT problem: the cloud client and the 0-RTT server want to
minimize their storage while conserving security.

On the other hand, keys should not be used more than what the encryption method
can guarantee to be secure or age too long. This is part of a common good practice in key
management. Regulations actually mandate the encrypted files to be updated from an old
key to a new key often enough. This is called key rotation. The fundamental motivation,
however, comes with the desire to achieve resilience to key exposure. Key rotation was
formally studied by Boneh et al. [3]. More recently, Everspaugh et al. [9] considered the
integrity problem with key rotation.

The naive way to achieve key rotation is to make the client download the encrypted files
on the local, decrypt them with the existing key, generate a new fresh key, re-encrypt, and
finally outsource back. However, it is a very cumbersome solution for the client. The main
task of key rotation is to avoid the complexity of communication and the complexity of
treatment on the client side. In practice, AWS and Google deploy a more practical methods
based on hybrid encryption: a header ct; = Encg (eph) is formed by encrypting an ephemeral
key eph and the rest of the ciphertext cto = Encepn(pt) is formed by encrypting the plaintext
pt using eph. Key rotation is done by updating the header as ct] = Enck-(eph) but keeping
the same ephemeral key so ct}, = cty. This was argued to be a bit cheating with the concept
of key rotation as the encryption of data under the same key was remaining in cts.

We tackle the privacy problem differently. Instead of updating a ciphertext to be
decryptable with a chosen key, we let ciphertexts unchanged but update the state which is
stored by the client®. Naturally, our concern becomes more focused on the storage space
on the client side. In our setting, the client stores one state and needs no operation on
ciphertexts.

Instant Messaging

Post-compromise security in instant messaging was formally studied during the last few
years [14, 12, 13, 1, 8]. Tt is addressed by the notion of ratchet. A ratchet consists of updating

a key in a one-way manner (for FS) by using some unpredictable randomness (for PCS).

Bidirectional secure communication applications can be transformed into self-encryption. In
fact, roughly speaking, we can merge both participants into one single device which would
encrypt for itself. A ratcheted scheme is normally FS and PCS secure, hence defines an FS
and PCS secure self encryption which we call a self-ratchet.

Our Perspective

In order to study the security of self-encryption, we consider a scheme which generates
ciphertexts with the ability to decrypt later, even when the state to decrypt evolves. We
define it in a way that it covers the three (and potentially more) applications we described
earlier. Furthermore, we are interested in forward security and post-compromise security
of these systems. The former captures that the system generates ciphertexts that should
remain decryptable for a limited time and that are not going to be decryptable anymore after
they “expire” (it could happen either because the settings allow the ciphertexts to stay alive
for a limited time or because there is an inherent latency to rotate keys). The ciphertexts
that are still decryptable are called active ciphertexts. Making a ciphertext become inactive

3 We do not mean to pick a fresh key to “rotate” the key and update the header as practiced by AWS.
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is a way to have forward security: if the state of the scheme is exposed after a ciphertext
becomes inactive, this ciphertext is still safe. The PCS defines what happens to the security
after an exposure of a state. When an exposure takes place, the post-compromise secure
system should be able to heal the state such that the ciphertexts which are generated after
the healing are secure. In many studies, PCS is interchangeably used with healing.

While studying self-ratcheted schemes with PCS guarantees (as well as FS), it was intuitive
to expect that the state size of any post-compromise secure self-ratcheted scheme will grow
because decryption keys would need to be independent. However, it was not clear why and
with what bounds we could achieve it. The first contribution of our work is to show that
we cannot achieve post-compromise security better than adding a trivial solution to already
existing efficient FS schemes.

As for forward security, AGJ [2] specifically consider the session resumption in TLS 1.3
and they designed solutions for FS and replay attacks without PCS. Their construction is
practical. In another study by Giinther et al. [10] and Derler et al. [7], the authors consider
a solution without any shared secret. In these works, the clients resume connections without
having to store any session-specific information on her local. The client keeps only the
long-term public key pk of the server. Therefore, they look for forward-secure solutions
when the long-term secret key sk evolves throughout time although the associated public key
never changes, hence the clients never updates its state. Although it is remarkable that such
schemes with forward security exist, both constructions are less practical due to the heavy
cryptographic tools they use. Therefore, we rather focus on the FS scheme AGJ to add PCS.

In their seminal paper on PCS, Cohn-Gordon, Cremers, and Garratt [6] focus on
Authenticated Key Exchange (AKE). In AKE, the protocol starts with a state and ends when
both participants have obtained the exchanged key. The typical exposure threats happen
before or after the protocol but not during it because the protocol is rather short. The AKE
protocol proposed by Cohn-Gordon et al. [6] requires to store nonces and ephemeral secrets
during the execution, which inflate the state. Deflation happens when the protocol is fully
complete. In our perspective (and specially about instance messaging), communication is
asynchronous and it can take some time before a protocol fully terminates. Hence, there is
the case when several protocols run concurrently. This is the case where the state would
grow with the number of incomplete sessions, just like in the instance messaging case (which
we illustrate on Fig. 15).

Our Contribution

In the present work, we start with the definition of a minimal primitive called Self-Encrypted
Queue (SEQ) with correctness and one-way (OW) security. It gives the minimal functionality
for any PCS construction, more particularly self-encryption schemes. Then, we prove that
for every SEQ primitive with states of bounded length, there is an adversary with small
complexity and high probability of success to break OW security. More precisely, the
probability of success is at least ﬁ2_2tﬁiil when the state size is bounded by ¢, n is the
number of active ciphertexts, and A =1 (or defined below). This result led us to conclude
that when self-encryption is post-compromise secure, it must have a state which grows more
than linearly in n.* This does not provide the practicality we were hoping for. Therefore,
we define a refinement which is a relaxed version of post-compromise security. In layman

4 It grows linearly if we take the key size as a memory unit. (The key size cannot have a constant bit
length. Otherwise, exhaustive search breaks it with constant complexity.)
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terms, we look into the following case: Maybe the first ciphertext that will be generated
after an exposure is not secure, but the system could be designed to heal the security after
the generation of A ciphertexts, where A is a constant parameter of our scheme. We call it
A-PCS. We show that in refined definitions, the state size is super-linear in % as opposed to
growing super-linear in n.

We prove that this impossibility result applies both in self-encryption and in secure
messaging. In addition to this, we prove that this result is tight by constructing a simple
self-encryption scheme achieving A-PCS with a state size matching our bounds.

After our impossibility results, we focus on few applications by borrowing already existing
formal interfaces from AGJ [2] in order to add PCS security in the discussed settings. We
modify the interface in a way that decryption and puncturing happens with separate function
calls in case the puncturing is not always necessary. Later on, we look at secure ratcheted
protocols which provides PCS security from the literature. We show that the state of these
protocols grows linearly (in terms of number of keys) as they “ratchet” every time a new
message is generated, hence falling into the case where A = 1. On the other hand, we have
two secure communication protocols given by Alwen, Coretti, and Dodis (called ACD and
ACD-PK) [1] which model well what Signal is deploying. We observe that the state in both
schemes does not grow linearly like other PCS schemes. This is due to the fact that these
two protocols do not guarantee A-PCS for any constant A. In fact, healing happens only
when the direction of communication changes.

We conclude that adding PCS to FS-secure systems can be succeeded at the price of a
minimal state growth with proven bounds and we cannot hope for better.

Structure of the Paper

In Section 2, we define a basic PCS-secure primitive called SEQ and we prove that its state
size must grow super-linearly. In Section 3, we apply this result to self-encryption. We
construct a scheme based on AGJ with super-linear growth and PCS security. Finally, in
Section 4, we show how to apply our result to instant secure messaging.

2 Impossibility Result

In this section, we first define a minimal primitive called Self Encrypted Queue (SEQ)
achieving post-compromise security. This primitive is not meant to have any concrete
application. However, we will prove that (examples of) useful primitives imply SEQ, and
that SEQ must have a linearly growing state.

2.1 Definition of a Minimal Primitive

We define below a minimal primitive which works in two phases: It iteratively generates
a sequence of plaintext/ciphertext pairs (pt,ct) by updating its state. Then, it takes the
sequence of ct in the same order as generated and recovers the exact sequence of pt. The
primitive is minimal in the sense that all considered applications which claim PCS must
achieve this functionality and even more (such as being able to receive the list of ct in
different order, or to have encryption and decryption steps mixed up). We build a limited
self-encryption (actually, we build a KEM) which we call a SEQ.

» Definition 1 (SEQ). A Self Encrypted Queue (SEQ) is a primitive defined by
Gen(1*) — st which generates an initial state;

25:5
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Correctness at level-n: Game OW,;,, a2 (A):

1: Gen(1%) — sto 1: Gen(1*) — sto

2: for i =1 ton do > fill up the queue 9. for i = 1 to m do

3: Enc(sti—1) — (sti, pt;, ct;) 3: Enc(sti—1) — (sti, pt;, ct;)
4: end for 4: end for

5: for i =1 ton do > empty the queue 5. A(lA,Stm7A7Ct1, cyCtm) = 2
6: Dec(stn+ti—1,cti) — (Stnts, pts) 6: return 1,_p,

7 if pt; # pt, then return 0

8: end for

9: return 1

Figure 1 Correctness and OW games for SEQ.

Enc(st) — (st’, pt, ct) which updates the state and adds to the queue a new message which
is pt in clear and ct in encrypted form;

Dec(st,ct) — (st’,pt/L) which updates the state and decrypts ct which leads the queue.
This is deterministic.

We say that SEQ s correct to level-n if the correctness game in Fig. 1 always return 1.

The principle of this primitive is that a state is updated at every encryption/decryption so
that the new state can decrypt the released ciphertext in the order they have been released.
In the correctness game, the queue is filled up with (cty,...,ct,), then emptied.

» Definition 2. Let n(\) and A(X) be polynomially bounded positive integer functions of
a security parameter A. We consider the OW,, A x game in Fig. 1. We say that SEQ with
level n is A-secure if for any PPT adversary A, A — maxi<m<pn Pr{OW,, A x(A) — 1] is
a negligible function.

The value of A represents the time the scheme needs to heal security after an exposure. This
means that A steps after exposing the state, the new state has become safe again and the
encryptions to follow will protect confidentiality. In the game, st,,_a is exposed and the
goal of the adversary is to decrypt ct,,. Most secure schemes are 1-secure, because security
heals after A = 1 encryption.

It is easy to design a secure SEQ of level n with a state with O(n) keys inside. For
instance, for any n, the scheme in Fig. 2 is a 1-secure SEQ to level n with state of size n,
where ) is the security parameter. This SEQ is trivially correct: st accumulates all pt in a
queue during encryption and releases them during decryption. It is also perfectly secure: pt
is independent from the corresponding ct and from the previous states. Hence, any OW,, A
adversary has an advantage of 27*.

Ideally, states should not inflate. For that, one can count on ct to transport a helper
to recover pt without having to store it in st. However, we prove next that a correct and
OW-secure SEQ primitive with st in a space ST~ of size 2°("1°2) does not exist.

2.2 Impossibility Result

» Theorem 3. There exists a (small) constant ¢ such that for every probability o €]0,1] and
integers A, n, £, A, k, for every correct SEQ primitive of level n as in Def. 1 with st in a

5 Throughout this paper, 1p denotes a function returning 1 if the predicate P is true, and 0 otherwise.
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Gen(1*): Dec(st, ct):
1: st (\]]) > a list of length 0 9: parse st = (), L)
2: return st 10: parse L = (pt, L')
Enc(st): > pt is the first length-A element of st

11: st « (A, L)

3: parse st = (\, L
P (L) 12: return (st, pt)

4: pick pt of length A\ at random

5: L+ (L, pt) > append pt in L
6: st+ (\, L)

7:ct+ L

8:

return (st, pt, ct)

Figure 2 A trivial SEQ.

space ST of size |ST| < 2%, there exist m < n and an OW,, A x adversary A of complexity
(n —m+ A)Tene + MTpec + ¢, and advantage at least

o _ L&)
PHOW, s a(4) = 1] > & (1 - (,1(; + ’“21a) 2e>

where Tene and Tpec are the complexities of Enc and Dec.

Interestingly, for k =2 and a = WlAJ’ this theorem gives Pr[OW,, o x(A) — 1] > 5(1 —

€2é_|-%J ). Thus, it is clear that ¢ < L%J — 2 is insecure.

We can be more precise and obtain insecurity when % is bounded by a logarithmic term

441
(of the security parameter). Let ¢ = 27 w727, Th. 3 with a = % and k = [2] gives the

following result:

» Corollary 4. There exists a (small) constant ¢ such that for every integers A\, n, £, and A,
for every correct SEQ primitive of level n as in Def. 1 with st in a space ST of size |ST| < 2°,
there exist m < n and an OW,, A  adversary A of complexity (n — m + A)Tgnc + MTpec + ¢,
and advantage at least

1 o ex1
Pr[OW,, A x(A) — 1] > 4—2 Tn/5]
n

where Tene and Tpec are the complexities of Enc and Dec.

This means that the state needs a size £ such that

e 22 iog, 1 —1 (1)
12010 -
2 A 82 4ne

to achieve A-security up to n encryptions with advantage bounded by e. For

e = 27" and n = Poly()), the dominant term is 3%.
We can now prove Th. 3:

Proof. Let us consider a correct primitive of level n with st in a space ST such that
|ST| < 2°. We will show that it is insecure. To do so, we will first express that the state
st after n encryptions are constrained. Namely, constraints are that st must decrypt the
generated sequence of ct correctly. The constraints increase with n, and the set of possible
st values which make decryption correct decreases. The set of constrained states does not
decrease exponentially because of the surprising existence of “super states” which are able to
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decrypt more than their constraints. Namely, super states can decrypt universaly, including
encryptions from the “future” which have not been generated yet. This is counter-intuitive.
This set of super states is a hard core in the set of constrained states. We show that the set
of constrained which are non-super states does decrease exponentially. Hence, by taking n
large enough, constrained states become all super states: the state after n encryptions must
be a super state. We use the property of the super state to mount an attack.

We first define notations. We extend the Enc and Dec functions. First of all, with random
coins p, we write Enc(st; p) = (st’, pt, ct) and consider Enc as deterministic with explicit coins.
For X € {Enc,Dec} and y € {st, pt,ct}, we denote by X, , the generated output of type
y by the X operation: for both Enc and Dec, the output components define subfunctions
Ency s, Ency pt, Enco o, Decy s, Decy, ot by

Enc(st;p) = (Enco_st(st; p), Enco_pe(st; p), Ence_ct(st; p))
Dec(st,ct) = (Dec, s(st,ct), Decy pi(st,ct))

We further extend those functions with a variable number of inputs p or ct. We define

Encoe «t(st,p1,...,0i) = Ence st(Ence st(st,p1,...,pi—1);p:)
Deco st(st,cty,...,ct;) = Deco st(Deco st(st,cty,...,cti—1),ct;)
with the convention that Enc, &(st) = st and Dec, &(st) = st, i.e., the functions with
zero coins do nothing but returning st unchanged. Next, Enc, pe(st, p1, ..., p;) is the list of
generated pt, Enco_(st, p1,. .., p;) is the list of generated ct, and Dec, p(st, cty,...,ct;) is
the list of decrypted pt:
Enco_pi(st,p1,...,pi) = (Enco_pe(Enco se(st,pr,. .. pj—1)ip5)) -1,
Enco ce(st,p1,...,0:) = (Enco ot(Ence se(st,pi,...,pj-1); pj))jzl,...,i
Deco pi(st,cty,...,cti) = (Deco pe(Deco se(st,cti,... ctj—1),ct)));;

Let st,, be the state which is obtained after n encryptions, before starting the decryption
phase. In order to characterize the constraints on st, coming from the first ¢ encryptions,
we introduce a set C[r;] corresponding to (and indexed with) each update operation r; =
(sto, p1,- .., pi). Due to correctness, st, must decrypt Enc, (7;) to Enc, p(r;). Hence, we
define the set of states which are constrained to r; by

Clr;] = {st € ST;Deco, pt(st,Enco ct(7:)) = Enco pe(7r:)}
Clearly, for any ¢ and any stg, p1, - - -, Pn, We have

Ence «t(sto, p1s---,pn) € Clsto, p1,-- -, i)

We note that C[rg], where rq = sty is the set of states subject to no restriction, hence
Cstg] = ST. Furthermore, we note that

Clrn] C--- CClrg] CCr1] € Clro) =S8T

A state in C[r;_a] decrypts well the first ¢ — A ciphertexts. It may also be element of
Clri—a, pi—At1, - - -, pi) if it decrypts the next A ciphertexts which are produced with coins
Pi—A+1s- -+, pi- 1t may also be in Clr;_a,pj_a,q;---p;] and decrypt A ciphertexts produced
with other coins. With good probability, some state may actually have the “super-power”
to decrypt ciphertexts produced with A more random coins. We call those states the super
states. Intuitively, this is unexpected to happen but we show below that super-states exist

and an adversary can build some easily.
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More concretely, let a > 0 be the probability from the statement of the theorem. We
define a set of super states for r;_a = (sto, p1,...,pj—a):

Slrj—al=1<steST; Pr [steClrj_n,pjat1,--- 05 >«
NS

This set S[r;_a] defines a set of states which are a-likely to decrypt a “fork” in the sequence
of random coins. (See Fig. 3.)

We note that S[r;_a] € C[rj_a] since for st € S[r;_a], there must exist (due to a
non-zero probability) pi A, ;,...,p} such that

st € Clrj—a, Pi_ag1s--- 05 € Clrj-al

We define a union of super states as follows:

SY[sto, p1,- - -y pn—n] = S[sto] U S[sto; p1] U - - - U Slsto; p1, - - -, pn—a]
Clearly

SVra—a] 2 - 2 8°[r1] 2 5Y[ro]

The idea of the proof is to show that states with too many constraints tend to become
super-states. Namely, we first prove that for n large enough, C[r,] is included in SU[r,,_a]

with large probability p. This means that after n encryptions, a state becomes a super-state.

Hence, this state belongs to some S[r;,,—al, with a random m < n. We now take a fixed
value of m which is taken with probability at least % (Tt exists, due to the pigeon-hole
principle.) We take n encryptions from random coins sto, p1; - - -, Pm—n, Py _aAy1s-- -5 Pn- We
deduce that there is a probability at least £ to get a state st;, in S[rp,,_a]. If it happens,
st/, decrypts what is generated by the fork stg, p1,...,pm with probability at least o (by
definition of the super states). We define an adversary that exploits this fact in Fig. 3. The
m encryptions with stg, p1,..., pm are generated by the game, the state st,,_a leaks, and
the adversary can fork to construct st), from it. We obtain the success probability of the
adversary in the OW,, A \ game:

Pr[OW,, ax(A) — 1] > % (2)

In what follows, we show that p > 1 — (% + %a) %] 2L,

Let i be an integer. We consider for the moment that stg, p1,...,p;—a are fixed. For
simplicity, we denote

Sian = SY[sto,p1s-.-spi—an]
U _ qu ‘
Ci—n = Clsto,p1,--,pi—n] Si = S-lsto, 1y, pieal

Cl(ﬁ) = C[Sthply"'api—Aaﬁ]

for a vector g of dimension A. We take k independent random A-dimensional vectors
p;, for integers j = 1,...,k and we define C; ; = C;(5;). (k is defined in the statement of
the Lemma.) Given g; fixed and some st € C; ; — Sy fixed, we have st ¢ S;’ meaning that
st € S[sto, p1,.-.,pi—al, thus

EI‘[S'E S Ci,j/] <«
P!
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sto A(1>‘7stm,A,ct1,...7ctm):
sty 1: st/m,A —sty_A
sto 2: fori=m—A+1tondo
! 3: pick p}
«  enerated with 2 Enc(sti_y;ph) — (sth pt),ct))
m—A4 (Pm—At1s---sPm)
5: end for
generated with " 6: for i =0tom —1do
’ / m —
(Prn—agir 1 Pn) 7 Dec(sty, 44, Ctit1) — (Sthip1, Ptitq)
, 8: end for
st € S[M-a] 9: return pt,,
Figure 3 Starting from state sto and applying m encryption that generates cti, ..., Ctm, we hope

that leaking st,, and forking to n encryptions in total will end up in st}, € S[rm—a]. Therefore, st;,
decrypts all the ciphertext with probability at least a.

Cij Cij

Ci—a

Figure 4 Illustration of the intersection (C; ;» — S;’) N (Cs; — SY).

for any pj independent vector indexed with j” # j, by definition of S; and C; ;. We count

(Cijr = SN (Ciy =S = > lsec,,

steCi,j —S;J
We obtain

E [[(Cijr = S7)N(Ciy — S < alCiy — 87| < a|Cioa — S Al

Pj!
for any j, j', and p; with j # j’. This is illustrated in Fig. 4. Clearly, we can then randomize
p; and obtain

Ell(Cijr — 57

3

)N(Cij — S < alCima — S Al

for any j and j' with j # j'.
Let A; = C; ; — S7. This denotes one of the k subsets of A = C;_a — S’ . We have

1
k
M <IAI+ > AN Ay
i=1 1<j <)<k

Indeed, any element 2 of A occurring in exactly m subsets A; is counted m times on the
left-hand side and 1 + W times on the right-hand side. However, m < 1 + W for
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every integer m. We deduce

k
k(k—1

E g |Ci; — SPI| < <1+( 5 )a) |Cica — SiLAl

=1

Given that all E[|C; ; — S|] are equal, we have proven that
1 k-1
E[ICi(p) — S7I] < (k + ) ICi—a — SiLAl
P
We can now randomize pq, ..., pn—a as well and obtain

n

0 1 k-1 \l&]
E[‘C[St07p1""7pn]_5 [Sthplv"'apanH]S E"‘V_Ta |ST|

We bound |[ST| < 2¢ and Pr[E # 0] < E[|E|] (due to the Markov inequality) for a random
set I/ and obtain

1 k-1 \L%&]
Pr[Clsto, p1;- - -, pu] — SV[sto, p1s- s pnn] # 0] < (k +— a) 2¢
By assumption on the size of ST, for n large enough, we obtain that the set difference
Clsto, p1,-- - pn) — SY[sto, p1,- -+ pn—a] is likely to be empty which means that the states
in Clstg, p1,-- -, pn] are super states. By the definition of C[r,], Enc, «(sto; p1,.-.,pn) €
Clsto; p1,- - -, pn). Hence, Enc, «(sto; p1,- - -, pn) is likely to be in S¥[stg, p1, . - -, pn_a]. More

precisely,
, 1 k-1 \l&],
Pr[EnCoist(Sthplw~~7pn) ¢S [StO»plv"'vpn—AH S % + Ta 2
If Enco st(sto, p1s---,pn) € SP[sto, p1,- - -, Pn_nal, it means there exists (at least) one m < n
such that

Pr[Enc, st(Sto, p1s---50n) € C(Sto, p1s-- s Pm_n, )] > «

=

Therefore, we obtain the success probability in the OW,, A x game (from Eq. (2)):

o _ L&)
Pr{OWp, a0 (A) = 1] > = (1 - <]1C + ]‘:2104) 24>

The complexity of A is n —m + A encryptions and m decryptions. |

Uniform Impossibility Result

Our Th. 3 and Cor. 4 are non-uniform in the sense that the parameter m depends on A in
an unknown manner. However, A is constructed in a polynomially bounded manner based
on m. Thus, by guessing m, we obtain a uniform result with advantage divided by n.

3 Self-Ratchet

3.1 Definitions

Consider a self-ratcheted scheme SR = (lg, Init, Enc, Dec, Punc) with the following syntax:

25:11
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Ig(A) (length of the plaintext)
SR.Init(1*) 5 st (output an initial state for the device)

SR.Enc(st, pt) LN (st’,ct) (update the state while encrypting pt € {0, 1}'8(V)

SR.Dec(st, ct) — pt or L (decrypt ct into pt)

SR.Punc(st, ct) — st’ (update the state by puncturing ct in st)
In our settings, there exists a device following a protocol which produces some pt/ct for itself
so that it can eventually decrypt ct to recover pt in the future. Encryption is stateful. The
protocol makes sure that when the device should no longer be able to decrypt ct and should
be secure against any future state exposure, it can “puncture” the state. This means that
the state st which can decrypt ct is replaced by a new (punctured) state st’ so that ct is not
decryptable by st’. With this notion, we aim at forward security and PCS.

» Definition 5 (SR). A self-ratcheted scheme (SR) of level n is a primitive SR =
(Init, Enc, Dec, Punc) which is n-correct in the sense that for any sequence sched, the game
in Fig. 5 never returns 1. Here, sched is a sequence of scheduled instructions which can be of
three different types: (“Enc”,pt) (encrypt plaintext pt), (“Dec”,j) (decrypt the j-th produced
ciphertext), and (“Punc”, j) (puncture the j-th produced ciphertext).

The correctness notion must consider any order of Enc/Dec/Punc instructions. This is what
sched is modeling. We describe what should happen when this sequence of instructions is
sched. Actually, we declare in L the ciphertexts which are “active” and we put in Ly how
they are expected to decrypt.

This definition assumes that the number of “active” ciphertexts remains bounded by a
parameter n (line number 5).

Compared to SEQ, an SR does not update the state during decryption (this is rather
done by a separate function) and decryption can be done in any order of the ciphertexts (i.e.,
not only in the oder they have been created). As applications will show, SR appears to be a
most wanted primitive.

Application to Cloud Storage

SR schemes can be used for cloud storage where a client wants to store her files on the cloud
in an encrypted form. Ideally, a single file is encrypted with SR.Enc to obtain a ct. For
retrieval, the SR.Dec is run to decrypt the file. Eventually, when the client wants to remove
the file from the cloud, the protocol will puncture her state for ct. The first desired security
is that after a client erases an encrypted file, even though a copy was illegally kept and the
state of the client later leaks, the file is unrecoverable. This is forward security. With SR, it
is achieved by puncturing. The second desired security is that after the state of a client has
leaked, if the client wants to store a new file in the cloud, this file should be safe, as long as
no exposure occurs during the activity time of this file. This is post-compromise security. It
is achieved by what we call self-ratchet.

One problem specific to cloud storage is that files are typically big and SR should handle
them in encryption, decryption, and puncturing. One common approach is to use a domain
expander based on a hybrid construction. Like the KEM/DEM hybrid cryptosystems, we
can use SR to encrypt an ephemeral key K and symmetrically encrypt the plaintext with K.

We could also add key rotation, if required, by using SR to encrypt the encryption key: to
encrypt a file pt, we pick a random key k (in the key domain of the key rotation scheme) and
we run ct; + SR.Enc(st, k). Then, we encrypt pt with k following the key rotation scheme
and obtain a header cty and a ciphertext ctz. The final ciphertext is ct = (cty, cto, ctz). To
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1: SR.Init(1%) 5 st
2: set lists Lyt and L to empty
3: for i =1 to |sched| do

4: if sched; parses as (“Enc”, pt) for some pt then

5: if the number of L entries which are different from L is at most n — 1 then
6: SR.Enc(st, pt) — (st, ct)

7 Lpt “— (Lpt7 pt)

8: Let < (Let, ct)

9 end if

10: else if sched; parses as (“Dec”, j) for some j then
11: if Le[j] exists and Let[j] # L then
12: SR.Dec(st, Lt[j]) — pt

13: if pt # Ly[j] then return 1

14: end if

15: else if sched; parses as (“Punc”, j) for some j then
16: if Let[j] exists and Let[j] # L then

17: SR.Punc(st, Le[j]) — st

18: Lct[]] — 1

19: end if
20: end if
21: end for

22: return 0

Figure 5 Correctness game for SR of level n.

rotate the key k, we puncture st with cty, run the key rotation scheme on (ctz, ct3) to get a
new key k' and new (ct}, cty), and run ctj < SR.Enc(st, k') to form ct’ = (ct], ct}, ct}).

Application to 0-RTT Session Resumption

SR schemes can be used for 0-RTT session resumption. Essentially, a server having a secure
connection with a client using a key K would use SR.Enc(st, K) to issue a ticket ct and send
ct to the client. To resume a session, the client, who kept K and ct, would resend ct to the
server who would use SR.Dec to recover K. The server might also immediately puncture it
to avoid any replay of the ticket ct and for forward security.

Previous Work on 0-RTT Session Resumption

Def. 5 is more general than the definition of 0-RTT session resumption [2]. The differences
are as follows:
the notations for 0-RTT session resumption are Setup, TicketGen, and ServerRes instead
of Init, Enc, Dec;
SR separates SR.Dec and SR.Punc instead of having both functionalities in ServerRes.

There is no formal definition of correctness for 0-RTT session resumption in Aviram et al. [2].

However, we can fairly assume it is the same as our notion of correctness in Def. 5, but when
sequences sched are limited such that every decryption is followed by puncturing: for all 4 and
j, if sched; = (“Dec”, j) then sched; ;1 = (“Punc”, j). In 0-RTT session resumption, it makes
sense to merge SR.Dec with SR.Punc as one of the security goal is precisely to prevent a ct
to be replayed. For cloud storage, the client may need to decrypt the same ct several times
before she removes the file from the cloud. Hence, we keep SR.Dec and SR.Punc separate.
We adapt the security definition of 0-RTT session resumption with our notations to which
we add specific instructions for post-compromise security. We define the IND?}}L’?AP: y(A) game
in Fig. 6. We also generalize it to adaptive security. In the AGJ security model, the game
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starts with many OEnc and only after that, the adversary can play with oracles except OEnc
(it is somehow non-adaptive). The AGJ model uses opt = {noPCS, replay} and it is formalized
for key establishment rather than encryption. (This means that there is a Test oracle to test
a decryption instead of a Challenge oracle to get an encryption challenge.)

» Definition 6 (SR security). Let n(\) and A(X) be polynomially bounded positive integer
functions of a security parameter . The option set opt specifies some variants in the game
in Fig. 6. The advantage is

AR (A) = [Pr [INDSR (4) = 1] = Pr [INDSER (4) — 1] |

We say thatS§R is IND-opt secure at level n with delay A if for any PPT adversary A,
A= Advi’,,\fzy;p (A) is a negligible function.

When “replay” € opt, the security notion aims to address replay attacks. It enforces puncturing
after decryption. Hence, decryption must puncture, as well. When “noPCS” € opt, the
security notion aims to capture forward security without post-compromise security. Absence
of noPCS in opt is a stronger security notion as it captures FS and PCS together.

Game |ND§,R,{7°K,\(A)I Oracle OPunc(ct):
1: Init(1") — st 19: SR.Punc(st,ct) — st
2: Active, Revealed + 0 20: Active < Active — {ct}
3: challenged < false 21: Revealed < Revealed — {ct}
4: AfterExp + A 22: return
5. AOEnc,ODec7ChaIIenge7OPunc7OExp(1)\) 5 b* Oracle Cha||enge(pt1):
6:

return b* 23: if challenged then return |

24: if |Active| > n then return L

25: if AfterExp < A then return |

26: pick pt, of same length as pt; at random
27: SR.Enc(st, pt;,) — (st,ct)

28: Active < Active U {ct}

29: AfterExp < AfterExp + 1

30: challenged < true

31: return ct

Oracle OEnc(pt):
7. if |Active| > n then return L
8: SR.Enc(st, pt) — (st, ct)
9: Active < Active U {ct}

10: Revealed + Revealed U {ct}

11: AfterExp < AfterExp + 1

12: return ct

Oracle ODec(ct): Oracle OExp():

13: if ct € Active — Revealed then 32: if (—challenged and “noPCS” € opt) or
14: return L (Active — Revealed # ()) then

15: end if 33: return L

16: SR.Dec(st,ct) — r 34: end if

17: if “replay” € opt then OPunc(ct) 35: AfterExp < 0

18: return r 36: return st

Figure 6 Indistinguishability game for self-ratchet.
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S.Gen = SR.Init S.Dec(st, ct):
S-Enc(st): ? 'SkaDjéC(jt;(I::) %Sg Punc(st, ct) t
: . —
1: pick K € {0,1}¥™ at random : o Hnetsh© ®
, 6: return (st,K)
2: SR.Enc(st, K) — (st’, ct)
3: return (st’, K, ct)

Figure 7 SEQ from SR.

AOEne,ODec,Challenge,OPunc,0Bxp (11, 7. fori=m—A+1tom—1do
1: pick m € {A,...,n} 8: pick pt; at random
2: fori=1tom— A do 9: OEnc(pt;) — ct;
3: pick pt; at random 10: end for
4: OEnc(pt;) — ct; 11: pick pt,, at random
5: end for 12: Challenge(pt,,) — ctm
6: OExp() — stm—a 13: B(1*, sty a,Cti,...,Cty) = 2

14: return 1,—p,

Figure 8 Adversary against SR based on an adversary for SEQ.

3.2 Impossibility Result

» Theorem 7. For every integer n, £, A > 0 and any n-correct self-ratcheted scheme SR
following Def. 5, and such that st belongs to a space of size bounded by 2°, there exist a (small)
constant ¢ and an adversary of complexity bounded by (n + A)(Tenc + Toec + Tpunc + 1) + ¢
having advantage

opt 1 041
Ad INDSR-o® 97 2Tm/ar — 98N
Vn,A,A (A) > An2

for opt = L and opt = replay, and where Ty is the complezity to pick an element of {0, 1}'g(’\)
at random and Tene, Tpec and Tpunc are the complexities of Enc, Dec and Punc.

Proof. We construct a SEQ from a self-ratcheted protocol SR in Fig. 7. Clearly, the n-
correctness of SR implies the n-correctness of S for any n. The SEQ scheme only imposes
ciphertexts to be received in the same order as they have been produced.

Due to Cor. 4, there exists m and an OW,, A \ adversary B such that Pr[OW,, o x» —
1] = p with p > ﬁ2_2%. B is constructed uniformly from m. Then, we can construct an
IND;Rn’?E ,, adversary A who guesses m as in Fig. 8.

The Challenge oracle encrypts pt,, which is either pt,, or random. Since A simulates
well the OW,,, A\ game, we have Pr[z = pt,,] > £. Hence, Pr[lNDfi?Zt — 1] = £ and
Pr[INDS?n’?gt — 1] = 27'8(Y). Hence, the advantage is 2 — 27'6(%),

The adversary A picks m plaintexts and issues m — 1 OEnc queries, one OExp query and
one Challenge query, and then simulates an OW,, A  adversary B. The complexity of B is
the complexity of n —m 4+ A encryptions and m decryptions, and the complexities of S.Enc
and S.Dec are respectively Tgnc + Tg and Tpec + Tpunc- The complexity of A therefore is
n —m + A encryptions, m decryptions, m punctuations, m + 1 oracle calls and (n + A)
random selections. <
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SR.Init(1%): SR.Enc(st, pt):
Tt (0,]) 10: parse st = (¢, L)
> a counter set to 0 and 11: if ¢ =0 then
an empty list 12: c+ A
2: return st 13:  FSSR.nit(1}) — s
SR.Dec(st, ct): 14: L+ (L,s)
3: parse st = (¢, L) and ct = (i, cto) > add a new FSSR state in L
4: FSSR.Dec(L[i], cto) — pt 15: end if
5: return pt 16: c+—c—1

17: set £ to the length of L
18: FSSR.Enc(L[¢], pt) — (L[{], cto)
> L[] is updated

SR.Punc(st, ct):
6: parse st = (¢, L) and ct = (i, cto)
7: FSSR.Punc(L[i], cto) — L[i]

> L[é] is updated 19: st (¢, L)

20: ct + (¢, cto)

. st L
8: st (c, L) 21: return (st,ct)

9: return st

Figure 9 Post-compromise secure self-ratchet from forward secure self-ratchet.

3.3 Constructions

We provide a generic construction SR from an FSSR scheme® providing forward security. For
every A, we create a new structure with forward security and store it. Given a scheme FSSR
offering only forward security, we construct SR as in Fig. 9.

» Theorem 8. Let n(\) and A(X) be polynomially bounded positive integer functions of a
security parameter A. Let opt be either L or {replay}. Let FSSR be a self-ratcheted scheme
which is IND-(opt U {noPCS}) secure at level A. Then, SR (in Fig. 9, with parameter A) is
a self-ratcheted scheme which is IND-opt secure at level n with delay A.

Proof. Let opt be either L or {replay} and B be an IND-opt adversary against SR with
delay A. Assume that B queries at most ¢ encryption and challenge queries. Then, we can
construct an IND-(opt U {noPCS}) adversary A against FSSR at level A as shown on Fig. 10.

By the construction, SR generates a new state of FSSR for each A encryptions. The
adversary A therefore simulates the IND-opt security game with delay A while trying to
replace A ciphertexts by the ciphertexts that the adversary is challenging. If the oracle
Challenge” does not abort the game, the adversary A can correctly guess b if B can correctly
guess it. The probability that the game is not aborted by Challenge’ is about A/q. Then,
the advantage of A is

, (optU { nol 1 ,opt
AdvINDT D (4 — A AR (B)

INDFSSR,(oth{noPCS})

Since ¢ is polynomially bounded and A > 1, if Adva - (A) is negligible, then
Adviﬂii':opt(B) is negligible too. Hence, SR is IND-opt secure at level n with delay A if FSSR
is IND-(opt U {noPCS}) secure at level A. <

6 FSSR means FS-secure self-ratcheted scheme.
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AOEnc,ODec,ChaIIenge,OPunc,OExp(1)\ ):

idx < {1,...,[¢/A]}

SR.Init(1*) — st

Active, Revealed < ()

challenged < false

AfterExp < A
BOEnc’,ODec’,Challenge’,OPunc/,OExp/ (1)\) N b/

return b’

Subroutine OEnc’(pt):

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

if |Active| > n then return L
SR.Enc(st, pt) — (st, ct)
parse ct = (¢, cto)
if ¢ = idx then

OEnc(pt) — cto
end if
ct « (£, cto)
Active < Active U {ct}
Revealed < Revealed U {ct}
AfterExp < AfterExp + 1
return ct

Subroutine ODec’(ct):

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

if ct € Active — Revealed then
return |
end if
parse ct = (¢, cto)
if ¢/ = idx then
ODec(cto) — pt
else
SR.Dec(st, ct) — (st, pt)
end if
if “replay” € opt then OPunc’(ct)
return pt

Subroutine OPunc’(ct):

30:
31:
32:
33:
34:
35:
36:
37:
38:

parse ct = (¢, cto)
if ¢ = idx then
OPunc(cto)
else
SR.Punc(st,ct) — st
end if
Active <+ Active — {ct}
Revealed < Revealed — {ct}
return

Subroutine Challenge’ (pt):

39:
40:
41:
42:
43:

44:
45:
46:
47:
48:
49:
50:
51:

if |Active| > n or AfterExp < A then

return |
end if
parse st = (¢, L)

if (¢ # 0 or |L] # idx — 1) and (¢ = 0 or
|L| # idx) then
abort the game
end if
SR.Enc(st, pt) — (st, ct)
Challenge(pt) — ct
Active + Active U {ct}
AfterExp <+ AfterExp + 1
challenged < true
return ct

Subroutine OExp’():

52:
53:
54:
55:
56:
57:

58

59:

parse st = (¢, L)

if |L| > idx then
OExp() — st’
if st' = | then return L
Llidx] < st’

end if

AfterExp < 0

return (c, L)

Figure 10 FS adversary for FSSR based on an adversary for SR.

Optimization

Our SR scheme can obviously be optimized for storage. For each state L[i], we can add a
counter of active ciphertexts with L[i] which is incremented by Enc and decremented by
Punc (after checking that decryption works). Then, when the counter becomes 0, L[i] can be
erased.

Another convenient optimization holds when the application wants to operate bulk

puncturing of too old ciphertexts. This implies to erase all first L[i]. It is quite compatible

with recent policies of session resumption: a session which is too old cannot be resumed.
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FSSR.Init(1*): FSSR.Enc(st, pt):

1: PPRF.Setup(1*) — kpprr 12: parse st = (kpprr, cnt)

2: st (kPPRF7 0) 13: K + PPRF.EVal(kppRF,Cnt)
3: return st 14: if k = 1 then return L

15: cto + AEAD.Enc(k, cnt, pt)
16: ct « (ent, cto)
17: st + (kppRF, cnt + 1)

w: 18: return st,ct

4: parse st = (kpprr, Cnt)

5: parse ct = (cnt’, cto) FSSR.Dec(st, ct):
6: pt + FSSR.Dec(st, ct) 19: parse st = (kpprr, cnt)
7: if pt = L then return | 20: parse ct = (cnt’, cto)

8: PPRF.PUnC(kPPRBCnt,) — kppRF 21: K+ PPRF.EvaI(kppRF,cnt')
9: if kpprr = L then return L 22: if Kk = 1 then return L
10: st < (kpprr, cnt) 23: pt + AEAD.Dec(k,cnt’, ct)

11: return st 24: return pt

Figure 11 FS-secure SR.

3.4 FS-Secure Self-Ratcheted Scheme (from AGJ)

We adapt” the generic construction from Aviram et al. [2] based on a puncturable PRF denoted
as PPRF. We use authenticated encryption with associated data AEAD = (Gen, Enc, Dec).
(In our notation, the second input to Enc and Dec is the associated data i.e. the header to
be authenticated.) The construction is in Fig. 11.

AGJ presented two possible PPRF constructions. One is based on the Camenisch-
Lysyanskaya RSA accumulator [5]. The other is based on a tree structure.

RSA-based PPRF

The RSA-based construction uses a PPRF key of linear size in terms of the number of
encryptions and can only handle a polynomial number of encryptions. This is the total
number of encryptions, i.e. not only the ones remaining active. We give the construction
in Fig. 12, using a random oracle H and the list of first odd primes (pi,...,pm). In the
original paper [2], the authors have shown that the above construction is a secure PPRF
in the random oracle model, under the strong RSA assumption. The PPRF key is of size
2\ +m. However, the N part of the key can be set as a domain parameter which is common
to many keys.

In our construction, the device only needs to encrypt A messages per PPRF key. Hence,
we can set m = A in the above PPRF, meaning that the FSSR has states of size A+ A +log, A
plus A bits of common parameter N. Finally, our SR has states of size

1 A+ A +logy A) 4+ logy A+ A (3)

-
A

We can see that % is at least linear in A, hence super-logarithmic. Compared to (1), we are

within a factor close to 2 to the lower bound.

7 The only change is the separation between Dec and Punc.
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PPRF.Setup(lA): PPRF.Eval(kpprr, x): PPRF.Punc(kpprr, z):

1: generate an RSA modulus  7: parse kpprr = (N, g,7) 12: parse kpprr = (N, g,7)
N = pq of length A\ using 8: if r, = 1 then return L 13: if r, = 1 then return L
safe primes 9: Py + H?;lp:’l"li#”” 14: g < ¢g** mod N

2: erase p and ¢ 10: y + H(g™ mod N) 15: 7o < 1

3: pick g € Zy at random 11: return y 16: kpprr < (IV, g,1)

4: r + (0,0,...,0) € {0,1}™ 17: return kpprr

5: kPPRF < (N,g,r)

6: return kpprr

Figure 12 RSA-based PPRF.

Tree-based PPRF

The tree-based constructions is formed with two functions Gy and G7 from {0,1}* to itself,
which we extend to functions G, for every binary word z by Gy (L) = Gy(G4(L)). Then,
the PPRF defines a binary tree of depth d which is partially labeled. The PPRF key is a set
of (x, L) pairs where z is a binary word (hence a node in the binary tree) and L is its label
in {0,1}*. Initially, the key consists of the label of the root . To evaluate on z, one should
find a labeled node (y, L) such that y is a prefix of z, write = yz, and return G,(L). The
interface of the PPRF only takes d-bit input = (i.e. leaves), but our evaluation is defined for
every node. To puncture a leaf x, one should find this y again and replace (y, L) from the
key by the list of (2’, L") with 2’ = yz; -+ z;_12; and L’ being the evaluation on z’, where
21+ 2|z is the binary expansion of z and z; is the bit complement of z;. Hence, a PPRF
key is an anti-chain with no siblings. In the worst case, it could inflate by d pairs at every
puncture, but the maximum length is of 2~ pairs.

Same as the RSA construction, one only needs to evaluate 2¢ = A leaves. In the worst case,
a PPRF key has length 241 x d\ which is %)\A log, A. Hence, the FS-secure self-ratcheted
scheme has states of size bounded by %)\A logs A +log, A. Finally, our secure self-ratcheted
scheme has states of size

n

1
= A (2/\Alog2A+log2 A) + logy, A

which is larger than with the RSA-based method.

3.5 Experimental Results

We instantiate an SR based on FSSR with the RSA-based PPRF. We assumed that the same
RSA modulus is used for all PPRF keys, the RSA modulus so is precomputed and given as
a parameter to SR. Hence, the cost of setting up the RSA modulus is not covered in our
analysis. For H and AEAD, we used SHA-256 and AES-GCM.

Our experiment was done on a machine with the AMD Opteron 8354 processor and
128 GB of RAM by using the SageMath version 8.7. We picked a common 2048-bit RSA
modulus.

We tried many values for A from A = 100 to A = 10000 by steps of 100. We measured
the worst case complexity of an SR.Enc encryption, which is actually the very first one when
nothing is punctured and which includes FSSR.Init, as well as the best case complexity of
SR.Enc, which is the very last one after all other values have been punctured. For accuracy,
we did it 1000 times for each A and took the average. The results are plotted in Fig. 13.
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On the plot, we added the total state size divided by the total number n of encryptions as
it goes to infinity. This is essentially % with £ given by Eq.(3). As we can see, the execution

time grows linearly with A while % — 1 is inverse proportional to A.

0.4 : : : : ‘ 24
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Figure 13 The execution time of SR.Enc in the worst/best case and the state size divided by the
number of encryptions with 2048-bit RSA modulus.

4 Bipartite Ratcheted Communication

4.1 Definitions

We counsider a ratcheted scheme S = (Gen, Enc, Dec) following the syntax

S.Gen(1*) — (sta,stp) (generate a pair of states)

S.Enc(st) — (st’, pt, ct) (update the state while producing a pt/ct pair)

S.Dec(st, ct) — (st’, pt) (update the state while decrypting ct)
To avoid defining a general correctness and security for ratcheted schemes, which is quite
lengthy and complicated, we only adopt a definition matching a particular case of our interest.
This is the case when one participant Alice desperately tries to reach her counterpart
Bob by consistently sending messages without receiving any response, while Bob actually
acknowledges for the receipt of every message from Alice but his acknowledgments somehow
never make it through. (See Fig. 15.)

» Definition 9. A simple ratcheted scheme is a primitive S defined by S = (Gen, Enc, Dec)
which is n-correct in the sense that the game in Fig. 14 never returns 1.

In this communication pattern, protocols such as PR [14], JS [12], JMM [13], and DV [8]
have growing states. We can clearly see it on the implementation results by Caforio et al. [4].
Protocols such as Signal [15] or ACD [1] keep constant-size states but offer no post-compromise
security in our communication pattern. In fact, in ACD, Alice keeps sending messages in
the same “epoch” (following the terminology of ACD [1]) using the forward secure scheme
called FS in ACD, while Bob receives those messages from an old epoch (for him) and keeps
sending messages in his own epoch, using FS as well. Since the FS scheme is deterministic, it
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1: S.Gen(1*) — (sti', stf) 7. 4 st

2: for i =1ton do 8: for i =1tondo

3 S.Enc(st ) — (st pt/, ct)) 9:  S.Dec(x,ct;) — (z,pt)

4: S.Dec(st? ,ct)) — (z,pt}) 10:  if pt # pt; then return 1
5 S.Enc(z) — (st?, pt;, ct;) 11: end for

6: end for 12: return 0

Figure 14 Correctness game for a simple ratcheted scheme of level-n.

st +
sty
stg
stf

A
st/

Figure 15 Simulation of the level-n correctness game.

offers no post-compromise security. In ACD-PK, there is an extra public-key encryption but
the decryption key remains constant within the same epoch. Hence, exposing st{* is enough
to decrypt all ciphertexts in both ACD and ACD-PK.

Post-compromise security should make impossible to decrypt ct,, which was released
after having ratcheted A times both participants after the last state exposure which revealed
stf,‘%A and stf:kA. For instance, with A = 1 and m = 2, it should be impossible on Fig. 15
to compute pt, from (sti',st?, cty, cty). This is formalized by the following definition.

» Definition 10. Let n(\) and A(N) be polynomially bounded positive integer functions of a
security parameter \. For a simple ratcheted scheme S which is n-correct, we define the game
in Fig. 16 with parameters m <n and A > 0: We say that S with level n is A-secure if
for any PPT adversary A, X — maxi<m<n Pr[OW,, A x(A) — 1] is a negligible function.

4.2 Impossibility Result

» Theorem 11. For every integer n, £, A > 0 and any n-correct simple ratcheted scheme
S following Def. 9, and such that (sta,stg) belongs to a space of size bounded by 2°, there
exists an adversary of low complexity having advantage

_g_t41

1 IS
Pr[OW,, A x(A) = 1] > 47122 /4]

in the security game of Def. 10.

Proof. We construct a SEQ protocol P as shown in Fig. 17. If S is n-correct (in the sense of
Def. 9), then this new scheme P is correct to level n (in the sense of Def. 1). This comes
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OWm,A»\:

1: S.Gen(1*) — (st} st¥)

2: for i =1 to m do

3 S.Enc(st! ) — (st pt’, ct))

4 S.Dec(st? |, ct}) — (z, pt})

5. S.Enc(z) — (st?,pt;, ct;)

6: end for
7o AN stA L stB o cty,.icty) 2 o
8 return l,—p

Figure 16 OW game for a simple ratcheted scheme.

P.Gen(1*) — st P.Enc(st) — (st’, pt, ct):
1: S.Gen(1%) — (sta,stp) 8: parse st = (sta,stp)
2: st < (sta,stg) 9: S.Enc(sta) — (st/y, pt’,ct’)
3: return st 10: S.Dec(stp,ct’) — (st’z, pt”)
. / 1
P.Dec(st, ct) — (st pt): 11: S.Enc(st’z) — (st%%, pt, ct)

: parse st = (sta,stp) 12: st’ < (sty,st})

: S.Dec(sta,ct) — (st/y, pt) 13: return (st’, pt, ct)
st’ « (st/y,stp)

return (st’, pt)

Figure 17 Simple ratchet S to SEQ.

from a direct translation of definitions. Furthermore, any uniform adversary against P (in
the sense of Def. 2) translates into an adversary against S in the sense of Def. 10: guess m
then given (st? _ A stf% A) the adversary decrypts ct,,,. We conclude by applying Cor. 4. <«

m

5 Conclusion

We defined a self-encryption mechanism involving a device which encrypts a secret message
for herself to use in the future. We are interested in security when the state of a device
in such settings leaks causing the leakage of the secret message. We started giving some
instances where self-ratcheting finds applications in cloud storage, when a client encrypts
files to be stored, and in 0-RTT session resumption, when a server encrypts a resumption
key to be kept by the client. Unlike previous works which focused on forward security and
resistance to replay attacks, we studied how to add post-compromise security, as well.

We first proved that post-compromise security implies a super-linear state size in terms
of the number of ciphertexts which can still be decrypted by the state. We then give formal
definitions of self-ratchet. We finally showed how to design a secure scheme satisfying our
bound on the state size.

Furthermore, we showed that our results on the growth of state size matches with
existing secure bidirectional secure messaging applications. Given the fact that the messaging
applications provide different level of PCS, we observed that there exist some protocols
such as ACD without growing state size. It is due to the fact that the protocol is secure
with a weaker notion of PCS which could allow constant-size states. It would be interesting
to investigate weaker PCS notions in self-encryption applications such as cloud storage or
0-RTT.
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