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Abstract
The modal µ-calculus can only express bisimulation-invariant properties. It is a simple consequence
of Kleene’s Fixpoint Theorem that on structures with finite bisimulation quotients, the fixpoint
iteration of any formula converges after finitely many steps. We show that the converse does not
hold: we construct a word with an infinite bisimulation quotient that is locally regular so that the
iteration for any fixpoint formula of the modal µ-calculus on it converges after finitely many steps.
This entails decidability of µ-calculus model-checking over this word. We also show that the reason
for the discrepancy between infinite bisimulation quotients and trans-finite fixpoint convergence lies
in the fact that the µ-calculus can only express regular properties.
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1 Introduction

The modal µ-calculus Lµ, as it was introduced by Kozen [17], has become a de-facto standard
yardstick amongst formal specification languages for programs. It is obtained in a principally
simple way, namely by extending standard modal logic with extremal fixpoint quantifiers.
Since most operators used in temporal logics can be characterised as least or greatest fixpoints,
Lµ can embed standard temporal logics like CTL, LTL and CTL∗ [10]. Lµ is also, in a sense,
the largest regular program specification logic as it is equi-expressive to the bisimulation-
invariant fragment of Monadic Second-Order Logic [13]. Hence, studying its model-theoretic
properties helps to answer questions after what can and cannot be formally expressed about
programs in regular specification languages.

Fixpoint formulas in Lµ denote sets of states in a labelled transition system (LTS), and
Kleene’s Fixpoint Theorem [16] can be used to approximate such fixpoints in a chain of sets:
for instance, the semantics of some fixpoint definition µX.φ(X) can be approximated from
below by the sequence of sets Xi, where X0 = ∅ and Xi+1 is obtained as the semantics of
φ(Xi). For infinite structures, it is generally necessary to extend this sequence to trans-finite
ordinal numbers. Over any LTS whose state space forms a set, this sequence must stabilise
eventually at precisely the least fixpoint of φ.

Recent times have seen increased interest in the details of this process, regarding questions
of when exactly it stabilises, and how this depends on the underlying structure and formula
in question. Such questions are not simplified by fixpoint alternation – the ability to nest
mutually dependent fixpoint definitions of different kinds. It is known that, over the class
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24:2 Finite Convergence of µ-Calculus Fixpoints on Genuinely Infinite Structures

of all LTS, this is unavoidable in that alternation-free formulas do not capture all of Lµ’s
expressiveness [5]. However, some classes of structures are known, for instance words, over
which any Lµ formula is equivalent to an alternation-free one [15].

The first notable result regarding the question of fixpoint stabilisation in Lµ is that it
is decidable whether an Lµ formula is equivalent to a modal one [20]. Other and more
recent research concerns the ordinals at which fixpoint iteration stabilises, in particular which
ordinals are candidates for such a bound. This concerns the question whether, for a given
formula µX.φ, there is some ordinal α such that fixpoint iteration X0, X1, . . . stabilises after
at most α steps over any LTS. Such a (minimal) α is called the closure ordinal of µX.φ.
Czarnecki [9] shows that, for each ordinal α < ω2, there is some Lµ formula with closure
ordinal α. Afshari and Leigh [1] show that, for alternation-free formulas, ω2 is a tight upper
bound for closure ordinal candidates. [12] shows that ω1 is the closure ordinal of some Lµ

formula, and [19] shows that all ordinals below ωω are closure ordinals for some formula in
the two-way µ-calculus, i.e. the extension of Lµ by backwards modalities. The situation in
the intuitionistic setting is studied in e.g. [11].

The present paper is concerned with a slightly different but related question: we ask for
closure ordinals on particular structures, i.e. at which ordinal do the iteration processes of all
Lµ formulas stabilise? Similar problems have been investigated by Barwise and Moschovakis
in the context of first-order logic, see e.g. [4]. The problem of finding closure ordinals of classes
of structures relates to the previous problem, since the former closure ordinals obviously
bound the latter over the given class. Hence, studying closure ordinals of classes of structures
contributes to the understanding of closure ordinals of formulas.

For Lµ, the cardinality of the structure in question is an obvious upper bound for its
closure ordinal. Hence, on finite structures, fixpoint iteration must necessarily stabilise
at some finite bound that is uniform for all formulas. This simple observation extends to
structures with a finite bisimulation quotient, as an immediate consequence of Lµ’s inability
to distinguish bisimilar states. An interesting question arises as the converse of this: does an
inherently infinite structure, i.e. one whose bisimulation quotient is infinite, allow formulas
to have an infinite fixpoint iteration process? Put differently, are there structures with an
infinite bisimulation quotient such that fixpoint iteration for any Lµ formula converges after
finitely many steps? It is tempting to equate having a finite bisimulation quotient with the
finite convergence of all Lµ fixpoints, yet the answer to the latter question is “yes”.

We construct an LTS – in fact, an infinite word w∞ – which has an infinite bisimulation
quotient but all Lµ formulas are equivalent to some finite approximation over it. Locally it
seems to be regular, and no Lµ formula can “see” the non-regular global pattern in it. Hence,
Lµ fixpoints cannot exploit this non-regularity in order to only stabilise after more than
finitely many iteration steps. Local regularity means that w∞ is self-similar: it is made of
building blocks of increasing size, and some postfixes of it are w∞ again if one maps suitable
building blocks to certain symbols in the word’s alphabet.

The result on finite convergence over w∞ is obtained by first reducing the question for
arbitrary Lµ formulas to that of alternation-free ones. The aforementioned alternation-
hierarchy collapse cannot simply be used off-the-shelf here as it makes no statement about
the preservation of (in-)finiteness of closure ordinals. We then reduce the question to that
for Lµ formulas only containing fixpoints of one sort. We transform this into the analysis of
runs of a very rudimentary fragment of alternating parity automata over w∞, exploiting its
self-similar structure. Decidability of Lµ model checking over w∞ follows as a corollary.

Finally, we show that the reason for the discrepancy between infinite bisimulation quotients
and infinite Lµ closure ordinals is to be found in the regularity of Lµ’s expressive power. We
show that there are formulas of HFL – a natural higher-order extension of Lµ [22] – that do
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not have finite convergence on w∞. This is interesting because HFL can define the Kleene
fixpoint iteration for Lµ [8], and this can be used to disentangle fixpoint alternation, albeit
at the cost of blow-up in formula size and type order, and the restriction to structures on
which each Lµ formula is equivalent to some finite approximation. Thus, the result of the
paper at hand implies that this is not necessarily restricted a priori to structures with finite
bisimulation quotients, as the aforementioned w∞ is a counterexample.

The paper is organised as follows. In Sect. 2 we recall necessary preliminaries. In Sect. 3
we take a detailed look at fixpoint iteration for Lµ formulas to make the notion of “finite
convergence” formal. In Sect. 4 we develop an automata-theoretic criterion for a class of
words to have finite convergence. We use this in Sect. 5 to prove finite convergence for
w∞. Sect. 6 contains the considerations on modal fixpoints of higher-order on w∞. Sect. 7
concludes with remarks on further work.

2 Preliminaries

Words and languages. An alphabet is a finite, nonempty set Σ of letters, denoted by a, b, . . . .
A Σ-word is a finite or infinite sequence of letters. Infinite words are also called ω-words.
The empty word is denoted by ε. We write w = a1a2 · · · an for finite words, and w = a1a2 · · ·
for infinite words. Given two finite words u and v with v ≠ ε, then u · vω is an infinite word.
In both the finite and the infinite case, w[i] denotes the i-th letter of w. Σ∗ is the set of
finite Σ-words, a subset of which is a Σ-language (of finite words). Languages of ω-words
have no role in this paper. If the alphabet is clear from context, we simply speak of words
and languages.

Words are a special case of labelled transition systems for which the notion of bisimilarity
is well-known. We can simplify the definition for word structures and call two positions in a
word bisimilar if they have the same postfix, i.e. if the rest of the word is the same from
both positions. Obviously, an ω-word with two bisimilar positions is ultimately periodic.
The bisimulation quotient of a word is the quotient w.r.t. bisimilarity. It is either the word
itself (when all positions are mutually non-bisimilar), or a lasso-shaped representation of it
(when at least two, and then necessarily all following pairs of positions are bisimilar).

The modal µ-calculus. We introduce the modal µ-calculus in its linear-time version only.
Let Σ be an alphabet, let X be a set of fixpoint variables. The syntax of the linear-time
µ-calculus in negation normal form, just Lµ from now on, is given by the grammar

φ ::= a | φ ∨ φ | φ ∧ φ | ⃝φ | X | µX.φ | νX.φ

where X ∈ X and a ∈ Σ. Other connectives such as tt, ff,→ etc. are defined as usual. Note
that negation is definable using De Morgan, ¬a ≡

∨
b ̸=a b and duality between µ and ν.

The notion of a subformula is standard. The size |φ| of a formula φ is the number of its
distinct subformulas. Fixpoint quantifiers σ ∈ {µ, ν} act as variable binders. The notion of
free and bound occurrence, as well as that of a closed formula are as usual. In a formula
σX.φ, the subformula φ is the defining formula of X. A variable bound by µ is a least-fixpoint
variable. It is a greatest-fixpoint variable if it is bound by ν.

We assume formulas to be well-named in the sense that each fixpoint variable is bound at
most once. Clearly, any formula is equivalent to a well-named one via renaming of variables.
In a well-named formula φ, there is a function fpφ that maps each fixpoint variable to the
defining formula of this variable. We drop the index if φ is clear from context. Well-namedness
induces a partial order <fp defined via X <fp Y iff fpφ(X) is a proper subformula of fpφ(Y ).
Note that, if X <fp Y , then X has no free occurrences in fpφ(Y ).

MFCS 2021



24:4 Finite Convergence of µ-Calculus Fixpoints on Genuinely Infinite Structures

We call a formula unipolar if it only contains one kind of fixpoint quantifiers. We call
a formula alternation-free if no variable bound by a least fixpoint quantifier appears freely
in the defining formula of a greatest fixpoint quantifier, and vice versa. In alternation-free
formulas, the fixpoint variables can be partitioned into sets X1, . . . ,Xk such that

fixpoint variables do not appear freely in the defining formulas of variables from another
set of the partition,
all variables of one set have the same polarity, and
for all X ∈ Xi and Y ∈ Xj with i ̸= j: if X <fp Y then j < i.

A closed formula that contains no fixpoint quantifiers is in Basic Modal Logic (ML). The
notion of modal depth md(φ) of φ is defined as usual: md(a) = 0, md(ψ1∨ψ2) = md(ψ1∧ψ2) =
max{md(ψ1),md(ψ2)} and md(⃝ψ) = 1 + md(ψ).

Let η : X → 2N be an environment. The semantics of an Lµ formula on an ω-word w is a
set of positions defined inductively as follows:

JaKw
η = {i ∈ N | w[i] = a} JXKw

η = η(X)

Jφ ∧ ψKw
η = JφKw

η ∩ JψKw
η JµX.φKw

η =
⋂

{U ⊆ N | JφKw
η[X 7→U ] ⊆ U}

Jφ ∨ ψKw
η = JφKw

η ∪ JψKw
η JνX.φKw

η =
⋃

{U ⊆ N | U ⊆ JφKw
η[X 7→U ]}

J⃝φKw
η = {i ∈ N | i+ 1 ∈ JφKw

η }

We say that φ is satisfiable under η over w if JφKw
η ̸= ∅. It is valid, written |= φ, if JφKw

η = N
for all w and η.

Two closed Lµ formulas φ and ψ are equivalent, written φ ≡ ψ, if they define the same
set on all words. We write φ ≡w ψ to denote that φ and ψ define the same set on w, and
φ ≡C ψ for a class of words C if φ and ψ define the same set on all words in C.

Trivial Automata. A trivial Σ-automaton (TrA) has the form (Q, δ, qI , F, b) where
Q is a finite nonempty set of states with initial state qI ∈ Q and final states F ⊆ Q,
δ : (Q \ F ) × Σ → Q is the transition function and
b ∈ {0, 1}.

A run of A starting from some position i in some ω-word w is a finite or infinite sequence
q0, q1, . . . of states with q0 = qI and qj+1 = δ(qj , wj+i). Note that if such a sequence is finite,
then the last state must necessarily be in F since δ is total on Q \ F . A run is accepting if it
is finite and b = 1, or if it is infinite and b = 0. The set of positions in an ω-word defined by
A is the set of positions from which it has an accepting run. Two TrA are equivalent if they
define the same set on every infinite Σ-word.

We write q v−→ q′ for q, q′ ∈ Q, v ∈ Σ∗ to denote that A will be in state q′ after reading the
finite word v starting from q. This includes the case in which A does not read the entirety of
v since it stops beforehand. In this case, q′ ∈ F .

Trivial automata are reminiscent of DFA but they operate on infinite words. They can
be thought of as restricted parity automata with a single priority b. If b = 1 then no infinite
run is accepting. Acceptance is typically still possible by hitting a state and alphabet symbol
to which the transition function assigns tt (as a Boolean combination of states). By making
acceptance explicit through final states instead, we can define these trivial automata to be
deterministic which is useful in proofs later on.
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▶ Lemma 1. Any unipolar Lµ formula is equivalent to a TrA.

Proof. (Sketch) It is well-known that Lµ formulas on words can be translated into alternating
parity automata (APA) [23]. Unipolar formulas result in APA of a single priority: 1 for least,
0 for greatest fixpoints. Since the APA has only one priority, determinisation is possible
through a double powerset construction, paying attention to states with no successors by
either introducing a sink state, or by making them final. ◀

3 Unfolding of Fixpoint Formulas

Single fixpoints. We formalise the notion of finite fixpoint convergence. First consider the
case of a formula with a single fixpoint. Let µX.φ be a formula, η be an environment, and w
be a word. Then φ defines a monotonic function f : T 7→ JφKw

η[X 7→T ]. Approximations to the
least fixpoint are defined via

T 0
X = ∅ , T i+1

X = f(T i
X) = JφKw

η[X 7→T i
X

] , Tω
X =

⋃
i∈N

T i
X .

Since we restrict ourselves to word structures with no branching, we do not need to consider
approximations beyond ω, and by Kleene’s Fixpoint Theorem we have Tω

X = JµX.φKw
η .

Note that the T i
X are definable in Lµ by (renaming instances of) formulas φi via φ0 =

ff, φi+1 = φ[φi/X] independently of w and η. We call φi the ith unfolding of µX.φ. If over
w we have T i

X = Tω
X for some i then the fixpoint is equivalent to its ith unfolding, and the

set defined by it can also be defined by a formula without the fixpoint. The definitions
for greatest fixpoints are analogue, except that one starts with N instead of ∅, and with tt
instead of ff.

Multiple and nested fixpoints. For formulas containing more than one fixpoint subformula,
possibly in a nested way, it is less clear what it means for these subformulas to be “unfolded
n times”, as there is some ambiguity w.r.t. the order in which the participating formulas are
to be unfolded. The literature also contains no standard agreed-upon definition. Instead, one
of the following three constructions is employed as the respective authors see fit: Unfolding
bottom-up, unfolding top-down, or unfolding on demand, following a construction seen in
e.g. [21]. We review all three of them here and show that they produce the same formula (cf.
Lem. 7). Hence, using either of them as suitable is permissible, and the results obtained in
Sect. 5 later on hold for any of these reasonable interpretations of finite fixpoint convergence.

This thorough discussion is necessitated by to two reasons: Note that we have very strict
requirements with respect to unfolding procedures in the sense that, for an “nth unfolding”,
whenever a fixpoint is to be unfolded during the procedure, it is unfolded exactly n times.
This differs from other notions where the amount of unfoldings can vary from fixpoint to
fixpoint as long as some fixpoint-free formula is produced. Moreover, contrary to the case
of only one fixpoint, monotonicity of the unfolding can be lost for formulas that are not
unipolar, contradicting what one might intuitively assume (cf. Ex. 8), in particular w.r.t.
stabilisation of the process.

The first unfolding procedure is quite straightforward: Pick a formula that is minimal
w.r.t. <fp and unfold it n times. Clearly, this procedure terminates after k steps, if the
formula in question contains k fixpoint definitions. However, it is not immediately clear
whether a common n exists if one is interested in producing a formula equivalent to the
original one over some structure.

MFCS 2021
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▶ Definition 2 (Bottom-up unfolding). Define µ̂ := ff and ν̂ := tt. Let n ≥ 0 and let φ be
an Lµ formula. Let X1, . . . , Xk be an enumeration of its fixpoint variables such that Xi is
bound by some σXi.ψi, and Xi ̸<fp Xj for j > i. Let φn

k , . . . , φ
n
0 with φn

k = φ be a sequence
of formulas defined via

ψ0
i = σ̂i , ψj+1

i = fpφn
i
(Xi)[ψj

i /Xi] , φn
i−1 = φn

i [ψn
i /σiXi. fpφn

i
(Xi)]

Then φn
0 is the nth bottom-up unfolding of φ.

▶ Example 3. Let φ = νX.⃝(µY.X ∧ Y ) and let n = 2. Clearly Y <fp X. Hence,
ψ2

2 = X ∧ (X ∧ ff) whence φ2
1 = νX.⃝(X ∧ (X ∧ ff)). Moreover ψ1

1 = ⃝(tt ∧ (tt ∧ ff)) and,
hence, φ2

0 = ⃝
(

⃝(tt ∧ (tt ∧ ff)) ∧ (⃝(tt ∧ (tt ∧ ff)) ∧ ff)
)
.

The second procedure is perhaps the most straightforward one: Given some formula that
contains fixpoints, and some n, pick some fixpoint definition that is maximal w.r.t <fp and
unfold it n times. Given that this may duplicate fixpoint definitions that are smaller w.r.t.
<fp, this requires renaming and raises questions regarding termination of the procedure.
Moreover, if one is interested into producing equivalent formulas over some structure, it is,
again, not immediately clear whether a common n exists that can be used for all fixpoint
definitions simultaneously. We start with an example.

▶ Example 4. Consider again the formula νX.⃝(µY.X ∧ Y ). Let ψ = ⃝(µY.X ∧ Y ).
By unfolding X twice as per above, we obtain the sequence of formulas ψ0 = tt, ψ1 =
⃝(µY.tt ∧ Y ), ψ2 = ⃝(µY.(⃝(µY.tt ∧ Y )) ∧ Y ). Not only are there now two fixpoint
definitions involving Y , their variables are also comparable via <fp. However, by renaming
one of them, we obtain the formula ⃝(µY.(⃝(µY ′.tt∧Y ′))∧Y ). Note that the two variables
are not mutually recursive since Y does not appear in the defining formula of Y ′.

Since the two variables are comparable, and Y >fp> Y ′, we proceed by unfolding it which,
after renaming, results in ⃝((⃝(µY ′.tt ∧ Y ′)) ∧ ((⃝(µY ′′.tt ∧ Y ′′)) ∧ ff)).

Again, we obtain two fixpoint definitions. However, this time, the two variables in question
are not comparable via <fp, whence the order of unfolding is obviously not important. We
unfold Y ′ first and obtain ⃝((⃝(tt ∧ (tt ∧ ff))) ∧ ((⃝(µY ′′. tt ∧ Y ′′)) ∧ ff)) and then, after
unfolding Y ′′, the formula ⃝((⃝(tt ∧ (tt ∧ ff))) ∧ ((⃝(tt ∧ (tt ∧ ff))) ∧ ff)).

This is the same formula as the one obtained by bottom-up unfolding in Ex. 3. This is in
fact no coincidence, cf. Lemma 7 below.

▶ Definition 5 (Top-down unfolding). Let n ≥ 0 and let φ be an Lµ formula. Define a
sequence φn

0 , φ
n
1 , . . . where φn

0 = φ, and φn
i+1 is obtained from φn

i via the following process:
if φn

i contains no fixpoint definitions, φn
i+1 = φn

i . Otherwise, let X be a variable that is
maximal w.r.t. <fp in φn

i . Let σX.ψ be the subformula that defines X. Define ψ0 = σ̂ and
ψj+1 = ψ[ψj/X]. Then φn

i+1 = φn
i [ψ′n/σX.ψ] where ψ′n is a copy of ψn made well-named

via renaming of variables. If φn
i = φn

i+1, then the nth top-down unfolding of φ is φn
i .

As already said, is not immediately obvious that the above process terminates, but
Ex. 4 already gives a hint. Unfolding a fixpoint formula may duplicate other, inner fixpoint
formulas but the duplicates are independent of each other. Unfolding the outer may create
further duplicates of inner duplicates, but these are not mutually recursive, which gives a
termination argument.

In order to not deal with ambiguities around the termination of the process, and to
avoid issues around unfolding formulas containing free fixpoint variables (cf. the bottom-up
approach), we review a third definition of the nth unfolding of a fixpoint formula centered
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around tracking for each fixpoint how often it has been unfolded already. This procedure is
also folklore and based on the well-known notion of µ-signatures [21] or techniques used to
unfold parity automata into Lµ-formulas [7].

▶ Definition 6. Let n ≥ 0 and let φ be an Lµ formula. Let X1, . . . , Xk be an enumeration
of its fixpoint variables such that Xi ̸<fp Xj for j > i and such that σi denotes the (polarity
of the) fixpoint quantifier for Xi. For a tuple s = (c1, . . . , ck) let s(i) = ci if 1 ≤ i ≤ k and,
if s(i) > 0, define s[i−−] as the k-tuple (c1, . . . , ci − 1, n, . . . , n).

Define φn as φsI , where sI = (n, . . . , n) and ψs is given inductively as

as = a (ψ1 ∨ ψ2)s = ψs
1 ∨ ψs

2

(¬ψ)s = ¬ψs (ψ1 ∧ ψ2)s = ψs
1 ∧ ψs

2

(⃝ψ)s = ⃝ψs Xs
i = (σXi. fpφ(Xi))s =

{
σ̂i , if s[i] = 0
fpφ(Xi)s[i−−] , otherwise.

Clearly, φsI is well-defined and fixpoint-free. Well-definedness follows from the fact that
s[i−−] is smaller than s in the lexicographical ordering. Note that we do not have to deal
with well-namedness since no intermediate formulas containing fixpoint definitions occur due
to the inductive definition centered around s.

We now establish that all three definitions given above actually produce the same formulas:

▶ Lemma 7. Let φ be an Lµ formula. Then the bottom-up unfolding of φ (cf. Def. 2) and
the top-down unfolding of φ (cf. Def. 5) are equivalent to the unfolding defined in Def. 6. In
particular, the top-down unfolding is well-defined.

The proof has been moved to the appendix. It mostly consists of tracking the various
substitutions.

We say that φ is equivalent to its nth unfolding over some word w if φ ≡w φm for all
m ≥ n, i.e. if φn defines the same set on each of these words, and so do all further unfoldings.
Note that, contrary to the case of a single fixpoint variable, it is not automatically the case
that if φn ≡w φ, then φn+1 ≡w φ. To illustrate this, consider the following example:

▶ Example 8. Let φ = νX.µY.(a ∧ ⃝X) ∨ ⃝Y . It defines the set of all positions after
which a occurs infinitely often. Its first unfoldings are

φ0 = tt

φ1 = (a ∧ ⃝ tt) ∨ ⃝ ff ≡ a

φ2 = (a ∧ ⃝((a ∧ ⃝ tt) ∨ ⃝((a ∧ ⃝ tt) ∨ ⃝ ff)))
∨ ⃝((a ∧ ⃝((a ∧ ⃝ tt) ∨ ⃝((a ∧ ⃝ tt) ∨ ⃝ ff))) ∨ ⃝ ff)

≡ (a ∧ ⃝(a ∨ ⃝ a)) ∨ ⃝((a ∧ ⃝(a ∨ ⃝ a)))

Take w = (ba)ω. Then φ0 obviously defines N, while φ1 defines {2n+ 1 | n ∈ N} and then φ2

again defines N and so do all further approximations. Similar examples can be constructed to
separate any two approximations. In fact, over a word of the form b1ab2ab3a · · · , the formula
φ is not equivalent to any of its unfoldings φi with i ≥ 1, but still defines N.

Note that φ from Ex. 8 is not unipolar. For unipolar formulas, monotonicity can be
used to show that |= φi → φi+1 for least fixpoint formulas, resp. |= φi+1 → φi for greatest
fixpoint formulas holds for all i.

MFCS 2021
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4 Finite Fixpoint Convergence for Lµ

In this section we define the notion of a word having finite convergence, i.e. the property
that all formulas, or all formulas of a certain kind, are equivalent to a finite unfolding over
this word. We also develop a sufficient criterion in terms of runs of TrA, for this to hold.

▶ Definition 9. Let w be an infinite word and let Φ be a set of Lµ formulas. We say that w
has finite convergence for Φ if, for every φ ∈ Φ, there is n such that φ is equivalent to φn

over w. We say that w has finite convergence for Lµ, if the above holds for the set of all Lµ

formulas.

The rest of the section is devoted to reducing finite convergence over w for the set of Lµ

formulas to a rather simple criterion on the runs of TrA over w. Lemmas 10 and 11 establish
that, if a word has finite convergence for the set of alternation-free formulas, it also has finite
convergence for the set of all Lµ formulas. The rest of the section establishes a criterion for
a word to have finite convergence for the set of alternation-free formulas.

▶ Lemma 10. Let w be an infinite word that has finite convergence for the set of all
alternation-free Lµ formulas. Then, every closed Lµ formula φ of the form σX.ψ is equivalent
over w to one in ML, and so are all its approximations Xi. Moreover, there is some i such
that φ agrees with Xi over w.

Proof. Let w and φ = µX.ψ. The case of σ = ν is analogous. By [15], φ is equivalent to an
alternation-free formula over the class of all words. Then, by the assumption of the lemma,
there is φ′ ∈ ML that is equivalent to this alternation-free formula, obtained via some finite
unfolding of φ. Now let Xi be the ith approximation of φ and let ψi be the Lµ formula that
defines it. Note that it possibly contains fixpoint definitions, since the only fixpoint to be
unfolded is X. However, with the same argument as before we obtain that ψi also must be
equivalent to some alternation-free formula and, hence, to some formula ψ′

i in ML.
Regarding the claim that one of the approximations is already equivalent to φ, assume that

this is not the case. Since the ψ′
i are obtained as formulas equivalent to finite approximations

of φ, we must have that for each i ∈ N, there must be some position ji ∈ Jψ′
i+1Kw \ Jψ′

iKw

and, hence ji ∈ Jφ′Kw \ Jψ′
iKw. Consider the set Φ = {φ′} ∪ {¬ψ′

i | i ∈ N}. We show that
it is satisfiable using the Compactness Theorem for ML. Consider any finite subset Ψ of
Φ, w.l.o.g. it is of the form {φ′} ∪ {¬ψ′

i | i ≤ k} for some k. By the above, Ψ is satisfiable
by a postfix of w, starting at jk. Hence, Φ is also satisfiable, i.e. there is an ω-word w′

that satisfies φ′, but none of the ψ′
i. This is a contradiction, since Jφ′Kw′ =

⋃
i∈NJψ′

iKw′ by
definition. This contradiction stems from the assumption that there is not already some i
such that ψ′

i ≡w φ′ ≡w φ. This finishes the proof. ◀

▶ Lemma 11. Let w be an infinite word. If w has finite convergence for the set of all
alternation-free Lµ formulas, it has finite convergence for the set of all Lµ formulas.

Proof. Let φ be an Lµ formula. Using Lem. 10, we can obtain a non-uniform unfolding φ′

of φ that is equivalent to φ over w, i.e. we show that there is m such that, following the
pattern of the top-down unfolding procedure in Def. 5, for each fixpoint subformula there is
some n ≤ m such that unfolding it n times yields an equivalent subformula. In a second step,
we show that we also obtain a formula equivalent to φ if we unfold all fixpoint subformulas
exactly m times. This is not immediately obvious due to the non-monotonicity seen in Ex. 8.

Towards the first goal, define a sequence φ0, φ1, . . . where φ0 = φ, and φi+1 is obtained
from φi via the following process, similarly to the top-down unfolding: if φi contains no
fixpoint definitions φi+1 = φi. Otherwise, let X be a variable in φi that is maximal w.r.t
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<fp. Let σX.ψ be the subformula that defines X. By Lem. 10, there is some mi such that
the mith unfolding of ψ is equivalent to σX.ψ, defined via ψ0 = σ̂ and ψi+1 = ψ[ψi/X].
Then φ′

i+1 = φi[ψmi+1/σX.ψ] resulting from the (mi + 1)th unfolding of X. Let φi+1 be a
obtained from φ′

i+1 via renaming such that φi+1 is well-named. Note that the amount of
times each fixpoint is unfolded varies. This is where the above differs from the top-down
unfolding. The above process stabilises for the same reason the top-down unfolding is
well-defined: unfolding an outermost fixpoint formula will create closed formulas, i.e. the
ψi as described above are all closed. Hence, while unfolding an outermost fixpoint X can
duplicate fixpoints smaller than X w.r.t <fp, the defining formulas of the duplicates reside in
different instances of the ψi and, hence, are not mutually recursive. In particular, unfolding
a formula in ψi+1 may create further duplicates by replicating ψi, but since ψi is closed,
these further duplicates can then be unfolded independently of each other.

Hence, let φ′ be the formula that results once this process stabilises. Note that, however,
the unfolding is not necessarily uniform. Let m = 1 + max{mi | i ∈ N}. Since the process
stabilises, this maximum exists. We claim that φ is equivalent to φm over w. We show this
by unfolding φ using the top-down procedure. Note that above, we have established that,
for each fixpoint X in the process, there is some mi < m such that unfolding it mi + 1 times,
once it is X’s turn, results in a formula equivalent to the one before. We now show that
this property is kept if we instead unfold it m times. Let X be such a variable, and assume
that the property holds so far. Note that X must be outermost by now. Let σX.ψ be the
defining formula of X. We compare ψmi and ψm, which are equivalent due to Lem. 10. Note
that ψmi+1 and ψmi are equivalent due to the definition of mi. Since m ≥ mi, we have that
ψm = ψmi+k for some k, and it contains ψmi as a subformula. Since that subformula is
closed, clearly the invariant holds for all fixpoint definitions in ψmi , since the process inside
this subformula will play out exactly like before. If mi + 1 = m, we are done. Otherwise,
consider a subformula in ψmi+1+k′ for some k′ ≤ m − mi − 1, but not in ψmi+1, i.e., it
is in the extra part of the formula due to the extra unfolding. Since ψmi+1 ≡w ψmi by
definition, we also have that ψmi+k′ ≡w ψmi . In other words, the part of the formula where
X used to be, but some ψj has been substituted, is equivalent over w due to the definition
of mi. Moreover, both substituted formulas are closed and, hence, can be exchanged without
interfering with unfolding of fixpoint formulas. Hence, for the purposes of fixpoint unfolding,
all fixpoint formulas in ψm, but not in ψmi+1 behave like a fixpoint formula in ψmi+1, but
not in ψmi . Since the invariant holds for the latter, it must also hold for the former.

It follows that we can make the unfolding uniform by just using the top-down unfolding
process with m. Moreover, any m′ ≥ m yields the same result by the same reasoning. This
finishes the proof. ◀

▶ Remark 12. Note that Lem. 11 yields more than just the collapse of Lµ to ML over w
which can already be inferred from the collapse of Lµ to alternation-free Lµ over the class of
all words (see [15]). Lem. 11 yields that every Lµ formula φ is equivalent, over w, not only to
some ML formula, but one obtained as an unfolding of φ (cf. also the remarks after Def. 9).

▶ Lemma 13. Let w be an infinite word. If w has finite convergence for the set of all
unipolar Lµ formulas, it has finite convergence for the set of all alternation-free Lµ formulas.

The proof is a standard induction on the alternation classes using the fact that alternation-
free Lµ is obtained by capture-avoiding substitution of unipolar formulas. It is spelled out in
the appendix.
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▶ Definition 14. Let w be an ω-word and A be a TrA. We say that A has k-bounded runs
on w if all finite runs of A in w are of length k or less. We say that TrA have bounded runs
on w if, for every TrA A, there is k such that A has k-bounded runs on w.

Clearly, if A has k-bounded runs on w, then acceptance of A can be expressed by a
ML-formula of modal depth at most k, i.e., there is some ML-formula φ of modal depth at
most k such that JφKw = {i | A accepts from i}.

▶ Lemma 15. Let w be an infinite word. If TrA have bounded runs over w then w has finite
convergence for all unipolar formulas.

Proof. We only show the result for least fixpoint formulas; for greatest it is analogous. Let
w be given, φ be unipolar containing only least fixpoints, and φi be its ith unfolding. Since
φ is unipolar, it is equivalent to a TrA A by Lem. 1. By the assumption, there is k such that
if A halts on w from some position then it halts in k steps or less. Hence, acceptance of A
on w can be expressed by some ML formula ψ, which means that ψ is equivalent to φ over
w. Then, similar to the proof of Lem. 10, we can use the Compactness Theorem to obtain
that φ is already equivalent to some φi. ◀

Lemmas 11, 13 and 15 yield the following.

▶ Corollary 16. Let w be an infinite word. If TrA have bounded runs on w, then w has finite
convergence for Lµ.

5 A Word with Finite Convergence

We are now ready to give the construction of a word with finite fixpoint convergence. Let
Σ = {a, b}. We define w∞ using the following mutually recursive definitions of families of
finite words αi, βi:

α0 = a , β0 = b , αi+1 = αiαiβiαiαi , βi+1 = βiβiαiβiβi

For example, α2 = aabaa aabaa bbabb aabaa aabaa. Then w∞ = α0α1 · · · .
We obtain the following properties of w∞:

▶ Lemma 17. Let w∞ be as above. Then it holds that
1. the length of αi and βi is 5i,
2. αi and βi do not overlap, i.e. the minimal size for a word that contains both of them is

2 · 5i,
3. the postfix of w∞ starting after position

∑i−1
j=0 5j , i.e. at the first occurrence of αi, can be

considered a word in {αi, βi}ω,
4. αi, respectively βi occurs at most 4 times in a row before the other one occurs.
5. the distance from any position to the next occurrence of one of αi or βi is at most 5i − 1,
6. The postfix of w∞ starting after position

∑i−1
j=0 5j is h(w∞) for the homomorphism h

with h(a) = αi and h(b) = βi,
7. w∞ has an infinite bisimulation quotient.

Proof. Item 1 is an immediate consequence of the definition of w∞. Item 2 follows from a
straightforward induction: The claim is obvious for i = 0, and for i > 0 we note that any
potential overlap of αi+1 and βi+1 either induces overlap of αi and βi, or contradicts the fact
that αi+1 contains only one occurrence of βi. Item 3 follows from the construction of αi+1,
resp. βi+1. Towards Item 4, we use Item 2 to note that consecutive occurrences of αi, resp.
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βi must occur aligned to the building pattern of w∞, i.e. following the pattern exhibited in
Item 3 applied to αi+1 and βi+1. The claim then follows directly from the construction of
αi+1 and βi+1.

Regarding Item 5, note that, by Item 3, eventually, w∞ consists entirely of a sequence of
αi and βi. Hence, one must occur after a distance of at most 5i − 1. Moreover, since the
first occurrence of αi is at position

∑i−1
j=0 5j ≤ 5i − 1, the claim also holds for the initial part

of the word. Item 6 follows from Item 3 and the building pattern of w∞.
It remains to prove Item 7, i.e. that w∞ has an infinite bisimulation quotient. This holds

since all positions of the form
∑i−1

j=0 5j , i.e. the first occurrences of αi for i ∈ N, are pairwise
not bisimilar. Towards this, note that α3

i is the word following at position
∑i−1

j=0 5j , since
the αi+1 following the first occurrence of αi begins with α2

i . Conversely, all positions of the
form

∑i′−1
j=0 5j with i′ > i mark the beginning of the first αi′ , which begins with α2

iβi by
construction. Hence, the positions

∑i−1
j=0 5j and

∑i′−1
j=0 5j for i′ > i are not bisimilar, which

yields infinitely many pairwise not bisimilar positions. ◀

The aim now is to show that TrA have finite runs on w∞. Let A = (Q, δ, qI , F, b) be a
TrA, fixed for the remainder of the section. W.l.o.g. b = 1 for the remainder of the section,
the proof for b = 0 is completely symmetric. Consider the subsets A0, A1, . . . ⊆ Q and
B0, B1, . . . ⊆ Q defined via q ∈ Ai iff q

αi−−→ q′ for some q′ ∈ F and q ∈ Bi iff q
βi−−→ q′ for

some q′ ∈ F .
Clearly, Ai ⊆ Ai+1 for all i ≥ 0 since αi+1 starts with αi, whence any word that begins

with αi+1 also begins with αi. Moreover, since |Q| < ∞, there must be i, h ∈ N such that
Aj = Ai for all j ≥ i and Bj = Bh for all j ≥ h. Let k = 1 + max{i, h}, A = Ak and B = Bk.
Note that A ∩B can be nonempty, and both A and B can be empty. Let M = Q \ (A ∪B).
Then M is the set of states such that A will not have accepted if it reads αj or βj for any j.

We now show that the self-similarity (cf. Lem. 17.6) and w∞ eventually becoming almost
featureless from the perspective of a bounded-memory automaton (cf. Lem. 17.3), together
imply that a TrA can get trapped in M if it does not escape it fast enough.

▶ Lemma 18. Let q ∈ M and j ≥ k. Then q
αj−−→ q′ for some q′ ∈ M , and q βj−−→ q′ for some

q′ ∈ M .

Proof. Let q0 ∈ M , j ≥ k. Remember that αj = α2
j−1βj−1α

2
j−1. Note that q0

αj−1−−−−→ q1 for
some q1 /∈ A, because otherwise q0

αj−−→ q2 for some q2 ∈ F contradicting q0 ∈ M . Moreover,
q0

αj−1αj−1−−−−−−−→ q2 for some q2 /∈ A. If it were the case that q2 ∈ A, then there would be q1
with q0

αj−1−−−−→ q1 and q1
αj−1−−−−→ q2. Since q2 ∈ A, there must be q3 ∈ F such that q2

αj−1−−−−→ q3.
Hence, q1

αj−−→ q3, which implies q1 ∈ A. This contradicts the previous result, whence q2 /∈ A.
In summary, q αj−1−−−−→ q′ or q αj−1αj−1−−−−−−−→ q′ for a state q ∈ M implies q′ /∈ A and it can

be easily inferred that q αj−1αj−1−−−−−−−→ q′ also implies q′ /∈ B. The same holds symmetrically
for βj−1. Now, these findings can be used to prove the lemma. Per assumption, the
automaton does not halt reading αj starting from q0. Hence, there are q1, q2, q3 such that
q0

αj−1αj−1−−−−−−−→ q1, q1
βj−1−−−−→ q2 and q2

αj−1αj−1−−−−−−−→ q3. From the findings above it immediately
follows that q1 ∈ M . With the symmetric arguments for βj it follows that q2 /∈ B and from
the fact that q0 ∈ M it also follows that q2 /∈ A, whence q2 ∈ M . Then, with the same
arguments as for q1 and, we obtain that q3 ∈ M , too. The case for βj is analogous. ◀

We are now ready to prove that all TrA are bounded over the word w.

▶ Theorem 19. TrA have bounded runs on w∞.
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Proof. Let A be a TrA, M,k be as above and let l be some position in w∞. We show that
if A accepts from position l, then it does so within 6 · 5k − 1 many steps. Let l′ be the first
position after l from which αk or βk starts. Let u be the word from position l to position l′.
If qI

u−→ q for q ∈ F , we are done since by Lem. 17.5 we have |u| ≤ 5k − 1.
Otherwise, let γ1 · · · γ5 be the sequence of length 5 · 5k following l′, which necessarily

consists of αk and βk by Lem. 17.3. We prove that A must accept within this sequence. Let
q0, q1, . . . , q5 with q = q0 be the sequence of states such that qi

γi+1−−−→ qi+1. Then qi /∈ M

for all 0 ≤ i ≤ 5, for otherwise, by Lem. 17.3 and Lem. 18, A does not accept at all from
l since the run gets trapped in M , which contradicts the assumption on acceptance from
l. By Lem. 17.4 the sequence γ1 · · · γ5 must contain two consecutive αk followed by βk or
two consecutive βk followed by αk. W.l.o.g. suppose that two consecutive αk are followed
by βk and that this concerns γ1, γ2, γ3. If q0 ∈ A, q1 ∈ A or q2 ∈ B, we are done, since
acceptance follows within the next γi. The remaining possibility is that all of q0, q1 ∈ B \A
and q2 ∈ A \B hold. However, this is not possible: Since q1

αk−−→ q2 and q2 ∈ A implies that
there must be q′ ∈ F such that q2

αk−−→ q′, we have that q1
αk+1−−−−→ q′ which implies q1 ∈ A.

Hence, A either accepts within l′ − l + 5 · 5k ≤ 6 · 5k − 1 steps from l, or does not accept
from l at all. ◀

Putting this together with the results obtained in the previous section we obtain the
following.

▶ Corollary 20. w∞ has finite convergence for Lµ (but no finite bisimulation quotient).

This follows from Cor. 16 and Lem. 17.7.

▶ Remark 21. Closer inspection of the proofs in this section yields two additional results. It
follows from the proof of Lem. 18 that if Ai = Ai+1, then Ai = Aj for all j ≥ i. Hence, k
can actually be computed effectively by computing the Ai and the Bi until both sequences
stabilise. Moreover, the results of Lem. 18 and Thm. 19 do not rely on the exact form of
w∞, but rather its pattern, and the results from Sec. 4 do not make any assumptions on the
word in question. It is possible to generalise the proof to words constructed via

α′
0 = a , β′

0 = b , α′
i+1 = α′m

i β′n
i α

′m
i , β′

i+1 = β′m
i α′n

i β
′m
i

where m > 1. I.e. the importance is the symmetry between the α′
i and β′

i, as well as the
use of two copies of α′

i at the beginning of α′
i+1 etc. Moreover, this sequence of finite words

does not have to be strictly monotonic in the use of its building blocks, i.e., the result also
holds for words of the form α′

i0
α′

i1
· · · , where ij ≤ ij+1 for all j ≥ 0. The case where the

pattern eventually stabilises is not very interesting, of course, but bounded runs for TrA and,
hence finite convergence of Lµ still follow for the case where for all k ∈ N there is j such
that ij ≤ k, i.e., the word uses α′

i of unbounded length as building blocks.

6 Infinite Convergence Through Higher-Order

We now show that the finite convergence of Lµ formulas on the word w∞ from Sec. 5 is due
to the well-known fact that the expressive power of Lµ is restricted to regular properties. In
contrast, finite convergence does not hold anymore for a higher-order extension of Lµ with
non-regular expressiveness: Higher-Order Modal Fixpoint Logic (HFL). It extends Lµ by
the ability to form function definitions via λ abstraction. We refer to the literature or the
appendix for a detailed introduction into HFL [22].
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Let τ = (N → N) → (N → N) → N be the set-theoretic type of functions that consume
two functions of type N → N and return a natural number. Consider the HFL formula

φ =
(
ν(X : τ). λ(f, g : N → N). f(tt) ∧X(f2 ◦ g ◦ f2, g2 ◦ f ◦ g2)

)
(⟨b⟩, ⟨a⟩).

Here, ψ = λ(f, g : N → N). f(tt) ∧ . . . defines an anonymous function that takes as input two
functions f and g of type N → N and returns the expression defined by the conjunction. The
left conjunct, for example, defines the result of applying f to the set defined by tt, i.e. N.
The formula ⟨a⟩ defines the function S 7→ {i | w[i] = a and i+ 1 ∈ S}, and similarly for ⟨b⟩.
The fixpoint X itself is now of higher-order, and it is equivalent to the expression

∧
i∈N ψ

i,
where ψ0 = λ(f, g : N → N). tt and ψi+1 = ψ[ψi/X]. Applying this expression to the original
arguments ⟨b⟩, ⟨a⟩ in φ and using some β-reduction, we obtain that φ is equivalent to

ψ0(⟨b⟩, ⟨a⟩) ∧ ψ1(⟨b⟩, ⟨a⟩) ∧ ψ2(⟨b⟩, ⟨a⟩) ∧ . . . .

With standard arguments about λ-expressions and modal logic, we obtain that ψi(⟨b⟩, ⟨a⟩)
defines the set of positions such that all the αj for j < i follow, where αj is as in Sec. 5.
Hence, we can conclude that φ defines the set of positions i in w∞ of Sec. 5 such that the
postfix following i starts with αj for all j ∈ N.

▶ Theorem 22. The extension HFL2 of Lµ by second-order functions does not have finite
convergence on w∞.

Proof. Following the argument above, we get JφKw∞ = ∅. However, from the previous
analysis we can see that a position

∑j−1
i=0 5i, namely the starting point of the first αj in

w∞, is still contained in the jth approximant (
∧

0≤i≤j ψ
i(⟨b⟩, ⟨a⟩) but not in the j + 1st one.

Hence, φ does not have finite convergence on w∞. ◀

▶ Remark 23. It is possible to strengthen Thm. 22 by constructing a formula in HFL1, the
first-order extension of Lµ. (We have Lµ = HFL0.) But the construction is complicated and
requires further insight into the semantics of HFL, so it is left out for space considerations.

7 Conclusion

We have presented a further contribution to the theory of closure ordinals for µ-calculi,
namely the – possibly surprising – fact that having finite bisimulation quotients is not an
equivalent but a strictly stronger property than having finite fixpoint convergence, and that
this discrepancy is due to Lµ’s relatively restricted expressive power. As a corollary, we
obtain decidability of Lµ model checking over w∞ (and the class of words built like it), i.e.
for given φ and i, it is decidable whether φ holds at position i in w∞. This follows since
every Lµ formula is equivalent to one in ML over w∞ and it is easily decidable whether the
letter at some position is an a or a b. The use of the Compactness Theorem in Lem. 11 might
look prohibitively non-constructive, but the result follows from the constructive nature of
the proof up to alternation-free Lµ (cf. Rem. 12). Note that this result does not follow from
results around morphic words (cf. e.g. [2]), since w∞ is not morphic. Hence, the construction
of w∞ can be used as the basis for a new class of infinite structures with decidable Lµ model
checking beyond pushdown processes. However, the design follows a pattern quite similar to
morphic words, and we plan to investigate possible links between the two concepts.

There are some other directions into which our research can be extended: for further
technical developments the theory of finite convergence has been formulated over classes of
structures, even though it has been used here for a single word structure only. It remains
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to be seen how far the construction pattern can be stretched, i.e. what a largest class of
structures with finite convergence is. One may leave the world of words without losing the
ability to reduce from the entire Lµ to the alternation-free fragment as there are richer classes
of structures with corresponding collapse of the alternation hierarchy [14].

The type hierarchy in HFL – which is strict in terms of expressiveness [3] – gives rise to
the question whether for each level i, there is a class of structures on which HFLi has finite
convergence but HFLi+1 does not. Here, we have answered the question for i = 0. For i > 0
this is tricky as these higher-order logics lack comparable automata-theoretic support, cf. [6].
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A Proof of Lemma 7

▶ Lemma 7. Let φ be an Lµ formula. Then the bottom-up unfolding of φ (cf. Def. 2) and
the top-down unfolding of φ (cf. Def. 5) are equivalent to the unfolding defined in Def. 6. In
particular, the top-down unfolding is well-defined.

Proof. We first show that the top-down unfolding of φ is equivalent to the unfolding defined
in Def. 6. W.l.o.g. let φ = σj+1Xj+1.ψj+1 be a formula with fixpoint variables X1, . . . , Xk

such that at most X1, . . . , Xj for j ≤ k − 1 appear freely in φ. Let n ≥ 0. We show that

(ψj+1[ψ1/X1, . . . , ψj/Xj ])(i,n,...,n) ≡ (ψi
j+1[ψ1/X1, . . . , ψj/Xj ])n (1)

for closed and fixpoint-free formulas ψ1, . . . , ψj and i ≤ n. Note that the left term refers to
the unfolding according to Def. 6, while the right one refers to the ith unfolding of the single
fixpoint Xj+1, followed by the nth top-down unfolding of all remaining fixpoint-subformulas.
The claim of the Lemma regarding the top-down unfolding procedure then follows with j = 0
and i = n.

We start with an induction over j. For the base case j = k − 1 it follows that ψj does
contain only one fixpoint-subformula and together with the observation that the ψ1, . . . , ψj are
closed and fixpoint-free formulas, both sides of Eq. 1 coincide with a single fixpoint unfolding.
Let j < k− 1 and assume that the result has been shown for all j′ with j < j′ ≤ k− 1 and for
all i ≤ n. We show the result for j by induction on i. For i = 0, we have that ψ0

j+1 = σ̂j+1 and,
hence (ψ0

j+1[ψ1/X1, . . . , ψj/Xj ])n = σ̂j+1 and (ψj+1[ψ1/X1, . . . , ψj/Xj ])(0,n,...,n) = σ̂j+1 as
well. Next let i > 0 and assume that the result has been proven for all i′ ≤ i. We show
this case by another induction on the structure of ψj+1. The base case a, as well as the
boolean cases and ⃝ are straightforward. The interesting cases are the base case of a fixpoint
variable Xj′ for j′ ≤ j, the case of Xj+1 itself and the case of a fixpoint definition of the
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form σj′Xj′ .ψj′ for j′ > j + 1. The first case results in the same subformula, because in both
versions of the unfolding ψj′ is substituted for Xj′ before the unfolding, and this is a closed and
fixpoint-free formula. For Xj+1 itself, we use the induction hypothesis of the induction over
i, namely that (Xj+1[ψ1/X1, . . . , ψj/Xj ])(i,n,...,n) = (ψj+1[ψ1/X1, . . . , ψj/Xj ])(i−1,n,...,n) is
equivalent to (ψi−1

j+1[ψ1/X1, . . . , ψj/Xj ])n. For the case of a formula of the form σj′Xj′ .ψj′ ,
we use the induction hypothesis for the induction over j, namely that

(ψj′ [ψ1/X1, . . . , ψj/Xj , ψ
′
j+1/Xj+1, ψ

′
j+2/Xj+2, . . . , ψ

′
j′−1/Xj′−1])(n,...,n) ≡

(ψn
j′ [ψ1/X1, . . . , ψj/Xj , ψ

′′
j+1/Xj+1, ψ

′′
j+2/Xj+2, . . . , ψ

′′
j′−1/Xj′−1])n

for ψ′
j+1 = (ψj+1[ψ1/X1, . . . , ψj/Xj ])(i−1,n,...,n) and ψ′′

j+1 = (ψi−1
j+1[ψ1/X1, . . . , ψj/Xj ])n,

which, by the induction hypothesis of the induction over i, are equivalent.1 This finishes the
induction over ψj+1 and with it, the induction over i, and the induction over j.

For the bottom-up unfolding of Def. 2, we show equivalence to the unfolding from Def. 6
by showing that unfolding an innermost formula will not change the formula generated by
either procedure. The result then follows by an induction over the ordering of fixpoints
used in the bottom-up unfolding. Let φ be a fixpoint formula, and let X1, . . . , Xk be an
enumeration of its fixpoint variables such that Xi ̸<fp Xj for j > i, and let σiXi. ψi be the
defining formula of Xi. Let φ[ψn

k /σkXk. ψk] be the formula obtained by unfolding Xk n

times. If we can show that, for all subformulas ψ of φ, and for all s = (i1, . . . , ik−1, n), we
have ψs ≡ (ψ[ψn

k /σkXk. ψk])s, we are done. We show this by induction on the lexicographical
ordering of the tuple, i.e starting with s = (0, . . . , 0, n), for which the result clearly holds.
Assume that we have shown it for all s′ that are lexicographically smaller than s. We show
the result by another induction on ψ. The base case a, the boolean cases, and the case ⃝ are
straightforward. The interesting cases are a variable Xj for j < k, a fixpoint definition of the
form σjXj .ψj for j < k, and the fixpoint definition of the form σkXk.ψk. For the case of Xj ,
if s(j) = 0, the result is immediate. For the case that s(j) > 0, and for the case of σjXj .ψj ,
the formula to be substituted is fp(Xj)s[j−−], respectively (fp(Xj)[ψn

k /σkXk.ψk])s[j−−], for
which the result holds since s[j−−] is lexicographically smaller than s. For the case σkXk.ψk,
there are two possibilities. If s(j) = 0 for all 0 ≤ j < k, then the result follows from the
base case. If not, note that Xk is minimal w.r.t. <f p and, hence, its defining formula
fp(Xk) = ψk contains no fixpoint definitions itself. However, it can contain free fixpoint
variables from among the X1, . . . , Xk−1. We first note that, by definition, fp(Xk)s for
s = (i1, . . . , ik−1, n) is equivalent to ψn

k [ψ1/X1, . . . , ψk−1/Xk−1], where ψj is σ̂j if s[j] = 0
and fp(Xj)s[j−−] otherwise. But, using the induction hypothesis for the ψi, this is exactly
(σkXk.ψk[ψn

k /σkXk.ψk])[ψ1/X1, . . . , ψk−1/Xk−1]. This finishes the proof. ◀

B Proof of Lemma 13

▶ Lemma 13. Let w be an infinite word. If w has finite convergence for the set of all
unipolar Lµ formulas, it has finite convergence for the set of all alternation-free Lµ formulas.

Proof. Let φ an alternation-free Lµ formula. The set of fixpoint variables of φ can be
partitioned into the sets X1, . . . ,Xk as described in Sec. 2. First, we show by induction on
these sets that all fixpoint-subformulas of φ can be unfolded starting from Xk and ending with
X1 while preserving equivalence over w. First, note that for all X ∈ Xk there is no fixpoint-
subformula in fp(X) that has a different polarity. This implies that all fixpoint-subformulas of

1 The equality ψ′
l = ψ′′

l for j + 2 ≤ l ≤ j′ − 1 can also be inferred via induction for a previous j′.
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φ with X ∈ Xk are unipolar, but not necessarily closed. If we take a fixpoint-subformula with
X ∈ Xk such that there is no X ′ ∈ Xk with X ′ <fp X it follows from the alternation-freeness
of φ that fp(X) is also closed and, thus, by the assumption of the lemma that there is an
equivalent unfolding over w. If we replace all such fixpoint-subformulas with their respective
equivalent unfolding we have unfolded all fixpoint-subformulas with X ∈ Xk. Under the
assumption that all fixpoint subformulas with X ∈ Xi are already unfolded, we can infer
with the same arguments that there is an equivalent unfolding for all fixpoint subformulas of
Xi−1. By the principle of induction this shows that there is some equivalent finite unfolding
of φ over w. What is left to argue is that there is a uniform one, i.e., that there is n such that
φn is equivalent to φ. Note that for each closed, unipolar fixpoint subformula σX.ψ with
equivalent unfolding ψm it holds that ψm′ with m′ ≥ m is equivalent as well. As the number
of fixpoint subformulas in φ is finite, n is given by the maximum number of unfoldings needed
for any fixpoint subformula. ◀

C Additional Material for Section 6

We give a brief introduction to HFL on words. A more thorough introduction for HFL on
arbitrary LTS can be found in e.g. [22]. We also point out that the exposition in Sect. 6
makes use of syntactic sugar that is not directly covered by the pure syntax. The constructs,
however, are all straightforward using only principles which are standard in λ-calculi. For
instance further below we explain that the subformula ⟨a⟩ is used to abbreviate something
like λx.⟨a⟩x, so this simply makes use of η-conversion.

Types. Consider the set of types defined via

τ ::= • | τ → τ.

The type • is the base type of subsets of N, for example those defined by an Lµ formula. A
type τ1 → τ2 is inhabited by monotone functions from τ1 to τ2.

Such a type induces a lattice over a given word w via the following definition

J•Kw = (P(N),⊆)
Jτ1 → τ2Kw = (Jτ2Kw → Jτ1Kw,⊑τ1→τ2)

where Jτ2Kw → Jτ1Kw denotes the set of functions from Jτ1Kw to Jτ2Kw and ⊑τ1→τ2 is defined
as the pointwise order via f ⊑τ1→τ2 g iff f(x) ⊑τ2 g(x) for all x ∈ Jτ1Kw. Here, ⊑• ordinary
set inclusion ⊆. All these lattices are complete since J•Kw is complete, and a lattice of
functions is complete if the functions are into a complete lattice and ordered pointwise.

Syntax. Let V = {x, y, . . . } be a set of λ variables. The syntax of HFL extends that of Lµ to

φ ::= a | φ ∨ φ | φ ∧ φ | ⃝φ | X | x | µ(X : τ).φ | ν(X : τ).φ | λ(x : τ).φ | φφ

where τ is a type.
The intuition behind the operators that are new in comparison to Lµ is as follows.
λx.φ defines an anonymous function that consumes an argument, bound to x, and returns
the value of φ if x is set to that argument.
φψ denotes the application of ψ to φ, and
the fixpoints can now be of higher order, i.e. define function type objects.

MFCS 2021
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Γ ⊢ a : • Γ, X : τ ⊢ X : τ Γ, x : τ ⊢ x : τ
Γ ⊢ φ1 : • Γ ⊢ φ2 : •

Γ ⊢ φ1 ∨ φ2 : •

Γ ⊢ φ1 : • Γ ⊢ φ2 : •
Γ ⊢ φ1 ∧ φ2 : •

Γ ⊢ φ : •
Γ ⊢ ⃝φ : •

Γ, X : τ ⊢ φ : τ ′

Γ ⊢ λ(X : τ). φ : τ → τ ′
Γ, X : τ ⊢ φ : τ

Γ ⊢ µ(X : τ). φ : τ

Γ, X : τ ⊢ φ : τ
Γ ⊢ ν(X : τ). φ : τ

Γ ⊢ φ : τ → τ ′ Γ ⊢ φ′ : τ
Γ ⊢ φφ′ : τ ′

Figure 1 The type system of HFL.

Note that we have chosen not to introduce negation. HFL admits negation normal form [18],
whence negation only needs to occur on front of atomic propositions. Over words, the formula
¬a however is equivalent to

∨
b∈Σ,b̸=a b as stated for Lµ already, so negation can be avoided

altogether.
An advantage of this avoidance of negation is the simplification of the type system to

monotone functions only. The original definition of HFL includes negation as a syntactic
construct at the expense of a slightly more complex type systems which needs to keep track
of antitonicity information so that fixpoints are guaranteed to exists due to monotonicity.

Without this, the only purpose of the type system is to avoid misapplications as in a b

for instance which cannot be given proper meaning. Another example is a ∨ λ(x : N). x ∧ b.
In the absence of negation, an HFL formula φ is said to be well-typed if the statement

∅ ⊢ φ can be derived via the rules shown in Fig. 1. The sequence Γ on the left of a typing
statement is called a typing context and collects typing hypotheses.

Semantics. In order to endow well-typed HFL formulas with semantics, we extend environ-
ments to V , i.e. environments can also store values for λ-variables which may be higher-order
objects depending on the type of the variable. The semantics of an HFL formula φ is given
inductively as per the following:

JaKw
η = {i ∈ N | w[i] = a}

JXKw
η = η(X)

JxKw
η = η(x)

Jφ ∨ ψKw
η = JφKw

η ∪ JψKw
η

Jφ ∧ ψKw
η = JφKw

η ∩ JψKw
η

J⃝φKw
η = {i ∈ N | i+ 1 ∈ JφKw

η }
Jλ(x : τ).φKw

η = f ∈ Jτ → τ ′Kw where f.a. d ∈ JτKw.f(d) = JφKw
η[x 7→d]

with τ ′ the type of φ
JφψKw

η = JφKw
η (JψKw

η )

Jµ(X : τ).φKw
η =

l
{d ⊆ JτKw | JφKw

η[X 7→d] ⊑τ d}

Jν(X : τ).φKw
η =

⊔
{d ⊆ JτKw | d ⊑τ JφKw

η[X 7→d]}
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The formula φ from Sect. 6. We give some additional explanation about the formula φ
defined in Sec. 6. Recall that

φ =
(
ν(X : τ). λ(f, g : N → N). f(tt) ∧X(f2 ◦ g ◦ f2, g2 ◦ f ◦ g2)

)
(⟨b⟩, ⟨a⟩).

Notation such as λ(f, g : N → N). . . . can easily be seen to be an abbreviation of the longer
λ(f : . . . ). λ(g : . . . ). , and the same goes for the application to X written in a similar style.
Clearly, neither function composition nor the function ⟨a⟩ are in the official syntax of HFL.
The function ⟨a⟩ can be written in standard syntax as λ(x : N). a∧⃝x. Function composition,
here between five functions, is an abbreviation for λ(x : N). f(f(g(f(f x)))), respectively
λ(x : N). g(g(f(g(g x)))).

The intuition given for the semantics of φ is already close to the true semantics of φ.
Since the Kleene Fixpoint Theorem applies in this setting, too, we can use it to obtain the
semantics of φ on w∞. As in Sec. 6, write ψ for the defining formula of λf, g. f(tt) ∧X(f2 ◦
g ◦ f2, g2 ◦ f ◦ g2), write ψ0 for λf, g. tt and ψi+1 for ψ[ψi/X]. Given some functions f and
g, we introduce the following functions:

f1(x) = f(x) fi+1 = fi(fi(gi(gi(gi(x)))))
g1(x) = g(x) gi+1 = gi(gi(fi(gi(gi(x)))))

Then ψi defines the function f, g 7→ f1(tt) ∧ f2(tt) ∧ · · · ∧ fi(tt) by induction on i. Hence,
the semantics of X is f, g 7→

∧
i∈N fi(tt). Applied to the arguments ⟨a⟩ and ⟨b⟩, this yields,

by abuse of notation,
∧

i∈N⟨αi⟩tt, which is as claimed in Sec 6. The remarks on the infinite
convergence process of φ on w∞ then follow.
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