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Abstract
We study the problem of polygonal curve simplification under uncertainty, where instead of a sequence
of exact points, each uncertain point is represented by a region which contains the (unknown) true
location of the vertex. The regions we consider are disks, line segments, convex polygons, and
discrete sets of points. We are interested in finding the shortest subsequence of uncertain points
such that no matter what the true location of each uncertain point is, the resulting polygonal curve
is a valid simplification of the original polygonal curve under the Hausdorff or the Fréchet distance.
For both these distance measures, we present polynomial-time algorithms for this problem.
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1 Introduction

In this paper, we study the topic of curve simplification under uncertainty. There are many
classical algorithms dealing with curve simplification with different distance metrics; however,
it is typically assumed that the locations of points making up the curves are known precisely,
which often does not suit real-life data. An example highlighting the necessity of taking
uncertainty into account comes with GPS data, where each measured location is inherently
imprecise, and the real location is likely to be within a certain distance from the measurement.
This imprecision can be modelled as a disk (or some other shape if the GPS signals are
blocked or reflected by rocks, buildings, etc.). Curve simplification is used to reduce the
noise-to-signal ratio in the trajectory data before applying other algorithms or when storing
large amounts of data. In both cases modelling uncertainty could reduce the error introduced
by simplifying imprecise curves while maintaining a short, efficient representation of the data.

There is a large volume of foundational work on curve simplification [4], including work
on vertex-constrained simplification, such as the algorithms by Ramer and by Douglas and
Peucker [17, 34] using the Hausdorff distance, by Agarwal et al. [3] using the Fréchet distance,
by Imai and Iri [23] using either, and various improvements and related approaches [7, 8,
10, 16, 21, 22, 31, 36]. The Imai–Iri algorithm involves computing the shortcut graph, which
captures all the possible simplifications of a curve, and then finding a path through the graph
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26:2 Uncertain Curve Simplification
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ε

Figure 1 (a) An uncertain curve modelled with convex polygons and a realisation. (b) A
valid simplification under the Hausdorff distance with the threshold ε: for every realisation, the
subsequence is within distance ε from the full sequence. (c) An invalid simplification: there is a
realisation for which the subsequence is not within distance ε from the full sequence.

with minimal edge count from the start to the end node, yielding the shortest simplification.
We adapt this approach to the setting with uncertainty. It seems natural to apply disk
stabbing to test shortcuts [22]; we discuss why this does not work in our setting in Section 3.

There are recent advances in the study of uncertainty in computational geometry, with
work on optimising various measures on uncertain points [24, 25, 26, 28, 30], triangulations [11,
29, 37], visibility in uncertain polygons [15], and other problems [1, 2, 18, 19, 20, 27, 32, 35].
There is work by Ahn et al. [5], and, more recently, by Buchin et al. [9, 33] on various
minimisation and maximisation variants of curve similarity with the Fréchet distance under
uncertainty, and other work combining trajectory analysis and uncertainty [6, 13, 14]. To
our knowledge, there is no previous work studying curve simplification under uncertainty.

We use the locational model for uncertainty: we know that each point exists, but not
its exact location. It can be modelled as a discrete set of points, of which one is the true
location; this model uses indecisive points. We also use imprecise points, modelled as compact
continuous sets, such as disks, line segments, or convex polygons; the true location is one
unknown point from the set. An uncertain curve is a sequence of uncertain points of the
same kind. A realisation of an uncertain curve is a polygonal curve obtained by taking one
point from each uncertain point. We solve the following problem (see Figure 1): given an
uncertain curve as a sequence of n uncertain points, find the shortest subsequence of the
points such that for any realisation of the curve, the realisation restricted to the subsequence
is a valid simplification. We give efficient algorithms for this problem for the Hausdorff and
the Fréchet distance. They run in O(n3) time for uncertainty modelled with disks or line
segments and in O(n3k3) time for convex polygons and indecisive points with k vertices.

2 Preliminaries

Denote1 [n] def= {1, 2, . . . , n} for any n ∈ N>0. Given two points p, q ∈ R2, denote their
Euclidean distance with ∥p− q∥.

1 We use := and =: to denote assignment, def= for equivalent quantities in definitions or to point out equality
by earlier definition, and = in other contexts. We also use ≡, but its usage is always explained.
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Denote a sequence of points in R2 with π = ⟨p1, . . . , pn⟩. For only two points p, q ∈ R2,
we also write pq instead of ⟨p, q⟩. Denote a subsequence of a sequence π from index i to j
with π[i : j] = ⟨pi, pi+1, . . . , pj⟩. This notation can also be applied if we interpret π as a
polygonal curve on n vertices (of length n). It is defined by linearly interpolating between
the successive points in the sequence and can be seen as a continuous function, for i ∈ [n− 1]
and α ∈ [0, 1]: π(i+ α) = (1 − α)pi + αpi+1.

We also introduce the notation for the order of points along a curve. Let p := π(a) and
q := π(b) for a, b ∈ [1, n]. Then p ≺ q iff a < b, p ≼ q iff a ≤ b, and p ≡ q iff a = b. Note that
we can have p = q for a ̸= b if the curve intersects itself.

Finally, given points p, q, r ∈ R2, define the distance from p to the segment qr as
d(p, qr) def= mint∈qr∥p− t∥.

An uncertainty region U ⊂ R2 describes a possible location of a true point: it has to be
inside the region, but there is no information as to where exactly. We use several uncertainty
models, so the regions U are of different shape. An indecisive point is a form of an uncertain
point where the uncertainty region is represented as a discrete set of points, and the true
point is one of them: U = {p1, . . . , pk}, with k ∈ N>0 and pi ∈ R2 for all i ∈ [k]. Imprecise
points are modelled with uncertainty regions that are compact continuous sets. In particular,
we consider disks and polygonal closed convex sets. We denote a disk with the centre c ∈ R2

and the radius r ∈ R≥0 as D(c, r). Formally, D(c, r) def= {p ∈ R2 | ∥p − c∥ ≤ r}. Define a
polygonal closed convex set (PCCS) as a closed convex set with bounded area that can be
described as the intersection of a finite number of closed half-spaces. Note that this definition
includes both convex polygons and line segments (in 2D). Given a PCCS U , let V (U) denote
the set of vertices of U , i.e. vertices of a convex polygon or endpoints of a line segment.

We call a sequence of uncertainty regions an uncertain curve: U = ⟨U1, . . . , Un⟩. If
we pick a point from each uncertainty region of U , we get a polygonal curve π that we
call a realisation of U and denote it with π ⋐ U . That is, if for some n ∈ N>0 we have
π = ⟨p1, . . . , pn⟩ and U = ⟨U1, . . . , Un⟩, then π ⋐ U if and only if pi ∈ Ui for all i ∈ [n].

Suppose we are given a polygonal curve π = ⟨p1, . . . , pn⟩, a threshold ε ∈ R>0, and
a curve built on the subsequence of vertices of π for some set I = {i1, . . . , iℓ} ⊆ [n], i.e.
σ = ⟨pi1 , . . . , piℓ

⟩ with ij < ij+1 for all j ∈ [ℓ− 1] and ℓ ≤ n. We call σ an ε-simplification
of π if for each segment ⟨pij , pij+1⟩, we have δ(⟨pij , pij+1⟩, π[ij : ij+1]) ≤ ε, where δ denotes
some distance measure, e.g. the Hausdorff or the Fréchet distance.

The Hausdorff distance between two sets P,Q ⊂ R2 is defined as

dH(P,Q) def= max
{

sup
p∈P

inf
q∈Q

∥p− q∥, sup
q∈Q

inf
p∈P

∥p− q∥
}
.

For two polygonal curves π and σ in R2, since π and σ are closed and bounded, we get

dH(π, σ) = max
{

max
p∈π

min
q∈σ

∥p− q∥,max
q∈σ

min
p∈π

∥p− q∥
}
.

The Fréchet distance is often described through an analogy with a person and a dog
walking along their respective curves without backtracking, where the Fréchet distance is the
shortest leash needed for such a walk. Formally, consider a set of reparametrisations Φℓ of
length ℓ, defined as continuous non-decreasing surjective functions ϕ : [0, 1] → [1, ℓ]. Given
two polygonal curves π and σ of lengths m and n, respectively, we can define the Fréchet
distance as

dF(π, σ) def= inf
α∈Φm,β∈Φn

max
t∈[0,1]

∥π(α(t)) − σ(β(t))∥ .

MFCS 2021
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We refer to the pair of reparametrisations as an alignment. We often consider the Fréchet
distance between a curve π = ⟨p1, . . . , pn⟩ and a line segment p1pn, for some n ∈ N≥3. In
this setting, the alignment can be described in a more intuitive way; see also Figure 2. It
can be described as a sequence of locations on the line segment with which the vertices of
the curve are aligned, ⟨s2, . . . , sn−1⟩, where si ∈ [1, 2] for all i ∈ {2, . . . , n− 1} and si ≤ si+1
for all i ∈ {2, . . . , n − 2}. To see that, assign s1 := 1 and sn := 2 and construct a helper
reparametrisation ϕ : [0, 1] → [1, n], defined as ϕ(t) = (n − 1) · t + 1 for any t ∈ [0, 1].
Construct another reparametrisation ψ : [1, n] → [1, 2], defined as

ψ(t) =
{
s⌊t⌋ · (1 − t+ ⌊t⌋) + s⌊t⌋+1 · (t− ⌊t⌋) if t ∈ [1, n),
sn if t = n.

Note that ϕ and ψ ◦ϕ satisfy the definition of reparametrisations for π and p1pn, respectively.
We also define an alignment between a curve and a line segment for the Hausdorff distance

(see Figure 2). It represents the map from the curve to the line segment, where each point
on the curve is mapped to the closest point on the line segment. It is given by a sequence
⟨s1, . . . , sn⟩, where si ∈ [1, 2] for all i ∈ [n], such that p1pn(si) = argminp′∈p1pn

∥p′ − pi∥. In
other words, p1pn(si) is the closest point to pi for all i ∈ [n]; as we discuss in Appendix A.1,
the Hausdorff distance is realised as the distance between pi and p1pn(si) for some i ∈ [n].
Therefore, establishing such an alignment and checking that ∥p1pn(si)−pi∥ ≤ ε for all i ∈ [n]
allows us to check that dH(π, p1pn) ≤ ε for some ε ∈ R>0.

We are discussing the following problem: given an uncertain curve U = ⟨U1, . . . , Un⟩
with n ∈ N≥3 and Ui ⊂ R2 for all i ∈ [n], and the threshold ε ∈ R>0, find a minimal-length
subsequence U ′ = ⟨Ui1 , . . . , Uiℓ

⟩ of U with ℓ ≤ n, such that for any realisation π ⋐ U , the
corresponding realisation π′ ⋐ U ′ forms an ε-simplification of π under some distance measure
δ. We solve this problem for the Hausdorff and the Fréchet distance for uncertainty modelled
with indecisive points, line segments, disks, and convex polygons.

3 Overview of the Approach

We first present the summary of our approach. On the highest level, we use the shortcut
graph. Each uncertain point of a curve U = ⟨U1, . . . , Un⟩ corresponds to a vertex. An edge
connects two vertices i and j if and only if the distance between any realisation of U [i : j]
and the corresponding line segment from Ui to Uj is below the threshold. The path with the
fewest edges from vertex 1 to vertex n then corresponds to the simplification using fewest
uncertain points. So, we construct the shortcut graph and find the shortest path between
two vertices. The key idea is that we find shortcuts that are valid for all realisations, so any
sequence of shortcuts can be chosen.

In order to construct the shortcut graph, we need to check whether an edge should be
added to the graph, i.e. whether a shortcut is valid. It is natural to think that shortcut
testing can be solved by disk stabbing with disks of suitable radius, as in the work by Guibas
et al. [22]. The idea would then be, given the distance threshold ε, to replace the uncertainty
regions with the intersection of ε-disks over all the points of a region; this way we would
e.g. replace disks of radius r by disks of radius ε − r, and then check if a shortcut stabs
these regions. However, except for disks, this approach does not work – the reader can see
this by trying to apply the method on an uncertainty region shaped as a long line segment
(or a skinny convex polygon) that is parallel to the potential shortcut line segment. The
intersection of ε-disks may be empty, while clearly one can create an alignment for both the
Hausdorff and the Fréchet distance. For disks the approach is more suitable; however, when
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Figure 2 Left: Alignment for the Hausdorff distance. Right: Alignment for the Fréchet distance.
In both cases, the alignment is described as the sequence ⟨s1 := p1, s2, s3, s4, s5, s6 := p6⟩.

testing a shortcut, the first and the last disk of a shortcut fulfil a different function than
the intermediate disks. This means that we can rephrase the problem for the intermediate
disks of a shortcut as disk stabbing, but not for the first and the last disk, as the quantifiers
in the problem are different. Furthermore, the work by Guibas et al. [22] does not provide
running time guarantees for disks of different radii, and the initialisation in their approach is
not applicable in our setting with no restriction on disk intersections. So, we need to use a
different approach to test shortcuts.

The approach is different for the Hausdorff and the Fréchet distance and for each
uncertainty model. For the first and the last uncertain point of the shortcut, we state in
Section 5 that there are several critical pairs of realisations that need to be tested explicitly,
and then for any other pair of realisations, we know that the distance is also below the
threshold. Testing each pair corresponds to finding the distance between a precise line
segment and any realisation of an uncertain curve; we discuss this in Section 4 and show the
procedures to do this in detail in Appendix A.

▶ Theorem 1. We can find the shortest vertex-constrained simplification of an uncertain
curve, such that for any realisation the simplification is valid, both for the Hausdorff and the
Fréchet distance, in time O(n3) for uncertainty modelled with disks and line segments, and
in time O(n3k3) for uncertainty modelled with indecisive points and convex polygons, where
k is the number of options or vertices and n is the length of the curve.

4 Shortcut Testing: Intermediate

Here we discuss testing a shortcut with the first and the last points fixed, i.e. we want to
check maxπ⋐U,π(1)≡p1,π(n)≡pn

δ(π, p1pn) ≤ ε for δ := dH and δ := dF. We can do so in linear
time in all the models; here we show the intuitive explanation, and we treat this topic in
detail in Appendix A. We solve the following problem.

▶ Problem 2. Given an uncertain curve U = ⟨U1, . . . , Un⟩ on n ∈ N≥3 uncertain points in
R2, as well as realisations p1 ∈ U1, pn ∈ Un, check if the largest Hausdorff or Fréchet distance
between U and its one-segment simplification is below a threshold ε ∈ R>0 for any realisation
with the fixed start and end points, i.e. for δ := dH or δ := dF, verify

max
π⋐U,π(1)≡p1,π(n)≡pn

δ(π, p1pn) ≤ ε .

MFCS 2021



26:6 Uncertain Curve Simplification

Hausdorff distance. It is a well-known fact that the Hausdorff distance between the
curve and the line segment that simplifies that curve is the largest distance from a ver-
tex of the curve to the line segment, so dH(π, ⟨π(1), π(n)⟩) = maxi∈[n] d(π(i), ⟨π(1), π(n)⟩)
for a polygonal curve π of length n. (See Figure 2.) We can use the same idea in
the uncertain setting; however, for indecisive curves, we can choose any realisation for
each intermediate point, so we need to test all of them, so we need the largest distance
from any realisation of any indecisive point to the line segment. Then for indecisive
points, given a curve U = ⟨U1, . . . , Un⟩ with Ui = {p1

i , . . . , p
k
i } for all i ∈ [n], we have

maxπ⋐U,π(1)≡p1,π(n)≡pn
δ(π, p1pn) = maxi∈[n] maxj∈[k] d(pj

i , p1pn). For disks, line segments,
and convex polygons, the key point is the same: all of the realisations of the intermediate
points need to be close enough to the given line segment. For disks, we can simply check
the furthest points, which are one radius further away from the line segment than the disk
centre. For line segments and convex polygons, it suffices to test all the vertices.

Fréchet distance. For the Fréchet distance, there is also an intuitive procedure in the precise
setting [22, Lemma 8]. We can align each vertex from the curve with the earliest possible
point in the line segment. Each next point cannot be aligned before the previous points, so
choosing the earliest possible alignment point maximises the possibilities for the remainder of
the curve. (See Figure 2: s4 is as close as possible to p1.) We use the same approach in the
uncertain setting; however, for indecisive points, as any realisation of a point is possible, we
need to choose the realisation that pushes the earliest alignment forward the most, as this is
the most restrictive realisation for the remainder of the curve. In more detail, we iteratively
find the value for si. Given si−1, we find the earliest tji along the segment for each realisation
pj

i of Ui, such that ∥tji −pj
i ∥ ≤ ε and si−1 ≼ tji . Then we pick si := maxj∈[k] t

j
i , in terms of ≼.

We continue this procedure until the end of the segment, starting with s1 := p1 and assigning
sn := pn. In one direction, the sequence of si we find corresponds to a possible realisation; in
the other direction, we can see that for any i ∈ {2, . . . , n− 1}, we have si−1 ≼ tji ≼ si for all
j ∈ [k]; so for any other realisation the alignment is in order, as well. We can show for line
segments and convex polygons that we again only need to focus on the vertices. For disks,
we instead reframe the problem as that of disk stabbing. Instead of testing closeness from all
points of some D(c, r) to the line segment, we can check if the line segment stabs D(c, ε− r)
for the threshold ε. Then the correct alignment order corresponds to picking points inside
disks in order. Again, choosing the earliest possible one is key.

5 Shortcut Testing: All Points

In the previous section, we have covered testing a shortcut, given that the first and the last
points are fixed. Here we remove the restriction on the endpoints.
▶ Problem 3. Given an uncertain curve U = ⟨U1, . . . , Un⟩ on n ∈ N≥3 uncertain points
in R2, check if the largest Hausdorff or Fréchet distance between U and its one-segment
simplification is below a threshold ε ∈ R>0 for any realisation, i.e. for δ := dH or δ := dF,
verify maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε.

For the indecisive points, we can simply check all pairs from U1 × Un; this is quite easy
to show.
▶ Lemma 4. Given n, k ∈ N>0, n ≥ 3, and δ := dH or δ := dF, for any indecisive curve
U = ⟨U1, . . . , Un⟩ with Ui = {p1

i , . . . , p
k
i } for all i ∈ [n] and pj

i ∈ R2 for all i ∈ [n], j ∈ [k],
we have

max
π⋐U

δ(π, ⟨π(1), π(n)⟩) = max
a∈[k]

max
b∈[k]

max
σ⋐U,σ(1)≡pa

1 ,σ(n)≡pb
n

δ(σ, pa
1p

b
n) .
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p1 p2 p1 p2

s2
t2

v2

s1 u1 t1 v1

u2

Figure 3 Left: Illustration for Observation 5. The convex hull of the disks is highlighted in
black. The order in which the outer tangents touch the disks is the same. Right: Illustration for
Definition 6. Here O1 (t1 to t2) is to the right of O2 (u1 to u2).

Proof. We can derive

max
π⋐U

δ(π, ⟨π(1), π(n)⟩)

{Def. ⋐}
= max

p1∈U1,...,pn∈Un

δ(⟨p1, . . . , pn⟩, p1pn)

= max
p1∈U1

max
pn∈Un

max
p2∈U2,...,pn−1∈Un−1

δ(⟨p1, . . . , pn⟩, p1pn)

{Def. ⋐}
= max

p1∈U1
max

pn∈Un

max
σ⋐U,σ(1)≡p1,σ(n)≡pn

δ(σ, p1pn)

= max
a∈[k]

max
b∈[k]

max
σ⋐U,σ(1)≡pa

1 ,σ(n)≡pb
n

δ(σ, pa
1p

b
n) ,

as was to be shown. ◀

That is to say, for either Hausdorff or Fréchet distance we can simply test the shortcut using
the corresponding procedure from Lemma 16 or Lemma 20, and do so for each combination
of the start and end points. We can then test an indecisive shortcut of length n overall in
time O(k2 · nk) = O(nk3).

We now proceed to show the approach for disks and polygonal closed convex sets. The
procedure is the same for the Hausdorff and the Fréchet distance, but differs between disks
and PCCSs, since disks have some convenient special properties.

5.1 Disks
▶ Observation 5. Suppose we are given two non-degenerate disks D1 := D(p1, r1) and
D2 := D(p2, r2) with D1 ⊈ D2 and D2 ⊈ D1. We make the following observations.

There are exactly two outer tangents to the disks, and the convex hull of D1 ∪D2 consists
of an arc from D1, an arc from D2, and the outer tangents.
Assume the lines of the outer tangents intersect. When viewed from the intersection point,
the order in which the tangents touch the disks is the same, i.e. either both first touch D1
and then D2, or the other way around. If the lines are parallel, the same statement holds
when viewed from points on the tangent lines at infinity. (See Figure 3.)

To see that the second point is true, note that the distance from the intersection point to
the tangent points of a disk is the same for both tangent lines. These observations mean
that we can restrict our attention to the area bounded by the outer tangents and define an
ordering in the resulting strip.

MFCS 2021



26:8 Uncertain Curve Simplification

▶ Definition 6. Given two distinct non-degenerate disks D1 := D(p1, r1) and D2 := D(p2, r2),
consider a strip defined by the lines that form the outer tangents to the disks. Assume we
have two circular arcs O1, O2 that intersect both tangents and lie inside the strip. Define s1
and v1 to be the points where one of the tangents touches D1 and D2, respectively, and let t1
and u1 be the points where O1 and O2 intersect that tangent, respectively. Define the order
on the tangents from D1 to D2, so s1 ≺ v1. Define points s2, t2, u2, v2 similarly for the
other tangent. We say that O2 is to the right of O1 if either ti = ui for i ∈ {1, 2} and the
radius of O1 is larger than that of O2; or if otherwise ti ≼ ui for i ∈ {1, 2} and O1 and O2
do not properly intersect. We say that O2 is to the left of O1 if either ti = ui for i ∈ {1, 2}
and the radius of O1 is smaller than that of O2; or if otherwise ui ≼ ti for i ∈ {1, 2} and O1
and O2 do not properly intersect. (See Figure 3 for a visual interpretation.)

We state the main result: it suffices to check the tangents to the first and the last disk
and the order of the intermediate disks.

▶ Lemma 7. Given n ∈ N≥3, for any imprecise curve modelled with disks U = ⟨U1, . . . , Un⟩
with Ui = D(ci, ri) for all i ∈ [n] and ci ∈ R2, ri ∈ R≥0 for all i ∈ [n], and assuming
U1 ̸= Un, we have with δ ∈ {dH, dF} that maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε if and only if both
of the following are true:

max
{

max
π⋐U,π(1)≡s,π(n)≡t

δ(π, st), max
π⋐U,π(1)≡u,π(n)≡v

δ(π, uv)
}

≤ ε ,

where s, u ∈ U1, t, v ∈ Un, and st and uv are the outer tangents to U1 ∪ Un;
for each i ∈ {2, . . . , n−1}, the right arc of the disk D(ci, ε−ri) bounded by the intersection
points with the tangent lines is to the right of the right arc of U1 and the left arc of the
disk D(ci, ε− ri) is to the left of the left arc of Un.

Proof. We first prove the claim for δ = dH. Assume the right side of the lemma statement
holds. First of all, as we have maxπ⋐U,π(1)≡s,π(n)≡t dH(π, st) ≤ ε, we know that for all
i ∈ {2, . . . , n − 1}, we have d(ci, st) + ri ≤ ε, or d(ci, st) ≤ ε − ri, so st stabs each disk
D(ci, ε − ri) (see Lemma 18 in Appendix A.1). We can draw a similar conclusion for uv.
Therefore, each disk D(ci, ε− ri) crosses the entire strip bounded by the tangent lines, with
the intersection points splitting it into the left and the right circular arcs. We can thus apply
Definition 6 to these arcs, as stated in the lemma.

First suppose that the disks U1 and Un do not intersect. Then for any line segment from
U1 to Un and any disk D′ := D(ci, ε− ri), we exit D′ after exiting U1 and enter D′ before
entering Un. Hence, for any line pq with p ∈ U1 and q ∈ Un and any i ∈ {2, . . . , n− 1}, we
can find a point w ∈ pq ∩D′; this means that indeed maxw′∈Ui

d(w′, pq) ≤ ε (see Lemma 22
in Appendix A.2). As this holds for all disks and any choice of p and q, we conclude that
maxπ⋐U dH(π, ⟨π(1), π(n)⟩) ≤ ε.

Now assume that the disks U1 and Un intersect. If we consider the line segments pq
with p ∈ U1, q ∈ Un, we end up in the previous case if either p /∈ U1 ∩ Un or q /∈ U1 ∩ Un.
So assume that the segment pq lies entirely in the intersection U1 ∩ Un. However, it can
be seen that for each disk D′ := D(ci, ε − ri), the left boundary of the intersection is to
the right of the left boundary of the disk, and the right boundary of the intersection is to
the left of the right boundary of the disk; hence, pq ⊂ U1 ∩ Un ⊆ D′. Therefore, we have
maxw′∈Ui

d(w′, pq) ≤ ε, and so also in this case maxπ⋐U dH(π, ⟨π(1), π(n)⟩) ≤ ε.
We now assume that the right side of the lemma statement is false and show that then

maxπ⋐U dH(π, ⟨π(1), π(n)⟩) > ε. If maxπ⋐U,π(1)≡s,π(n)≡t dH(π, st) > ε, then immediately
maxπ⋐U dH(π, ⟨π(1), π(n)⟩) > ε. Same holds for uv. So, assume those statements hold; then
it must be that for at least one intermediate disk the arcs do not lie to the left or to the
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p q

a2 a3 a4 a5 a6

b2 b3 b4 b5 b6

a2

b2 b3

a3

p q
U1

Un

U1 Un

Figure 4 Having established the alignments along the two tangents, we can connect them to
create a sequence of paths.

right of the arcs of the respective disks. Assume this is disk i, so the disk D′ := D(ci, ε− ri).
W.l.o.g. assume that the right arc of the disk does not lie entirely to the right of the right
arc of U1. The argument for the left arc w.r.t. Un is symmetric.

There must be at least one point p′ on the right arc of U1 that lies outside of D′. Assume
for now that U1 and Un are disjoint. Then a line segment p′q for any q ∈ Un does not stab D′,
so maxw′∈Ui d(w′, pq) > ε, and so maxπ⋐U dH(π, ⟨π(1), π(n)⟩) > ε. If U1 and Un intersect,
then either p′ is outside of the intersection and of D′ and there is a point q ∈ Un such that
p′q does not stab D′; or we can pick the degenerate line segment p′p′, as p′ ∈ U1 ∩Un, and so
p′p′ also does not stab D′. In either case, we conclude that maxπ⋐U dH(π, ⟨π(1), π(n)⟩) > ε.

For δ = dF, first assume that maxπ⋐U dF(π, ⟨π(1), π(n)⟩) ≤ ε. As dF(π, σ) ≥ dH(π, σ)
for any curves π, σ, this also means that maxπ⋐U dH(π, ⟨π(1), π(n)⟩) ≤ ε. Furthermore,
immediately we get that maxπ⋐U,π(1)≡s,π(n)≡t dF(π, st) ≤ ε, and the same for uv, which
yields the right side of the lemma as shown above.

Now assume that the right side holds. As for the Hausdorff distance, we know that
the disks cross the entire strip and that Definition 6 applies. It remains to show that for
any line segment pq with p ∈ U1, q ∈ Un, there is a valid alignment that maintains the
correct ordering and bottleneck distance, assuming it exists for every realisation for st and
uv. Consider a valid alignment established for st and uv, so the sequence of points ai on st

and bi on uv that are mapped to Ui. We can always find such points for each individual Ui

(see Lemma 21 in Appendix A.2), and as we know that the Fréchet distance is below the
threshold for st and uv, there is such a valid alignment, i.e. we know that ai ≼ ai+1 and
bi ≼ bi+1 for all i ∈ [n− 1].

For the rest of the proof, the rough idea is as follows. We can create paths from ai to bi

so that every segment pq with p ∈ U1 and q ∈ Un crosses these paths in the correct order,
thus proving that a Fréchet alignment exists. When U1 and Un are disjoint, these paths are
simply geodesic paths within the region bounded by the two tangents and the U1 and Un. If
they intersect, we can instead create these paths by connecting ai to the top intersection
point of the disks and bi to the bottom intersection point, as in Figure 4. Note that when
the two disks intersect and the segment pq goes through the intersection, it may not cross
the paths at all; however, every point in the intersection is close enough to all intermediate
disks. We now discuss this idea in more detail.

First suppose that the disks U1 and Un do not intersect. Consider the region R bounded
by the outer tangents and the disk arcs that are not part of the convex hull of U1 ∪ Un. We
connect, for each i ∈ {2, . . . , n−1}, ai to bi with a geodesic shortest path in R, as in Figure 4.
We claim that for any line segment pq defined above, the intersection points of the shortest
paths with the segment give a valid alignment, yielding maxπ⋐U,π(1)≡p,π(n)≡q dF(π, pq) ≤ ε.
As the choice of pq was arbitrary, this will complete the proof.
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To show that the alignment is valid, we need to show that the order is correct and that
the distances fall below the threshold. First consider the case where the geodesic shortest
path for point i does not touch the boundary formed by arcs of region R. In this case, it is
simply a line segment aibi. Note that by definition ai, bi ∈ D(ci, ε− ri); as disks are convex,
also aibi ⊂ D(ci, ε− ri); thus, the intersection point p′

i of pq with aibi is in D(ci, ε− ri), so
by Lemma 21, maxw∈Ui∥p′

i − w∥ ≤ ε. Furthermore, note that ai ≼ ai+1 and bi ≼ bi+1; thus,
the line segments aibi and ai+1bi+1 cannot cross, so also p′

i ≼ p′
i+1.

Now w.l.o.g. consider the case where the geodesic shortest path for point i touches the
arc of U1. The geodesic shortest paths do not cross: on the path from ai (or bi) to the arc
they form a tangent to the arc, thus for ai ≼ ai+1 the tangent point for ai comes before
that of ai+1 when going along the arc from s to u. So, just as in the previous case, these
line segments cannot cross. Having reached the arc, both shortest paths will follow it, as
otherwise the path would not be a shortest path; thus, the arcs do not cross, either. Finally,
a path from the previous case does not touch any path that touches the arc boundary of
R by definition. Finally, note that the condition that we have established on the right arcs
of disks being to the right of the right arc of U1 (and symmetric for the left arcs and Un)
means that the geodesic shortest paths that touch the arc boundary of R stay within the
respective disks D(ci, ε− ri). Thus, we have established that for all i we have p′

i ≼ p′
i+1 and

maxw∈Ui
∥p′

i − w∥ ≤ ε, concluding the proof for disjoint U1 and Un.
Finally, consider the case where U1 intersects Un. Above we used geodesic paths within

the region R. However, when U1 intersects Un, R consists of two disconnected regions.
Observe that one region contains ai and the other contains bi. To connect ai with bi we use
the geodesic from ai to the intersection point of the two inner boundaries of U1 and Un that
is in the same region of R, the geodesic from bi to the other intersection point of the inner
boundaries, and join these two by a line segment between the intersection points. Any line
segment from a point in U1 to a point in Un crosses these paths in order, just like in the
previous case. If the line segment goes through the intersection, note that any point in the
intersection is close enough to all the intermediate objects, as the intersection is the subset of
each disk. So, any point in the intersection can be chosen to establish the trivially in-order
alignment to all the intermediate objects. ◀

It is worth noting that the case of U1 = Un is similar to how we treat the intersection U1 ∩Un;
however, our definition for the ordering between two disks does not apply. So, if U1 = Un,
then maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε if and only if U1 ⊆ D(ci, ε− ri) for all i ∈ {2, . . . , n− 1}.

5.2 Non-intersecting PCCSs

Suppose the regions are modelled by convex polygons. Consider first the case where the
interiors of U1 and Un do not intersect, so at most they share a boundary segment.

▶ Observation 8. Given an uncertain curve modelled by convex polygons U = ⟨U1, . . . , Un⟩
with the interiors of U1 and Un not intersecting, note:

There are two outer tangents to the polygons U1 and Un, and the convex hull of U1 ∪ U2
consists of a convex chain from U1, a convex chain from Un, and the outer tangents.
Let Ci be the convex chain from Ui that is not part of the convex hull for i ∈ {1, n}. Then
for δ := dH or δ := dF,

max
π⋐U

δ(π, ⟨π(1), π(n)⟩) ≤ ε ⇐⇒ max
π⋐U,π(1)∈C1,π(n)∈Cn

δ(π, ⟨π(1), π(n)⟩) ≤ ε .
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p′ q′

p q
C1 Cn

U1
Un R

Figure 5 Left: Illustration for Observation 8. The convex hull of the polygons is shown in grey.
The dotted chains are C1 and Cn. Any line segment pq with p ∈ U1 and q ∈ Un crosses C1 and Cn.
Right: Illustration for the procedure. The region R is triangulated.

U1 U4

A2 A3

Figure 6 An example set of curves A = {A2, A3} discussed in Lemmas 9 and 10.

To see that the second observation is true, note that one direction is trivial. In the other
direction, note that any line segment pq with p ∈ U1, q ∈ Un crosses both C1 and Cn, say, at
p′ ∈ C1 and q′ ∈ Cn. We know that there is a valid alignment for p′q′, both for the Hausdorff
and the Fréchet distance; we can then use this alignment for pq. See Figure 5.

We claim that we can check maxπ⋐U dH(π, ⟨π(1), π(n)⟩) ≤ ε using the following procedure
(see Figure 5).
1. Triangulate the region R bounded by two convex chains C1 and Cn and the outer tangents.
2. For each line segment st of the triangulation with s ∈ C1, t ∈ Cn, and for either δ := dH

or δ := dF, check that maxπ⋐U,π(1)≡s,π(n)≡t δ(π, st) ≤ ε.

First of all, observe that we can compute a triangulation, and that every triangle has
two points from one convex chain and one point from the other chain. If all three points
were from the same chain, then the triangle would lie outside of R. Now consider some line
segment pq with p ∈ C1, q ∈ Cn. To complete the argument, it remains to show that the
checks in step 2 mean that also maxπ⋐U,π(1)≡p,π(n)≡q δ(π, pq) ≤ ε. Observe that the triangles
span across the region R, so when going from one tangent to the other within R we cross all
the triangles. Therefore, we can number the edges of the triangles that go from C1 to Cn, in
the order of occurrence on such a path, from 1 to k. Denote the alignment established on
line j ∈ [k] with the sequence of aj

i , for i ∈ {2, . . . , n− 1}; this alignment can be established
both for δ := dH and δ := dF. We can establish polygonal curves Ai := ⟨a1

i , . . . , a
k
i ⟩; they all

stay within R (see Figure 6). We claim that for any line segment pq defined above, we can
establish a valid alignment from intersection points of pq and Ai. We do this separately for
the Fréchet and the Hausdorff distance.

▶ Lemma 9. Given a set of curves A := {A2, . . . , An−1} in R described above for δ := dH
and a line segment pq with p ∈ C1, q ∈ Cn, we have maxπ⋐U,π(1)≡p,π(n)≡q dH(π, pq) ≤ ε.

Proof. Note that pq crosses each Ai at least once. We can take any one crossing for each
i and establish the alignment. Consider such a crossing point p′

i. It falls in some triangle
bounded by a segment from either C1 or Cn and two line segments that contain points aj

i

and aj+1
i for some j ∈ [k − 1]. We know, using Lemma 19, that maxw∈Ui∥a

j
i − w∥ ≤ ε

and maxw∈Ui
∥aj+1

i − w∥ ≤ ε. Consider any point w′ ∈ Ui. Then, using Lemma 14 with
c := d := w′, we find that ∥w′ − p′

i∥ ≤ ε. Therefore, also maxw∈Ui
∥p′

i − w∥ ≤ ε; using
Lemma 19, we conclude that indeed maxπ⋐U,π(1)≡p,π(n)≡q dH(π, pq) ≤ ε. ◀
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For the Fréchet distance, we can use the same argument to show closeness; however, we
need more care to establish the correct order for the alignment.

▶ Lemma 10. Given a set of curves A := {A2, . . . , An−1} in R described above for δ := dF
and a line segment pq with p ∈ C1, q ∈ Cn, we have maxπ⋐U,π(1)≡p,π(n)≡q dF(π, pq) ≤ ε.

Proof. Compared to Lemma 9, instead of taking any intersection point of pq with each Ai,
we take the last intersection point. First, we need to show that curves Ai and Ai+1 do not
cross for any i ∈ [n− 1]. Each curve Ai crosses each triangle once, so it suffices to show that
a segment aj

ia
j+1
i does not cross aj

i+1a
j+1
i+1 . Indeed, as aj

i ≼ aj
i+1 and aj+1

i ≼ aj+1
i+1 , these line

segments cannot cross.
Now consider, for each i ∈ {2, . . . , n− 1}. the polygon Pi bounded by C1, Ai, and the

corresponding segments of the outer tangents. With the previous statement, it is easy to see
that P2 ⊆ P3 ⊆ · · · ⊆ Pn−1. Assume this is not the case, so some Pi ̸⊆ Pi+1. Then there is a
point z ∈ Pi, but z /∈ Pi+1. The point z falls into some triangle with lines j and j + 1. In
this triangle, it means that z is between C1 and aj

ia
j+1
i , but not between C1 and aj

i+1a
j+1
i+1 .

However, as these segments do not cross, this would imply that aj
i+1 ≺ aj

i , but then the
check in step 2 would not pass for line j.

Consider the points at which the line segment pq leaves the polygons Pi for the last time.
From the definition it is obvious that p ∈ Pi for all i ∈ {2, . . . , n− 1}, so this is well-defined.
Clearly, due to the subset relationship, the order of such points p′

i is correct, i.e. p′
i ≼ p′

i+1.
Furthermore, each such p′

i ∈ Ai, so using the arguments of Lemma 9 we can show that also the
distances are below ε. Thus, we conclude that indeed maxπ⋐U,π(1)≡p,π(n)≡q dF(π, pq) ≤ ε. ◀

The proofs of Lemmas 9 and 10 show us how to solve the problem for two convex polygons
with non-intersecting interiors. We can also use them directly for the case of line segments
that do not intersect except at endpoints.

▶ Lemma 11. Given n ∈ N≥3, for any imprecise curve modelled with line segments U =
⟨U1, . . . , Un⟩ with Ui = p1

i p
2
i ⊂ R2 for all i ∈ [n], given a threshold ε ∈ R>0, and given that

U1 ∩Un ⊂ {p1
1, p

2
1}, and assuming that the triangles p1

1p
1
np

2
1 and p2

1p
1
np

2
n form a triangulation

of the convex hull of U1 ∪ Un, we have maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε if and only if

max
{

max
π⋐U,π(1)≡p1

1,π(n)≡p1
n

δ(π, p1
1p

1
n), max

π⋐U,π(1)≡p2
1,π(n)≡p1

n

δ(π, p2
1p

1
n),

max
π⋐U,π(1)≡p2

1,π(n)≡p2
n

δ(π, p2
1p

2
n)

}
≤ ε .

We should note that in this particular case it is not necessary to use a triangulation, so we
can get rid of the second term; also in the previous proofs a convex partition could work
instead, but a triangulation is easier to define.

5.3 Intersecting PCCSs
We now discuss the situation where the interiors of U1 and Un intersect, or where line
segments U1 and Un cross. The argument is the same for δ := dH and δ := dF.

Line segments. Assume line segments U1
def= p1

1p
2
1 and Un

def= p1
np

2
n cross; call their intersection

point s. Then we can use Lemma 11 separately on pairs of {p1
1s, sp

2
1} × {p1

ns, sp
2
n}. These

pairs cover the entire set of realisations pq with p ∈ U1, q ∈ Un, completing the checks.

▶ Lemma 12. Given n ∈ N≥3, for any imprecise curve modelled with line segments U =
⟨U1, . . . , Un⟩ with Ui = p1

i p
2
i ⊂ R2 for all i ∈ [n], given a threshold ε ∈ R>0, we can check

for both δ := dH and δ := dF, using procedures above, that maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε.
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Convex polygons. Convex polygons whose interiors intersect can be partitioned along
the intersection lines, so into a convex polygon R := U1 ∩ Un and two sets of polygons
P1 := {P 1

1 , . . . , P
k
1 } and Pn := {P 1

n , . . . , P
ℓ
n} for some k, ℓ ∈ N>0. Just as for line segments,

we can look at pairs from P1 × Pn separately. The pairs where R is involved are treated later.
Consider some (P,Q) ∈ P1 × Pn. Note that P and Q are convex polygons with a convex
cut-out, so the boundary forms a convex chain, followed by a concave chain. We need to
compute some convex polygons P ′ and Q′ with non-intersecting interiors that are equivalent
to P and Q, so that we can apply the approaches from Section 5.2.

We claim that we can simply take the convex hull of P and Q to obtain P ′ and Q′.
Clearly, the resulting polygons will be convex. Also, the concave chains of P are bounded by
points s and t and are replaced with the line segment st; same happens for Q with point
u and v. The points s, t, u, v are points of intersection of original polygons U1 and Un, so
they lie on the boundary of R, and their order along that boundary can only be s, t, u, v
or s, t, v, u. Thus, it cannot happen that st crosses uv, and it cannot be that uv is in the
interior of the convex hull of P , as otherwise R would not be convex. Hence, the interiors of
P ′ and Q′ cannot intersect, so they satisfy the necessary conditions.

Finally, we need to show that the solution for (P ′, Q′) is equivalent to that for (P,Q).
One direction is trivial, as P ⊆ P ′ and Q ⊆ Q′; for the other direction, consider any line
segment that leaves P through the concave chain. In our approach, we test the lines starting
in s and t; the established alignments are connected into paths. The paths Ai do not cross
st. So, any alignment in the region of CH(P ∪Q) \ (P ∪Q) can also be made in the region
CH(P ′ ∪Q′) \ (P ′ ∪Q′). So, this approach yields valid solutions for all pairs not involving R.

Now consider the pair (R,R). A curve may now consist of a single point, so the approach
for the Fréchet and the Hausdorff distance is the same: all the points of Ui need to be close
enough to all the points of R. To check that, observe that the pair of points p ∈ Ui and q ∈ R

that has maximal distance has the property that p is an extreme point of Ui in direction qp

and q is an extreme point of R in direction pq. So, it suffices, starting at the rightmost point
of Ui and leftmost point of R in some coordinate system, to then rotate clockwise around
both regions keeping track of the distance between tangent points. Note that only vertices
need to be considered, as the extremal point cannot lie on an edge.

Finally, any other pair that involves R is covered by the stronger case of (R,R): for any
line we can align every intermediate object with any point in R. To elaborate, the cases
above are not truly a case distinction, as all of these combinations should hold; so given a
line segment for a pair (P,R) or (R,Q) for some P ∈ P1, Q ∈ Pn, we can pick any point of
the segment that lies inside R to establish the alignment, deferring to the stronger previous
case (R,R). Also observe that some line segments covered by the case (P,Q) with P ∈ P1,
Q ∈ Pn may go through R; this does not impose any unnecessary constraints, so it does not
matter that the cases can overlap.

▶ Lemma 13. Given n ∈ N≥3, for any imprecise curve modelled with convex polygons
U = ⟨U1, . . . , Un⟩ with Ui ⊂ R2 for all i ∈ [n] and V (Ui) = {p1

i , . . . , p
k
i } for all i ∈ [n],

k ∈ N>0, given a threshold ε ∈ R>0, we can check for δ := dH and δ := dF, using procedures
above, that maxπ⋐U δ(π, ⟨π(1), π(n)⟩) ≤ ε.

6 Combining Steps

In the previous sections, we have shown how to check if a shortcut of length n ≥ 3 is valid
under the Hausdorff or the Fréchet distance, for indecisive points, disks, line segments, and
convex polygons. It is easy to see that a shortcut of length n = 2 is always valid. Therefore,
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Table 1 Running time of our approach in each setting. For indecisive points, k is the number of
options per point. For convex polygons, k is the number of vertices.

Indecisive Disks Line segments Convex polygons

Hausdorff distance O(n3k3) O(n3) O(n3) O(n3k3)
Fréchet distance O(n3k3) O(n3) O(n3) O(n3k3)

we can use the previously described procedures to construct a shortcut graph; any path
in such a graph from the vertex 1 to vertex n corresponds to a valid simplification, so the
shortest path gives us the result we need.

▶ Theorem 1. We can find the shortest vertex-constrained simplification of an uncertain
curve, such that for any realisation the simplification is valid, both for the Hausdorff and the
Fréchet distance, in time O(n3) for uncertainty modelled with disks and line segments, and
in time O(n3k3) for uncertainty modelled with indecisive points and convex polygons, where
k is the number of options or vertices and n is the length of the curve.

Proof. Correctness of the approaches has been shown before. We now analyse the running
time, also shown in Table 1. For the running time, observe that we need O(n2T ) time in any
setting, due to the shortcut graph construction.

For indecisive points, when testing a shortcut we do O(nk)-time testing for O(k2)
combinations of starting and ending points, where k is the number of options per point. For
disks, we do a linear number of constant-time checks and two linear-time checks, getting
T ∈ O(n). For line segments, we also do two (three) linear-time checks per part; two line
segments can be split into at most two parts each, so we repeat the process four times. Either
way, we get T ∈ O(n).

Finally, for convex polygons, assume the complexity of each polygon is at most k. Assume
the partitioning resulting from two intersecting polygons yields ℓ1 and ℓ2 parts for the first
and the second polygon, respectively. Denote the two polygons P and Q and the resulting
parts with P1, . . . , Pℓ1 and Q1, . . . , Qℓ2 , respectively. Suppose part Pi has complexity ki and
part Qj has complexity k′

j , so |V (Pi)| = ki and |V (Qj)| = k′
j for some i ∈ [ℓ1], j ∈ [ℓ2]. We

know that every vertex of the original polygons occurs in a constant number of parts, so∑ℓ1
i=1 ki ∈ O(k) and

∑ℓ2
j=1 k

′
j ∈ O(k); we also know ℓ1 + ℓ2 ∈ O(k). We consider all pairs

from P and Q, and for each pair we triangulate and do the checks on the triangulation. The
triangulation can be done in time O((ki + k′

j) · log(ki + k′
j)), yielding O(ki + k′

j) lines, each
of which is tested in time O(nk). The testing dominates, so we need O((ki + k′

j) · nk) time.
We are interested in

ℓ1∑
i=1

ℓ2∑
j=1

O((ki + k′
j) · nk) = O(nk) ·

ℓ1∑
i=1

ℓ2∑
j=1

O(ki + k′
j) = O(nk3) .

So, T ∈ O(nk3) both for the Fréchet and the Hausdorff distance. ◀

7 Conclusion

We have presented approaches for finding the optimal simplification of an uncertain curve
under various uncertainty models for the Hausdorff and the Fréchet distance. To recap,
we can use Lemmas 7, 12, and 13 and the procedure for indecisive points to test a single
shortcut. Constructing a shortcut graph yields the solution. In future work, it would be
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interesting to see, similarly to the precise simplification approaches, if an improvement in
the running time is possible to subcubic time, or whether one can show a conditional lower
bound [8]. It would also be interesting to consider what uncertainty means in the context of
global simplification; our approach does not seem easily transferable.
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A Shortcut Testing: Intermediate Points

In this appendix, we discuss testing a single shortcut where we fix the realisations of the first
and the last uncertain point. We provided intuitive explanations in Section 4 and discuss
the details here. We state some basic facts about the Hausdorff and the Fréchet distance in
the precise setting (see the full version [12] for the proofs) and use them to design simple
algorithms for testing shortcuts in the uncertain settings.

A.1 Hausdorff Distance
We start by recalling some useful facts about the Hausdorff distance in the precise setting.

▶ Lemma 14. Given points a, b, c, d ∈ R2 forming segments ab and cd, the largest distance
from one segment to the other is maxp∈ab d(p, cd) = max{d(a, cd), d(b, cd)}.

▶ Lemma 15. Given n ∈ N>0, for any precise curve π = ⟨p1, . . . , pn⟩ with pi ∈ R2 for all
i ∈ [n], we have dH(π, p1pn) = maxi∈[n] d(pi, p1pn).

Indecisive points. We generalise the setting to include imprecision. We first claim that the
straightforward setting with indecisive points permits an easy solution using Lemma 15; the
proof can be found in the full version [12].

▶ Lemma 16. Given n, k ∈ N>0, for any indecisive curve U = ⟨U1, . . . , Un⟩ with n ≥ 3, Ui =
{p1

i , . . . , p
k
i } for all i ∈ [n] and pj

i ∈ R2 for all i ∈ [n], j ∈ [k], and given some p1 ∈ U1 and
pn ∈ Un, we have maxπ⋐U,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = maxi∈{2,...,n−1} maxj∈[k] d(pj
i , p1pn).

Note that this means that when the start and end realisations are fixed, we can test that a
shortcut is valid using the lemma above in time O(nk) for a shortcut of length n.
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Disks. We proceed to present the way to test shortcuts for fixed realisations of the first
and the last points when the imprecision is modelled using disks. In the next arguments the
following form of a triangle inequality is useful (again, see the full version [12] for details).

▶ Lemma 17. For any p, q ∈ R2 and a line segment ab on a, b ∈ R2, d(p, ab) ≤ ∥p − q∥ +
d(q, ab).

▶ Lemma 18. Given n ∈ N≥3, for any imprecise curve modelled with disks U = ⟨U1, . . . , Un⟩
with Ui = D(ci, ri) for all i ∈ [n] and ci ∈ R2, ri ∈ R≥0 for all i ∈ [n], and given some
p1 ∈ U1 and pn ∈ Un, we have

max
π⋐U,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = max
i∈{2,...,n−1}

(
d(ci, p1pn) + ri

)
.

Proof. Assume the setting of the lemma. We derive

max
π⋐U,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = {Lemma 15} max
π⋐U,π(1)≡p1,π(n)≡pn

max
i∈[n]

d(π(i), p1pn)

= {Def. ⋐, d(p1, p1pn) = d(pn, p1pn) = 0} max
i∈{2,...,n−1}

max
p∈Ui

d(p, p1pn) .

It remains to show that maxp∈Ui d(p, p1pn) = d(ci, p1pn) + ri for any i ∈ {2, . . . , n− 1}.
Pick p′ := argmaxp∈Ui

d(p, p1pn). Note that by Lemma 17, d(p′, p1pn) ≤ ∥p′ − ci∥ +
d(ci, p1pn). Furthermore, as p′ ∈ Ui, by definition of Ui we have ∥p′ − ci∥ ≤ ri. Thus,
maxp∈Ui

d(p, p1pn) ≤ d(ci, p1pn) + ri, and we need to show the other direction.
Now pick a point q′ := argminq∈p1pn

∥q−ci∥, so that d(ci, p1pn) = ∥q′ −ci∥. Draw the line
through ci and q′ and pick the point p′ on that line on the boundary of Ui on the opposite
side of q w.r.t. ci. Clearly, ∥p′ − ci∥ = ri and q′ = argminq∈p1pn

∥q − p′∥. Thus,

d(p′, p1pn) = ∥p′ − q′∥ = ∥q′ − ci∥ + ∥p′ − ci∥ = d(ci, p1pn) + ri .

Note that p′ ∈ Ui, so we conclude maxp∈Ui d(p, p1pn) ≥ d(ci, p1pn) + ri. ◀

This lemma allows us to test a shortcut in time O(n) for a shortcut of length n.

Polygonal closed convex sets.

▶ Lemma 19. Given n, k ∈ N>0, n ≥ 3, for any imprecise curve modelled with PCCSs
U = ⟨U1, . . . , Un⟩ with Ui ⊂ R2 and V (Ui) = {p1

i , . . . , p
k
i } for all i ∈ [n], and given some

p1 ∈ U1 and pn ∈ Un, we have

max
π⋐U,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = max
i∈{2,...,n−1}

max
v∈V (Ui)

d(v, p1pn) .

Proof. Assume the setting of the lemma. As before, derive

max
π⋐U,π(1)≡p1,π(n)≡pn

dH(π, p1pn) = {Lemma 15} max
π⋐U,π(1)≡p1,π(n)≡pn

max
i∈[n]

d(π(i), p1pn)

= {Def. ⋐, d(p1, p1pn) = d(pn, p1pn) = 0} max
i∈{2,...,n−1}

max
p∈Ui

d(p, p1pn) .

To show that the claim holds, it remains to show that for any PCCS U and a line segment
ab, maxp∈U d(p, ab) = maxv∈V (U) d(v, ab). Firstly, as V (U) ⊂ U , we immediately have
maxp∈U d(p, ab) ≥ maxv∈V (U) d(v, ab). Consider any p ∈ U . We show that there is some
v ∈ V (U) such that d(v, ab) ≥ d(p, ab), completing the proof, with a case distinction on p.
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Algorithm 1 Testing a shortcut on an indecisive curve with the Fréchet distance.

Require: U = ⟨U1, . . . , Un⟩, n, k ∈ N>0, ∀i ∈ [n] : Ui = {p1
i , . . . , p

k
i }, ∀i ∈ [n], j ∈ [k] : pj

i ∈
R2, ε ∈ R>0, p1 ∈ U1, pn ∈ Un

1: function CheckFréchetInd(U , p1, pn, n, k, ε)
2: s1 := 1
3: for i ∈ {2, . . . , n− 1} do
4: Ti := ∅
5: for j ∈ [k] do
6: Sj

i := {t ∈ [si−1, 2] | ∥pj
i − p1pn(t)∥ ≤ ε}

7: if Sj
i = ∅ then

8: return False
9: Ti := Ti ∪ minSj

i

10: si := max Ti

11: return True

p ∈ V (U). Then pick v := p, and we are done.
p /∈ V (U), but p is on the boundary of U . Consider the vertices v, w ∈ V (U) with p ∈ vw.
Using Lemma 14, we note maxq∈vw d(q, ab) = max{d(v, ab), d(w, ab)}. W.l.o.g. suppose
d(v, ab) ≥ d(w, ab). Then for v indeed we have d(v, ab) ≥ d(p, ab).
p is in the interior of U (cannot occur for line segments). Find the point q′ :=
argminq∈ab∥p − q∥, so d(p, ab) = ∥p − q′∥. Draw the line through p and q′; let p′

be the point on that line on the boundary of U on the opposite side of q′ w.r.t. p. Clearly,
q′ = argminq∈ab∥p′ − q∥, so d(p′, ab) > d(p, ab). Then we can find a vertex v ∈ V (U) as
in the previous cases, yielding d(v, ab) ≥ d(p′, ab) > d(p, ab).

This covers all the cases, so the statement holds. ◀

As before, this lemma gives us a simple way to test the shortcut with fixed realisations of the
first and the last points in time O(nk) for a shortcut of length n and PCCSs with k vertices.

A.2 Fréchet Distance
We omit results for the Fréchet distance in the precise setting here; see the full version [12].

Indecisive points. The idea is that in the precise case we can always align greedily as we
move along the line segment. In this case, we also need to find the realisation for each
indecisive point that makes for the ‘worst’ greedy choice.

▶ Lemma 20. Given n, k ∈ N>0 and ε ∈ R>0, for any indecisive trajectory U = ⟨U1, . . . , Un⟩
with Ui = {p1

i , . . . , p
k
i } for all i ∈ [n] and pj

i ∈ R2 for all i ∈ [n], j ∈ [k], and given some
p1 ∈ U1 and pn ∈ Un, we have, using Algorithm 1,

max
π⋐U,π(1)≡p1,π(n)≡pn

dF(π, p1pn) ≤ ε ⇐⇒ CheckFréchetInd(U , p1, pn, n, k, ε) = True .

Proof. First, assume that maxπ⋐U,π(1)≡p1,π(n)≡pn
dF(π, p1pn) ≤ ε. In the algorithm, we

compute some set Sj
i for each pj

i and then pick one value from it and add it to Ti; from
Ti we then pick a single value as si. So, si ∈ Sj

i for some ji ∈ [k], on every iteration
i ∈ {2, . . . , n− 1}. Consider a realisation π ⋐ U with π(1) ≡ p1, π(n) ≡ pn, and π(i) ≡ pji

i

for every i ∈ {2, . . . , n − 1}, where ji is chosen as the value corresponding to si. Then
we know dF(π, p1pn) ≤ ε. So, there is an alignment that can be given as a sequence of n
positions, ti ∈ [1, 2], such that ∥π(i) − p1pn(ti)∥ ≤ ε and ti ≤ ti+1 for all i. The alignment is
established by interpolating between the consecutive points on the curves (see Section 2).
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We now show by induction that si ≤ ti for all i. For i = 2, we get, for the chosen j2,
s2 := min{t ∈ [1, 2] | ∥pj2

2 − p1pn(t)∥ ≤ ε}. As we have t2 ∈ {t ∈ [1, 2] | ∥pji

2 − p1pn(t)∥ ≤ ε},
we get s2 ≤ t2. Now assume the statement holds for some i, then for i+ 1 we get si+1 :=
min{t ∈ [si, 2] | ∥pji+1

i+1 − p1pn(t)∥ ≤ ε}; we can rephrase this so that

si+1
def= min

(
{t ∈ [1, 2] | ∥pji+1

i+1 − p1pn(t)∥ ≤ ε} ∩ [si, 2]
)
.

So, there are two options.
si+1 = si. Then we know si+1 = si ≤ ti ≤ ti+1.
si+1 > si. Then we can use the same argument as for i = 2 to find that si+1 ≤ ti+1.

Now we know that for every i, ti ∈ Sji

i for the choice of ji described above. Therefore,
for any pji+1

i+1 there is always a realisation prefix such that any valid alignment has ti+1 ≥ si;
as we know that there is a valid alignment for every realisation, we conclude that every Sj

i is
non-empty. Thus, the algorithm returns True.

Now assume that the algorithm returns True. Consider any realisation π ⋐ U . We
claim that there is a valid alignment, described with a sequence of ti ∈ [1, 2] for i ∈
{2, . . . , n − 1}, such that si−1 ≤ ti ≤ si and ∥p1pn(ti) − π(i)∥ ≤ ε. Denote the realisation
π

def= ⟨p1, p
j2
2 , p

j3
3 , . . . , p

jn−1
n−1 , pn⟩, so the sequence ⟨j2, . . . , jn−1⟩ describes the choices of the

realisation. Consider the set Sji

i for any i ∈ {2, . . . , n− 1}. We know that it is non-empty,
otherwise the algorithm would have returned False. We claim that we can pick ti = minSji

i

for every i. By definition, Sji

i ⊆ [1, 2] and ∥p1pn(ti) − π(i)∥ ≤ ε. We also trivially get that
si−1 ≤ ti. Finally, note that ti ∈ Ti, and si := max Ti, so ti ≤ si.

This argument shows that ti ≤ ti+1 for every i, and that ∥p1pn(ti) −π(i)∥ ≤ ε. Therefore,
dF(π, p1pn) ≤ ε. As this works for any realisation with π(1) ≡ p1 and π(n) ≡ pn, we conclude
maxπ⋐U,π(1)≡p1,π(n)≡pn

dF(π, p1pn) ≤ ε. ◀

Disks. To show the generalisation to disks, it is helpful to reframe the problem as that of
disk stabbing for appropriate disks. We state some useful facts first (see the full version [12]).

▶ Lemma 21. Given a disk D1 := D(c, r) with c ∈ R2, r ∈ R≥0, a threshold ε ∈ R>0, and a
point p ∈ R2, define D2 := D(c, ε− r). We have maxp′∈D1∥p− p′∥ ≤ ε ⇐⇒ p ∈ D2.

▶ Lemma 22. Given a disk D1 := D(c, r) with c ∈ R2, r ∈ R≥0, ε ∈ R>0, and a line segment
pq with p, q ∈ R2, define D2 := D(c, ε− r). Then maxp′∈D1 d(p′, pq) ≤ ε ⇐⇒ pq ∩D2 ̸= ∅.

Algorithm 2 Testing a shortcut on an imprecise curve modelled with disks with the Fréchet
distance.

Require: U = ⟨U1, . . . , Un⟩, n ∈ N>0, ∀i ∈ [n] : Ui = D(ci, ri), ∀i ∈ [n] : ci ∈ R2, ri ∈ R≥0,
ε ∈ R>0, p1 ∈ U1, pn ∈ Un

1: function CheckFréchetDisks(U , p1, pn, n, ε)
2: s1 := 1
3: for i ∈ {2, . . . , n − 1} do
4: Si := {t ∈ [si−1, 2] | ∥ci − p1pn(t)∥ ≤ ε − ri}
5: if Si = ∅ then
6: return False
7: si := min Si

8: return True
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▶ Lemma 23. Given n ∈ N>0 and ε ∈ R>0, for any imprecise curve modelled with disks
U = ⟨U1, . . . , Un⟩ with Ui = D(ci, ri) for all i ∈ [n] and ci ∈ R2, ri ∈ R≥0 for all i ∈ [n], and
given some p1 ∈ U1 and pn ∈ Un, we have, using Algorithm 2,

max
π⋐U,π(1)≡p1,π(n)≡pn

dF(π, p1pn) ≤ ε ⇐⇒ CheckFréchetDisks(U , p1, pn, n, ε) = True .

Proof. We use Lemma 22 to change the problem: rather than establishing an alignment that
comes in the correct order and satisfies the distance constraints, we do disk stabbing and pick
the stabbing points in the correct order. So, we have maxπ⋐U,π(1)≡p1,π(n)≡pn

dF(π, p1pn) ≤ ε

if and only if there exists a sequence of points p′
i ∈ p1pn ∩D(ci, ε−ri) for all i ∈ {2, . . . , n−1}

such that p′
i ≼ p′

i+1 along p1pn for all i ∈ {2, . . . , n− 2}. We show that this is exactly what
Algorithm 2 computes in the full version [12]. ◀

Algorithm 3 Testing a shortcut on an imprecise curve modelled with PCCSs with the Fréchet
distance.

Require: U = ⟨U1, . . . , Un⟩, n, k ∈ N>0, ∀i ∈ [n] : Ui is a PCCS, V (Ui) = {p1
i , . . . , pk

i }, ∀i ∈ [n], j ∈
[k] : pj

i ∈ R2, ε ∈ R>0, p1 ∈ U1, pn ∈ Un

1: function CheckFréchetPCCS(U , p1, pn, n, k, ε)
2: s1 := 1
3: for i ∈ {2, . . . , n − 1} do
4: Ti := ∅
5: for j ∈ [k] do
6: Sj

i := {t ∈ [si−1, 2] | ∥pj
i − p1pn(t)∥ ≤ ε}

7: if Sj
i = ∅ then

8: return False
9: Ti := Ti ∪ min Sj

i

10: si := max Ti

11: return True

Polygonal closed convex sets.

▶ Lemma 24. Given n, k ∈ N>0 and ε ∈ R>0, for any imprecise curve modelled with PCCSs
U = ⟨U1, . . . , Un⟩ with Ui ⊂ R2 and V (Ui) = {p1

i , . . . , p
k
i } for all i ∈ [n], and given some

p1 ∈ U1 and pn ∈ Un, we have, using Algorithm 3,

max
π⋐U,π(1)≡p1,π(n)≡pn

dF(π, p1pn) ≤ ε ⇐⇒ CheckFréchetPCCS(U , p1, pn, n, k, ε) = True .

Proof. As we have shown in Lemma 19, it suffices to test the vertices of a PCCS to establish
that the distance from every point to the line segment is below the threshold. It remains
to show that the extreme alignment (in terms of ordering) for the Fréchet distance is also
achieved at a vertex. This case then becomes identical to the indecisive points case, so we
can use Lemma 20 to show correctness.

Consider an arbitrary point t ∈ Ui and let s be the earliest point in the ε-disk around t

that is on pq. Clearly, if t is in the interior of Ui, then we can take any t′ on the line through
t parallel to pq and get the corresponding s′ with s ≺ s′. So, assume t is on the boundary of
Ui. Suppose that t ∈ uv with u, v ∈ V (Ui). Rotate and translate the coordinate plane so
that pq lies on the x-axis. Derive the equation for the line containing uv, say, y′ = kx′ + b.
First consider k = 0, so the line containing uv is parallel to the line containing pq. In this
case, clearly, moving along uv in the direction coinciding with the direction from p to q

MFCS 2021
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Figure 7 Illustration for the computation in Lemma 24.

increases the x-coordinate of point of interest, so moving to a vertex is optimal. Now assume
k > 0. If k < 0, reflect the coordinate plane about y = 0. Geometrically, it is easy to see
(Figure 7) that the coordinate of interest can be expressed as

x = x′ −
√
ε2 − y′2 = y′ − b

k
−

√
ε2 − y′2 .

We want to maximise x by picking the appropriate y′. We take the derivative: dx/dy′ = 1/k+
y′/

√
ε2 − y′2. We equate it to 0 to find the critical point of the function, y′

0 = −ε/
√
k2 + 1.

We can check that for y′ < y′
0, the value of the derivative is negative, and for y′ > y′

0 it is
positive, so at y′ = y′

0 we achieve a local minimum. There are no other critical points, so to
maximise x, we want to move away from the local minimum as far as possible. As we are
limited to the line segment uv, the maximum is achieved at an endpoint. ◀
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