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Abstract
Restarts are used in many computer systems to improve performance. Examples include reloading
a webpage, reissuing a request, or restarting a randomized search. The design of restart strategies
has been extensively studied by the performance evaluation community. In this paper, we address
the problem of designing universal restart strategies, valid for arbitrary finite-state Markov chains,
that enforce a given ω-regular property while not knowing the chain. A strategy enforces a property
φ if, with probability 1, the number of restarts is finite, and the run of the Markov chain after the
last restart satisfies φ. We design a simple “cautious” strategy that solves the problem, and a more
sophisticated “bold” strategy with an almost optimal number of restarts.
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1 Introduction

Many computing systems offer the possibility to restart a computation or an interaction that is
suspected to have failed, in order to improve performance. The standard example is the reload
button of a web browser: when a download seems to “hang”, pressing the button can lead to a
faster, even to an immediate download. Similar situations appear in networks, where resending
a message can lead to a faster acknowledgment, in randomized search, where the search can be
restarted with a new seed, or in software rejuvenation, where performing a garbage collection,
flushing caches, or simply rebooting may improve performance (see e.g. [7, 10, 12, 13, 20, 22]).
Performance evaluation has extensively explored how to find optimal restart strategies in
stochastic timed systems, usually under strong assumptions on the distribution of the times
at which events occur.

In verification, liveness properties are abstractions of performance requirements: “every
requested webpage will eventually be downloaded” is an abstraction of “every requested
webpage will be downloaded within at most 3 seconds”, or of some more complicated statement.
The advantage is that they can be checked even when timing information is not available.
However, to the best of our knowledge restart strategies for liveness properties have not been
studied in the probabilistic, untimed setting. In this paper we study this question.
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5:2 Enforcing ω-Regular Properties in Markov Chains by Restarting

Consider a liveness property φ like “every requested webpage will eventually be downloaded”.
Assume that the system is modelled by a finite-state Markov chain, including faulty behaviour
of the TCP protocol, or the congestion phenomena causing requests to hang. We only know
the initial state of the chain, and we can execute a probabilistic program that, given a state
of the chain, returns a successor state according to the transition probabilities; we do not
have access to the code of this program, or it could be very complex, and so we do not know
the probabilities. We can monitor runs of the chain and record the sequence of states they
visit; further, we are allowed to restart the system at any moment. The problem is to design a
universal restart strategy, valid for every chain, satisfying the following two properties:
(1) With probability 1, the number of restarts is finite, and the run of the Markov chain after

the last restart satisfies φ.1

(2) The expected number of restarts R, and the expected number of steps S to a restart
(conditioned on the occurrence of the restart) are not too high (we make this more precise
later).

We say that strategies satisfying (1) enforce φ. If φ has zero probability, then no strategy
can enforce φ, and so we assume that φ has non-zero probability. Under this assumption, it
is easy to design naive enforcing strategies for safety and co-safety properties. For a safety
property like Gp it suffices to restart whenever the current state does not satisfy p; indeed,
since Gp has positive probability by assumption, eventually the chain executes a run satisfying
Gp almost surely, and this run is not aborted. Similarly, for Fp we can abort the first execution
after one step, the second after two steps etc., until a state satisfying p is reached. Since Fp

has positive probability by assumption, at least one reachable state satisfies p, and we will
almost surely visit it. However, these naive strategies lead to far too many restarts on average.
Further, for reactivity properties like “every requested webpage will eventually be downloaded”
even the problem of finding any enforcing strategy is already challenging: Unlike for Gp and
Fp, the strategy can never be sure that every extension of the current execution will satisfy
the property, or that every extension will violate it.

Our first result shows that, perhaps surprisingly, ideas introduced in [6] on the detection
of strongly connected components at runtime lead to a very simple enforcing strategy. Let M
be the (unknown) Markov chain of the system, and let A be a deterministic Rabin automaton
for φ. Say that a run of the product chain M×A is good if it satisfies φ, and bad otherwise.
We define a set of suspect finite executions satisfying two properties:
(a) bad runs almost surely have a suspect prefix; and
(b) if the set of good runs has nonzero probability, then the set of runs without suspect

prefixes also has nonzero probability.
The strategy restarts the chain whenever the current execution is suspect. We call it the
cautious strategy, or, since it must be implemented by monitoring the system, the cautious
monitor. By property (a) the cautious monitor aborts bad runs almost surely, and by property
(b) almost surely the system eventually executes a run without suspect prefixes, which by (a)
is necessarily good.

While the cautious monitor is very simple, it does not satisfy condition (2): in the worst
case, both R and S are exponential in the number of states of the chain. A simple analysis
shows that, without further information on the chain, the exponential dependence of S on the
number of states is unavoidable. However, the exponential dependence of R on the number

1 More precisely, the property is enforced only under the assumption that φ has non-zero probability,
otherwise there is no such strategy.
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of states can be avoided: using a technique of [6], we define a bold monitor for which the
expected number of restarts is almost optimal. Observe that if the property φ has probability
pφ, then the number of restarts needed by any monitor, even those that know the chain, is
1/pφ, because, loosely speaking, that is the expected number of runs until the chain executes
a run satisfying φ. Our bold monitor achieves c + 1/(pφ(1− ϵ)) restarts on average for any
given ϵ > 0, where c is a constant independent of both the chain and φ.

We also develop an efficient data structure that the monitor may use to keep track of the
relevant parameters of the current run. Finally, we illustrate the behaviour of our monitors on
models from the standard PRISM Benchmark Suite [15], and compare our theoretical bounds
to the experimental values.

Related work. Our work is related to runtime enforcement [17]. In this approach a property
is enforced by automatically constructing a monitor that inspects the execution online in an
incremental way, and takes action whenever it violates the property; only safety properties are
enforceable. The ideas of [17] have been extended to some non-safety properties and timed
properties (see e.g. [3, 16, 8, 9]). To the best of our knowledge, restarts as runtime enforcers
in a probabilistic setting have not been considered. Runtime monitoring of stochastic systems
modelled as Hidden Markov Chains (HMM) has been studied by Sistla et al. in a number of
papers [18, 11, 19], but these papers concentrate on monitoring violations of a property, not
on enforcing it.

Our problem is also related to learning Markov chains, e.g., [5, 4, 21, 1]. A simple and
correct restart strategy based on learning is to store all the states and transitions of the chain
M×A visited so far, yielding a currently explored graph, and restart whenever the current
state belongs to a non-accepting and non-trivial bottom strongly connected component of
this graph. However, the memory consumption of such a strategy is very high. We focus on
strategies that only store (part of) the current run, at lower memory cost. Moreover, many
real systems exhibit a “fat but shallow” topology, i.e., a large ratio between the number of
paths and their length [6]. In such chains, states are rarely revisited, and so storing all past
states for eventual use in future runs is inefficient. Our strategies only need a few restarts;
more precisely, the number of restarts only depends on the inverse of the probability of φ, but
not on the size of the chain. These points are discussed in more detail in Remark 5 and in
Section 4.3.

2 Preliminaries and running example

Directed graphs. A directed graph is a pair G = (V, E), where V is the set of vertices and
E ⊆ V × V is the set of edges. A path (infinite path) of G is a finite (infinite) sequence
π = v0, v1 . . . of vertices such that (vi, vi+1) ∈ E for every i = 0, 1 . . .. We denote the empty
path by λ and concatenation of paths π1 and π2 by π1 . π2. A graph G is strongly connected
if for every two vertices v, v′ there is a path leading from v to v′. A graph G′ = (V ′, E′) is
a subgraph of G, denoted G′ ⪯ G, if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′); we write G′ ≺ G if
G′ ⪯ G and G′ ≠ G. A graph G′ ⪯ G is a strongly connected component (SCC) of G if it is
strongly connected and no graph G′′ satisfying G′ ≺ G′′ ⪯ G is strongly connected. An SCC
G′ = (V ′, E′) of G is a bottom SCC (BSCC) if v ∈ V ′ and (v, v′) ∈ E imply v′ ∈ V ′.

Markov chains. A Markov chain (MC) is a tuple M = (S, P, µ), where S is a finite set of
states, P : S × S → [0, 1] is the transition probability matrix, such that for every s ∈ S it
holds

∑
s′∈S P(s, s′) = 1, and µ is a probability distribution over S. The graph of M has S

CONCUR 2021
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as vertices and {(s, s′) | P(s, s′) > 0} as edges. Abusing language, we also use M to denote
the graph of M. We let pmin := min({P(s, s′) > 0 | s, s′ ∈ S}) denote the smallest positive
transition probability in M. A run of M is an infinite path ρ = s0s1 · · · of M; we let ρ[i]
denote the state si. Each (finite) path π in M determines the set of runs Cone(π) consisting
of all runs that start with π. To M we assign the probability space (Runs,F ,P), where Runs
is the set of all runs in M, F is the σ-algebra generated by all Cone(π), and P is the unique
probability measure such that P[Cone(s0s1 · · · sk)] = µ(s0) ·

∏k
i=1 P(si−1, si), where the empty

product equals 1. The expected value of a random variable f : Runs→ R is E[f ] =
∫

Runs f dP.
Given a finite set Ap of atomic propositions, a labelled Markov chain (LMC) is a tuple

M = (S, P, µ, Ap, L), where (S, P, µ) is a MC and L : S → 2Ap is a labelling function.
Given a labelled Markov chain M and an ω-regular property φ, we are interested in the
measure P[M |= φ] := P[{ρ ∈ Runs | L(ρ) |= φ}], where L is naturally extended to runs by
L(ρ)[i] = L(ρ[i]) for all i.

In this work, we assume that M, and in particular S, are unknown to the algorithms;
when a simulation run is observed, we can distinguish whether the current state has already
been seen and at which step, but we cannot match the state with any concrete element of S

even if we knew M.

Deterministic Rabin Automata and product Markov chain. For every ω-regular property
(in particular, for every LTL property) φ there is a deterministic Rabin automaton (DRA)
A = (Q, 2Ap, γ, qo, Acc) that accepts all runs that satisfy φ [2]. Here Q is a finite set of states,
γ : Q× 2Ap → Q is the transition function, qo ∈ Q is the initial state, and Acc ⊆ 2Q × 2Q is
the acceptance condition.

The product of a MC M and DRA A is the Markov chain M⊗ A = (S × Q, P′, µ′),
where P′((s, q), (s′, q′)) = P(s, s′) if q′ = γ(q, L(s′)) and P′((s, q), (s′, q′)) = 0 otherwise, and
µ′(s, q) = µ(s) if γ(qo, L(s)) = q and µ′(s, q) = 0 otherwise. Note that M⊗A has the same
smallest transition probability pmin as M.

A run of M⊗A is good if it satisfies φ, i.e., if it is accepted by A, and bad otherwise. An
SCC B of M⊗A is good if there exists a Rabin pair (E, F ) ∈ Acc such that B ∩ (S ×E) = ∅
and B ∩ (S × F ) ̸= ∅. Otherwise, the SCC is bad. Observe that good runs of M⊗A almost
surely reach a good BSCC (i.e., more formally, the probability that a run satisfies φ and
does not reach a good BSCC is 0), and bad runs almost surely reach a bad BSCC (i.e., more
formally, the probability that a run does not satisfy φ and does not reach a bad BSCC is
also 0).

▶ Example 1 (running). We present a strongly idealized but illustrative running example.
Consider a concurrent system where multiple threads execute transactions (e.g., the database
of an online shop). Every thread first acquires locks on a number of variables (which may
dynamically depend on the values of the variables it has already acquired), then executes its
task, and releases all locks. A thread may have to repeatedly try to acquire a lock on a given

s0 s1 s2 · · · sn−1 sn

dead

pa pa pa

pd pd pd pd

pf pf pf pf 1

1

Figure 1 An idealized example.
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variable, since it can be currently held by another thread. Moreover a thread that acquires a
lock on a variable, say v, reaches a deadlock if the next variable it needs, say v′, is currently
held by another thread trying to get a lock on v.

The deadlock problem can be solved by maintaining a dependency graph of all transactions,
and breaking all cyclic dependencies by restarting at least one of the threads involved. However,
this graph is usually too large to be practical. Under the assumption that threads are scheduled
stochastically, there are simpler mechanisms requiring no communication between threads:
Each thread counts the number of attempts it makes at acquiring the same variable, and
restarts (i.e., releases all its locks) when the number becomes “too high”. We want to
design such a mechanism, assuming that the thread has only the following information (or,
equivalently, assumes that the following hypotheses are correct): (1) its interaction with the
rest of the system can be modelled by a discrete finite-state Markov chain, whose states store
the sequence of locks acquired by the thread so far; (2) the probability that an attempt to
acquire a lock fails, and that it succeeds but leads to a deadlock only depend on the current
state, not on the number of attempts; and (3) the probability of the runs of the chain in which
the thread eventually acquires all locks it needs is positive. The thread does not know any
probability, or even the number of locks it needs. At every moment in time, the thread can
choose between trying to acquire the next lock, or restarting and releasing all locks. The
challenge is to design a restarting strategy ensuring that the thread will execute its task with
probability 1 while keeping the number of resets low. Observe that, even though the thread
does not know the chain, it can tell at each step whether it stays in the same state, or moves
to a new state it has not yet visited. Indeed, an attempt to acquire a lock either fails, in which
case the thread stays in the same state, or succeeds, in which case it moves to a new state
not visited so far, because the set of acquired locks is larger. In particular, the thread can
maintain a list k0, k1, k2, . . . indicating the number ki of visits to the i-th state. However, the
thread does not know if the current state is a deadlock or not.

Consider a simple case in which the thread always needs locks on the same n variables,
the probability of acquiring the lock and not reaching a deadlock afterwards, acquiring the
lock and reaching a deadlock, and failing to acquire the lock are pa, pd and pf = 1− (pa + pd).
The interaction of the thread with the rest of the system is then modelled by the Markov
chain depicted in Figure 1.

3 The cautious monitor

We assume the existence of a deterministic Rabin automaton A = (Q, 2Ap, γ, qo, Acc) for φ.
Our monitors keep track of the path π of the product chainM⊗A corresponding to the path
of M executed so far. In order to present the cautious monitor we need some definitions.

Candidate of a path. Given a finite or infinite path ρ = s0s1 · · · ofM⊗A, the support of ρ is
the set ρ = {s0, s1, . . .}. The graph of ρ is Gρ = (ρ, Eρ), where Eρ = {(si, si+1) | i = 0, 1, . . .};
i.e., Gρ has exactly the vertices and edges of M⊗A explored by ρ.

Let π be a finite path of M⊗A. If π has a suffix κ such that Gκ is a BSCC of Gπ (i.e.,
the suffix κ of π “looks like” the path π has entered a BSCC), we call κ the candidate of π.
Given a path π, we define K(π) as follows: If π has a candidate κ, then K(π) := κ; otherwise,
K(π) := ⊥, meaning that K(π) is undefined.

▶ Example 2. We have K(s0s1s1) = {s1}, K(s0s1s1s2) = ⊥, and K(s0s1s1s2s2) = {s2}
(Figure 1). Also K(s0) = K(s0s1) = K(s0s0s1) = ⊥, K(s0s0) = {s0}, and K(s0s1s0s1) =
{s0, s1} (Figure 2).
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s0 s1 s2 · · · sn−1 sn

sgood

sbad

1/2

1/2 1/2 1/2

1/2

1/2

1/2 1

1

1/2

1/2

Figure 2 A family of Markov chains.

Good and bad candidates. A candidate K is good if A has a Rabin pair (E, F ) ∈ Acc such
that K ∩ (S × E) = ∅ and K ∩ (S × F ) ̸= ∅. Otherwise, K is bad. A finite path π of M⊗A
is suspect if K(π) ̸= ⊥ and K(π) is a bad candidate. The function Suspect(π) returns true
if π is suspect, and false otherwise.

▶ Proposition 3.
(a) Bad runs of M⊗A almost surely have a suspect finite prefix.
(b) If the good runs of M⊗A have nonzero probability, then the set of runs without suspect

prefixes also has nonzero probability.

▶ Example 4 (running). Consider the running example from Figure 1, with {sn} and {dead} as
good and bad BSCC, respectively. The good paths of the chain are those reaching {sn}. They
have nonzero probability. The candidate of any bad path is either {si} for some 0 ≤ i ≤ n− 1,
or the bad BSCC. Since all these candidates are bad, every bad run is suspect. The only good
run without suspect prefixes is the one that reaches sn without ever looping (i.e., all locks are
acquired at the first attempt). It has probability pn

a .

The cautious monitor. The cautious monitor is shown in Algorithm 1. The algorithm
samples a run of M⊗A step by step, and restarts whenever the current path π is suspect.

Algorithm 1 CautiousMonitor.

1: while true do
2: π ← λ ▷ Initialize path with empty path
3: repeat
4: π ← π . NextState(π) ▷ Extend path
5: until Suspect(π)

▶ Remark 5. The cautious monitor only needs to store the first-appearance record of π (i.e.,
the list of states appearing in π, sorted according to their first appearance), since this is
enough to compute Suspect(π). Even further, it only needs the suffix of length mxsc of the
record, where mxsc is the maximal size of the SCCs of the chain. So there exists a universal
restart strategy that only needs to store mxsc states. Strategies based on learning the Markov
chain, which store all states visited so far, also in previous runs, do not satisfy this property.

To state the correctness of Algorithm 1 formally, we define another Markov chain. Consider
the infinite-state Markov chain C (for cautious) defined as follows. The states of C are pairs
⟨π, r⟩, where π is a finite path of M⊗A, and r ≥ 0. Intuitively, r counts the number of
restarts so far. The initial probability distribution assigns probability 1 to ⟨λ, 0⟩, and 0 to all
others. The transition probability matrix PC(⟨π, r⟩, ⟨π′, r′⟩) is defined as follows.



J. Esparza, S. Kiefer, J. Křetínský, and M. Weininger 5:7

If π is suspect, then PC(⟨π, r⟩, ⟨π′, r′⟩) = 1 if π′ = λ and r′ = r + 1, and 0 otherwise. We
call such a transition a restart.
If π is not suspect, then PC(⟨π, r⟩, ⟨π′, r′⟩) = P(p, p′) if r′ = r, π = π′′ . p and π′ = π . p′,
and 0 otherwise.

A run of CautiousMonitor corresponds to a run ρ = ⟨π1, r1⟩⟨π2, r2⟩ · · · of C. Let R be the
random variable that assigns to ρ the supremum of r1, r2 · · · . Further, let Sφ be the set of
runs ρ such that R(ρ) <∞ and the suffix of ρ after the last restart satisfies φ. The following
theorem states that CautiousMonitor satisfies the properties that were mentioned in the
introduction.

▶ Theorem 6. Let φ be an ω-regular property such that P[M |= φ] > 0. Let C be the
Markov chain obtained from M and φ as above. We have (a) PC[R < ∞] = 1, and (b)
PC [Sφ | R <∞] = PC [Sφ] = 1.

Proof. Since P[M |= φ] > 0, the good runs of M⊗A have nonzero probability. By part
(b) of Proposition 3, the set of runs of M⊗ A without suspect prefixes also has nonzero
probability, say p. So, by construction of C, after each restart the probability that C executes
a run of M⊗A without suspect prefixes, and so of executing no more restarts, is at least p.
So PC [R =∞] = 0. ◀

Performance. Let T be the random variable that assigns to ρ the number of steps till the
last restart, or ∞ if the number of restarts is infinite. First of all, we observe that, if we do
not make any assumption on the system, E(T ) can grow exponentially in the number of states
of the chain. Indeed, consider the family of Markov chains of Figure 2 and the property Fp.
Assume the only state satisfying p is sgood. Then the product of each chain in the family with
the DRA for Fp is essentially the same chain, and the good runs are those reaching sgood. We
show that E(T ) grows at least exponentially for any monitor, even for those that have full
knowledge of the chain. Indeed, since restarting brings the chain back to s0, optimal monitors
never do a restart when the chain is in any of the states s0, . . . , sn; further, they always restart
in state sbad, because there is zero probability of reaching sgood. So the optimal monitor (i.e.,
the one with the least expected number of steps) is the one that restarts if, and only when, the
chain reaches sbad. Since the chain eventually reaches each of sgood and sbad with probability
1/2, the probability that this monitor performs exactly k restarts is 1

2k+1 , and so the average
number of restarts is 1. Hence, E(T ) is the expected number of steps needed to reach sbad,
under the assumption that it is indeed reached. To reach sbad the chain must execute a run
ending with the suffix s0s1 . . . sn. Since the probability of executing that suffix is 1/2n, we get
E(T ) ≥ 2n. We formulate this result as a proposition.

▶ Proposition 7. Let Mn be the Markov chain of Figure 2 with n states. Given a monitor N
for the property Fp, let TN be the random variable that assigns to a run of the monitor on
Mn the number of steps till the last restart, or ∞ if the number of restarts is infinite. Then
E(TN ) ≥ 2n for every monitor N .

This shows that all monitors have bad performance when the time needed to traverse a
non-bottom SCC of the chain is very large. So we conduct a parametric analysis in the maximal
size mxsc of the SCCs of the chain. This reveals the weak point of CautiousMonitor: E(T )
remains exponential even for families satisfying mxsc = 1. Consider our running example in
Figure 1. CautiousMonitor restarts whenever it takes any of the self-loops in a state si for
i < n. Indeed, after that the current path π ends in sisi, and so K(π) = {si}, which is a bad
candidate. So after the last restart the chain must follow the path s0s1s2 · · · sn, which has
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5:8 Enforcing ω-Regular Properties in Markov Chains by Restarting

probability pn
a , and so E(T ) ≥ p−n

a . Intuitively, the monitor introduced in the next section is
“bolder”; instead of restarting whenever it does not immediately acquire the next lock, it only
restarts after trying to acquire a certain number of times, making it “more likely” that the
state is dead.

4 The bold monitor

We proceed in two steps. In Section 4.1, inspired by [6], we design a bold monitor that knows
the minimum probability pmin appearing in M (more precisely, a lower bound on it). In
Section 4.2 we modify this monitor to produce another one that works correctly without any
prior knowledge about M, at the price of a performance penalty.

4.1 Chains with known minimal probability
The cautious monitor aborts a run if the current candidate is bad. In contrast, the bold
monitor keeps track of the strength of the current candidate (defined below), a measure of
how confident the monitor can be that the current candidate is a BSCC. In deciding whether
a restart should be triggered, the bold monitor also takes into account how many candidates
it has already seen since the last restart. Intuitively, the monitor becomes bolder over time,
which prevents it from restarting too soon on the family of Figure 1, independently of the
length of the chain. The monitor is designed so that it restarts almost all bad runs and only a
fixed fraction ε of the good runs. Lemma 11 below shows how to achieve this. We need some
additional definitions.

Strength of a candidate and strength of a path. Let π be a finite path of M⊗A. The
strength of K(π) in π is undefined if K(π) = ⊥. Otherwise, write π = π′ s κ, where s ∈ S ×Q

and π′ is the shortest prefix of π such that K(π′s) = K(π); the strength of K(π) is the largest
k such that every state of K(π) occurs at least k times in s κ, and the last element of s κ

occurs at least k + 1 times. Intuitively, if the strength is k then every state of the candidate
has been been exited at least k times but, for technical reasons, we start counting only after
the candidate is discovered. The function Str(π) returns the strength of K(π) if K(π) ̸= ⊥,
and 0 otherwise.

▶ Example 8. The following table illustrates the definition of strength.

π K(π) π′ s κ Str(π)
p0p1 ⊥ − − − 0
p0p1p1 {p1} p0p1 p1 ϵ 0
p0p1p1p1 {p1} p0p1 p1 p1 1
p0p1p1p1p0 {p0, p1} p0p1p1p1 p0 ϵ 0
p0p1p1p1p0p1 {p0, p1} p0p1p1p1 p0 p1 0
p0p1p1p1p0p1p0 {p0, p1} p0p1p1p1 p0 p1p0 1
p0p1p1p1p0p1p0p1p0 {p0, p1} p0p1p1p1 p0 p1p0p1p0 2

▶ Example 9 (running). Assume that for the first variable, we need three tries before finally
acquiring the lock. Thus, after looping twice in s0, the strength of the candidate {s0} is 2.
If afterwards all variables are acquired on the first try, there are no further candidates until
reaching the good BSCC {sn}. Then (according to the Markov chain), in state sn we loop
infinitely often and the strength of this candidate goes to infinity in the limit.
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Sequence of candidates of a run. Let ρ = s0s1 · · · be a run ofM⊗A. Consider the sequence
of random variables defined by K(s0 . . . sj) for j ≥ 0, and let (Ki)i≥1 be the subsequence
without undefined elements and with no repetition of consecutive elements. For example, for
ϱ = p0p1p1p1p0p1p2p2 · · · , we have K1 = {p1}, K2 = {p0, p1}, K3 = {p2}, etc. Given a run
ρ with a sequence of candidates K1, K2 . . . , Kk (observe that this sequence is always finite),
we call Kk the final candidate. We define the strength of Ki in ρ as the supremum of the
strengths of Ki in all prefixes π of ρ such that K(π) = Ki. For technical convenience, we
define Kℓ := Kk for all ℓ > k and K∞ := Kk. Observe that ρ satisfies φ iff its final candidate
is good. The next lemma follows immediately from the definitions, and the fact that almost
surely the runs of a finite-state Markov chain eventually get trapped in a BSCC and visit
every state of it infinitely often.

▶ Lemma 10. The final candidate of a run ρ is almost surely a BSCC of M⊗A. Moreover,
for every k there exists a prefix πk of ρ such that K(πk) is the final candidate and Str(πk) ≥ k.

The bold monitor. The bold monitor for chains with minimal probability pmin is shown in
Algorithm 2. For every ρ and i ≥ 1, we define two random variables:

Stri(ρ) is the strength of Ki(ρ) in ρ;
Badi(ρ) is true if Ki(ρ) is a bad candidate, and false otherwise.

Let αmin := −1/ log(1− pmin). The following lemma states that, for every α ≥ αmin and ε > 0,
the runs that satisfy φ and in which some bad candidate, say Ki, reaches a strength of at
least α(i− log ε), have probability at most εpφ. This leads to the following strategy for the
monitor: when the monitor is considering the i-th candidate, abort only if the strength reaches
α(i− log ε).

▶ Lemma 11. Let φ be an ω-regular property with positive probability pφ. For every Markov
chain M with minimal probability pmin, for every α ≥ αmin and ε > 0:

P
[ {

ρ | ρ |= φ ∧ ∃i ≥ 1 . Badi(ρ) ∧ Stri(ρ) ≥ α(i− log ε)
} ]
≤ εpφ

The monitor is parametric in α and ε. The variable C stores the current candidate, and is
used to detect when the candidate changes. The variable i maintains the index of the current
candidate, i.e., in every reachable configuration of the algorithm, if C ̸= ⊥ then C := Ki.

Algorithm 2 BoldMonitorα,ϵ.

1: while true do
2: π ← λ ▷ Initialize path
3: C ← ⊥, i← 0 ▷ Initialize candidate and candidate counter
4: repeat
5: π ← π . NextState(π) ▷ Extend path
6: if ⊥ ≠ K(π) ̸= C then
7: C ← K(π); i← i + 1 ▷ Update candidate and candidate counter
8: until Suspect(π) and Str(π) ≥ α(i− log ε)

The infinite-state Markov chain B of the bold monitor is defined as the chain C for the
cautious monitor; we just replace the condition that π is suspect (and thus has strength at
least 1) by the condition that K(π) is bad and has strength ≥ α(i − log ε). The random
variable R and the event Sφ are also defined as for CautiousMonitor.
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5:10 Enforcing ω-Regular Properties in Markov Chains by Restarting

▶ Theorem 12. Let M be a finite-state Markov chain with minimum probability pmin, and let
φ be an ω-regular property with probability pφ > 0 in M. Let B be the Markov chain, defined
as above, corresponding to the execution of BoldMonitorα,ϵ on M⊗A, where α ≥ αmin and
ε > 0. We have:
(a) The random variable R is geometrically distributed, with parameter (success probability)

at least pφ(1− ε). Hence, we have PB[R <∞] = 1 and EB(R) ≤ 1/pφ(1− ε).
(b) PB[Sφ | R <∞] = PB[Sφ] = 1.

Proof. (a) By Lemma 10, almost all bad runs are restarted. By Lemma 11, runs, conditioned
under being good, are restarted with probability at most ε. It follows that the probability that
a run is good and not restarted is at least pφ(1− ε). (b) In runs satisfying R <∞, the suffix
after the last restart almost surely reaches a BSCC ofM⊗A and visits all its states infinitely
often, increasing the strength of the last candidate beyond any bound. So runs satisfying
R <∞ belong to Sφ with probability 1. ◀

In particular, after each restart, the probability that no further restart occurs is at least
pφ(1 − ε). The theoretical optimum would be pφ, as bad runs need to be restarted almost
surely.

Performance. Recall that T is the random variable that assigns to a run the number of steps
until the last restart. Let Tj be the number of steps between the j-th and (j + 1)-st restart.
Observe that all the Tj are identically distributed. We have Tj = T ⊥

j + T C
j , where T ⊥

j and
T C

j are the number of prefixes π such that K(π) = ⊥ (no current candidate) and K(π) ̸= ⊥
(a candidate), respectively. By deriving bounds on E(T ⊥

j ) and E(T C
j ), we obtain:

▶ Theorem 13. Let M be a finite-state Markov chain with minimum probability pmin. Let
φ be an ω-regular property with probability pφ > 0 in M. Suppose the product M⊗A has n

states and maximal SCC size mxsc. Let α ≥ αmin and ε > 0. Let T be the number of steps
taken by BoldMonitorα,ϵ until the last restart (or ∞ if there are infinitely many restarts,
or 0 if there is no restart). We have:

E(T ) ≤ 1
pφ(1− ε) · 2n α (n− log ε) mxsc

(
1

pmin

)mxsc
. (1)

Observe the main difference with CautiousMonitor: Instead of the exponential dependence
on n of Proposition 7, we only have an exponential dependence on mxsc. So if mxsc << n the
bold monitor performs much better than the cautious one.

4.2 General chains
We adapt BoldMonitor so that it works for arbitrary finite-state Markov chains, at the
price of a performance penalty. The main idea is very simple: given any non-decreasing
sequence {αn}∞

n=1 of natural numbers such that α1 = 1 and limn→∞ αn = ∞, we sample
as in BoldMonitorα,ϵ but, instead of using the same value α for every sample, we use αj

for the j-th sample. See Algorithm 3, where Sample(α) is the body of the while loop of
BoldMonitorα,ε (lines 2–8 of Algorithm 2) for a given value of α. The intuition is that
αj ≥ αmin holds from some index j0 onwards, and so, by the previous analysis, after the j0-th
restart the monitor almost surely only executes a finite number of restarts. More formally, the
correctness follows from the following two properties.
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Algorithm 3 BoldMonitorε for {αn}∞
n=1.

1: j ← 0
2: while true do
3: j = j + 1
4: Sample(αj)

For every j ≥ 1, if Sample(αj) does not terminate then it executes a good run almost
surely.
Indeed, if Sample(αj) does not terminate then it almost surely reaches a BSCC ofM⊗A
and visits all its states infinitely often. So from some moment on K(π) is and remains
equal to this BSCC, and Str(π) grows beyond any bound. Since Sample(αj) does not
terminate, the BSCC is good, and it executes a good run.
If αj ≥ αmin then the probability that Sample(αj) does not terminate is at least εpφ.
Indeed, by Lemma 11, if αj ≥ αmin, the probability is already at least εpφ. Increasing α

strengthens the exit condition of the until loop. So the probability that the loop terminates
is lower, and the probability of non-termination higher.

These two observations immediately lead to the following proposition:

▶ Proposition 14. Let M be an arbitrary finite-state Markov chain, and let φ be an ω-regular
property such that pφ > 0. Let B be the Markov chain corresponding to the execution of
BoldMonitorε on M⊗A with sequence {αn}∞

n=1. Let pmin be the minimum probability of
the transitions of M (which is unknown to BoldMonitorε). We have
(a) PB[R <∞] = 1.
(b) PB[Sφ|R <∞] = PB[Sφ] = 1.
(c) E(R) ≤ jmin + 1/pφ(1− ϵ), where jmin is the smallest index j such that αj ≥ αmin.

Performance. Different choices of the sequence {αn}∞
n=1 lead to versions of BoldMonitorε

with different performance features. Intuitively, if the sequence grows very fast, then jmin
is very small, and the expected number of restarts E(R) is only marginally larger than the
number for the case in which the monitor knows pmin. However, in this case the last 1/pφ(1−ϵ)
aborted runs are performed for very large values αj , and so they take many steps. If the
sequence grows slowly, then the opposite happens; there are more restarts, but aborted runs
have shorter length. Let us analyze two extreme cases: αj := 2j and αj := j.

Denote by f(α) the probability that a run is restarted, i.e., the probability that a call
Sample(α) terminates. Let g(α) further denote the expected number of steps done in
Sample(α) of a run that is restarted (taking the number of steps as 0 if the run is not
restarted). According to the analysis underlying Theorem 13, for α ≥ αmin we have g(α) ≤ cα

with c := 2n (n − log ε) mxsc p−mxsc
min . We can write T = T1 + T2 + · · · , where Tj = 0 when

either the j-th run or a previous run is not restarted, and otherwise Tj is the number of steps
of the j-th run. For j ≤ jmin we obtain E(Tj) ≤ g(αjmin) and hence we have:

E(T ) =
∞∑

j=0
E(Tj) ≤ jming(αjmin) +

∞∑
i=0

f(αjmin)ig(αjmin+i).

By Theorem 12(a) we have f(αjmin) ≤ 1− pφ(1− ε). It follows that choosing αj := 2j does
not in general lead to a finite bound on E(T ). Choosing instead αj := j, we get

E(T ) ≤ cj2
min +

∞∑
i=0

(1 − pφ(1 − ε))ic(jmin + i) ≤
(

j2
min + jmin

pφ(1 − ε) + 1
(pφ(1 − ε))2

)
c ,
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where jmin can be bounded by jmin ≤ −1/ log(1 − pmin) + 1 ≤ 1/pmin. So with c =
2n(n− log ε)mxsc p−mxsc

min we arrive at

E(T ) ≤
(

1
p2

min
+ 1

pminpφ(1− ε) + 1
(pφ(1− ε))2

)
2n (n− log ε) mxsc

(
1

pmin

)mxsc
, (2)

a bound broadly similar to the one from Theorem 13, but with the monitor not needing to
know pmin.

4.3 Implementing the bold monitor
A straightforward implementation of the bold monitor in which the candidate K(π) and its
strength are computed anew each time the path is extended is very inefficient. We present a
far more efficient algorithm that continuously maintains the current candidate and its strength.
Maintaining them until the path has length n takes O(n log n) time and O(sn log sn) memory,
where sn denotes the number of states visited by π (which can be much smaller than n when
states are visited multiple times). So one update takes O(log n) amortized time.

Let π be a path of M⊗A, and let s ∈ π. (Observe that s now denotes a state of M⊗A,
not of M.) We let Gπ = (Vπ, Eπ) denote the subgraph of M⊗A where Vπ and Eπ are the
sets of states and edges visited by π, respectively. Intuitively, Gπ is the fragment of M⊗A
explored by the path π.

In the following we define some additional notions related to Gπ. Afterwards we show
how to use these notions to keep track of the current candidate and its strength during the
operation of the bold monitor.

The discovery index of a state s, denoted by dπ(s), is the number of states that appear in
the prefix of π ending with the first occurrence of s. Intuitively, dπ(s) = k if s is the k-th
state discovered by π. Since different states have different discovery times, and they do
not change when the path is extended, we also call dπ(s) the identifier of s.
A root of Gπ is a state r ∈ Vπ such that dπ(r) ≤ dπ(s) for every state s ∈ SCCπ(r), where
SCCπ(r) denotes the SCC of Gπ containing r. Intuitively, r is the first state of SCCπ(r)
visited by π.
The root sequence Rπ of π is the sequence of roots of Gπ, ordered by ascending discovery
index.
Let Rπ = r1 r2 · · · rm be the root sequence of π. The sequence Sπ = Sπ(r1) Sπ(r2) · · ·Sπ(rm)
of sets is defined by Sπ(ri) := {s ∈ Vπ | dπ(ri) ≤ dπ(s) < dπ(ri+1)} for every 1 ≤ i < m,
i.e., Sπ(ri) is the set of states discovered after ri (including ri) and before ri+1 (excluding
ri+1); and Sπ(rm) := {s ∈ Vπ | dπ(rm) ≤ dπ(s)}.
Birthdayπ is defined as ⊥ if K(π) = ⊥, and as the length of the shortest prefix π′ of π

such that K(π′) = K(π) otherwise. Intuitively, Birthdayπ is the time at which the current
candidate of π was created.
For every state s of π, let πs be the longest prefix of π ending at s. We define Visitsπ(s) as
the pair (Birthdayπs

, v), where v is 0 if Birthdayπs
= ⊥, and v is the number of times πs has

visited s since Birthdayπs
otherwise. We define a total order on these pairs: (b, v) ⪯ (b′, v′)

iff b > b′ (where ⊥ > n for every number n), or b = b′ and v ≤ v′. Observe that, if π has a
candidate, then the smallest pair w.r.t. ⪯ corresponds to the state that is among the states
visited since the creation of the candidate, and has been visited the least number of times.

The following lemma is an immediate consequence of the definitions.

▶ Lemma 15. Let Gπ = (Vπ, Eπ). The SCCs of Gπ are the sets of Sπ. Let Sπ(rm) be the
last set of Sπ, and let (b, v) = min{Visitsπ(s) | s ∈ Sπ(rm)}, where the minimum is w.r.t. ⪯.
We have K(π) = ⊥ iff b = ⊥, and if b ̸= ⊥ then Str(π) = v.
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By the lemma, in order to efficiently implement BoldMonitor it suffices to maintain
Rπ, Sπ, and a mapping Visitsπ that assigns Visitsπ(s) to each state s of π. More precisely,
assume that the current path π leads to a state s, and now it is extended to π′ = π · s′ by
traversing a transition s→ s′ ofM⊗A; it suffices to compute Rπ′ , Sπ′ and Visitsπ′ from Rπ,
Sπ, and Visitsπ′ in O(log n) amortized time, where n is the length of π. We first show how to
update Rπ, Sπ, and Visitsπ, and then describe data structures to maintain them in O(log n)
amortized time. We consider four cases:
(1) s′ /∈ Vπ. That is, the monitor discovers s′ by traversing s→ s′. Then the SCCs of Gπ′ are

those of Gπ, plus a new trivial SCC containing only s′, with s′ as root. So Rπ′ = Rπ · s′

and Sπ′ = Sπ · {s′}. Since s′ has just been discovered, there is no candidate, and so
Visitsπ′(s′) = (⊥, 0).

(2) s′ ∈ Vπ and dπ(s) < dπ(s′). That is, the monitor had already discovered s′, and it had
discovered it after s. Then Gπ′ = (Vπ, Eπ∪{(s, s′)}), but the SCCs of Gπ and Gπ′ coincide,
and so Rπ′ = Rπ, Sπ′ = Sπ, and if Visitsπ(s′) = (b, v), then Visitsπ′(s′) = (b, v + 1).

(3) s′ ∈ Vπ and dπ(s) = dπ(s′), i.e., s′ = s. Then as before the SCCs of Gπ and Gπ′ coincide,
and so Rπ′ = Rπ, Sπ′ = Sπ. If Visitsπ(s) = (⊥, 0) then Visitsπ′(s) = (n + 1, 1) (recall
that n is the length of π), and if Visitsπ(s) = (b, v) for b ̸= ⊥ then Visitsπ′(s) = (b, v + 1).

(4) s′ ∈ Vπ and dπ(s) > dπ(s′). That is, the monitor discovered s′ before s. Let Rπ =
r1 r2 · · · rm and let ri be the root of SCCπ(s′). Then Gπ′ has a path ri

∗−→ rm
∗−→ s −→ s′ ∗−→

ri. So, if Visitsπ(s′) = (b, v), we get

Rπ′ = r1 r2 · · · ri Sπ′ = Sπ(r1) · · ·Sπ(ri−1)
(⋃m

j=i Sπ(rj)
)

Visitsπ′(s′) = (b, v + 1)

In order to efficiently update Rπ, Sπ and Visitsπ we represent them using the following
data structures.

The number N of different states visited so far.
A hash map D that assigns to each state s discovered by π its discovery index. When s is
visited for the first time, D(s) is set to N + 1. Subsequent lookups return N + 1.
A structure R containing the identifiers of the roots of Rπ, and supporting the following
operations in amortized O(log n) time: insert(r), which inserts the identifier of r in R;
extract-max, which returns the largest identifier in R; and find(s), which returns the
largest identifier of R smaller than or equal to the identifier of s. (This is the identifier of
the root of the SCC containing s.) For example, this is achieved by implementing R both
as a balanced search tree and a heap.
For each root r a structure S(r) representing a set of states and a map assigning to each
state s the key Visitsπ(s), and supporting the following operations in amortized O(log n)
time: find-min, which returns the minimum value of Visitsπ(s) over the states of S(r);
increment-key(s), which increases the value of the second component of Visitsπ(s) by 1,
and merge, which returns the union of two given maps. For example, this is achieved by
implementing S(r) as a Fibonacci heap.

▶ Proposition 16. Rπ, Sπ and Visitsπ can be updated in O(log n) amortized time using N ,
D, R, and S as data structures.

▶ Remark 17. The implementation above needs O(sn log sn) memory, where sn denotes the
number of states visited by π. Applying the same trick as for the cautious monitor (see
Remark 5), the memory consumption can be reduced to O(mxsc log sn), where mxsc is the
maximal size of the SCCs of the chain.
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5 Experimental results

In this section, we illustrate the behaviour of our monitors on concrete models from the
standard PRISM Benchmark Suite [15] and compare the obtained theoretical bounds to the
experimental values.

For our implementation, we have re-used the code provided in [6], which in turn is based
on the PRISM model checker [14]. Note that whenever the obtained candidate is a good
BSCC, no restart will ever happen and we can safely terminate the experiment.

Models. Table 1 lists the models and the properties type, in order of increasing satisfaction
probability, which corresponds to increasing optimal number of restarts. The Table contains
models from the standard PRISM benchmark suite [15]; the gridworld example, also with the
corresponding property negated (written as gridworld), in order to represent cases with also
very low pφ; and the example of [6, Fig. 4], called “scale” here, with parameter 10.

Table 1 List of models and types of properties considered. We give the satisfaction probability
pφ, size |S| minimum transition probability pmin, number of bottom SCCs, total number of states in
them (an upper bound on mxsc), and number of non-bottom SCCs (NSCC). For the model crowds,
the “–” denotes the time-out of the PRISM model checker after 2 hours when trying to compute the
characteristics.

Model Property pφ |S| pmin #BSCC BSCC-states #NSCC

gridworld ¬(GF→ FG) 0.09 309 327 0.001 98 238 053 3
nand GF 0.15 7 014 252 0.02 51 51 0
bluetooth GF 0.20 143 291 0.008 3 072 3,072 24
scale10 GF 0.50 121 0.5 2 100 20
crowds FG – 10 633 591 0.067 – – –
gridworld GF→ FG 0.91 309 327 0.001 98 244 902 1
hermann FG 1.00 524 288 1.9e-6 1 38 9

Compared monitors. The comparison on these models is performed for the following monitors.
Firstly, we consider the cautious monitor, which corresponds to the fixed candidate strength 1.
Moreover, we also consider the straightforward modification, which requires a different (but
still constant) strength, here 10, to practically alleviate the issue with frequent premature
restarts. We call these monitors Cautious1 and Cautious10. Secondly, we consider the bold
monitor using knowledge of the minimal probability pmin, once with low precision of ε = 0.5
and once with a higher one of ε = 0.1, called Bold0.5 and Bold0.1. Finally, we list the optimal
expected number of restarts, corresponding to an ideal (omniscient) monitor, which always
makes the correct decision. Note that in our experiments sometimes the average number of
restarts is slightly lower than the optimum, since when computing the empirical average of
100 runs, it can vary around the expected value to some extent.

Interpretation of results. Table 2 compares the efficiency of the monitors on the models, in
terms of (i) the number of restarts until the monitors leaves the system uninterrupted as it
generates a satisfying path, and (ii) the number of steps taken until the last restart when the
infinite satisfying run starts. Due to the hugely varying characteristics of the models, we also
provide detailed comments on the results model by model in Appendix B.
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Table 2 Experimental comparison of the monitors, showing the average number of restarts :
average total length of all runs until the final restart. The average is taken over 100 runs of the
algorithm. We compare cautious monitors with required candidate strengths 1 and 10, bold monitor
with precisions 0.5 and 0.1 and the expected number of restarts for the omniscient monitor. Time-outs
are set to two hours, but whenever the monitor finishes successfully, it so happens within a single
minute for all considered models. For those models where a time-out occurs, we double-checked three
times and the time-out always occurred. Then we ran 100 experiments for one minute and report the
average number of restarts per minute.

gridw. nand bluetoooth scale10 crowds gridw. hermann

Cautious1 T O 14000
min 6.1 : 8 510 4.2 : 2 105 2033 : 6 131 0.98 : 96 0.08 : 3 814 T O 1500

min

Cautious10 T O 3
min 4.9 : 6 900 4.8 : 2 425 0.97 : 3 670 1.0 : 101 0.09 : 26 361 T O 1400

min

Bold0.5 T O 0
min 5.3 : 8 949 4.2 : 4 851 2.4 : 15 323 1.0 : 220 T O 0

min 0
Bold0.1 T O 0

min 5.8 : 10 583 3.7 : 4 637 1.3 : 14 528 1.0 : 199 T O 0
min 0

(1/pφ) − 1 9.9 5.7 4.1 1.0 ? 0.1 0

In summary, the following phenomena can be observed:

In cases with small BSCCs and few NSCCs (non-bottom SCCs), such as nand or bluetooth,
all monitors manage to refute bad BSCCs and find the good one.

Large BSCCs, as in gridworlds, give a hard time to all monitors. Interestingly, premature
restarts of Cautious monitors may quickly yield another chance to hit a good BSCC, where
others take long in bad BSCCs to get high confidence to restart. In contrast, premature
restarts in intermediate candidates make Cautious monitors keep restarting even in the
cases where every simulation goes to the good BSCC, as in hermann.

Many NSCCs make Cautious1 restart too often. However, if there is a good chance of
leaving the NSCC soon, as in scale10, then the simple modification to Cautious10 fixes the
issue.

Since crowds has more than ten million states the PRISM model checker times out after
two hours, not yielding information beyond the size. All the simulations are quite short
here, indicating the frequent pattern of “fat but shallow” systems. None of the monitors
experiences any difficulties, indicating essentially optimal number of restarts (around 1),
hence the property seems to be satisfied with roughly 50% probability. The model checker
could not conclude that. While the large size prevents a thorough numeric analysis, it did
not prevent our monitors from determining satisfaction on single runs.

6 Conclusions

We have presented a universal restart strategy for enforcing arbitrary ω-regular properties
in arbitrary finite-state Markov chains. The monitors following the strategy restart the
chain whenever the current run is suspect of not satisfying the property. The strategies need
no information at all about the chain, its probabilities, or its structure. Contrary to the
non-probabilistic settings of [17, 3, 16, 8, 9], they work for arbitrary liveness properties. We
have given estimates of the number of steps until the last restart and the total number of
steps. The design of dedicated strategies that exploit information on these parameters is an
interesting topic for future research.
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A Technical Proofs

A.1 Proof of Proposition 3
(a) By standard properties of Markov chains, bad runs ofM⊗A almost surely reach a BSCC

of M⊗A and then traverse all edges of that BSCC infinitely often. Therefore, a bad
run ρ almost surely has a finite prefix π that has reached a bad BSCC, say B, of M⊗A
and has traversed all edges of B at least once. Then K(π) = B, and so π is suspect.

(b) Suppose the good runs of M⊗A have nonzero probability. We construct a finite path
π, starting at s0, so that K(π′) is good for all extensions π′ of π, and K(π′′) is good or
undefined for all prefixes π′′ of π.

Since the good runs of M⊗A have nonzero probability, M⊗A has a good BSCC B. Let
π′

1 be a simple (i.e., no repeated states) path from s0 to a state s1 ∈ B ∩ (S × F ). Extend π′
1

by a shortest path back to the set π′
1 (forming a lasso) and denote the resulting path by π1.

Observe that K(π1) ⊆ B is good, and K(π′) = ⊥ holds for all proper prefixes π′ of π1. If
K(π1) = B, then we can choose π := π1 and π has the required properties. Otherwise, let
π′

2 be a shortest path extending π1 such that π′
2 leads to a state in B \K(π1). Extend that

path by a shortest path back to K(π1) and denote the resulting path by π2. Then we have
K(π1) ⊊ K(π2) ⊆ B, and K(π2) is good, and K(π′) ∈ {K(π1),⊥} holds for all paths π′ that
extend π1 and are proper prefixes of π2. Repeat this process until a path π is found with
K(π) = B. This path has the required properties.

A.2 Proof of Lemma 11
Let BSCC denote the set of BSCCs of the chain-automaton product and SCC the set of its
SCCs.

For a subset K of states of the product, Candk(K) denotes the event (random predicate)
of K being a candidate with strength at least k on a run of the product. Further, the “weak”
version WCandk(K) denotes the event that K has strength k when counting visits even prior
to discovery of K, i.e. each state of K has been visited and exited at least k times on a prefix
π of the run with K(π) = K. Previous work bounds the probability that a non-BSCC can be
falsely deemed BSCC based on the high strength it gets.

▶ Lemma 18 ([6]). For every set of states K /∈ BSCC, and every s ∈ K, k ∈ N,

Ps[WCandk(K)] ≤ (1− pmin)k .

Proof. Since K is not a BSCC, there is a state t ∈ K with a transition to t′ /∈ K. The set of
states K becomes a k-candidate of a run starting from s, only if t is visited at least k times
by the path and was never followed by t′ (indeed, even if t is the last state in the path, by
definition of a k-candidate, there are also at least k previous occurrences of t in the path).
Further, since the transition from t to t′ has probability at least pmin, the probability of not
taking the transition k times is at most (1− pmin)k. ◀

In contrast to [6], we need to focus on runs where φ is satisfied. For clarity of notation, we
let K |= φ denote that K is good, and K ̸|= φ denote that K is bad. In particular, K∞ |= φ

denotes the event that the run satisfies φ.

▶ Lemma 19. For every set of states K /∈ BSCC, and every s ∈ K, k ∈ N,

Ps[WCandk(K) | K∞ |= φ] ≤ (1− pmin)k .
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Proof. The previous argument applies also in the case where we assume that after this strength
is reached the run continues in any concrete way (also satisfying φ) due to the Markovian
nature of the product. In the following derivation, K⟨t → t′⟩ denotes the event that the
candidate K is exited through the transition t→ t′:

Ps[WCandk(K) | K∞ |= φ]

=
∑
t→t′

Ps[WCandk(K), K⟨t→ t′⟩ | K∞ |= φ]

=
∑
t→t′

Ps[WCandk(K), K⟨t→ t′⟩, K∞ |= φ]/Ps[K∞ |= φ]

=
∑
t→t′

Ps[WCandk(K), K⟨t→ t′⟩] · Ps[K∞ |= φ |WCandk(K), K⟨t→ t′⟩] / Ps[K∞ |= φ]

(1)=
∑
t→t′

Ps[WCandk(K), K⟨t→ t′⟩] · Ps[K∞ |= φ | K⟨t→ t′⟩] / Ps[K∞ |= φ]

(2)=
∑
t→t′

Ps[WCandk(K), K⟨t→ t′⟩] · Pt′ [K∞ |= φ] / Ps[K∞ |= φ]

≤
∑

t→t′ exiting K

Ps[reach t] · Pt[not take t→ t′in k visits of t] ·P(t, t′) · Pt′ [K∞ |= φ]
Ps[K∞ |= φ]

=
∑

t→t′ exiting K

Pt[not take t→ t′in k visits of t] · Ps[reach t] ·P(t, t′) · Pt′ [K∞ |= φ]
Ps[K∞ |= φ]

≤
∑

t→t′ exiting K

(1− pmin)k · Ps[reach t′ as the first state outside K] · Pt′ [K∞ |= φ]
Ps[K∞ |= φ]

=(1− pmin)k · Ps[K∞ |= φ] / Ps[K∞ |= φ]
=(1− pmin)k

where (1) follows by the Markov property and by (almost surely) K ≠ K∞, (2) by the Markov
property. ◀

In the next lemma, we lift the results from fixed designated candidates to arbitrary
discovered candidates, at the expense of requiring the (strong version of) strength instead of
only the weak strength. To that end, let birthday bi be the moment when ith candidate on
a run is discovered, i.e., a run is split into ρ = πbiρ

′ so that Ki = K(πbi) ̸= K(π). In other
terms, bi is the moment we start counting the occurences for the strength, whereas the weak
strength is already 1 there.

▶ Lemma 20. For every i, k ∈ N, we have

P[Candk(Ki) | Ki /∈ BSCC, K∞ |= φ] ≤ (1− pmin)k .

Proof.
P[Candk(Ki) | Ki /∈ BSCC, K∞ |= φ]

= P[Candk(Ki), Ki /∈ BSCC, K∞ |= φ]
P[Ki /∈ BSCC, K∞ |= φ]

= 1
P[Ki /∈ BSCC, K∞ |= φ]

∑
C∈SCC\BSCC

s∈C

P[Candk(C), Ki = C, bi = s, K∞ |= φ]

= 1
P[Ki /∈ BSCC, K∞ |= φ]

∑
C∈SCC\BSCC

s∈C

P[Ki = C, bi = s] · Ps[WCandk(C), K∞ |= φ]
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= 1
P[Ki /∈ BSCC, K∞ |= φ]

∑
C∈SCC\BSCC

s∈C

P[Ki = C, bi = s] · Ps[WCandk(C) | K∞ |= φ] · Ps[K∞ |= φ]

≤ (1 − pmin)k

P[Ki /∈ BSCC, K∞ |= φ]

∑
C∈SCC\BSCC

s∈C

P[Ki = C, bi = s] · Ps[K∞ |= φ] (by Lemma 19)

≤ (1 − pmin)k

P[Ki /∈ BSCC, K∞ |= φ]

∑
C∈SCC\BSCC

s∈C

P[Ki = C, bi = s, K∞ |= φ]

= (1 − pmin)k

with the last equality due to

Ki /∈ BSCC ∩K∞ |= φ =
⊎

C∈SCC\BSCC
s∈C

Ki = C, bi = s, K∞ |= φ ◀

The set Err of the next lemma is actually exactly the set considered in Lemma 11 but in a
more convenient notation for the computation.

▶ Lemma 21. For (ki)∞
i=1 ∈ NN, let Err be the set of runs such that for some i ∈ N, we have

Candki
(Ki) despite Ki ̸|= φ and K∞ |= φ. Then

P[Err ] ≤ pφ

∞∑
i=1

(1− pmin)ki .

Proof.

P[Err ] = P

[
∞⋃

i=1

(
Candki (Ki) ∩ Ki ̸|= φ ∩ K∞ |= φ

)]

≤ P

[
∞⋃

i=1

(
Candki (Ki) ∩ Ki /∈ BSCC ∩ K∞ |= φ

)]

≤
∞∑

i=1

P[Candki (Ki) ∩ Ki /∈ BSCC ∩ K∞ |= φ] (by the union bound)

=
∞∑

i=1

P[Candki (Ki) | Ki /∈ BSCC ∩ K∞ |= φ] · P[Ki /∈ BSCC | K∞ |= φ] · P[K∞ |= φ]

≤
∞∑

i=1

P[Candki (Ki) | Ki /∈ BSCC ∩ K∞ |= φ] · 1 · pφ

≤ pφ

∞∑
i=1

(1 − pmin)ki . (by Lemma 20)

◀

Proof of Lemma 11. Lemma 11 claims that

P[Err ] ≤ εpφ

where ki is the smallest natural number with ki ≥ (i− log ε) · −1
log(1−pmin) . Directly from the

previous lemma, by plugging in these ki, we obtain

P[Err ] ≤ pφ

∞∑
i=1

(1− pmin)ki ≤ pφ

∞∑
i=1

2−i2log ε = pφε . ◀
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A.3 Proof of Theorem 13
Let Iji,k be the number of steps between the j-th and (j + 1)th reset such that the current
candidate is Ki, and its strength is k. Observe that for a Markov chain with n states we have
Iji,k = 0 if i > n or j > α(i − log ε). Indeed, if the Markov chain has n states, then along
the run there are at most n candidates; moreover, the strength of the Ki stays strictly below
α(i− log ε), because otherwise the run is aborted. So we have

T =
∞∑

j=1
Tj =

∞∑
j=1

T ⊥
j +

∞∑
j=1

T C
j =

∞∑
j=1

T ⊥
j +

∞∑
j=1

n∑
i=1

α(i−log ε)∑
k=1

Iji,k (3)

and so, by linearity of expectations,

E(T ) = E

 ∞∑
j=1

T ⊥
j +

n∑
i=1

α(i−log ε)∑
k=1

Iji,k

 = E

 ∞∑
j=1

T ⊥
j

 +
n∑

i=1

α(i−log ε)∑
k=1

∞∑
j=1

E (Iji,k)

(4)

Let us bound the first summand. Since K(π) = ⊥ only holds when the last state of π is visited
for the first time, we have T ⊥

j ≤ n. Moreover, T ⊥
j = 0 for every j ≥ R, the number of restarts.

So we get

E

 ∞∑
j=1

T ⊥
j

 ≤ E(n ·R) = n · E(R) (5)

Consider now the variables Iji,k. If j ≥ R then Iji,k = 0 by definition, since there is no
(j +1)-th restart. Moreover, under the condition j < R the variables Iji,k and I(j+1)i,k have the
same expectation, because they refer to different runs. By Theorem 12(a) R is geometrically
distributed with parameter at least pφ(1− ε), and so we get

E(I(j+1)i,k) ≤ E(Iji,k) · (1− pφ(1− ε)) (6)

Plugging (4) and (5) into (3), and taking into account that E(R) ≤ 1/pφ(1− ε), we obtain

E(T ) ≤ E(n ·R) +
n∑

i=1

α(i−log ε)∑
k=1

E(I0i,k)
∞∑

j=0
(1− pφ(1− ε))j


= n · E(R) +

n∑
i=1

α(i−log ε)∑
k=1

E(I0i,k)
pφ(1− ε)

≤ 1
pφ(1− ε)

n +
n∑

i=1

α(i−log ε)∑
k=1

E(I0i,k)


(7)

If we can find an upper bound I ≥ E(I0i,k) for every i, k, then we finally get:

E(T ) ≤ 1
pφ(1− ε) · n · (1 + α(n− log ε) · I) ≤ 1

pφ(1− ε) · 2nα(n− log ε) · I (8)

We now compute a bound I ≥ E(I0i,k) valid for arbitrary chains. Recall that E(I0i,k) is
the number of steps it takes to increase the strength of the i-th candidate Ki of the 0-th run
from k to k + 1. This is bounded by the number of steps it takes to visit every state of Ki

once. Let mxsc ∈ O(n) be the maximal size of a SCC. Given any two states s, s′ of an SCC,
the probability of reaching s′ from s after at most mxsc steps is at least pmxsc

min . So the expected
time it takes to visit every state of an SCC at least once is bounded by mxsc · p−mxsc

min . So
taking I := mxsc · p−mxsc

min we obtain the final result.
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A.4 Proof of Proposition 16
When the algorithm explores an edge s→ s′ of the Markov chain M⊗A, it updates N , D,
R, and S as follows. The algorithm first computes D(s′), and then proceeds according to the
cases (1)-(4):
(1) If s′ had not been visited before (i.e., D(s′) = N + 1), then the algorithm sets N := N + 1,

inserts D(s′) in R, and creates a new Fibonacci heap S(s′) containing only the state s′

with key (⊥, 0).
(2) If s′ had been visited before (i.e., D(s′) ≤ N), and D(s) < D(s′), then the algorithm

executes find(s) to find the root r of the SCC containing s, and updates S(r).
(3) If s′ had been visited before (i.e., D(s′) ≤ N), and D(s) = D(s′), then the algorithm

updates the key of s in S(s).
(4) If s′ had been visited before (i.e., D(s′) ≤ N), and D(s) > D(s′), then the algorithm

executes the following pseudocode, where σ is an auxiliary Fibonacci heap:
1: σ ← ∅
2: repeat
3: r ← extract-max(R)
4: σ ← merge(σ, S(r))
5: until D(r) ≤ D(s′)
6: insert(r, R)

At every moment in time the current candidate is the set S(r), where r = extract-max(R),
and its strength can be obtained from find-min(S(r)).

Let us now examine the amortized runtime of the implementation. Let n be the total
number of updates, and let n1, . . . , n4 be the number of steps executed by the algorithm
corresponding to the cases (1)-(4). In cases (1)-(3), the algorithm executes a constant number
of heap operations per step, and so it takes O((n1 + n2 + n3) log n) amortized time for all
steps together. This is no longer so for case (4) steps. For example, if the Markov chain is
a big elementary circuit s0 −→ s1 −→ · · · −→ sn−1 −→ s0, then at each step but the last one we
insert one state into the heap, and at the last step we extract them all; that is, the last step
takes O(n) heap operations. However, observe that each state is inserted in the heap exactly
once, when it is discovered, and extracted at most once. So the algorithm executes at most n

extract-max and merge heap operations for all case (3) steps together, and the amortized
time over all of them is O(n3 log n). This gives an overall runtime of O(n log n), and so an
amortized time of O(log n).

B Detailed Experimental Results

We briefly interpret the results for every single model.

gridworld has a very low satisfaction probability and large BSCCs. Hence Bold monitors
(and even Cautious10) are easily trapped in a large bad BSCC, so it takes very long
to realize that with high confidence (also due to small pmin) and restart. In contrast,
Cautious1 restarts very often and thus has many chances to get to the good BSCC. Still,
the probability of going to the right BSCC and additionally not looping before it has been
explored enough to conclude that it satisfies the property is very low, resulting in many
restarts and the time-out.

nand also has a low satisfaction probability, but now small BSCCs and no NSCCs (non-bottom
SCCs). Hence all monitors manage to refute bad ones and find the good one. Bold monitors
spend a bit more time in the bad BSCCs, while Cautious monitors cut earlier. The number
of restarts is the same for all (modulo statistical imprecision on 100 runs) since all simply
wait for their 1 in 5.7 chance.
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bluetooth is similar to nand, but with a few NSCCs. Hence Cautious monitors may occasion-
ally give up on the way, very slightly increasing the number of restarts. But again, Bold
monitors need a bit more time in BSCCs to become confident, and thus need more steps.

scale10 is designed to have multiple NSCCs on each way, each with 50% self-loop and 50%
leaving. Hence Cautious1 can get very easily stuck in one of them, drastically increasing
the number of restarts. However, since each NSCC is very probably left within a very
few steps, the simple modification to Cautious10 fixes the issue, getting essentially the
optimum. Bold0.1 has no problem with the false restarts, but as it sees many NSCCs, it
increases the required strength on the way, resulting in more time to get confidence in the
BSCC. Bold0.5 has a more relaxed requirements on the strength (starting with less than
10, which is constant for Cautious10), making it restart occasionally at the earlier NSCC.

crowds has more than ten million states, making the PRISM model checker time out after
two hours, not yielding information beyond the size. All the simulations are quite short,
indicating the frequent pattern of “fat but shallow” systems. None of the monitors
experiences any difficulties, indicating essentially optimal number of restarts (around 1),
hence the property seems to be satisfied with roughly 50%. The model checker could
not conclude that. While the large size prevents a thorough numeric analysis, it did not
prevent our monitors from determining satisfaction on single runs.

gridworld has a high satisfaction probability and large BSCCs. There is a single NSCC and
the good BSCC has 2499 states, hence many simulations just run into the good BSCC. For
the one-in-ten chance (1− pφ) of reaching a bad BSCC, Cautious monitors just restart,
while Bold monitors need to stay there for an impractically large amount of steps to realize
they are stuck and want to restart.

hermann satisfies the property almost surely. Bold monitors thus have no problem reaching
a good BSCC and exploring the whole of it, which guarantees they will never restart
(although the required strength is large, also due to small pmin). In contrast, Cautious
monitors keep restarting due to many intermediate candidates, although actually every
simulation goes to the good BSCC.
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