
Equivalence Testing of Weighted Automata over
Partially Commutative Monoids∗

V. Arvind #

Institute of Mathematical Sciences (HBNI), Chennai,India

Abhranil Chatterjee #

Institute of Mathematical Sciences (HBNI), Chennai, India

Rajit Datta #

Chennai Mathematical Institute, India

Partha Mukhopadhyay #

Chennai Mathematical Institute, India

Abstract
Motivated by equivalence testing of k-tape automata, we study the equivalence testing of weighted
automata in the more general setting, over partially commutative monoids (in short, pc monoids),
and show efficient algorithms in some special cases, exploiting the structure of the underlying
non-commutation graph of the monoid.

Specifically, if the edge clique cover number of the non-commutation graph of the pc monoid
is a constant, we obtain a deterministic quasi-polynomial time algorithm for equivalence testing.
As a corollary, we obtain the first deterministic quasi-polynomial time algorithms for equivalence
testing of k-tape weighted automata and for equivalence testing of deterministic k-tape automata
for constant k. Prior to this, the best complexity upper bound for these k-tape automata problems
were randomized polynomial-time, shown by Worrell [24]. Finding a polynomial-time deterministic
algorithm for equivalence testing of deterministic k-tape automata for constant k has been open for
several years [13] and our results make progress.

We also consider pc monoids for which the non-commutation graphs have an edge cover consisting
of at most k cliques and star graphs for any constant k. We obtain a randomized polynomial-time
algorithm for equivalence testing of weighted automata over such monoids.

Our results are obtained by designing efficient zero-testing algorithms for weighted automata
over such pc monoids.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory;
Theory of computation

Keywords and phrases Weighted Automata, Automata Equivalence, Partially Commutative Monoid

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.10

Acknowledgements We thank the anonymous reviewers for their helpful feedback.

1 Introduction

Testing the equivalence of two multi-tape finite automata is a fundamental problem in
automata theory. For a k-tape automaton, we denote the mutually disjoint alphabets for the
k tapes by Σ1, . . . ,Σk. The automaton accepts a subset of the product monoid Σ∗

1 × · · · × Σ∗
k.

Two multi-tape automata are equivalent if they accept the same subset.

∗ A preliminary version of this work was presented at HIGHLIGHTS of Logic, Games and Automata
2020.

© V. Arvind, Abhranil Chatterjee, Rajit Datta, and Partha Mukhopadhyay;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:arvind@imsc.res.in
mailto:abhranilc@imsc.res.in
mailto:rajit@cmi.ac.in
mailto:partham@cmi.ac.in
https://doi.org/10.4230/LIPIcs.MFCS.2021.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Equivalence Testing of Weighted Automata

Equivalence testing of multi-tape non-deterministic automata is undecidable [14]. The
problem was shown to be decidable for 2-tape deterministic automata independently by
Bird [5] and Valiant [22]. Subsequently, an exponential upper bound was shown for it [3].
Eventually, a polynomial-time algorithm was obtained by Friedman and Greibach [13] and
the authors conjectured that equivalence testing of deterministic k-tape automata for any
constant k is in polynomial time.

A closely related problem is testing the multiplicity equivalence of non-deterministic
multi-tape automata. The multiplicity equivalence testing problem is to decide whether for
each tuple in the product monoid Σ∗

1 × · · · × Σ∗
k, the number of accepting paths in the two

input automata is the same. Since a deterministic automaton has at most one accepting
path for each input word, the equivalence of deterministic k-tape automata coincides with
multiplicity equivalence. More generally, equivalence testing for weighted automata (over
the underlying field or ring of coefficients) is to decide if the coefficient of each word (i.e.
the total sum of weights of each accepting path) is the same for the two given automata.
For the weighted case, equivalence testing is in deterministic polynomial time for one-tape
automata [19, 21]. Equivalence testing of k-tape weighted automata was shown decidable
by Harju and Karhumäki [15] using the theory of free groups 1. An improved complexity-
theoretic upper bound remained elusive for k-tape multiplicity equivalence testing, until
recently Worrell [24] obtained a randomized polynomial-time algorithm for testing the
equivalence of k-tape weighted automata (and equivalence testing of deterministic k-tape
automata) for any constant k. Worrell takes a different approach via Polynomial Identity
Testing (PIT). In [24], Worrell asked if the equivalence testing problem for k-tape weighted
automata can be solved in deterministic polynomial time, for constant k.

This Paper. Building on Worrell’s results [24] and exploiting further the connections between
weighted automata equivalence and polynomial identity testing, we show that equivalence
testing of two k-tape weighted automata is in deterministic quasi-polynomial time. This
immediately yields the first deterministic quasi-polynomial time algorithm for equivalence
testing of deterministic k-tape automata.

Our approach solves a more general problem in the setting of partially commutative
monoids. To motivate this, let us consider k-tape weighted automata in this setting. The
product monoid M = Σ∗

1 ×· · ·×Σ∗
k associated with k-tape automata is a partially commutative

monoid (henceforth, pc monoid), in the sense that any two variables x ∈ Σi, y ∈ Σj , i ̸= j

commute with each other 2. Variables in the same tape alphabet Σi are mutually non-
commuting. We associate a non-commutation graph GM with M to describe the non-
commutation relations: (x, y) is an edge if and only if x and y do not commute. If there is no
edge (x, y) in GM , the words xy and yx are equivalent as the variables x and y commute. The
words over any pc monoid are defined with respect to the equivalence relation induced by the
non-commutation graph of the pc monoid. The notion of words and their equivalence over
a pc monoid is formally explained in Section 3. For the k-tape case, the non-commutation
graph GM is a union of k disjoint cliques: its vertex set is Σ1 ∪ . . .∪ Σk and GM is the union
of k disjoint cliques, induced by each Σi.

More generally, we obtain an equivalence testing algorithm for weighted automata over
any pc monoid whose non-commutation graph has a constant-size edge clique cover (not
necessarily disjoint) with a constant number of isolated vertices. Recall that the edge clique

1 This also shows the decidability of equivalence problem for deterministic multi-tape automata.
2 These are sometimes also called as free partially commutative monoids.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 10:3

cover of a graph is a collection of subgraphs where each subgraph is a clique and each edge
of the graph is contained in at least one of the subgraphs. The size of the edge clique cover
is the number of cliques in it.

The isolated vertices can be thought of as a part of the edge clique cover by adding a new
vertex (variable) for each isolated vertex and introducing a matching edge between them.
Henceforth, we will not worry about the isolated vertices separately and consider them as
part of the edge clique cover. We call such monoids as k-clique monoids where the edge
clique cover size is bounded by k.

▶ Remark 1.1. Since two weighted automata, A and B are equivalent if and only if their
difference C = A − B is a weighted automaton equivalent to zero (formally explained in
Section 2), we can describe the results in terms of zero-testing of a weighted automaton.3

In this paper, the field F from which the weights of automata are taken is an infinite field.
For computational implementation, we assume that the field arithmetic can be performed
efficiently (for example, F could be the field of rational numbers). Also, throughout the
paper the size of an automaton refers to the number of states.

▶ Theorem 1.2. Let A be an input F-weighted automaton of size s over a pc monoid M such
that its non-commutation graph GM has an edge clique cover of size k. Then, the zero-testing
of A has a deterministic (nks)O(k2 log ns) time algorithm. Here n is the size of the alphabet
of M , and the edge clique cover is given as part of the input.

It is interesting to note that the the decidability of the equivalence problem over partially
commutative monoids is already studied [23]. As an immediate corollary, the above theorem
yields a deterministic quasi-polynomial time algorithm for equivalence testing of k-tape
weighted automata (also for equivalence testing of deterministic k-tape automata). Notice
that, for the k-tape case, the edge clique cover of size k is also part of the input since for
each 1 ≤ i ≤ k, the ith tape alphabet Σi is explicitly given and it induces a clique.

▶ Corollary 1.3. The equivalence testing problem for k-tape weighted automata and determ-
inistic k-tape automata can be solved in deterministic quasi-polynomial time for constant k.

Next, we consider equivalence testing over more general pc monoids M .
Given a graph G = (X, E), a collection of k graphs {Gi = (Xi, Ei)}k

i=1 such that
X = ∪k

i=1Xi and E = ∪k
i=1Ei is called a k-covering of G. It seems natural to investigate

whether there are covers other than just edge clique cover for which one can obtain efficient
equivalence test.

We say M is a k-monoid if its non-commutation graph GM has a 2-covering {G1, G2}
such that, for some k′ ≤ k, G1 has an edge clique cover of size at most k′ and G2 has a
vertex cover of size at most k− k′ (hence the edges of G2 can be covered by k− k′ many star
graphs). We show that equivalence testing over k-monoids has a randomized polynomial-time
algorithm for constant k. This result can be seen as a generalization of Worrell’s result [24].

▶ Theorem 1.4. Let A be an input F-weighted automaton of size s over a k-monoid M .
Then the zero-testing of A can be decided in randomized (ns)O(k) time. Here n is the size of
the alphabet of M .

3 The difference C of two weighted automata A and B means the weight of each word w in C is the
difference between the weights of w in A and B.

MFCS 2021

10:4 Equivalence Testing of Weighted Automata

▶ Remark 1.5. What is the complexity of equivalence testing for weighted automata over
an arbitrary pc monoid? The non-commutation graph GM of any pc monoid M over the
alphabet X trivially has an edge clique cover of size bounded by

(|X|
2

)
. Hence, the above

results would only give an exponential-time algorithm. Note that if GM has an induced
matching 4 of size more than k then M is not a k-monoid. Call M a matching monoid if
GM is a perfect matching. It follows from Lemma 3.3, shown in Section 3, that equivalence
testing over arbitrary pc monoids is deterministic polynomial-time reducible to equivalence
testing over matching monoids. Thus, the complexity of zero-testing of F-weighted automata
over matching monoids is essentially the most general case. We also note that Worrell has
shown that the evaluation problem for multi-tape automata is #P-complete if the number of
tapes is not fixed [24, Proposition 3].

Various automata-theoretic problems have been studied in the setting of pc monoids. For
example, pc monoids have found applications in modeling the behavior of concurrent sys-
tems [16]. Droste and Gastin [10] have studied the relation between recognizability and
rationality over pc monoids.

Proofs Overview. Our proof is inspired by Worrell’s key insight [24] that the k-tape
automata equivalence problem can be reduced to a suitable instance of polynomial identity
testing problem over partially commuting variables. Worrell’s algorithm is randomized. In
contrast, since we are considering automata over general pc monoids and we aim to design
efficient deterministic algorithms, we require additional ideas. First, we suitably apply a
classical algebraic framework to transfer the zero-testing problem over general pc monoids to
pc monoids whose non-commutation graphs are a disjoint union of cliques [6, 8]. This allows
us to generalize a zero-testing criteria for weighted automata over standard noncommutative
setting [11, Cor. 8.3] to the setting of general pc monoids. The generalization states that any
nonzero weighted automata of size s over any pc monoid must have a non-zero word within
the length poly(s, n) where n is the alphabet size. This allows us to reduce zero-testing of
weighted automata to an instance of polynomial identity testing over pc monoids, where these
polynomials are computable by small algebraic branching programs (ABPs) over pc monoids.
Over noncommutative variables, ABPs are well-studied in arithmetic circuit complexity [17].
It turns out that we can solve the identity testing problem for ABPs over k-clique monoids
in deterministic quasi-polynomial time by suitably adapting a black-box polynomial identity
test for noncommutative algebraic branching programs based on a quasi-polynomial size
hitting set construction [12]. Our algorithm recursively builds on this construction, ensuring
that the resulting hitting set remains of quasi-polynomial size.

The proof of Theorem 1.4 is along similar lines. First, we obtain a randomized polynomial-
time identity testing algorithm over pc monoids whose non-commutation graph has a k-
vertex cover for constant k. This algorithm itself uses ideas from automata theory. Then a
composition lemma yields an identity testing algorithm over k-monoids.

The paper is organized as follows. In Section 2, we provide the necessary background.
We prove a zero testing criteria for automata over pc monoids in Section 3. Theorem 1.2 is
presented in Section 4, and Theorem 1.4 in Section 5. Some proof details are in the appendix.

4 An induced matching is a matching that includes every edge connecting any two vertices in the subset
as an induced subgraph.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 10:5

2 Preliminaries

We recall basic definitions and results, mainly from automata theory and arithmetic circuit
complexity, and define notations used in the paper.

Notation. Let F be an infinite field. Matt(F) denotes the ring of t× t matrices over F. For
matrices A and B of sizes m×n and p×q respectively, their tensor (Kronecker) product A⊗B
is defined as the block matrix (aijB)1≤i≤m,1≤j≤n, and the dimension of A⊗B is pm× qn.
Given bases {vi}1≤i≤dim(V) and {wj}1≤j≤dim(W) for the vector spaces V and W , the vector
space V ⊗W is the tensor product space with a basis {vi ⊗ wj}1≤i≤dim(V),1≤j≤dim(W).

For a series (resp. polynomial) S and a word (resp. monomial) w, let [w]S denote the
coefficient of w in the series S (resp. polynomial). In this paper, we consider weighted
automata over a field F and alphabet (or variables) X = {x1, . . . , xn}.

Arithmetic Circuit Complexity. An algebraic branching program (ABP) is a layered directed
acyclic graph with one in-degree-0 vertex called source, and one out-degree-0 vertex called
sink. Its vertex set is partitioned into layers 0, 1, . . . , d, with directed edges only between
adjacent layers (i to i+ 1). The source and the sink are in layers zero and d, respectively.
Each edge is labeled by a linear form over F in variables X = {x1, . . . , xn}. The polynomial
computed by the ABP is the sum over all source-to-sink directed paths of the product of
linear forms that label the edges of the path. The maximum number of nodes in any layer is
called the width of the algebraic branching program. The size of the branching program is
taken to be the total number of nodes.

Equivalently, the computation of an algebraic branching program can be defined via the
iterated matrix product λTM1M2 · · ·Mdµ, where λ, µ are vectors in Fw and each Mi is a
w × w matrix whose entries are affine linear forms over X. Here w corresponds to the ABP
width and d+ 1 corresponds to the number of layers in the ABP.

If X is a set of non-commuting variables then the ABP is a noncommutative algebraic
branching program (e.g., see [17]).

Let S ⊂ F⟨X⟩ be a subset of polynomials in the noncommutative polynomial ring F⟨X⟩.
A mapping v : X → Matt(F) from variables to t× t matrices, it defines an evaluation map
defined for any polynomial f ∈ F⟨X⟩ as v(f) = f(v(x1), . . . , v(xn)). A collection H of such
evaluation maps is a hitting set for S, if for every nonzero f in S, there is an evaluation
v ∈ H such that v(f) ̸= 0.

Let Sn,d,s denote the set of noncommutative polynomials in F⟨X⟩ (where n = |X|) that
have algebraic branching programs of size s and d layers. Forbes and Shpilka [12] have given
a quasi-polynomial size hitting set Hn,d,s computable in quasi-polynomial time for Sn,d,s

that can. Moreover, the matrix tuples in Hn,d,s are d+ 1 dimensional.

▶ Theorem 2.1 ([12, Theorem I.8]). For all s, d, n ∈ N, if |F| ≥ poly(d, n, s) then there is
a hitting set Hn,d,s for Sn,d,s. Further |Hn,d,s| ≤ (sdn)O(log d) and Hn,d,s is computable in
deterministic time (sdn)O(log d).

Automata Theory. We recall some basic algebraic automata theory from the Berstel-
Reutenauer book [4].

Let F be a field5 and X be an alphabet. A F-weighted automaton6 A over X has a finite
set of states Q. There is a weight function E : Q× X ×Q → F that assigns a weight to each
transition. The number of states, |Q| is the size of the automaton. A path is a sequence

5 In general F can be a semiring, but for our purpose it suffices to consider fields.
6 Sometime called nondeterministic weighted automata in the literature.

MFCS 2021

10:6 Equivalence Testing of Weighted Automata

of edges: (q0, x1, q1)(q1, x2, q2) · · · (qt−1, xt, qt). The weight of the path is the product of the
weights of the edges. For each word w = x1x2 · · ·xt ∈ X∗, the coefficient of w, [w]S is the
total contribution of all the paths between a start and accepting state for the word w, which
is an element of F. This defines a formal series S =

∑
w∈X∗ [w]S · w which is an element of

the formal power series ring F⟨⟨X⟩⟩. We say that S is the formal series recognized by the
(weighted) automaton A.

Multi-tape automata. Next, we briefly explain weighted multi-tape automata defined in
terms of pc monoids. Let M be the pc monoid over variables X = X1 ∪ · · · ∪ Xk defined as
follows: the variables in each Xi are non-commuting, but for all i ≠ j and any x ∈ Xi, y ∈ Xj

we have xy = yx. As defined already, the transition function E is a mapping Q× X ×Q → F.
A path is a sequence of edges : (q0, x1, q1)(q1, x2, q2) · · · (qt−1, xt, qt) where each xi ∈ Xj for
some j. The label of the run is m = x1x2 · · ·xt in the pc monoid M , and [m]A is the total
contribution of all the runs between start and accepting states having the label equivalent
to m.

An automaton is deterministic if the set of states can be partitioned as Q = Q(1)⊔. . .⊔Q(k),
where states in Q(i) read input only from the ith tape alphabet Xi, and each state has a
single transition for every input variable. Thus, a deterministic automaton has at most one
accepting path for each input m ∈ M .

Now we explain how equivalence testing of weighted automata is polynomial-time reducible
to zero testing of weighted automata. Let A and B be F-weighted automata over the alphabet
X. The transition matrices NA and NB are defined as follows: NA[i, j] =

∑
x∈X EA(qi, x, qj)·

x. (NB is defined similarly)7. Let the series computed by A and B be λT
A ·

∑
i≥0 N

i
A ·µA and

λT
B ·

∑
i≥0 N

i
B · µB , respectively. Here λA, µA, λB , µB are column scalar vectors. Define the

weighted automaton C with transition matrix NC and the scalar vectors λC , µC as follows:

λC =
[
λA

λB

]
, NC =

[
NA 0
0 NB

]
, µC =

[
µA

−µB

]
.

We state an easy fact also used in [24].

▶ Fact 1. A and B are equivalent if and only if C is a zero automaton.

3 A Zero Testing Criteria Over Partially Commutative Monoids

A basic result in algebraic automata theory, says that an F-weighted automaton A of size s
represents a nonzero series in F⟨⟨X⟩⟩ if and only if there is a word w ∈ X∗ of length at most
s − 1, such that [w]S is nonzero. It has a simple linear algebraic proof [11, Corollary 8.3,
Page 145]8.

In this section, we prove a theorem similar in spirit over general pc monoids.

Pc monoids and partitioned pc monoids. Let X be a finite alphabet (equivalently, variable
set). Formally, a pc monoid M over X is a pair M = (X∗, I) where I ⊆ X × X be such
that (x1, x2) ∈ I if and only if x1x2 = x2x1. I is reflexive and symmetric. Let Ĩ be the
congruence generated from I by transitive closure. The monoid elements are defined as the
congruence classes m̃ for m ∈ X∗. In other words, M is a factor monoid of X∗ generated by
Ĩ. The non-commutation graph GM = (X, E) of M is a simple undirected graph such that
(x1, x2) ∈ E if and only if (x1, x2) /∈ I.

7 Here q1, q2, . . . be the enumeration of the states of A (and similarly for B).
8 This result is generally attributed to Schützenberger.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 10:7

A pc monoid M over alphabet (i.e. variable set) X is a k-partitioned pc monoid if
its non-commutation graph GM has a k-covering {Gi}k

i=1 such that the subgraphs Gi are
pairwise vertex disjoint. Given any pc monoid M with a k-covering, we can associate a
k-partitioned pc monoid M ′ with it, such that M is isomorphic to a submonoid of M ′, as
follows.

Suppose GM = (X,E) has a k-covering {Gi}k
i=1, where Gi = (Xi, Ei). Let X̂ = {xti | 1 ≤

t ≤ n, 1 ≤ i ≤ k} be kn new variables. Here |X| = n and X = x1, . . . , xn. Let G′
i = (X ′

i, E
′
i)

be a copy of Gi obtained by replacing the vertex xt ∈ Xi by its ith copy xti, such that
(xti, xsi) is an edge in G′

i if and only if (xt, xs) is an edge in Gi. Let G′ denote the disjoint
union graph G′ = G′

1 ⊔G′
2 ⊔ · · · ⊔G′

k, and M ′ be the pc monoid whose non-commutation
graph is G′ = (X ′, E′). Clearly, M ′ is a k-partitioned pc monoid, defined by M and its given
k-covering.

As an F-algebra, we note that F⟨M ′⟩ is isomorphic to the tensor product of the F-algebras
F⟨M ′

1⟩ ⊗ · · · ⊗ F⟨M ′
k⟩ where M ′

i is the pc monoid defined by G′
i.

The following simple observation, which shows that the pc monoid M is isomorphic to a
submonoid of M ′, is well-known [6, 8, 9].

▶ Lemma 3.1. Let ψ : F⟨M⟩ → F⟨M ′⟩ be the map such that ψ(m) = m1 ⊗m2 ⊗ · · · ⊗mk

for any monomial m in M and extend by linearity. Here, for 1 ≤ i ≤ k, the monomial mi

is obtained from m (by dropping the letters of m not in Xi) and replacing each occurrence
xt ∈ Xi by the variable xti, 1 ≤ t ≤ n. Then, ψ is an injective homomorphism.

▶ Remark 3.2. We include a self-contained proof in the appendix for completeness, in our
notation.

By Lemma 3.1, zero testing for weighted automata over pc monoids is reducible to
zero-testing of weighted automata over partitioned pc monoids in deterministic polynomial
time. More formally, we show the following.

▶ Lemma 3.3. Let A be the given F-weighted automaton of size s over a pc monoid M for
which the non-commutation graph GM has k-covering {Gi = (Xi, Ei)}k

i=1. Then zero testing
of A is reducible to the zero testing of another F-weighted automaton B over the associated
k-partitioned pc monoid M ′ in deterministic polynomial time. Moreover, the size of the
automaton B is O(ns2k).

Proof. The automaton B is simply obtained by applying the map ψ on the variables in M .
For a variable xt, let Jt ⊆ {1, 2, . . . , k} be the set of indices such that, i ∈ Jt if and only if
xt ∈ Xi. Then ψ(xt) = ηi1 ⊗ · · · ⊗ ηi|Jt| where i1 < i2 < · · · < i|Jt| and for each j, ij ∈ Jt,
ηij

= xtij
. Now for each q0, qk ∈ Q such that (q0, xt, qk) ∈ E 9 and wt(q0, xt, qk) = α ∈ F, we

introduce new states q1, . . . , q|Jt|−1 and for each j ≤ |Jt| − 1, add the edge ej = (qj−1, ηij
, qj)

in E and wt(e1) = α and for other newly added edges the weight is 1. Since the number of
edges in A is O(ns2), it is easy to see the number of nodes in B is O(ns2k). The fact that A
computes the zero series if and only if B computes the zero series, follows from Lemma 3.1
and in particular from the fact that ψ is injective on the set of monomials. ◀

Worrell has already proved that the zero-testing of weighted automata over partitioned
monoids whose non-commutation graphs are union of disjoint cliques, can be reduced to
the identity testing of noncommutative ABPs [24]. We restate a proposition from Worrell’s
paper in our framework.

9 Here for simplicity of notation, we have used q0, qk to represent an arbitrary pair such that there is a
transition between them, and q0 is not necessarily the initial state.

MFCS 2021

10:8 Equivalence Testing of Weighted Automata

▶ Proposition 3.4 (Adaptation of Proposition 5 of [24]). Let A be a given F-weighted automaton
of size s over a partitioned pc monoid M computing a series S. Moreover the non-commutation
graph GM is the disjoint union of k cliques. Let N be the transition matrix of A. Then S is
the zero series if and only if the ABPs λTN ℓµ = 0 for each 0 ≤ ℓ ≤ s − 1, where λ, µ are
vectors in Fs.

Combining Lemma 3.3 and Proposition 3.4, we obtain the following generalization of [11,
Corollary 8.3] over arbitrary pc monoids which may be of independent interest.

▶ Theorem 3.5. Let A be a given F-weighted automaton of size s over any pc monoid M
representing a series S. Then S is a nonzero series if and only if there exists a word w ∈ X∗

such that [w]S is nonzero where the length of w is bounded by O(n3s2).

Proof. Observe that the non-commutation graph GM has a trivial edge clique cover of size
≤ n2 where n is the size of the alphabet. Then we apply Lemma 3.3 to conclude that S
is a zero series if and only if the series S′ computed by the F-weighted automaton B over
the associated partitioned pc monoid (whose non-commutation graph is a disjoint union of
cliques) is zero. The size s′ of B is bounded by O(n3s2). Now we use Proposition 3.4 to see
that S′ is identically zero if and only if the ABPs λTN ℓµ = 0 for each 0 ≤ ℓ ≤ s′ − 1 are
identically zero where N is the transition matrix of B. Now notice that under the image of ψ
map, the length of any word can only increase. In other words, for any word w : |ψ(w)| ≥ |w|.
It follows that (S′ = ψ(S))≤s′−1 is a nonzero polynomial where S′ is the part of ψ(S) of
degree at most s′ − 1. Since ψ is injective, it must be the case that S≤s′−1 is also a nonzero
polynomial, and the theorem follows. ◀

4 Deterministic Zero Testing of Weighted Automata Over k-Clique
Monoids

In this section, we show that zero testing for weighted automata over k-clique monoids
for constant k is in deterministic quasi-polynomial time. In fact, by Lemma 3.3 and
Proposition 3.4, the zero testing problem reduces to the polynomial identity testing of ABPs
over partitioned pc monoids whose non-commutation graph is a disjoint union of k cliques.
Thus, in order to prove Theorem 1.2 it suffices to design an efficient identity testing algorithm
for ABPs computing polynomials in F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩, where k is a constant and the
variable sets Xj = {xij}1≤i≤n are of size n each and pairwise disjoint.

Evaluation over algebras. For a polynomial f ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩ and a k-tuple
of F-algebras A = (A1, . . . , Ak), an evaluation of f in A is given by a k-tuple of maps
v = (v1, v2, . . . , vk), where vi : Xi → Ai. We can extend it to the map v : F⟨X1⟩ ⊗ · · · ⊗
F⟨Xk⟩ → A1 ⊗ · · · ⊗Ak as follows: For any monomial m = m1 ⊗ · · · ⊗mk where mi ∈ X∗

i , let
v(m) = v1(m1)⊗· · ·⊗vk(mk). In particular, for each x ∈ Xj let v(x) = 11⊗· · ·⊗vj(x)⊗· · ·⊗1k

where 1j is the multiplicative identity of Aj . We can now extend v by linearity to all
polynomials in the domain F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩.

Next, we define a partial evaluation of f ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩ in A. Let k′ < k and
Â = (A1, . . . , Ak′) be a k′-tuple of F-algebras. A partial evaluation of F⟨X1⟩ ⊗ · · · ⊗F⟨Xk⟩ in
Â is given by a k′-tuple of maps v̂ = (v1, . . . , vk′), where vi : Xi → Ai. Now, we can define
v̂ : F⟨X1⟩⊗· · ·⊗F⟨Xk⟩ → A1 ⊗· · ·⊗Ak′ ⊗F⟨Xk′+1⟩⊗· · ·⊗F⟨Xk⟩ as follows. For a monomial
m = (m1 ⊗ · · · ⊗mk), mi ∈ X∗

i , we let v̂(m) = v1(m1) ⊗ · · · ⊗ vk′(mk′) ⊗mk′+1 ⊗ · · · ⊗mk.
By linearity, the partial evaluation v̂ is defined for any f ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩ where v̂

takes values in A1 ⊗ · · · ⊗Ak′ ⊗ F⟨Xk′+1⟩ ⊗ · · · ⊗ F⟨Xk⟩.

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 10:9

Although it is implicit, we formally recall that when we consider ABPs over F⟨X1⟩ ⊗
· · · ⊗F⟨Xk⟩ the linear forms are defined over tensors of the form 1 ⊗ · · · ⊗xij ⊗ · · · ⊗ 1. These
tensors play the role of an individual variable in the tensor product structure.

Some more notation. Let Sk,n,d,s denote the set of all polynomials in F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩
computed by ABPs of size s and layers 0, 1, . . . , d, and n = |Xi| for each 1 ≤ i ≤ k. Following
the notation in Theorem 2.1, we will denote by Hk,n,d,s the hitting set that we will construct
for Sk,n,d,s. That is, Hk,n,d,s is a collection of evaluations in the ring of square matrices
v = (v1, . . . , vk), such that for any nonzero polynomial f ∈ Sk,n,d,s there is an evaluation
v = (v1, . . . , vk) ∈ Hk,n,d,s such that v(f) is a nonzero matrix. Recall from Theorem 2.1 that
a quasi-polynomial size hitting set H1,n,d,s for S1,n,d,s can be explicitly constructed. In the
next lemma we describe an efficient bootstrapped construction of the hitting set Hk,n,d,s for
the set Sk,n,d,s of polynomials, from the hitting set H1,n,d,s.

▶ Lemma 4.1. There is a set of evaluation maps Hk,n,d,s = {(v1, . . . , vk) : vi ∈ H1,n,d,sk
}

where sk = s(d+ 1)(k−1) such that, for i ∈ [k], we have vi : Xi → Md+1(F), and Hk,n,d,s is
a hitting set for the class of polynomials Sk,n,d,s. Moreover, the size of the set is at most
(nskd)O(k2 log d), and it can be constructed in deterministic (nskd)O(k2 log d) time.

The above lemma yields the identity test: we only need to evaluate the input polynomial
on each point of the hitting set and check whether it is nonzero.

Before presenting the proof, we discuss two important ingredients. A polynomial f in
F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩ can be written as f =

∑
m∈X∗

k
fm ⊗ m where each m is a monomial

over variables Xk and fm ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk−1⟩. Given that f has a small ABP, we first
show that each polynomial fm also has a small ABP.

▶ Lemma 4.2. For each f ∈ Sk,n,d,s and m ∈ X∗
k, the polynomial fm ∈ F⟨X1⟩⊗· · ·⊗F⟨Xk−1⟩

has an ABP of size s(d+ 1) and d+ 1 layers.

Proof. Suppose f ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk⟩ has an ABP B of size s and d layers, and the
monomial m = xi1kxi2k · · ·xiℓk where some of the indices could be repeated. We will
construct an ABP of size s(d+ 1) for the polynomial fm. First, we identify each variable
1 ⊗ · · · ⊗ xij ⊗ · · · ⊗ 1 as xij and construct the following ABP B′ from B:

For every node u in the ABP B, we have nodes (u, i), 0 ≤ i ≤ ℓ in the ABP B′. We now
describe the edges of B′ and the edge labels. In the ABP B, let (u, v) be an edge, where u is
in layer j and v is in layer j + 1, for some j ≤ d− 1. We can write the linear form labeling
(u, v) as a sum L1 + L2, where L1 is an affine linear form in variables from X \Xk, and L2
is a homogeneous linear form in variables from Xk.

For 0 ≤ r ≤ ℓ− 1: we put an edge from (u, r) to (v, r) with label L1. For 0 ≤ r ≤ ℓ− 1:
we put an edge from (u, r) to (v, r + 1) with edge label α · xir+1k if the coefficient of xir+1k

in L2 is α ̸= 0. If s and t are the source and sink nodes of the ABP B, we designate (s, 0)
and (t, ℓ) as the source and sink nodes of the ABP B′.

It is evident from the construction that the ABP B′ has at most s(d+ 1) many nodes.
Furthermore, the only nonzero monomials in the polynomial computed by B′ are of the form
m′ ⊗m, where m′ is a monomial over the letters X \Xk, and the coefficient of m′ ⊗m is the
same as its coefficient in polynomial f . It follows, that B′ computes the polynomial fm ⊗m,
and we can obtain an ABP for fm by setting to 1 all the variables occurring in m. This
completes the proof. ◀

For a polynomial f in F⟨X1⟩⊗· · ·⊗F⟨Xk⟩, consider a partial evaluation v = (v1, . . . , vk−1)
such that each vi : Xi → Mti

(F). The evaluation v(f) is a T × T matrix with entries from
F⟨Xk⟩, where T = t1t2 · · · tk−1.

MFCS 2021

10:10 Equivalence Testing of Weighted Automata

▶ Lemma 4.3. For each p, q ∈ [T] and f ∈ Sk,n,d,s, the (p, q)th entry of v(f) can be computed
by an ABP of size sT and d+ 1 layers.

The proof is routine and given in the appendix. Now we are ready to prove Lemma 4.1.

Proof of Lemma 4.1. The proof is by induction on k. For the base case k = 1 the hitting set
H1,n,d,s of Theorem 2.1 suffices. We can write each nonzero f ∈ Sk,n,d,s as f =

∑
m∈X∗

k
fm ⊗

m, where m ∈ X∗
k and fm ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk−1⟩. Since f ̸≡ 0 we have fm ̸≡ 0 for some

m ∈ X∗
k . By Lemma 4.2, for each m ∈ Xk

∗ the polynomial fm ∈ F⟨X1⟩ ⊗ · · · ⊗ F⟨Xk−1⟩ has
an ABP of size s(d+ 1). Let s′ = s(d+ 1).

By induction hypothesis, fm is nonzero on some point in the set : Hk−1,n,d,s′ =
{(v1, v2, . . . , vk−1)|vi ∈ H1,n,d,s′

k−1
} where s′

k−1 = s′(d+ 1)k−2 = s(d+ 1)k−1. Hence, there is
an evaluation v′ ∈ Hk−1,n,d,s′ such that v′(fm) is a nonzero matrix of dimension (d+ 1)k−1.
Interpreting v′ as a partial evaluation for f , we observe that v′(f) is a (d+1)k−1 × (d+1)k−1

matrix with entries from F⟨Xk⟩. Since v′(fm) ̸= 0, it follows that some (p, q)th entry of v′(f)
is a nonzero polynomial g ∈ F⟨Xk⟩. By Lemma 4.3, each entry of v′(f) has an ABP of size
s(d+ 1)k−1. In particular, g ∈ S1,n,d,s(d+1)k−1 and it follows from Theorem 2.1 that there
is a an evaluation v′′ in H1,n,d,s(d+1)k−1 such that v′′(g) is a nonzero matrix of dimension
(d+ 1) × (d+ 1).

Thus, for the combined evaluation map v = (v′, v′′), v(f) is a nonzero matrix of dimension
(d+ 1)k × (d+ 1)k. Define Hk,n,d,s = {(v1, . . . , vk) : vi ∈ H1,n,d,sk

}, where sk = s(d+ 1)k−1.
However, by induction hypothesis, we have v′ = (v1, . . . , vk−1) ∈ Hk−1,n,d,s(d+1) where each
vi ∈ H1,n,d,s(d+1)k−1 . Therefore, v = (v′, v′′) ∈ Hk,n,d,s and Hk,n,d,s is a hitting set for the
class of polynomials Sk,n,d,s.

Finally, note that |Hk,n,d,s| = |H1,n,d,sk
|k. Since |H1,n,d,sk

| ≤ (ndsk)O(log d), it follows
that |Hk,n,d,s| ≤ (nskd)O(k2 log d), and the hitting set Hk,n,d,s can be constructed in the
claimed running time10. For zero testing, we need to evaluate the input ABP on the matrices
of the hitting set, and this can be done in time polynomial in the input size and the size of
the hitting set by matrix additions and multiplications. ◀

5 Randomized Zero Testing of Weighted Automata Over k-Monoids

We now consider pc monoids more general than k-clique monoids. A k-monoid is a pc monoid
M whose non-commutation graph GM has a 2-covering {G1, G2} such that G1 has an edge
clique cover of size k′ and G2 has a vertex cover of size k − k′, for some k′. It follows that
GM has a k-covering of cliques and star graphs. We assume that this k-covering of GM is
given as part of the input. Let F⟨M⟩ denote the F-algebra generated by the monoid M .

▶ Lemma 5.1. Let {Mi}k
i=1 be pc monoids defined over disjoint variable sets {Xi}k

i=1,
respectively. For each i, suppose Ai is a randomized procedure that outputs an evaluation
vi : F⟨Mi⟩ → Mti(d)(F) such that for any polynomial gi in F⟨Mi⟩ of degree at most d, gi is
nonzero if and only if vi(gi) is a nonzero matrix with probability at least 1 − 1

2k .
Then, for the evaluation v : F⟨M1⟩ ⊗ · · · ⊗ F⟨Mk⟩ → Mt1(d)(F) ⊗ · · · ⊗ Mtk(d)(F) such

that v = (v1, . . . , vk) and any nonzero polynomial f ∈ F⟨M1⟩ ⊗ · · · ⊗F⟨Mk⟩ of degree at most
d, the matrix v(f) is nonzero with probability at least 1/2.

10 Independent to the context of the current paper, bootstrapping hitting sets has found other interesting
applications in arithmetic circuit complexity [1].

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 10:11

Proof. The proof is by induction on k. For the base case k = 1, it is trivial. Let us fix
an f ∈ F⟨M1⟩ ⊗ · · · ⊗ F⟨Mk⟩ of degree at most d such that f ̸≡ 0. The polynomial f can
be written as f =

∑
m∈Mk

fm ⊗ m where m are the words over the pc monoid Mk and
fm ∈ F⟨M1⟩ ⊗ · · · ⊗ F⟨Mk−1⟩. Since f ̸≡ 0 we must have fm ̸≡ 0 for some m ∈ Mk.

Now, inductively we have the evaluation v′ = (v1, . . . , vk−1) for the class of polynomials
in F⟨M1⟩ ⊗ · · · ⊗ F⟨Mk−1⟩ of degree at most d. Since fm ̸≡ 0, with high probability v′(fm)
is a nonzero matrix of dimension

∏k−1
i=1 ti(d). By induction the failure probability is bounded

by k−1
2k .

As v′ is a partial evaluation for f , we observe that v′(f) is a matrix of dimension∏k−1
i=1 ti(d) whose entries are polynomials in F⟨Mk⟩. Since v′(fm) ̸= 0 we conclude that some

(p, q)th entry of v′(f) contains a nonzero polynomial g ∈ F⟨Mk⟩ of degree at most d. Choose
the evaluation vk ∈ Sk which is the output of the randomized procedure Ak, such that vk(g)
is a nonzero matrix of dimension tk(d). Hence, for the combined evaluation v = (v′, vk),
v(f) is a nonzero matrix of dimension

∏k
i=1 ti(d). A union bound shows that the failure

probability is at most 1/2. ◀

For the proof of Theorem 1.4, we first give a randomized polynomial-time identity testing
algorithm for polynomials over pc monoids whose non-commutation graph is a star graph.

▶ Lemma 5.2. Let M = ((X ∪ y)∗, I) be a monoid whose non-commutation graph GM is
a star graph with center y. Then for any constant k, there is a randomized procedure that
outputs an evaluation v : X ∪ {y} → Matt(d)(F) where t(d) is at most d, such that for any
polynomial f ∈ F⟨M⟩ of degree at most d, the polynomial f is nonzero if and only if v(f) is
a nonzero matrix. The success probability of the algorithm is at least 1 − 1

2k .

Proof. If f is nonzero, then there exists a monomial m in M with nonzero coefficient. The
idea is to isolate all monomials in {X ∪ y}∗ that are equivalent to m in M . Let the degree of
y in monomial m be ℓ ≤ d. Then m can be written as m = m1ym2 · · ·mℓymℓ+1 where each
mi is a word in X∗. As X is a commuting set of variables, any permutation of mi produces a
monomial equivalent to m in M . Now consider the automaton in Figure 1.

q0 q1 qd−1 qd
y/yc y/yc y/yc

xi/xi1 xi/xi2
xi/xid

xi/xi(d+1)

Figure 1 The transition diagram of the automaton.

Let m as m = m1ym2 · · ·mℓymℓ+1, where each mi is a maximal substring of m in X∗.
We refer to the mi as blocks. The above automaton keeps count of blocks as it scans the
monomial m. As it scans m, if the automaton is in the jth block, it substitutes each variable
xi ∈ X read by a corresponding commuting variable xij where the index j encodes the block
number. The y variable is renamed by a commutative variable yc. The transition matrices
Nxi

and Ny of dimension d+ 1. The transition matrices are explicitly given below.

Nxi
=

xi1 0 0 . . . 0
0 xi2 0 . . . 0
...

...
.

...
0 0 . . . xid 0
0 0 . . . 0 xi(d+1)

 , Ny =

0 yc 0 . . . 0
0 0 yc . . . 0
...

...
.

...
0 0 . . . 0 yc

0 0 . . . 0 0

 .

MFCS 2021

10:12 Equivalence Testing of Weighted Automata

Now we explain this matrix substitution. Let f =
∑

m αmm, where αm ∈ F. We write
f =

∑d
ℓ=1 fℓ, where fℓ =

∑
m:degy(m)=ℓ αmm. That is, fℓ is the part of f consisting of

monomials m with y-degree degy(m) = ℓ.
From the description of the automaton, we can see that for each ℓ ∈ [d], the (0, ℓ)th entry

of the output matrix is the commutative polynomial f c
ℓ ∈ F[{xi,j}1≤i≤n,1≤j≤d+1, yc]. The

construction ensures the following: For each 0 ≤ ℓ ≤ d, fℓ = 0 if and only if f c
ℓ = 0.

The randomized identity test is by substituting random scalar values for the commuting
variables xij and yc from a set S ⊆ F of size at least 2kd, such that the output matrix
becomes nonzero. The bound on the success probability follows from Polynomial Identity
Lemma [25, 20, 7]. ◀

Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let M ′ be a pc monoid whose non-commutation graph GM ′ is a
clique. Let g ∈ F⟨M ′⟩ be a nonzero polynomial of degree at most d. By the Amitsur-Levitzki
Theorem [2], if we substitute variables xi ∈ M ′ by generic matrix of size d over the variables
{x(i)

u,v}1≤u,v≤d, the output matrix is nonzero 11. Moreover, the entries of the output matrix
are commutative polynomials of degree at most d in the variables {x(i)

u,v}1≤i≤n,1≤u,v≤d. It
suffices to randomly substitute for each x

(i)
u,v variable from a set S ⊆ F of size at least 2kd.

This defines the evaluation map v : F⟨M ′⟩ → Md(F). The resulting identity test succeeds
with probability at least 1 − 1

2k . For the star graphs, the evaluation map is already defined
in Lemma 5.2.

Given a F-weighted automaton A of size s over a k-monoid M = (X∗, I), by Theorem 3.5,
the zero testing of A reduces to identity testing of a collection of ABPs of the form :
f = λTNdµ over F⟨M⟩, where N is the transition matrix of A and d is bounded by O(ns2k).
Now, to test identity of f where M is a k-monoid, it suffices to test identity of ψ(f) where ψ
is the injective homomorphism from Lemma 3.1. Now ψ(f) in F⟨M ′

1⟩ ⊗ · · · ⊗ F⟨M ′
k⟩, where

for each i ∈ [k] the non-commutation graph of M ′
i is either a clique or a star.

By Lemma 5.1, we can construct the evaluation map v = v1 ⊗ v2 ⊗ · · · ⊗ vk where for
each i ∈ [k], vi is an evaluation map for either a clique or a star graph depending on M ′

i .
The range of v is matrices of dimension at most dk, which is bounded by (sn)O(k) as d is
bounded by O(ns2k). This completes the proof of Theorem 1.4. ◀

Concluding Remarks

The bootstrapped construction presented in Section 4 designs a quasi-polynomial time
algorithm for the k-clique monoid problem which uses evaluation over a suitable matrix
algebra. However, to design a polynomial-time algorithm, one may try to exploit finer
structures in the problem than evaluating it over a matrix algebra. The obvious natural idea
is to generalize the white-box polynomial-time identity testing algorithm for noncommutative
ABPs [18] in the pc monoid setting. However, it is unclear whether such a generalization is
possible.

11 In fact the Amitsur-Levitzki theorem guarantees that generic matrices of size ⌈ d
2 ⌉ + 1 suffice [2].

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 10:13

References
1 Manindra Agrawal, Rohit Gurjar, Arpita Korwar, and Nitin Saxena. Hitting-sets for ROABP

and sum of set-multilinear circuits. SIAM J. Comput., 44(3):669–697, 2015. doi:10.1137/
140975103.

2 A. S. Amitsur and J. Levitzki. Minimal identities for algebras. Proceedings of the American
Mathematical Society, 1(4):449–463, 1950. URL: http://www.jstor.org/stable/2032312.

3 C. Beeri. An improvement on Valiant’s decision procedure for equivalence of deterministic
finite turn pushdown machines. Theoretical Computer Science, 3(3):305–320, 1976. doi:
10.1016/0304-3975(76)90049-9.

4 J. Berstel and C. Reutenauer. Noncommutative Rational Series with Applications. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 2011.

5 Malcolm Bird. The equivalence problem for deterministic two-tape automata. J. Comput.
Syst. Sci., 7(2):218–236, 1973. doi:10.1016/S0022-0000(73)80045-5.

6 Mireille Clerbout, Michel Latteux, and Yves Roos. Decomposition of partial commutations. In
Mike Paterson, editor, Automata, Languages and Programming, 17th International Colloquium,
ICALP90, Warwick University, England, UK, July 16-20, 1990, Proceedings, volume 443 of
Lecture Notes in Computer Science, pages 501–511. Springer, 1990. doi:10.1007/BFb0032054.

7 Richard A. Demillo and Richard J. Lipton. A probabilistic remark on algebraic program testing.
Information Processing Letters, 7(4):193–195, 1978. doi:10.1016/0020-0190(78)90067-4.

8 Volker Diekert. Combinatorics on Traces, volume 454 of Lecture Notes in Computer Science.
Springer, 1990. doi:10.1007/3-540-53031-2.

9 Volker Diekert, Markus Lohrey, and Alexander Miller. Partially commutative inverse monoids.
In Rastislav Kralovic and Pawel Urzyczyn, editors, Mathematical Foundations of Computer
Science 2006, 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August
28-September 1, 2006, Proceedings, volume 4162 of Lecture Notes in Computer Science, pages
292–304. Springer, 2006. doi:10.1007/11821069_26.

10 Manfred Droste and Paul Gastin. On recognizable and rational formal power series in
partially commuting variables. In Pierpaolo Degano, Roberto Gorrieri, and Alberto Marchetti-
Spaccamela, editors, Automata, Languages and Programming, 24th International Colloquium,
ICALP’97, Bologna, Italy, 7-11 July 1997, Proceedings, volume 1256 of Lecture Notes in
Computer Science, pages 682–692. Springer, 1997. doi:10.1007/3-540-63165-8_222.

11 Samuel Eilenberg. Automata, Languages, and Machines (Vol A). Pure and Applied Mathem-
atics. Academic Press, 1974.

12 Michael A. Forbes and Amir Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 243–252, 2013. doi:10.1109/FOCS.2013.34.

13 Emily P. Friedman and Sheila A. Greibach. A polynomial time algorithm for deciding
the equivalence problem for 2-tape deterministic finite state acceptors. SIAM J. Comput.,
11:166–183, 1982.

14 T. V. Griffiths. The unsolvability of the equivalence problem for nondeterministic generalized
machines. J. ACM, 15(3):409–413, 1968. doi:10.1145/321466.321473.

15 Tero Harju and Juhani Karhumäki. The equivalence problem of multitape finite automata.
Theor. Comput. Sci., 78(2):347–355, 1991. doi:10.1016/0304-3975(91)90356-7.

16 Antoni W. Mazurkiewicz. Trace theory. In Petri Nets: Central Models and Their Properties,
Advances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef,
Germany, 8-19 September 1986, pages 279–324, 1986. doi:10.1007/3-540-17906-2_30.

17 Noam Nisan. Lower bounds for non-commutative computation (extended abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 410–418, 1991. doi:10.1145/103418.103462.

18 Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19, 2005. doi:10.1007/s00037-005-0188-8.

MFCS 2021

https://doi.org/10.1137/140975103
https://doi.org/10.1137/140975103
http://www.jstor.org/stable/2032312
https://doi.org/10.1016/0304-3975(76)90049-9
https://doi.org/10.1016/0304-3975(76)90049-9
https://doi.org/10.1016/S0022-0000(73)80045-5
https://doi.org/10.1007/BFb0032054
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.1007/3-540-53031-2
https://doi.org/10.1007/11821069_26
https://doi.org/10.1007/3-540-63165-8_222
https://doi.org/10.1109/FOCS.2013.34
https://doi.org/10.1145/321466.321473
https://doi.org/10.1016/0304-3975(91)90356-7
https://doi.org/10.1007/3-540-17906-2_30
https://doi.org/10.1145/103418.103462
https://doi.org/10.1007/s00037-005-0188-8

10:14 Equivalence Testing of Weighted Automata

19 M.P. Schützenberger. On the definition of a family of automata. Information and Control,
4(2):245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.

20 Jacob T. Schwartz. Fast probabilistic algorithm for verification of polynomial identities. J.
ACM., 27(4):701–717, 1980.

21 W. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM
Journal on Computing, 21(2):216–227, 1992.

22 Leslie G. Valiant. The equivalence problem for deterministic finite-turn pushdown automata.
Information and Control, 25(2):123–133, 1974. doi:10.1016/S0019-9958(74)90839-0.

23 Stefano Varricchio. On the decidability of equivalence problem for partially commutative
rational power series. Theor. Comput. Sci., 99(2):291–299, 1992. doi:10.1016/0304-3975(92)
90354-I.

24 James Worrell. Revisiting the equivalence problem for finite multitape automata. In Automata,
Languages, and Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July
8-12, 2013, Proceedings, Part II, pages 422–433, 2013. doi:10.1007/978-3-642-39212-2_38.

25 R. Zippel. Probabilistic algorithms for sparse polynomials. In Proc. of the Int. Sym. on
Symbolic and Algebraic Computation, pages 216–226, 1979.

A The Proof of Lemma 3.1

Proof. It is straightforward to check that ψ is a ring homomorphism. To show the injectivity,
it is enough to show that ψ(m) = ψ(m′) implies m = m′ in M for any words m,m′ ∈ M . We
prove the claim by induction on the length of words in M . Suppose that for words m ∈ M

of length at most ℓ, if m′ is not Ĩ-equivalent to m then ψ(m) ̸= ψ(m′). The base case, for
ℓ = 0 clearly holds.

Now, suppose m = x ·m1 ∈ Xℓ+1 for x ∈ X and ψ(m) = ψ(m′).

▷ Claim A.1. For some m2 ∈ M , m′ = x ·m2 in M .

Proof. Assume, to the contrary, that there is no m2 ∈ M such that m′ = x · m2. Let
J = {j ∈ [k] | x ∈ Xj}. If the variable x does not occur in m′ then m|Xj

≠ m′|Xj
for each

j ∈ J . This implies that ψ(m) ̸= ψ(m′) which is a contradiction.
On other hand, suppose x occurs in m′ and it cannot be moved to the leftmost position in

m′ applying the commutation relations in I. Then we must have m′ = ayxb for some y ∈ Xj

and j ∈ J , where a, b ∈ X∗, for the leftmost occurrence of x in m′. Hence m|Xj
̸= m′|Xj

,
because x is the first variable in m|Xj

and x comes after y in m′|Xj
. Therefore, ψ(m) ̸= ψ(m′)

which is a contradiction. ◁

Now, ψ(x ·m1) = ψ(x ·m2) implies that ψ(m1) = ψ(m2). Both m1 and m2 are of length
ℓ. By induction hypothesis it follows that m1 = m2, and hence m = m′. ◀

B The Proof of Lemma 4.3

Proof. In effect the edges of the input branching program B are now labelled by matrices of
dimension T with entries are linear forms over the variables X′

k. To show that each entry of
the final T × T matrix can be computed by an ABP of size sT , let us fix some (i, j) such
that 1 ≤ i, j ≤ T and construct an ABP B′

ij computing the polynomial in the (i, j)th entry.
The construction of B′

ij is as follows. We make T copies of each node p (except the source
and sink node) of B and label it as (p, k) for each k ∈ [T]. Let us fix two nodes p and q

from B such that there is a T × T matrix Mpq labelling the edge (p, q) after the substitution.
Then, for each j1, j2 ∈ [T], add an edge between (p, j1) and (q, j2) in B′

ij and label it by the
(j1, j2)th entry of Mpq. When p is the source node, for each j2 ∈ T , add an edge between the

https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.1016/S0019-9958(74)90839-0
https://doi.org/10.1016/0304-3975(92)90354-I
https://doi.org/10.1016/0304-3975(92)90354-I
https://doi.org/10.1007/978-3-642-39212-2_38

V. Arvind, A. Chatterjee, R. Datta, and P. Mukhopadhyay 10:15

source node and (q, j2) in B′
ij and label it by the (i, j2)th entry of Mpq. Similarly, when q is

the sink node, for each j1 ∈ T , add an edge between (p, j1) and the sink node in B′
ij and

label it by the (j1, j)th entry of Mpq.
We just need to argue that the intermediate edge connections simulate matrix multiplica-

tions correctly. This is simple to observe, since for each path

P = {(s, p1), (p1, p2), . . . , (pℓ−1, t)}

in B (where s, t are the source and sink nodes respectively) and each (j1, . . . , jℓ−1) such
that 1 ≤ j1, . . . , jℓ−1 ≤ T , there is a path (s, (p1, j1)), ((p1, j1), (p2, j2)), . . . , ((pℓ−1, jℓ−1), t)
in B′

ij that computes M(s,p1)[i, j1]M(p1,p2)[j1, j2] · · ·Mpℓ−1,t[jℓ−1, j] where M(p,q) is the T ×T

matrix labelling the edge (p, q) in B. The size of B′
ij is sT , and the number of layers is

d+ 1. ◀

MFCS 2021

	1 Introduction
	2 Preliminaries
	3 A Zero Testing Criteria Over Partially Commutative Monoids
	4 Deterministic Zero Testing of Weighted Automata Over k-Clique Monoids
	5 Randomized Zero Testing of Weighted Automata Over k-Monoids
	A The Proof of Lemma 3.1
	B The Proof of Lemma 4.3

