Adaptive Synchronisation of Pushdown Automata

A. R. Balasubramanian
Technische Universität München, Germany

K. S. Thejaswini
Department of Computer Science, University of Warwick, Coventry, UK

Abstract

We introduce the notion of adaptive synchronisation for pushdown automata, in which there is an external observer who has no knowledge about the current state of the pushdown automaton, but can observe the contents of the stack. The observer would then like to decide if it is possible to bring the automaton from any state into some predetermined state by giving inputs to it in an adaptive manner, i.e., the next input letter to be given can depend on how the contents of the stack changed after the current input letter. We show that for non-deterministic pushdown automata, this problem is 2-EXPTIME-complete and for deterministic pushdown automata, we show EXPTIME-completeness.

To prove the lower bounds, we first introduce (different variants of) subset-synchronisation and show that these problems are polynomial-time equivalent with the adaptive synchronisation problem. We then prove hardness results for the subset-synchronisation problems. For proving the upper bounds, we consider the problem of deciding if a given alternating pushdown system has an accepting run with at most \(k \) leaves and we provide an \(n^{O(k^2)} \) time algorithm for this problem.

2012 ACM Subject Classification
Theory of computation → Grammars and context-free languages;
Theory of computation → Problems, reductions and completeness

Keywords and phrases
Adaptive synchronisation, Pushdown automata, Alternating pushdown systems

Digital Object Identifier
10.4230/LIPIcs.CONCUR.2021.17

Related Version

Funding
A. R. Balasubramanian: Supported by funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant agreement No 787367 (PaVeS).
K. S. Thejaswini: Supported by the EPSRC grant EP/P020992/1 (Solving Parity Games in Theory and Practice).

Acknowledgements
We would like to thank Dmitry Chistikov for referring us to previous works on this topic.

1 Introduction

The notion of a synchronizing word for finite-state machines is a classical concept in computer science which consists of deciding, given a finite-state machine, whether there is a word which brings all of its states to a single state. Intuitively, assuming that we initially do not know which state the machine is in, such a word synchronises it to a single state and assists in regaining control over the machine.

This idea has been studied for many types of finite-state machines [24, 22, 2, 9] with applications in biocomputing [3], planning and robotics [10, 19] and testing of reactive systems [18, 14]. In recent years, the notion of a synchronizing word has been extended to various infinite-state systems such as timed automata [8], register automata [20], nested word automata [7], pushdown and visibly pushdown automata [11, 12]. In particular, for the pushdown case, Fernau, Wolf and Yamakami [12] have shown that this problem is undecidable even for deterministic pushdown automata.

© A. R. Balasubramanian and K. S. Thejaswini;
Licensed under Creative Commons License CC-BY 4.0
32nd International Conference on Concurrency Theory (CONCUR 2021).
Editors: Serge Haddad and Daniele Varacca; Article No. 17, pp. 17:1–17:15
Leibniz International Proceedings in Informatics
Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
When the finite-state machine can produce outputs, the notion of synchronisation has been further refined to give rise to synchronisation under \textit{partial observation} or \textit{adaptive synchronisation} (See Chapter 1 of [5] and [17]). In this setting, there is an external observer who does not know the current state of the machine, however she can give inputs to the machine and observe the outputs given by the machine. Depending on the outputs of the machine, she can \textit{adaptively} decide which input letter to give next. In this manner, the observer would like to bring the machine into some predetermined state. Larsen, Laursen and Srba [17] describe an example of adaptive synchronisation pertaining to the orientation of a simplified model of satellites, in which they observe that adaptively choosing the input letter is sometimes necessary in order to achieve synchronisation. In this paper, we extend this notion of adaptive synchronisation to pushdown automata (PDA). In our model, the observer does not know which state the PDA is currently in, but can observe the contents of the stack. She would then like to decide if it is possible to synchronise the PDA into some state by giving inputs to the PDA adaptively, i.e., depending on how the stack changes after each input. To the best of our knowledge, the notion of adaptive synchronisation has not been considered before for any class of infinite-state systems.

This question is a natural extension of the notion of adaptive synchronisation from finite-state machines to pushdown automata. Further, it is mentioned in the works of Lakhotia, Uday Kumar and Venable as well as Song and Touili [21, 16] that several antivirus systems determine whether a program is malicious by observing the calls that the program makes to the operating system. With this in mind, Song and Touili use pushdown automata [21] as abstractions of programs where a stack stores the calls made by the program and use this abstraction to detect viruses. Hence, we believe that our setting of being able to observe the changes happening to the stack can be practically motivated.

Our main results regarding adaptive synchronisation are as follows: We show that for non-deterministic pushdown automata, the problem is 2-\textsc{EXPTIME}-complete. However, by restricting our input to deterministic pushdown automata, we show that we can get \textsc{EXPTIME}-completeness, thereby obtaining an exponential reduction in complexity.

We also consider a natural variant of this problem, called \textit{subset adaptive synchronisation}, which is similar to adaptive synchronisation, except the observer has more knowledge about which state the automaton is initially in. We obtain a surprising result that shows that this variant is polynomial-time equivalent to adaptive synchronisation, unlike in the case of finite-state machines. Furthermore, for the deterministic case of this variant, we obtain an algorithm that runs in time $O\left(n^{ck^2}\right)$ where n is the size of the input and k is the size of the subset of states that the observer believes the automaton is initially in. This gives a polynomial time algorithm if k is fixed and a quasi-polynomial time algorithm if $k = O(\log n)$.

Used as a subroutine in the above decision procedure, is an $O\left(n^{ck^2}\right)$ time algorithm to the following question, which we call the \textit{sparse-emptiness problem}: Given an alternating pushdown system and a number k, decide whether there is an accepting run of the system with at most k leaves. Intuitively, such a run means that the system has an accepting run in which it uses only “limited universal branching”. We note that such a notion of alternation with “limited universal branching” has recently been studied by Keeler and Salomaa for alternating finite-state automata [15]. Our problem can be considered as a generalisation of one of their problems (Corollary 2 of [15]) to pushdown systems. We think that this problem and its associated algorithm might be of independent interest.
Roadmap. In Section 2, we introduce notations. In Section 3, we discuss different variations of the problem. In Sections 4 and 5 we prove lower and upper bounds respectively. Proofs of some of our technical results can be found in the long version of this extended abstract available on arXiv [1].

2 Preliminaries

Given a finite set X, we let X^* denote the set of all words over the alphabet X. As usual, the concatenation of two words $x, y \in X^*$ is denoted by xy.

2.1 Pushdown Automata

We recall the well-known notion of a pushdown automaton. A pushdown automaton (PDA) is a 4-tuple $\mathcal{P} = (Q, \Sigma, \Gamma, \delta)$ where Q is a finite set of states, Σ is the input alphabet, Γ is the stack alphabet and $\delta \subseteq (Q \times \Sigma \times \Gamma) \times (Q \times \Gamma^*)$ is the transition relation. Alternatively, sometimes we will describe the transition relation δ as a function $Q \times \Sigma \times \Gamma \rightarrow 2^{Q \times \Gamma^*}$. We will always use small letters a, b, c, \ldots to denote elements of Σ, capital letters A, B, C, \ldots to denote elements of Γ and Greek letters $\gamma, \eta, \omega, \ldots$ to denote elements of Γ^*.

If $(p, a, A, q, \gamma) \in \delta$ then we sometimes denote it by $(p, A) \xrightarrow{a, \gamma} (q, \gamma)$. We say A is the top of the stack that is popped and γ is the string that is pushed onto the stack. A configuration of the automaton is a tuple (q, γ) where $q \in Q$ and $\gamma \in \Gamma^*$. Given two configurations $(q, A\gamma)$ and (q', γ') of \mathcal{P} with $A \in \Gamma$, we say that $(q, A\gamma) \xrightarrow{a} (q', \gamma')$ iff $(q, A) \xrightarrow{a} (q', \gamma')$.

As is usual, we assume that there exists a special bottom-of-the-stack symbol $\bot \in \Gamma$, such that whenever some transition pops \bot, it pushes it back in the bottom-most position. A PDA is said to be deterministic if for every $q \in Q$, $a \in \Sigma$ and $A \in \Gamma$, $\delta(q, a, A)$ has exactly one element. If a PDA is deterministic, we further abuse notation and denote $\delta(q, a, A)$ as a single element and not as a set.

2.2 Adaptive Synchronisation

We first expand upon the intuition given in the introduction for adaptive synchronisation with the help of a running example. Consider the pushdown automaton as given in Figure 1 where we do not know which state the automaton is in currently, but we do know that the stack content is \bot. To synchronise the automaton to the state 4 when the stack is visible, the observer has a strategy as depicted in Figure 2. The labelling of the nodes of the tree intuitively denotes the “knowledge of the observer” at the current point in the strategy and the labelling of the edges denotes the letter that she inputs to the PDA. Initially, according to the observer, the automaton could be in any one of the 4 states. The observer first inputs the letter \square. If the top of the stack becomes \bullet, then she knows that the automaton is currently either in state 1 or 2. On the other hand, if the top of the stack becomes \bullet, then the observer can deduce that the automaton is currently in state 3 or 4. From these two scenarios, by following the appropriate strategy depicted in the figure, we can see that she can synchronise the automaton to state 4. However, if the stack was hidden to the observer, reading either \bigcirc or \square does not change the knowledge of the observer and therefore, there is no word that can be read that would synchronise the automaton to any state.

We now formalize the notion of an adaptive synchronizing word that we have so far described. Let $\mathcal{P} = (Q, \Sigma, \Gamma, \delta)$ be a PDA. Given $S \subseteq Q$, $a \in \Sigma$ and $A \in \Gamma$, let $T_{S,A}^a := \{ t \in \delta \mid t = (p, a, A, q, \gamma) \text{ where } p \in S \}$. Intuitively, if the observer knows that \mathcal{P} is currently in some state in S and the top of the stack is A and she chooses to input a, then $T_{S,A}^a$ is
the set of transitions that might take place. We define an equivalence relation $\sim_{S,A}^{a}$ on the elements of $T_{S,A}^{a}$ as follows: $t_{1} \sim_{S,A}^{a} t_{2} \iff \exists \gamma \in \Gamma^{*}$ such that $t_{1} = (p_{1},a,A,q_{1},\gamma)$ and $t_{2} = (p_{2},a,A,q_{2},\gamma)$. Notice that if $t_{1} \sim_{S,A}^{a} t_{2}$ then the observer cannot distinguish occurrences of t_{1} from occurrences of t_{2}. In our running example, if we take $S = \{3,4\}$, $a = \diamond$ and $A = \bullet$, it is easy to see that $T_{S,A}^{a}$ is $\{(3,\diamond,\bullet,4,\bullet\bullet),(4,\diamond,\bullet,3,\bullet\bullet)\}$ and these two transitions are not in the same equivalence class under $\sim_{S,A}^{a}$.

The relation $\sim_{S,A}^{a}$ partitions the elements of $T_{S,A}^{a}$ into equivalence classes. If E is an equivalence class of $\sim_{S,A}^{a}$, then notice that there is a word $\gamma \in \Gamma^{*}$ such that all the transitions in E pop A and push γ onto the stack. This word γ will be denoted by $\text{word}(E)$. If we define $\text{next}(E) := \{q \mid (p,a,A,q,\text{word}(E)) \in E\}$, then $\text{next}(E)$ contains all the states that the automaton can move to if any of the transitions from E occur. Now, suppose the observer knows that P is currently in some state in S with A being at the top of the stack. Assuming she inputs the letter a and observes that A has been popped and $\text{word}(E)$ has been pushed, she can deduce that P is currently in some state in $\text{next}(E)$. In our running example of $S = \{3,4\}$, $a = \diamond$ and $A = \bullet$, there are two equivalence classes $E_{1} = \{(3,\diamond,\bullet,4,\bullet\bullet)\}$ and $E_{2} = \{(4,\diamond,\bullet,3,\bullet\bullet)\}$ with $\text{next}(E_{1}) = \{3\}$, $\text{next}(E_{2}) = \{4\}$, $\text{word}(E_{1}) = \{\bullet\bullet\}$ and $\text{word}(E_{2}) = \{\bullet\bullet\}$.

A pseudo-configuration of the automaton P is a pair (S,γ) such that $S \subseteq Q$ and $\gamma \in \Gamma^{*}$. The pseudo-configuration (S,γ) captures the knowledge of the observer at any given point. Given a pseudo-configuration (S,γ) and an input letter a, let $\text{Succ}(S,\gamma,a) := \{(\text{next}(E_{1}),\text{word}(E_{1})\gamma),\ldots,(\text{next}(E_{k}),\text{word}(E_{k})\gamma)\}$ where E_{1},\ldots,E_{k} are the equivalence classes of $\sim_{S,A}^{a}$. Each element of $\text{Succ}(S,\gamma,a)$ will be called a possible successor of (S,γ) under the input letter a. The function Succ captures all the possible pseudo-configurations that could happen when the observer inputs a at the pseudo-configuration (S,γ).

We now define the notion of a synchroniser which will correspond to a strategy for the observer to synchronise the automaton into some state. Let $I \subseteq Q$, $s \in Q$ and $\gamma \in \Gamma^{*}$. (The I stands for initial set of states, and the s stands for synchronising state). A synchroniser between the pseudo-configuration (I,γ) and the state s, is a labelled tree T such that

- All the edges are labelled by some input letter $a \in \Sigma$ such that, for every vertex v, all its outgoing edges have the same label.

\[\text{Figure 1} \quad \text{A label of the form } a,A \to \gamma \quad \text{means that if the input is } a \text{ and if the top of the stack is } A, \text{ then pop } A \text{ and push } \gamma.\]

\[\text{Figure 2} \quad \text{A synchroniser between } (\{1,2,3,4\},1) \text{ and state } 4 \text{ for the PDA in Figure 1.}\]
The root is labelled by the pseudo-configuration \((I, \gamma)\).

Suppose \(v\) is a vertex which is labelled by the pseudo-configuration \((S, A\eta)\). Let \(a\) be the unique label of its outgoing edges and let \(\text{Succ}(S, A\eta, a)\) be of size \(k\). Then \(v\) has \(k\) children, with the \(i^{th}\) child labelled by the \(i^{th}\) pseudo-configuration in \(\text{Succ}(S, A\eta, a)\).

For every leaf, there exists \(\eta \in \Gamma^*\) such that its label is \((\{s\}, \eta)\).

In addition, if all the leaves are labelled by \((\{s\}, \bot)\), then \(T\) is called a super-synchroniser between \((I, \gamma)\) and \(s\). We use the notation \((I, \gamma) \Rightarrow_s P s\) (resp. \((I, \gamma) \supRightarrow_s P s\)) to denote that there is a synchroniser (resp. super-synchroniser) between \((I, \gamma)\) and \(s\) in the PDA \(P\). (When \(P\) is clear from context, we drop it from the arrow notation).

2.3 Different Formulations

We now formally introduce the problem which we will refer to as the adaptive synchronising problem (Ada-Sync) and it is defined as the following:

Given: A PDA \(P = (Q, \Sigma, \Gamma, \delta)\) and a word \(\gamma \in \Gamma^*\)

Decide: Whether there is a state \(s\) such that \((Q, \gamma) \Rightarrow_s \)\(\Rightarrow_s \)

The Det-Ada-Sync problem is the same as Ada-Sync, except that the given pushdown automaton is deterministic. Notice that we can generalise the adaptive synchronising problem by the following subset adaptive synchronising problem (Subset-Ada-Sync): Given a PDA \(P = (Q, \Sigma, \Gamma, \delta)\), a subset \(I \subseteq Q\) and a word \(\gamma \in \Gamma^*\), decide if there is a state \(s\) such that \((I, \gamma) \Rightarrow_s \)\(\Rightarrow_s \)

We chose this version, because this is similar to the way it is defined for the finite-state version (Problem 1 of [17]). In order to make the lower bounds easier to understand, we introduce a few different variants of Ada-Sync and Subset-Ada-Sync in Section 3 and conclude that they are all polynomial-time equivalent with Ada-Sync. We defer a detailed analysis of the different variants of this problem to future work.

Remark 2. One can relax the notion of a synchroniser and ask instead for an adaptive “homing” word, which is the same as a synchroniser, except that we now only require that if \((S, \gamma)\) is the label of a leaf then \(S\) is any singleton. Intuitively, in an adaptive homing word, we are content with knowing the state the automaton is in after applying the strategy, rather than enforcing the automaton to synchronise into some state. To keep the discussion focused on the synchronising problem, in the main paper, we present only the results regarding Ada-Sync and Subset-Ada-Sync. In the full version of the paper, we state the homing word problem formally and prove that it is polynomial-time equivalent to Ada-Sync.

The main results of this paper are now as follows:

Theorem 3. Ada-Sync and Subset-Ada-Sync are both 2-EXPTIME-complete. Det-Ada-Sync and Det-Subset-Ada-Sync are both EXPTIME-complete.

3 Equivalence of Various Formulations

In this section, we show that the problems Ada-Sync and Subset-Ada-Sync are polynomial-time equivalent to each other. A similar result is also shown for their corresponding deterministic versions. We note that such a result is not true for finite-state (Moore) machines (Table 1 of [17]) and so we provide a proof of this here, because it illustrates the significance of the stack in the pushdown version.
Lemma 4. **Ada-Sync** (resp. **Det-Ada-Sync**) is polynomial time equivalent to **Subset-Ada-Sync** (resp. **Det-Subset-Ada-Sync**).

Proof. It suffices to show that **Subset-Ada-Sync** (resp. **Det-Subset-Ada-Sync**) can be reduced to **Ada-Sync** (resp. **Det-Ada-Sync**) in polynomial time.

Let \(\mathcal{P} = (Q, \Sigma, \Gamma, \delta) \) be a PDA with \(I \subseteq Q \) and \(\gamma \in \Gamma^* \). Let \(q_I \) be some fixed state in the subset \(I \). Construct \(\mathcal{P}' \) from \(\mathcal{P} \) by adding a new stack letter \(\# \) and the following new transitions: Upon reading any \(a \in \Sigma \), if the top of the stack is \(\# \), then any state \(q \in I \) pops \(\# \) and stays at \(q \) whereas any state \(q \notin I \) pops \(\# \) and moves to \(q_I \). Notice that \(\mathcal{P}' \) is deterministic if \(\mathcal{P} \) is.

It is clear that if \((I, \gamma) \xRightarrow{\mathcal{P}} s \) for some state \(s \), then \((Q, \#\gamma) \xRightarrow{\mathcal{P}'} s \). We now claim that the other direction is true as well. To see this, suppose there is a synchroniser in \(\mathcal{P}' \) (say \(T \)) between \((Q, \#\gamma) \) and some state \(s \). It is easy to see that, irrespective of the label of the outgoing edge from the root of \(T \), there is only one child of the root which is labelled by \((I, \gamma) \). Now, no transition pushes \(\# \) onto the stack and so nowhere else in the synchroniser does \(\# \) appear in the label of some vertex. It is then easy to see that if we remove the root of \(T \), we get a synchroniser between \((I, \gamma) \) and \(s \) in \(\mathcal{P} \).

Lemma 4 allows us to introduce a series of problems which we can prove are poly-time equivalent to **Ada-Sync**. The reason to consider these problems is that lower bounds for these are substantially easier to prove than for **Ada-Sync**. The three problems are as follows:

1. **Given-Sync**: Given a PDA \(\mathcal{P} \), a subset \(I \), a word \(\gamma \) and also a state \(s \), check if \((I, \gamma) \Rightarrow s \).
2. **Super-Sync**: Has the same input as **Given-Sync**, except we ask if \((I, \gamma) \xRightarrow{\sup} s \).
3. **Special-Sync** is the same as **Super-Sync** but restricted to inputs where \(\gamma \) is \(\perp \).

Lemma 5. **Subset-Ada-Sync**, **Given-Sync**, **Super-Sync** and **Special-Sync** are all poly. time equivalent. Further the same applies for their corresponding deterministic versions.

Because of this lemma, for the rest of this paper, we will only be concerned with the **Special-Sync** problem, where given a PDA \(\mathcal{P} \), a subset \(I \) and a state \(s \), we have to decide if \((I, \perp) \xRightarrow{\sup} s \).

4 Lower Bounds

To prove the lower bounds, we introduce the notion of an alternating extended pushdown system (**AEPS**), which is an extension of pushdown systems with Boolean variables and alternation.

4.1 Alternating Extended Pushdown Systems

An alternating extended pushdown system (**AEPS**) \(\mathcal{A} \) is a tuple \((Q, V, \Gamma, \Delta, \text{init}, \text{fin}) \) where \(Q \) and \(V \) are finite sets of states and Boolean variables respectively, \(\Gamma \) is the stack alphabet, \(\text{init}, \text{fin} \in Q \) are the initial and final states respectively. \(\mathcal{A} \) has no input letters but it has a stack to which it can pop and push letters from \(\Gamma \). Each variable in \(V \) is of Boolean type and a transition of \(\mathcal{A} \) can apply simple tests on these variables and depending on the outcome, can update their values. A configuration of \(\mathcal{A} \) is a tuple \((q, \gamma, F) \) where \(q \in Q, \gamma \in \Gamma^* \) and \(F : V \to \{0, 1\} \) is a function assigning a Boolean value to each variable.

Let \(\text{test} \) denote the set of tests given by \(\{v \overset{?}{=} b : v \in V, b \in \{0, 1\}\} \) and let \(\text{cmd} \) denote the set of commands given by \(\{v \rightarrow b : v \in V, b \in \{0, 1\}\} \). A consistent command is a conjunction of elements from \(\text{cmd} \) such that for every \(v \in V \), both \(v \rightarrow 0 \) and
Without loss of generality, we can assume that if \(v \rightarrow 1 \) are not present in cmd. The transition relation \(\Delta \) consists of transitions of the form
\[
(q, A, G) \rightarrow \{(q_1, \gamma_1, C_1), \ldots, (q_k, \gamma_k, C_k)\}
\]
where \(q, q_1, \ldots, q_k \in Q, A \in \Gamma, \gamma_1, \ldots, \gamma_k \in \Gamma^*, G \)
is a conjunction of elements from test and each \(C_i \) is a consistent command. Intuitively, at
a configuration \((q, A_2, F)\) the machine non-deterministically selects a transition of the form
\[
(q, A, G) \rightarrow \{(q_1, \gamma_1, C_1), \ldots, (q_k, \gamma_k, C_k)\}
\]
such that the assignment \(F \) satisfies the conjunction \(G \) and then forks into \(k \) copies in the configurations \((q_1, \gamma_1, F[C_1]), \ldots, (q_k, \gamma_k, F[C_k])\)
where \(F[C_i] \) is the function obtained by updating \(F \) according to the command \(C_i \). With
this intuition in mind, we say that a transition \((q, A, G) \rightarrow \{(q_1, \gamma_1, C_1), \ldots, (q_k, \gamma_k, C_k)\}\)
is enabled at a configuration \((p, B_2, F)\) iff \(p = q, B = A \) and \(F \) satisfies all the tests in \(G \).

A run from a configuration \((q, \eta, H)\) to a configuration \((q', \eta', H')\) is a tree satisfying the
following properties: The root is labelled by \((q, \eta, H)\). If an internal node \(n \) is
labelled by the configuration \((p, A_2, F)\) then there exists the following transition:
\[
(p, A, G) \rightarrow \{(p_1, \gamma_1, C_1), (p_2, \gamma_2, C_2), \ldots, (p_k, \gamma_k, C_k)\}
\]
which is enabled at \((p, A_2, F)\) such that the children of \(n \) are labelled by
\[
(p_1, \gamma_1, F[C_1]), \ldots, (p_k, \gamma_k, F[C_k]), \]
where \(F[C_i](v) = b \) if \(C_i \) contains a command of the form \(v \rightarrow b \) and
\(F[C_i](v) = F(v) \) otherwise. Finally all the leaves are labelled by \((q', \eta', H')\).
If a run exists between \((q, \eta, H)\) and \((q', \eta', H')\) then we denote it by
\((q, \eta, H) \xrightarrow{\Delta} (q', \eta', H')\). An accepting run from a configuration \((q, \eta, H)\)
is a run from \((q, \eta, H)\) to \((\text{fin}, 1, 0)\) where \(0\) is the zero function. An accepting run of an AEPS
is simply an accepting run from the initial configuration \((\text{init}, 1, 0)\). The emptiness problem is then
to decide whether a given AEPS has an accepting run.

By a simple adaptation of the \(EXPTIME\)-hardness proof for emptiness of alternating
pushdown systems which have no Boolean variables (Theorem 5.4 of [6], Prop. 31 of [23])
we prove that

- **Lemma 6.** The emptiness problem for AEPS is \(2-EXPTIME\)-hard.

An AEPS \(A\) is called a non-deterministic extended pushdown system (NEPS) if every
transition of \(A\) is of the form \((p, A, F) \rightarrow \{(q, C)\}\). By Theorem 2 of [13] we have that

- **Lemma 7.** The emptiness problem for NEPS is \(EXPTIME\)-hard.

- **Remark 8.** The hardness result for AEPS could also be inferred from Theorem 10 of [13].
Because we use a different notation, for the sake of completeness, we provide the proofs of
both of these lemmas in the full version of the paper.

4.2 Reduction from Alternating Extended Pushdown Systems

- **Theorem 9.** Special-Sync, Subset-Ada-Sync and Ada-Sync are all \(2-EXPTIME\)-hard.
Det-Special-Sync, Det-Subset-Ada-Sync and Det-Ada-Sync are all \(EXPTIME\)-hard.

In this subsection, we provide the proof sketches of Theorem 9 by a reduction from the
emptiness problem for AEPS to Special-Sync. Let \(A = (Q, V, \Gamma, \Delta, init, fin)\) be an AEPS.
Without loss of generality, we can assume that if \((q, A, G) \rightarrow \{(q_1, \gamma_1, C_1), (q_2, \gamma_2, C_2), \ldots, (q_k, \gamma_k, C_k)\}\) is \(\Delta\), then \(\gamma_i \neq \gamma_j\) for \(i \neq j\). (This can be accomplished, by prefixing new
characters to each \(\gamma_i\), moving to some intermediate states and then popping the new characters
and moving to the respective \(q_i\)'s). Having made this assumption, the reduction is described
below.

From the given AEPS \(A\), we now construct a pushdown automaton \(P\) as follows. The
stack alphabet of \(P\) will be \(\Gamma\). For each transition \(t \in \Delta\), \(P\) will have an input letter
in\((t)\). \(P\) will also have another input letter end. The state space of \(P\) will be the set
\(Q \cup (V \times \{0, 1\}) \cup \{q_{\text{acc}}, q_{\text{rej}}\}\), where \(q_{\text{acc}}\) and \(q_{\text{rej}}\) are two states, which on reading any input
letter, will leave the stack untouched and simply stay at \(q_{\text{acc}}\) and \(q_{\text{rej}}\) respectively.
We now give an intuition behind the transitions of P. Given an assignment $F : V \rightarrow \{0, 1\}$ of the Boolean variables V, and a state q of A, we use the notation $[q, F]$ to denote the subset $\{q\} \cup \{(v, F(v)) : v \in V\}$ of states of P. Intuitively, a configuration (q, γ, F) of A is simulated by its corresponding pseudo-configuration $([q, F], \gamma)$ in P.

Example 10. The caption of Figure 3 describes an example, where there is a transition t in A, and a configuration C_1 forks into two configurations C_2 and C_3 in A by using t. The diagram in Figure 3 illustrates the simulation of the forking on the corresponding pseudo-configurations of C_1, C_2, C_3 that the automaton P will achieve when reading the letter $\text{in}(t)$. The shaded part along with the stack content on the left before the arrow denotes the pseudo-configuration of C_1 and upon reading $\text{in}(t)$ from this pseudo-configuration, we get two possible successors, each of which correspond to the pseudo-configurations of C_2 and C_3 respectively.

Now we give a formal description of the transitions of P. Let $t = (q, A, G) \mapsto \{(q_1, \gamma_1, C_1), \ldots, (q_k, \gamma_k, C_k)\}$ be a transition of A. Let $p \in Q$. Upon reading $\text{in}(t)$, if $p \neq q$ then p immediately moves to the q_{req} state. Further, even state q moves to the q_{req} state if the top of the stack is not A. However, if the top of the stack is A, then q pops A and non-deterministically pushes any number of $\gamma_1, \ldots, \gamma_k$ onto the stack and if it pushed γ_i, then q moves to the state q_{i}.

Let $(v, b) \in V \times \{0, 1\}$. Upon reading $\text{in}(t)$, if the test $v \overset{?}{=} 1 - b$ appears in the guard G, then (v, b) immediately moves to the q_{req} state. (Notice that this is a purely syntactical condition on A). Further, if the top of the stack is not A, then once again (v, b) moves to q_{req}. If these two cases do not hold, then (v, b) pops A and non-deterministically picks any $i \in [1, \ldots, k]$ and pushes γ_i onto the stack. Having pushed γ_i, if C_i does not update the variable v, it stays in state (v, b); otherwise if C_i has a command $v \rightarrow b'$, it moves to (v, b').

Finally, upon reading end, the states in $[\text{fin}, 0]$ move to the q_{acc} state and all the other states in $Q \cup (V \times \{0, 1\})$ move to the q_{req} state. Notice that there are no outgoing transitions from q_{req} and so there is no way to move from q_{req} to q_{acc}.

The following two facts can be easily inferred from the construction of P:

Fact A: Suppose t is a transition of A which is not enabled at the configuration (q, A, γ, F). Then, upon reading $\text{in}(t)$, there is at least one possible successor (S, η) of the pseudo-configuration $([q, F], A, \gamma)$ such that $q_{\text{req}} \in S$.

Fact B: Suppose the configuration (q, A, γ, F) forks into the following configurations $(q_1, \gamma_1, F_1), \ldots, (q_k, \gamma_k, F_k)$ using the transition t in the AEPS A. Then, the possible successors from the pseudo-configuration $([q, F], A, \gamma)$ upon reading $\text{in}(t)$ in the PDA P are $([q_1, F_1], \gamma_1, \gamma), \ldots, ([q_k, F_k], \gamma_k, \gamma)$.
Using these 2 facts, we can then prove that \(A\) has an accepting run iff there is a super-synchroniser in \(P\) between \(((\text{init}, \mathbf{0}), \bot)\) and \(q_{\text{acc}}\). Intuitively, if we have an accepting run of \(A\), then the observer, using Fact B, has a strategy to force \(P\) into one of the states in \(((\text{fin}, \mathbf{0}), \bot)\) with the stack content being \(\bot\). Once she does that, she can input the letter \(\text{end}\) and synchronise to the state \(q_{\text{acc}}\).

For the reverse direction, with a little case-analysis, we can show that in any super-synchroniser between \(((\text{init}, \mathbf{0}), \bot)\) and \(q_{\text{acc}}\), all non-leaf nodes must be a pseudo-configuration of some configuration in \(A\), and all the parents of a leaf must be labelled by \(((\text{fin}, \mathbf{0}), \bot)\). Intuitively, then by Facts A and B, such a super-synchroniser must be a simulation of a run in \(A\) (similar to Figure 3) and hence, we can translate it back to an accepting run in \(A\).

Notice that \(P\) is deterministic if \(A\) is non-deterministic. Hence, by Lemmas 6 and 7, we obtain Theorem 9.

5 Upper Bounds

In this section, we will give algorithms that solve \textsc{Special-Sync} and \textsc{Det-Special-Sync}. We first give a reduction from \textsc{Special-Sync} to the problem of checking emptiness in an alternating pushdown system, which we define below. Then, we show that for \textsc{Det-Special-Sync}, the same reduction produces alternating pushdown systems with a “modular” structure, which we exploit to reduce the running time.

5.1 Adaptive Synchronisation for Non-deterministic PDA

An alternating pushdown system (APS) is an alternating extended pushdown system which has no Boolean variables. Since there are no variables, we can suppress any notation corresponding to the variables, e.g., configurations can be just denoted by \((q, \gamma)\). It is known that the emptiness problem for APS is in \textsc{EXPTIME} (Theorem 4.1 of [4]). We now give an exponential time reduction from \textsc{Special-Sync} to the emptiness problem for APS.

Let \(P = (Q, \Sigma, \Gamma, \delta)\) be a PDA with \(I \subseteq Q, s \in Q\). Construct the following APS \(A_P = (2^Q, \Gamma, \Delta, I, \{s\})\) where \(\Delta\) is defined as follows: Given \(S \subseteq Q, a \in \Sigma\) and \(A \in \Gamma\), let \(E_1, \ldots, E_k\) be the equivalence classes of the relation \(\sim^a_{S,A}\) as defined in subsection 2.2. Then, we have the following transition in \(A_P\):

\[
(S, A) \leftrightarrow \{(\text{next}(E_1), \text{word}(E_1)), (\text{next}(E_2), \text{word}(E_2)), \ldots, (\text{next}(E_k), \text{word}(E_k))\} \tag{1}
\]

The following fact is immediate from the definition of a super-synchroniser and from the construction of \(A_P\).

\textbf{Proposition 11.} Let \(S \subseteq 2^Q, \gamma \in \Gamma^*\). Then a labelled tree \(T\) is a super-synchroniser between \((S, \gamma)\) and \(s\) in \(P\) if and only if \(T\) is an accepting run from \((S, \gamma)\) in \(A_P\).

By Theorem 4.1 of [4], emptiness for APS can be solved in exponential time and so

\textbf{Theorem 12.} \textsc{Special-Sync} is in \textsc{2-EXPTIME}

5.2 Adaptive Synchronisation for Deterministic PDA

Let \(P = (Q, \Sigma, \Gamma, \delta)\) be a deterministic PDA with \(I \subseteq Q, s \in Q\). We have the following proposition, whose proof follows from the fact that \(P\) is deterministic.

\textbf{Proposition 13.} Suppose \(S \subseteq Q, a \in \Sigma, A \in \Gamma\) and suppose \(E_1, \ldots, E_k\) are the equivalence classes of \(\sim^a_{S,A}\). Then, \(|S| \geq \sum_{i=1}^k |\text{next}(E_i)|\).
17:10 Adaptive Synchronisation of Pushdown Automata

Now, given \mathcal{P}, consider the APS $\mathcal{A}_\mathcal{P} = (2^Q, \Gamma, \Delta, I, \{s\})$ that we have constructed in subsection 5.1. By Proposition 13, we now have the following lemma.

▶ **Lemma 14.** For any $S \in 2^Q, \gamma \in \Gamma^*$, any accepting run of $\mathcal{A}_\mathcal{P}$ from the configuration (S, γ) has at most $|S|$ leaves.

The following corollary follows from the lemma above.

▶ **Corollary 15.** Any accepting run of $\mathcal{A}_\mathcal{P}$ has at most $|I|$ leaves.

▶ **Example 16.** Let \mathcal{P} be the deterministic PDA from Figure 1. Figure 4 shows an example of an accepting run in the corresponding APS $\mathcal{A}_\mathcal{P}$ from $I := \{1, 2, 3, 4\}$. Notice that there are $|I| = 4$ leaves in this run.

Corollary 15 motivates the study of the following problem, which we call the **sparse emptiness** problem for APSs (SPARSE-EMPTY):

Given: An APS \mathcal{A} and a number k in unary.

Decide: Whether there exists an accepting run for \mathcal{A} with at most k leaves.

We prove the following theorem about SPARSE-EMPTY in the next section.

▶ **Theorem 17.** Given \mathcal{A} and k, the SPARSE-EMPTY problem can be solved in time $O(|\mathcal{A}|^{ck^2})$ for a fixed constant c.

Now, because of Proposition 13 and because of the structure of the transitions of $\mathcal{A}_\mathcal{P}$ (as given by equation (1)), it is sufficient to restrict the construction of $\mathcal{A}_\mathcal{P}$ to only those states which have cardinality at most $|I|$ and hence, it can be assumed that $|\mathcal{A}_\mathcal{P}| \leq |\mathcal{P}|^{4|I|}$. This fact, along with Proposition 11, Corollary 15 and Theorem 17 implies the following theorem.

▶ **Theorem 18.** Given an instance (\mathcal{P}, I, s) of DET-SPECIAL-SYNC, checking if $(I, \bot) \supseteq s$ in time $O(n^{ck^3})$ where $n = |\mathcal{P}|$ and $k = |I|$ and c is some fixed constant.

▶ **Remark 19.** Note that the algorithm to solve DET-SPECIAL-SYNC on an instance (\mathcal{P}, I, s), although in EXPTIME, is polynomial if $|I|$ is fixed and quasi-polynomial if $|I|$ is $O(\log |\mathcal{P}|)$.

5.3 “Sparse Emptiness” Checking of Alternating Systems

This subsection is dedicated to proving Theorem 17. We fix an alternating pushdown system $\mathcal{A} = (Q, \Gamma, \Delta, \text{init, fin})$ and a number k for the rest of this subsection. A k-accepting run of \mathcal{A} is defined to be an accepting run of \mathcal{A} with at most k leaves. We now split the desired algorithm for SPARSE-EMPTY into three parts. Finally, we give its runtime analysis.

Compressing k-accepting runs of \mathcal{A}

We define a non-deterministic pushdown system (NPS) to be a non-deterministic extended pushdown system which has no Boolean variables. From \mathcal{A}, we can derive a NPS obtained by deleting all transitions which produces a universal branching, i.e., of the form $(q, A) \leadsto \{(q_1, \gamma_1), \ldots, (q_k, \gamma_k)\}$ with $k > 1$. We will denote this NPS by \mathcal{N}. Emptiness of NPS is known to be solvable in polynomial time (Theorem 2.1 of [4]). To exploit this fact for our problem, we propose the following notion of a **compressed accepting run** of \mathcal{A}. Intuitively, a compressed accepting run is obtained from an accepting run of \mathcal{A} by “compressing” a series of transitions belonging to the non-deterministic part \mathcal{N}, into a single transition. An intuition of a compressed accepting run is captured by Figure 5, which is obtained by compressing the run depicted in Figure 4.
Given a tree, we say that a vertex v in the tree is simple if it has exactly one child and otherwise we say that it is complex (Note that all leaves are complex). A compressed accepting run of A from the configuration (p, η) is a labelled tree such that: The root is labelled by (p, η). If v is a simple vertex labelled by (q, γ) and u is its only child labelled by (q', γ') then u is a complex vertex and $(q, \gamma) \xrightarrow{N} (q', \gamma')$. If v is a complex vertex labelled by $(q, A \gamma)$ and v_1, \ldots, v_k are its children with $k > 1$, then there is a transition $(q, A) \mapsto \{(q_1, A_1), \ldots, (q_k, A_k)\}$ in A such that the label of v_i is $(q_i, A_i \gamma)$. Finally, all the leaves are labelled by (fin, \bot). A compressed accepting run of A is a compressed accepting run from (init, \bot) and a k-compressed accepting run is a compressed accepting run with at most k leaves. We now have the following lemma.

▶ Lemma 20. There is a k-accepting run of A from a configuration (p, η) iff there is a k-compressed accepting run of A from (p, η).

Searching for k-compressed accepting runs

To fully use the result of Lemma 20, we need some results about non-deterministic pushdown systems, which we state here. Recall that N is an NPS over the states Q and stack alphabet Γ obtained from the APS A. We say that $M = (Q^M, \Gamma, \delta^M, F^M)$ is an N-automaton if M is a non-det. finite-state automaton over the alphabet Γ with accepting states F^M such that for each state $q \in Q$, there is a unique state $q^M \in Q^M$. The set of configurations of A that are stored by M (denoted by $\mathcal{C}(M)$) is defined to be the set $\{(q, \gamma) : \gamma$ is accepted in M from the state $q^M\}$. In the above definition, note that Q^M can potentially have more states other than the set $\{q^M \mid q \in Q\}$.
Example 21. Let us consider the pushdown automaton in Figure 1, and let \(\mathcal{N} \) be the NPS obtained by ignoring the input alphabets \(\square \) and \(\diamond \). Then observe that from all the states 1, 2, 3 and 4, with any content on the stack, one can reach state 4 with an empty stack, by popping out all the elements. So, the set of configurations from which there is an accepting run is \(\{(i, \gamma) \mid i \in \{1, 2, 3, 4\}, \gamma \in \perp \cdot \{\bullet, \ast\}^*\} \). One can define the \(\mathcal{N} \)-automaton \(M \) for it, as an automaton with five states \(\{q_1, q_2, q_3, q_4, q_f\} \) where \(q_f \) is a final state and each of \(q_1, q_2, q_3 \) and \(q_4 \) on reading \(\perp \) goes to \(q_f \) and stays in \(q_f \) on reading \(\bullet \) or \(\ast \). It is easy to see that this automaton accepts all words of the form \(\perp \cdot \{\bullet, \ast\}^* \).

Theorem 22 (Section 2.3 and Theorem 2.1 of [4]). Given an \(\mathcal{N} \)-automaton \(M \), in time polynomial in \(\mathcal{N} \) and \(M \), we can construct an \(\mathcal{N} \)-automaton \(M' \) which has the same states as \(M \) such that \(M' \) stores the set of predecessors of \(M \), i.e., \(\mathcal{C}(M') = \{(q', \gamma') : \exists (q, \gamma) \in \mathcal{C}(M) \text{ such that } (q, \gamma) \xrightarrow{\gamma} (q', \gamma')\} \).

We say that an unlabelled tree is structured, if the child of every simple vertex is a complex vertex. An \(\ell \)-structured tree is simply a structured tree which has at most \(\ell \) leaves. Notice that the height of an \(\ell \)-structured tree is \(O(\ell) \) and since it has at most \(\ell \) leaves, it follows that an \(\ell \)-structured tree can be described using a polynomial number of bits in \(\ell \). Hence, the number of \(\ell \)-structured trees is \(O(2^\ell) \) for some fixed \(c \).

Now let us come back to the problem of searching for \(k \)-accepting runs of \(A \). By Lemma 20 it suffices to search for a \(k \)-compressed accepting run of \(A \). Notice that if we take a \(k \)-compressed accepting run and remove its labels, we get a \(k \)-structured tree. Now, suppose we have an algorithm \(\text{Check} \) that takes a \(k \)-structured tree \(T \) and checks if \(T \) can be labelled to make it a \(k \)-compressed accepting run of \(A \). Then, by calling \(\text{Check} \) on every \(k \)-structured tree, we have an algorithm to check for the existence of a \(k \)-compressed accepting run of \(A \). Hence, it suffices to describe this procedure \(\text{Check} \) which is what we will do now.

The algorithm \(\text{Check} \)

Let \(T \) be a \(k \)-structured tree. For each vertex \(v \) in the tree \(T \), \(\text{Check} \) will assign a \(\mathcal{N} \)-automaton \(M_v \) such that \(M_v \) will have the following property:

Invariant \((\star)\) : A configuration \((q, \gamma) \in \mathcal{C}(M_v) \) iff all the vertices of the subtree rooted at \(v \) can be labelled such that the resulting labelled subtree is a compressed accepting run of \(A \) from \((q, \gamma) \).

The construction of each \(M_v \) is as follows: Let \(Q \) be the states and \(\Delta \) be the transitions of the alternating pushdown system \(A \).

- Suppose vertex \(v \) is a leaf. We let \(M_v \) be an automaton such that \(\mathcal{C}(M_v) = \{(\text{fin}, \perp)\} \).
- Notice that such a \(M_v \) can be easily constructed in polynomial time.

- Suppose vertex \(v \) is simple and \(u \) is its child. We take \(M_u \) and use Theorem 22 to construct the \(\mathcal{N} \)-automaton \(M_v \). Note that \(M_v \) has the same set of states as \(M_u \).

- Suppose \(v \) is complex and suppose \(v_1, \ldots, v_\ell \) are its children. For each \(1 \leq i \leq \ell \) and for every configuration \((q, \gamma) \) of \(A \), let \(\delta_i(q^{M_{v_i}}, \gamma) \) denote the set of states that the automaton \(M_{v_i} \) will be in after reading \(\gamma \) from the state \(q^{M_{v_i}} \). To construct \(M_v \) first do a product construction \(M_{v_1} \times M_{v_2} \times \cdots \times M_{v_\ell} \), so that the resulting product automaton stores precisely the set of configurations which are stored by each of the individual automata \(M_{v_1}, \ldots, M_{v_\ell} \). Then, for each \(q \in Q \), add a state \(q^{M_v} \). Then for each transition \((p, A) \rightarrow \{(p_1, \gamma_1), \ldots, (p_\ell, \gamma_\ell)\} \) in \(\Delta \), add a transition in \(M_v \), which upon reading \(A \), takes \(p^{M_v} \) to any of the states in \(\delta_1(p_1^{M_{v_1}}, \gamma_1) \times \delta_2(p_2^{M_{v_2}}, \gamma_2) \times \cdots \times \delta_\ell(p_\ell^{M_{v_\ell}}, \gamma_\ell) \). Intuitively, we accept a word \(A \gamma \) from the state \(p^{M_v} \) if for each \(i \), the word \(\gamma_i \gamma \) can be accepted from the state \(p_i^{M_{v_i}} \).
Proposition 23. For each vertex v of the tree T, M_v satisfies invariant (\star)

Finally, we accept iff $(\text{init}, \bot) \in C(M_r)$ where r is the root of the tree. The correctness of Check follows from the proposition above.

Running time analysis

Let us analyse the running time of Check. Let T be a k-structured tree and therefore T has $O(k^2)$ vertices. Check assigns to each vertex v of T an automaton M_v. We claim that the running time of Check is $O(k^2 \cdot |A|^{ck^2})$ (for some fixed constant c) because of the following facts:

1) By induction on the structure of the tree T, it can be proved that, there exists a constant d, such that if h_v is the height of a vertex v and l_v is the number of leaves in the sub-tree of v, then the number of states of M_v is $O(|A|^{dh_vl_v})$ (Recall that h_v, l_v is at most $O(k^2)$).

2) If an N-automaton has n states, then the number of transitions it can have is $O(|A| \cdot n^2)$.

3) For a vertex v with children v_1, \ldots, v_{ℓ}, M_v can be constructed in polynomial time in the size of $|M_{v_1}| \times |M_{v_2}| \times \ldots |M_{v_{\ell}}|$ and $|A|$.

Notice that everything else apart from Fact 1) is easy to see. To prove Fact 1), we proceed by bottom-up induction on the structure of the tree T. For the base case when the vertex v is a leaf, notice that we can easily construct the required automaton M_v with at most $O(|A|)$ states. Suppose, v is a simple vertex and u its only child. By Theorem 22, M_u has the same set of states as M_v. By induction hypothesis, the number of states of M_u is $O(|A|^{dh_u l_u})$ and so the number of states of M_v is $O(|A|^{dh_u l_v})$. Suppose v is a complex vertex and v_1, \ldots, v_{ℓ} are its children. Let h be the maximum height amongst the vertices v_1, \ldots, v_{ℓ}. By induction hypothesis, the number of states of each M_{v_i} is $O(|A|^{dh_{v_i}})$. It is then clear that the number of states of M_v is $O\left(\prod_{i=1}^{\ell} |A|^{dh_{v_i}} + |A|\right) = O\left(|A|^{dh_v} + |A|\right) = O\left(|A|^{dh_v l_v}\right) = O\left(|A|^{dh_v l_v}\right)$. By Theorem 22, M_u has the same set of states as M_v. By induction hypothesis, the number of states of M_u is $O(|A|^{dh_u l_v})$ and so the number of states of M_v is $O(|A|^{dh_u l_v})$. Suppose v is a complex vertex and v_1, \ldots, v_{ℓ} are its children. Let h be the maximum height amongst the vertices v_1, \ldots, v_{ℓ}. By induction hypothesis, the number of states of each M_{v_i} is $O(|A|^{dh_{v_i}})$. It is then clear that the number of states of M_v is $O\left(\prod_{i=1}^{\ell} |A|^{dh_{v_i}} + |A|\right) = O\left(|A|^{dh_v} + |A|\right) = O\left(|A|^{dh_v l_v}\right) = O\left(|A|^{dh_v l_v}\right)$.

Now the final algorithm for SPARSE-EMPTY simply iterates over all k-structured trees and calls Check on all of them. Since the number of k-structured trees is at most $f(k)$ where f is an exponential function, it follows that the total running time is $O\left(f(k) \cdot k^2 \cdot |A|^{ck^2}\right) = O(|A|^{ck^2})$ for some constant c.

Conclusion

Our results can be considered as a step in the research direction recently proposed by Fernau, Wolf and Yamakami in [12], in which the authors prove that the synchronisation problem for PDAs is undecidable when the stack is not visible. They also suggest looking into different variants of synchronisation for PDAs with a view towards the decidability and complexity frontier. Within this context, we believe we have proposed a natural variant of synchronisation in which the observer can see the stack and given decidability and complexity-theoretic optimal results for both the non-deterministic and the deterministic cases.

As future work, it might be interesting to consider the adaptive synchronising problem for subclasses of pushdown automata such as one-counter automata and visibly pushdown automata. It might also be interesting to consider the problem of looking for short adaptive synchronisers, i.e., adaptive synchronisers whose size is not bigger than a given bound.
5. Manfred Broy, Bengt Jonsson, Joost-Pieter Katoen, Martin Leucker, and Alexander Pretschner, editors. Model-Based Testing of Reactive Systems, Advanced Lectures [The volume is the outcome of a research seminar that was held in Schloss Dagstuhl in January 2004], volume 3472 of LNCS. Springer, 2005.

