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Abstract
We study the expressiveness and succinctness of good-for-games pushdown automata (GFG-PDA)
over finite words, that is, pushdown automata whose nondeterminism can be resolved based on the
run constructed so far, but independently of the remainder of the input word.

We prove that GFG-PDA recognise more languages than deterministic PDA (DPDA) but not all
context-free languages (CFL). This class is orthogonal to unambiguous CFL. We further show that
GFG-PDA can be exponentially more succinct than DPDA, while PDA can be double-exponentially
more succinct than GFG-PDA. We also study GFGness in visibly pushdown automata (VPA),
which enjoy better closure properties than PDA, and for which we show GFGness to be ExpTime-
complete. GFG-VPA can be exponentially more succinct than deterministic VPA, while VPA can
be exponentially more succinct than GFG-VPA. Both of these lower bounds are tight.

Finally, we study the complexity of resolving nondeterminism in GFG-PDA. Every GFG-PDA
has a positional resolver, a function that resolves nondeterminism and that is only dependant on the
current configuration. Pushdown transducers are sufficient to implement the resolvers of GFG-VPA,
but not those of GFG-PDA. GFG-PDA with finite-state resolvers are determinisable.
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1 Introduction

Nondeterminism adds both expressiveness and succinctness to deterministic pushdown
automata. Indeed, the class of context-free languages (CFL), recognised by nondeterministic
pushdown automata (PDA), is strictly larger than the class of deterministic context-free
languages (DCFL), recognised by deterministic pushdown automata (DPDA), both over
finite and infinite words. Even when restricted to languages in DCFL, there is no computable
bound on the relative succinctness of PDA [15, 38]. In other words, nondeterminism is
remarkably powerful, even for representing deterministic languages. The cost of such succinct
representations is algorithmic: problems such as universality and solving games with a CFL
winning condition are undecidable for PDA [11, 19], while they are decidable for DPDA [39].
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Intermediate forms of automata that lie between deterministic and nondeterministic models
have the potential to mitigate some of the disadvantages of fully nondeterministic automata
while retaining some of the benefits of the deterministic ones.

Unambiguity and bounded ambiguity, for example, restrict nondeterminism by requiring
words to have at most one or at most k, for some fixed k, accepting runs. Holzer and Kutrib
survey the noncomputable succinctness gaps between unambiguous PDA and both PDA
and DPDA [18], while Okhotin and Salomaa show that unambiguous visibly pushdown
automata are exponentially more succinct that DPDA [31]. Universality of unambiguous
PDA is decidable, as it is decidable for unambiguous context-free grammars [33], which are
effectively equivalent [17]. However, to the best of our knowledge, unambiguity is not known
to reduce the algorithmic complexity of solving games with a context-free winning condition.

Another important type of restricted nondeterminism that is known to reduce the com-
plexity of universality and solving games has been studied under the names of good-for-games
(GFG) nondeterminism [16] and history-determinism [10]. Intuitively, a nondeterministic
automaton is GFG if its nondeterminism can be resolved on-the-fly, i.e. without knowledge
of the remainder of the input word to be processed.

For finite automata on finite words, where nondeterminism adds succinctness, but not
expressiveness, GFG nondeterminism does not even add succinctness: every GFG-NFA
contains an equivalent DFA [6], which can be obtained by pruning transitions from the
GFG-NFA. Thus, GFG-NFA cannot be more succinct than DFA. But for finite automata on
infinite words, where nondeterminism again only adds succintness, but not expressiveness,
GFG coBüchi automata can be exponentially more succinct than deterministic automata [23].
Finally, for certain quantitative automata over infinite words, GFG nondeterminism adds as
much expressiveness as arbitrary nondeterminism [10].

Recently, pushdown automata on infinite words with GFG nondeterminism (ω-GFG-PDA)
were shown to be strictly more expressive than ω-DPDA, while universality and solving games
for ω-GFG-PDA are not harder than for ω-DPDA [25]. Thus, GFG nondeterminism adds
expressiveness without increasing the complexity of these problems, i.e. pushdown automata
with GFG nondeterminism induce a novel and intriguing class of context-free ω-languages.

Here, we continue this work by studying the expressiveness and succinctness of PDA over
finite words. While the decidability results for ω-GFG-PDA on infinite words also hold for
GFG-PDA on finite words, the separation argument between ω-GFG-PDA and ω-DPDA
depends crucially on combining GFG nondeterminism with the coBüchi acceptance condition.
Since this condition is only relevant for infinite words, the separation result does not transfer
to the setting of finite words.

Nevertheless, we prove that GFG-PDA are more expressive than DPDA, yielding the
first class of automata on finite words where GFG nondeterminism adds expressiveness. The
language witnessing the separation is remarkably simple, in contrast to the relatively subtle
argument for the infinitary result [25]: the language {ai$aj$bk$ | k ⩽ max(i, j)} is recognised
by a GFG-PDA but not by a DPDA. This yields a new class of languages, those recognised
by GFG-PDA over finite words, for which universality and solving games are decidable. We
also show that this class is incomparable with unambiguous context-free languages.

We then turn our attention to succinctness of GFG-PDA. We show that the succinctness
gap between DPDA and GFG-PDA is at least exponential, while the gap between GFG-PDA
and PDA is at least double-exponential. These results hold already for finite words.

To the best of our knowledge, both our expressiveness and our succinctness results are
the first examples of good-for-games nondeterminism being used effectively over finite, rather
than infinite, words (recall that all GFG-NFA are determinisable by pruning). Also, this
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is the first succinctness result for good-for-games automata that does not depend on the
infinitary coBüchi acceptance condition, which was used to show the exponential succinctness
of GFG coBüchi automata, as compared to deterministic ones [23].

We then study an important subclass of GFG-PDA, namely, GFG visibly pushdown
automata (VPA), in which the stack behaviour (push, pop, skip) is determined by the
input letter only. GFG-VPA enjoy the good closure properties of VPA (to which they are
expressively equivalent): they are closed under complement, union and intersection. We show
that there is an exponential succinctness gap between deterministic VPA (DVPA) and GFG-
VPA, as well as between GFG-VPA and VPA. Both of these are tight, as VPA, and therefore
GFG-VPA as well, admit an exponential determinisation procedure [2]. Furthermore, we
show that GFGness of VPA is decidable in ExpTime. This makes GFG-VPA a particularly
interesting class of PDA as they are recognisable, succinct, have good closure properties
and deciding universality and solving games are both in ExpTime. In contrast, solving
ω-VPA games is 2ExpTime-complete [27]. We also relate the problem of checking GFGness
with the good-enough synthesis [1] or uniformization problem [9], which we show to be
ExpTime-complete for DVPA and GFG-PDA.

Nondeterminism in GFG automata is resolved on-the-fly, i.e. the next transition to be
taken only depends on the run prefix constructed so far and the next letter to be processed.
Thus, the complexity of a resolver, mapping run prefixes and letters to transitions, is a
natural complexity measure for GFG automata. For example, finite GFG automata (on
finite and infinite words) have a finite-state resolver [16]. For pushdown automata with their
infinite configuration space, the situation is markedly different: On one hand, we show that
GFG-PDA admit positional resolvers, that is, resolvers that depend only on the current
configuration, rather than on the entire run prefix produced so far. Note that this result only
holds for GFG-PDA over finite words, but not for ω-GFG-PDA. Yet, positionality does not
imply that resolvers are simple to implement. We show that there are GFG-PDA that do
not admit a resolver implementable by a pushdown transducer. In contrast, all GFG-VPA
admit pushdown resolvers, again showing that GFG-VPA are better behaved than general
GFG-PDA. Finally, GFG-PDA with finite-state resolvers are determinisable.

All proofs omitted due to space restrictions can be found in the full version [14].

Related work

The notion of GFG nondeterminism has emerged independently several times, at least as
Colcombet’s history-determinism [10], in Piterman and Henzinger’s GFG automata [16],
and as Kupferman, Safra, and Vardi’s nondeterminism for recognising derived languages,
that is, the language of trees of which all branches are in a regular language [24]. Related
notions have also emerged in the context of XML document parsing. Indeed, preorder typed
visibly pushdown languages and 1-pass preorder typeable tree languages, considered by
Kumar, Madhusudan, and Viswanathan [21] and Martens, Neven, Schwentick, and Bex [28]
respectively, also consider nondeterminism which can be resolved on-the-fly. However, the
restrictions there are stronger than simple GFG nondeterminism, as they also require the
typing to be unique, roughly corresponding to unambiguity in automata models and grammars.
This motivates the further study of unambiguous GFG automata, although this remains
out of scope for the present paper. The XML extension AXML has also inspired Active
Context Free Games [29], in which one player, aiming to produce a word within a target
regular language, chooses positions on a word and the other player chooses a rewriting rule
from a context-free grammar. Restricting the strategies of the first player to moving from
left to right makes finding the winner decidable [29, 5]; however, since the player still knows
the future of the word, this restriction is not directly comparable to GFG nondeterminism.

MFCS 2021
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Unambiguity, or bounded ambiguity, is an orthogonal way of restricting nondeterminism
by limiting the number of permitted accepting runs per word. For regular languages, it
leads to polynomial equivalence and containment algorithms [37]. Minimization remains
NP-complete for both unambiguous automata [20, 4] and GFG automata [35] (at least when
acceptance is defined on states, see [32]). On pushdown automata, increasing the permitted
degree of ambiguity leads to both greater expressiveness and unbounded succinctness [17].
Finally, let us mention two more ways of measuring–and restricting–nondeterminism in
PDA: bounded nondeterminism, as studied by Herzog [17] counts the branching in the
run-tree of a word, while the minmax measure [34, 13] counts the number of nondeterministic
guesses required to accept a word. The natural generalisation of GFGness as the width of an
automaton [22] has not yet, to the best of our knowledge, been studied for PDA.

2 Preliminaries

An alphabet Σ is a finite nonempty set of letters. The empty word is denoted by ε, the
length of a word w is denoted by |w|, and the nth letter of w is denoted by w(n) (starting
with n = 0). The set of (finite) words over Σ is denoted by Σ∗, the set of nonempty (finite)
words over Σ by Σ+, and the set of finite words of length at most n by Σ⩽n. A language
over Σ is a subset of Σ∗.

For alphabets Σ1, Σ2, we extend functions f : Σ1 → Σ∗
2 homomorphically to words over

Σ1 via f(w) = f(w(0))f(w(1))f(w(2)) · · · .

2.1 Pushdown automata
A pushdown automaton (PDA for short) P = (Q, Σ, Γ, qI , ∆, F ) consists of a finite set Q of
states with the initial state qI ∈ Q, an input alphabet Σ, a stack alphabet Γ, a transition
relation ∆ to be specified, and a set F of final states. For notational convenience, we define
Σε = Σ∪{ε} and Γ⊥ = Γ∪{⊥}, where ⊥ /∈ Γ is a designated stack bottom symbol. Then, the
transition relation ∆ is a subset of Q×Γ⊥ ×Σε ×Q×Γ⩽2

⊥ that we require to neither write nor
delete the stack bottom symbol from the stack: If (q, ⊥, a, q′, γ) ∈ ∆, then γ ∈ ⊥ · (Γ ∪ {ε}),
and if (q, X, a, q′, γ) ∈ ∆ for X ∈ Γ, then γ ∈ Γ⩽2. Given a transition τ = (q, X, a, q′, γ) let
ℓ(τ) = a ∈ Σε. We say that τ is an ℓ(τ)-transition and that τ is a Σ-transition, if ℓ(τ) ∈ Σ.
For a finite sequence ρ over ∆, the word ℓ(ρ) ∈ Σ∗ is defined by applying ℓ homomorphically
to every transition. We take the size of P to be |Q| + |Γ|.1

A stack content is a finite word in ⊥Γ∗ (i.e. the top of the stack is at the end) and a
configuration c = (q, γ) of P consists of a state q ∈ Q and a stack content γ. The initial
configuration is (qI , ⊥).

The set of modes of P is Q × Γ⊥. A mode (q, X) enables all transitions of the
form (q, X, a, q′, γ′) for some a ∈ Σε, q′ ∈ Q, and γ′ ∈ Γ⩽2

⊥ . The mode of a configura-
tion c = (q, γX) is (q, X). A transition τ is enabled by c if it is enabled by c’s mode. In this
case, we write (q, γX) τ−→ (q′, γγ′), where τ = (q, X, a, q′, γ′).

A run of P is a finite sequence ρ = c0τ0c1τ1 · · · cn−1τn−1cn of configurations and transitions
with c0 being the initial configuration and cn′

τn′−−→ cn′+1 for every n′ < n. The run ρ is a run
of P on w ∈ Σ∗, if w = ℓ(ρ). We say that ρ is accepting if it ends in a configuration whose
state is final. The language L(P) recognized by P contains all w ∈ Σ∗ such that P has an
accepting run on w.

1 Note that we prove exponential succinctness gaps, so the exact definition of the size is irrelevant, as
long as it is polynomial in |Q| and |Γ|. Here, we pick the sum for the sake of simplicity.
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q

q1

q2

a, ⊥ | ⊥A

b, ⊥ | ⊥B
c, X | XN

d, N | ε

d, N | N

d, N | ε d, N | ε

d, N | N

b, B | ε

a, A | ε

Figure 1 The PDA P from Example 2. Grey states are final, and X is an arbitrary stack symbol.

▶ Remark 1. Let c0τ0c1τ1 · · · cn−1τn−1cn be a run of P. Then, the sequence c0c1 · · · cn−1cn

of configurations is uniquely determined by the sequence τ0τ1 · · · τn−1 of transitions. Hence,
whenever convenient, we treat a sequence of transitions as a run if it indeed induces one (not
every such sequence does induce a run, e.g. if a transition τn′ is not enabled in cn′).

We say that a PDA P is deterministic (DPDA) if
every mode of P enables at most one a-transition for every a ∈ Σ ∪ {ε}, and
for every mode of P, if it enables some ε-transition, then it does not enable any Σ-
transition.

Hence, for every input and for every run prefix on it there is at most one enabled transition
to continue the run. Still, due to the existence of ε-transitions, a DPDA can have more than
one run on a given input. However, these only differ by trailing ε-transitions.

The class of languages recognized by PDA is denoted by CFL, the class of languages
recognized by DPDA by DCFL.

▶ Example 2. The PDA P depicted in Figure 1 recognizes the language {acndna | n ⩾
1} ∪ {bcnd2nb | n ⩾ 1}. Note that while P is nondeterministic, L(P) is in DCFL.

2.2 Good-for-games Pushdown Automata
Here, we introduce good-for-games pushdown automata on finite words (GFG-PDA for short),
nondeterministic pushdown automata whose nondeterminism can be resolved based on the
run prefix constructed so far and on the next input letter to be processed, but independently
of the continuation of the input beyond the next letter.

As an example, consider the PDA P from Example 2. It is nondeterministic, but knowing
whether the first transition of the run processed an a or a b allows the nondeterminism to be
resolved in a configuration of the form (q, γN) when processing a d: in the former case, take
the transition to state q1, in the latter case the transition to state q2. Afterwards, there are
no nondeterministic choices to make and the resulting run is accepting whenever the input is
in the language. This automaton is therefore good-for-games.

Formally, a PDA P = (Q, Σ, Γ, qI , ∆, F ) is good-for-games if there is a (nondeterminism)
resolver for P , a function r : ∆∗ × Σ → ∆ such that for every w ∈ L(P), there is an accepting
run ρ = c0τ0 · · · τncn on w that has no trailing ε-transitions, i.e.
1. n = 0 if w = ε (which implies that c0 is accepting), and
2. ℓ(τ0 · · · τn−1) is a strict prefix of w, if w ̸= ε,
and τn′ = r(τ0 · · · τn′−1, w(|ℓ(τ0 · · · τn′−1)|)) for all 0 ⩽ n′ < n. If w is nonempty, then
w(|ℓ(τ0 · · · τn′−1)|) is defined for all 0 ⩽ n′ < n by the second requirement. Note that ρ is
unique if it exists.

Note that the prefix processed so far can be recovered from r’s input, i.e. it is ℓ(ρ).
However, the converse is not true due to the existence of ε-transitions. This is the reason
that the run prefix and not the input prefix is the argument for the resolver. We denote the
class of languages recognised by GFG-PDA by GFG-CFL.

MFCS 2021
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Intuitively, every DPDA should be good-for-games, as there is no nondeterminism to
resolve during a run. However, in order to reach a final state, a run of a DPDA on some
input w may traverse trailing ε-transitions after the last letter of w is processed. On the
other hand, the run of a GFG-PDA on w consistent with any resolver has to end with
the transition processing the last letter of w. Hence, not every DPDA recognises the same
language when viewed as a GFG-PDA. Nevertheless, we show, using standard pushdown
automata constructions, that every DPDA can be turned into an equivalent GFG-PDA. As
every GFG-PDA is a PDA by definition, we obtain a hierarchy of languages.

▶ Lemma 3. DCFL ⊆ GFG-CFL ⊆ CFL.

Instead of requiring that GFG-PDA end their run with the last letter processed, one
could add an end-of-word marker that allows traversing trailing ε-transitions after the last
letter has been processed. In Appendix A.1, we show that this alternative definition does
not increase expressiveness, which explains our (arguably simpler) definition.

Finally, let us remark that GFGness of PDA and context-free languages is undecidable.
These problems were shown to be undecidable for ω-GFG-PDA and ω-GFG-CFL by reductions
from the inclusion and universality problem for PDA on finite words [25]. The same reductions
also show that these problems are undecidable over PDA on finite words.

▶ Theorem 4. The following problems are undecidable:
1. Given a PDA P, is P a GFG-PDA?
2. Given a PDA P, is L(P) ∈ GFG-CFL?

2.3 Games and Universality
One of the motivations for GFG automata is that solving games with winning conditions
given by a GFG automaton is easier than for nondeterministic automata. This makes them
appealing for applications such as the synthesis of reactive systems, which can be modelled as
a game between an antagonistic environment and the system. Solving games is undecidable
for PDA in general [11], both over finite and infinite words, while for ω-GFG-PDA, it is
ExpTime-complete [25]. As a corollary, universality is also decidable for ω-GFG-PDA, while
it is undecidable for PDA, both over finite and infinite words [19].

Here, we consider Gale-Stewart games [12], abstract games induced by a language in
which two players alternately pick letters, thereby constructing an infinite word. One player
aims to construct a word that is in the language while the other aims to construct one that
is not in the language. Note that these games are different, but related, to games played on
configuration graphs of pushdown automata [39].

Formally, given a language L ⊆ (Σ1 × Σ2)∗ of sequences of letter pairs, the game G(L)
is played between Player 1 and Player 2 in rounds i = 0, 1, . . . as follows: At each round i,
Player 1 plays a letter ai ∈ Σ1 and Player 2 answers with a letter bi ∈ Σ2. A play of G(L) is
an infinite word

(
a0
b0

)(
a1
b1

)
· · · and Player 2 wins such a play if and only if each of its prefixes

is in the language L. A strategy for Player 2 is a mapping from Σ+
1 to Σ2 that gives for each

prefix played by Player 1 the next letter to play. A play agrees with a strategy σ if for each i,
bi = σ(a0a1 . . . ai). Player 2 wins G(L) if she has a strategy that only agrees with plays that
are winning for Player 2. Observe that Player 2 loses whenever the projection of L onto its
first component is not universal. Finally, universality reduces to solving these games: P is
universal if and only if Player 2 wins G(L) for L = {

(
w(0)

#
)

· · ·
(

w(n)
#

)
| w(0) · · · w(n) ∈ L(P)}.

We now argue that solving games for GFG-PDA easily reduces to the case of ω-GFG-PDA,
which are just GFG-PDA over infinite words, where acceptance is not determined by final
state, since runs are infinite, but rather by the states or transitions visited infinitely often.
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Here, we only need safety ω-GFG-PDA, in which every infinite run is accepting (i.e. rejection
is implemented via missing transitions). The infinite Gale-Stewart game over a language L

of infinite words, also denoted by G(L), is as above, except that victory is determined by
whether the infinite word built along the play is in L.

▶ Lemma 5. Given a GFG-PDA P, there is a safety ω-GFG-PDA P ′ no larger than P such
that Player 2 wins G(L(P)) if and only if she wins G(L(P ′)).

Proof. Let P ′ be the PDA obtained from P by removing all transitions (q, X, a, q′, γ) of P
with a ∈ Σ and with non-final q′.

With a safety condition, in which every infinite run is accepting, P ′ recognises exactly
those infinite words whose prefixes are all accepted by P. Hence, the games G(L(P)) and
G(L(P ′)) have the same winning player. Note that the correctness of this construction
crucially relies on our definition of GFG-PDA, which requires a run on a finite word to end
as soon as the last letter is processed. Then, the word is accepted if and only if the state
reached by processing this last letter is final.

Finally, since P is GFG, so is P ′. Consider an infinite input in L(P ′). Then, every
prefix w has an accepting run of P induced by its resolver, which implies that the last
transition of this run (which processes the last letter of w) is not one of those that are
removed to obtain P ′. Now, an induction shows that the same resolver works for P ′ as
well, relying on the fact that if w and w′ with |w| < |w′| are two such prefixes, then the
resolver-induced run of P on w is a prefix of the resolver-induced run of P on w′. ◀

Our main results of this section are now direct consequences of the corresponding results
on ω-words [25].

▶ Corollary 6. Given a GFG-PDA P, deciding whether L(P) = Σ∗ and whether Player 2
wins G(L(P)) are both in ExpTime.

2.4 Closure properties
Like ω-GFG-PDA, GFG-PDA have poor closure properties.

▶ Theorem 7. GFG-PDA are not closed under union, intersection, complementation, set
difference and homomorphism.

The proofs are similar to those used for ω-GFG-PDA and relegated to the full version [14].
There, we also study the closure properties under these operations with regular languages: If
L is in GFG-CFL and R is regular, then L ∪ R, L ∩ R and L\R are also in GFG-CFL, but
R\L is not necessarily in GFG-CFL.

3 Expressiveness

Here we show that GFG-PDA are more expressive than DPDA but less expressive than PDA.

▶ Theorem 8. DCFL ⊊ GFG-CFL ⊊ CFL.

To show that GFG-PDA are more expressive than deterministic ones, we consider the
language B2 = {ai$aj$bk$ | k ⩽ max(i, j)}. It is recognised by the PDA PB2 depicted in
Figure 2, hence B2 ∈ CFL. The first two states q1 and q2 deterministically push the input
onto the stack, until the occurrence of the second $. When the second $ is processed, there
is a nondeterministic choice to move to p1 or p2 and erase along ε-transitions 1 or 0 blocks

MFCS 2021
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q1 q2 p1 p2 f

a, X | Xa

$, X | X$ $, X | X$

a, X | Xa

$, X | X

$, X | X

ε, a | ε b, a | ε

ε, $ | ε

Figure 2 A PDA PB2 recognising B2. Grey states are final, and X is an arbitrary stack symbol.

from the stack, so that the 1st or 2nd block of a’s respectively remains at the top of the
stack. Then, the automaton compares the length of the b-block in the input with the length
of the a-block at the top of the stack and accepts if the b-block is shorter, i.e. the third
$ is processed before the whole a-block is popped off the stack. If the input has not the
form ai$aj$bk$, then it is rejected.

We show that B2 ∈ GFG-CFL by proving that PB2 is good-for-games: the nondeter-
ministic choice between moving to p1 or to p2 can be made only based on the prefix ai$aj

processed so far. This is straightforward, as a resolver only needs to know which of i and j is
larger, which can be determined from the run prefix constructed thus far. Then, in order
to show that B2 is not in DCFL, we prove that its complement Bc

2 is not a context-free
language. Since DCFL is closed under complementation, this implies the desired result.

Finally, to show that PDA are more expressive than GFG-PDA, we consider the language
L = {anbn | n ⩾ 0} ∪ {anb2n | n ⩾ 0}. We note that L ∈ CFL while we show below L /∈
GFG-CFL.

Unambiguous context-free languages, i.e. those generated by grammars for which every
word in the language has a unique leftmost derivation, are another class sitting between
DCFL and CFL. Thus, it is natural to ask how unambiguity and GFGness are related: To
conclude this section, we show that both notions are independent.

▶ Theorem 9. There is an unambiguous context-free language that is not in GFG-CFL and
a language in GFG-CFL that is inherently ambiguous.

An unambiguous grammar for the language {anbn | n ⩾ 0}∪{anb2n | n ⩾ 0} /∈ GFG-CFL
is easy to construct and we show that the language B = {aibjck | i, j, k ⩾ 1, k ⩽ max(i, j)}
is inherently ambiguous. Its inclusion in GFG-CFL is easily established using a similar
argument as for the language B2 = {ai$aj$bk$ | k ⩽ max(i, j)} above. The dollars add
clarity to the GFG-PDA but are cumbersome in the proof of inherent ambiguity.

4 Succinctness

We show that GFG-PDA are not only more expressive than DPDA, but also more succinct.
Similarly, we show that PDA are more succinct than GFG-PDA.

▶ Theorem 10. GFG-PDA can be exponentially more succinct than DPDA, and PDA can
be double-exponentially more succinct than GFG-PDA.

We first show that GFG-PDA can be exponentially more succinct than DPDA. To this
end, we construct a family (Cn)n∈N of languages such that Cn is recognised by a GFG-DPDA
of size O(n), yet every DPDA regognising Cn has at least exponential size in n.

Let cn ∈ (${0, 1}n)∗ be the word describing an n-bit binary counter counting from 0 to
2n − 1. For example, c2 = $00$01$10$11. We consider the family of languages Cn =

{
w ∈

{0, 1, $, #}∗ | w ̸= cn#
}

⊆ {0, 1, $, #}∗ of bad counters.
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We show that the language Cn is recognised by a GFG-PDA of size O(n) and that every
DPDA D recognising Cn has exponential size in n. Observe that this result implies that even
GFG-PDA that are equivalent to DPDA are not determinisable by pruning. In contrast, for
NFA, GFGness implies determinisability by pruning [6].

We conclude this section by showing that PDA can be double-exponentially more succinct
than GFG-PDA. We show that there exists a family (Ln)n>0 of languages such that Ln is
recognised by a PDA of size O(log n) while every GFG-PDA recognising this language has
at least exponential size in n.

Formally, we set Ln = (0 + 1)∗1(0 + 1)n−1, that is, the nth bit from the end is a 1. We
count starting from 1, so that the last bit is the 1st bit from the end. Note that this is the
standard example for showing that NFA can be exponentially more succinct than DFA, and
has been used for many other succinctness results ever since.

5 Good-for-games Visibly Pushdown Automata

One downside of GFG-PDA is that, like ω-GFG-PDA, they have poor closure properties and
checking GFGness is undecidable. We therefore consider a well-behaved class of GFG-PDA,
namely GFG visibly pushdown automata, GFG-VPA for short, that is closed under union,
intersection, and complementation.

Let Σc, Σr and Σint be three disjoint sets of call symbols, return symbols and internal
symbols respectively. Let Σ = Σc ∪ Σr ∪ Σint. A visibly pushdown automaton [2] (VPA)
P = (Q, Σ, Γ, qI , ∆, F ) is a restricted PDA that pushes onto the stack only when it reads a
call symbol, it pops the stack only when a return symbol is read, and does not use the stack
when there is an internal symbol. Formally,

a letter a ∈ Σc is only processed by transitions of the form (q, X, a, q′, XY ) with X ∈ Γ⊥,
i.e. some stack symbol Y ∈ Γ is pushed onto the stack.
A letter a ∈ Σr is only processed by transitions of the form (q, X, a, q′, ε) with X ̸= ⊥ or
(q, ⊥, a, q′, ⊥), i.e. the topmost stack symbol is removed, or if the stack is empty, it is left
unchanged.
A letter a ∈ Σint is only processed by transitions of the form (q, X, a, q′, X) with X ∈ Γ⊥,
i.e. the stack is left unchanged.
There are no ε-transitions.

Intuitively, the stack height of the last configuration of a run processing some w ∈ (Σc ∪ Σr ∪
Σs)∗ only depends on w.

We denote by GFG-VPA the VPA that are good-for-games. Every VPA (and hence every
GFG-VPA) can be determinised, i.e. all three classes of automata recognise the same class
of languages, denoted by VPL, which is a strict subset of DCFL [2]. However, VPA can be
exponentially more succinct than deterministic VPA (DVPA) [2]. We show that there is an
exponential gap both between the succinctness of GFG-VPA and DVPA and between VPA
and GFG-VPA. The proof of the former gap again uses a language of bad counters, similar
to Cn used in Theorem 10, which we adapt for the VPA setting by adding a suffix allowing
the automaton to pop the stack. Furthermore, for the gap between VPA and GFG-VPA, we
similarly adapt the language Ln of words where the nth bit from the end is a 1, from the
proof of Theorem 10, by making sure that the stack height is always bounded by 1. Then, a
GFG-VPA is essentially a GFG-NFA, and therefore determinisable by pruning, which means
that it is as big as a deterministic automaton for the language.

▶ Theorem 11. GFG-VPA can be exponentially more succinct than DVPA and VPA can be
exponentially more succinct than GFG-VPA.
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We now turn to the question of deciding whether a given VPA is GFG. We show decidability
using the one-token game, introduced by Bagnol and Kuperberg [3]. It modifies the game-
based characterisation of GFGness of ω-regular automata by Henzinger and Piterman [16].
While the one-token game does not characterise the GFGness of Büchi automata, here we
show that it suffices for VPA. The matching lower bound follows from a reduction from the
inclusion problem for VPA, which is ExpTime-hard [2], to GFGness (see [25] for details of
the reduction in the context of ω-GFG-PDA).

▶ Theorem 12. The following problem is ExpTime-complete: Given a VPA P, is P GFG?

We first define the one-token game, introduced by Bagnol and Kuperberg [3] in the
context of regular languages, for VPA. Given a VPA P = (Q, Σ, Γ, qI , ∆, F ), the positions
of the one-token game consist of pairs of configurations (ci, c′

i), starting from the initial
configuration of P. At each round i:

Player 1 picks a letter ai ∈ Σ,
Player 2 picks an ai-transition τi ∈ ∆ enabled in ci, leading to a configuration ci+1,
Player 1 picks an ai-transition τ ′

i ∈ ∆ enabled in c′
i, leading to a configuration c′

i+1,
The game proceeds from the configuration (ci+1, c′

i+1).
A play consists of an infinite word a0a1 · · · ∈ Σω and two sequences of transitions τ0τ1 · · ·
and τ ′

0τ ′
1 · · · built by Players 2 and 1 respectively. Player 1 wins if for some n, τ ′

0 · · · τ ′
n

is an accepting run of P over a0 . . . an and τ0 · · · τn is not. Recall that VPA do not have
ε-transitions, so the two runs proceed in lockstep.

Observe that this game can be seen as a safety game on a visibly pushdown arena and
can therefore be encoded as a Gale-Stewart game with a DCFL winning condition. This in
turn is solvable in ExpTime [39]. To prove Theorem 12, it now suffices to argue that this
game characterises whether the VPA P is GFG.

Proof. We now argue that P is GFG if and only if Player 2 wins the one-token game on P.
One direction is immediate: if P is GFG, then the resolver is also a strategy for Player 2 in
the one-token game.

For the converse direction, consider the family of copycat strategies for Player 1 that
copy the transition chosen by Player 2 until she plays an a-transition from a configuration c

to a configuration c′ such that there is a word aw that is accepted from c but w is not
accepted from c′. We call such transitions non-residual. If Player 2 plays such a non-residual
transition, then the copycat strategies stop copying and instead play the letters of w and the
transitions of an accepting run over aw from c.

If Player 2 wins the one-token game with a strategy s, she wins, in particular, against
this family of copycat strategies for Player 1. Observe that copycat strategies win any play
along which Player 2 plays a non-residual transition. Therefore s must avoid ever playing a
non-residual transition. We can now use s to induce a resolver rs for P : rs maps a sequence
of transitions over a word w to the transition chosen by s in the one-token game where
Player 1 played w and a copycat strategy. Then, rs never produces a non-residual transition.
As a result, if a word w is in L(P), then the run induced by rs over every prefix v of w leads
to a configuration that accepts the remainder of w. This is in particular the case for w itself,
for which rs induces an accepting run. This concludes our argument that rs is indeed a
resolver, and P is therefore GFG.

Thus, to decide whether a VPA P is GFG it suffices to solve the one-token game on P,
which can be done in exponential time. ◀
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Finally, we relate the GFGness problem to the good-enough synthesis problem [1], also
known as the uniformization problem [9], which is similar to the Church synthesis problem,
except that the system is only required to satisfy the specification on inputs in the projection
of the specification on the first component.

Let w ∈ Σ1 and w′ ∈ Σ2 with |w| = |w′|. Then, for the sake of readability, we write
(

w
w′

)
for the word

(
w(0)
w′(0)

)
· · ·

(
w(|w|−1)
w′(|w|−1)

)
over Σ1 × Σ2.

▶ Definition 13 (ge-synthesis). Given a language L ⊆ (Σ1 × Σ2)∗, is there a function
f : Σ∗

1 → Σ2 such that for each w ∈ {w | ∃w′ ∈ Σ∗
2.

(
w
w′

)
) ∈ L} the word

(
w
w′

)
is in L, where

w′(n) = f(w(0) · · · w(n)) for each 0 ⩽ n < |w|.

We now prove that the ge-synthesis problem for GFG-VPA and DVPA is as hard as the
GFGness problem for VPA, giving us the following corollary of Theorem 12.

▶ Corollary 14. The ge-synthesis problem for inputs given by GFG-VPA, and in particular
for DVPA, is ExpTime-complete.

Proof. We first reduce the good-enough synthesis problem to the GFGness problem. Given a
GFG-VPA P = (Q, Σ1 × Σ2, Γ, qI , ∆, F ), with resolver r, let P ′ be P projected onto the first
component: P ′ = (Q, Σ1, Γ, qI , ∆′, F ) has the same states, stack alphabet and final states as
P, but has an a-transition for some a ∈ Σ1 whenever P has the same transition over

(
a
b

)
for

some b ∈ Σ2. Let each transition of P ′ be annotated with the Σ2-letter of the corresponding
P-transition. Thus P ′ recognises the projection of L(P) on the first component.

A resolver for P ′ induces a ge-synthesis function for P by reading the Σ2-annotation of
the chosen transitions in P ′. Indeed, the resolver produces an accepting run with annotation
w′ of P ′ for every word w in the projection of L(P) on the first component. The same run
is an accepting run in P over

(
w
w′

)
which is therefore in L(P). Conversely a ge-synthesis

function f for P, combined with r, induces a resolver r′ for P ′ by using f to choose output
letters and r to choose which transition of P to use; together these uniquely determine a
transition in P ′. Then, if w ∈ L(P ′), f guarantees that the annotation of the run induced by
r′ in P ′ is a witness w′ such that

(
w
w′

)
∈ P, and then r guarantees that the run is accepting,

since the corresponding run in P over
(

w
w′

)
must be accepting.

We now reduce the GFGness problem of a VPA P = (Q, Σ, Γ, qI , ∆, F ) to the ge-synthesis
problem of a DVPA P ′ = (Q, Σ × ∆, Γ, qI , ∆′, F ). The deterministic automaton P ′ is as
P except that each transition τ over a letter a in ∆ is replaced with the same transition
over

(
a
τ

)
in ∆′. In other words, P ′ recognises the accepting runs of P and its ge-synthesis

problem asks whether there is a function that constructs on-the-fly an accepting run for
every word in L(P), that is, whether P has a resolver. ◀

In contrast, for LTL specifications, the ge-synthesis problem is 2ExpTime-complete [1].

6 Resolvers

The definition of a resolver does not put any restrictions on its complexity. In this section
we study the complexity of the resolvers that GFG-PDA need. We consider two somewhat
orthogonal notions of complexity: memory and machinery. On one hand, we show that
resolvers can always be chosen to be positional, that is, dependent on the current state
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and stack configuration only. Note that this is not the case for ω-regular automata2, let
alone ω-GFG-PDA. On the other hand, we show that they are not always implementable by
pushdown transducers.

More formally, a resolver r is positional, if for any two sequences ρ and ρ′ of transitions
inducing runs ending in the same configuration, r(ρ, a) = r(ρ′, a) for all a ∈ Σ.

▶ Lemma 15. Every GFG-PDA has a positional resolver.

Proof. Let r′ be a (not necessarily positional) resolver for P. We define a resolver r such
that for each configuration and input letter, it makes a choice consistent with r′ for some
input leading to this configuration. In other words, for every reachable configuration c, let
ρc be an input to r′ inducing a run ending in c. Then, we define r(ρ, a) = r(ρc, a), where c is
the last configuration of the run induced by ρ.

We claim that r, which is positional by definition, is a resolver. Towards a contradiction,
assume that this is not the case, i.e. there is a word w ∈ L(P) such that the run ρ induced
by r is rejecting. Since this run is finite and w ∈ L(P), there is some last configuration c

along the run ρ from which the rest of the word, say u, is accepted3 (by some other run of P
having the same prefix as ρ up to configuration c). Let τ be the next transition along ρ from
c. Since r chose τ , the resolver r′ also chooses τ after some history leading to c, over some
word v. Since u is accepted from c, the word vu is in L(P); since r′ is a resolver, there is an
accepting run over u from c starting with τ , contradicting that c is the last position on ρ

from where the rest of the word could be accepted. ◀

Contrary to the case of finite and ω-regular automata, since GFG-PDA have an infinite
configuration space, the existence of positional resolvers does not imply determinisability.
On the other hand, if a GFG-PDA has a resolver which only depends on the mode of the
current configuration, then it is determinisable by pruning, as transitions that are not used
by the resolver can be removed to obtain a deterministic automaton. However, not all
GFG-PDA are determinisable by pruning, e.g. the GFG-PDA for the languages Cn used to
prove Theorem 10.

We now turn to how powerful resolvers for GFG-PDA need to be. First, we introduce
transducers as a way to implement a resolver. A transducer is an automaton with outputs
instead of acceptance, i.e., it computes a function from input sequences to outputs. A
pushdown resolver is a pushdown transducer that implements a resolver.

Note that a resolver has to pick enabled transitions in order to induce accepting runs for
all inputs in the language. To do so, it needs access to the mode of the last configuration.
However, to keep track of this information on its own, the pushdown resolver would need
to simulate the stack of the GFG-PDA it controls. This severely limits the ability of the
pushdown resolver to implement computations on its own stack. Thus, we give a pushdown
resolver access to the current mode of the GFG-PDA via its output function, thereby freeing
its own stack to implement further functionalities.

Formally, a pushdown transducer (PDT for short) T = (D, λ) consists of a DPDA D
augmented with an output function λ : QD → Θ mapping the states QD of D to an output
alphabet Θ. The input alphabet of T is the input alphabet of D.

2 A positional resolver for ω-regular automata implies determinisability by pruning, and we know that
this is not always possible [6].

3 Observe that this is no longer true over infinite words as an infinite run can stay within configurations
from where an accepting run exists without being itself accepting. In fact, the lemma does not even hold
for coBüchi automata [23] as the existence of positional resolvers implies determinisability by pruning.
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q1 q2 q3

p1 p2 p3 f
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ε, a | ε ε, a | ε b, a | ε
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$, X | X

$, X | X

$, X | X

ε, $ | ε ε, $ | ε $, X | X$

Figure 3 The PDA PB3 for B3. Grey states are final, and X is an arbitrary stack symbol.

Then, given a PDA P = (Q, Σ, Γ, qI , ∆, F ), a pushdown resolver for P consists of a
pushdown transducer T = (D, λ) with input alphabet ∆ and output alphabet Q × Γ⊥ × Σ →
∆ such that the function rT , defined as follows, is a resolver for P: rT (τ0 . . . τk, a) =
λ(qT )(qP , X, a) where

qT is the state of the last configuration of the longest run of D on τ0 . . . τk (recall that
while D is deterministic, it may have several runs on an input which differ on trailing
ε-transitions);
(qP , X) is the mode of the last configuration of the run of P induced by τ0 . . . τk.

In other words, a transducer implements a resolver by processing the run so far, and then
uses the output of the state reached and the state and top stack symbol of the GFG-PDA to
determine the next transition in the GFG-PDA.

We now give an example of a GFG-PDA which does not have a pushdown resolver. The
language in question is the language B3 = {ai$aj$ak$bl$ | l ⩽ max(i, j, k)}. Compare this
to the language B2 in Section 3 which does have a pushdown resolver. Let PB3 be the
automaton in Figure 3, which works analogously to the automaton for B2 in Figure 2.

This automaton recognises B3: for a run to end in the final state, the stack, and therefore
the input, must have had an a-block longer than or equal to the final b-block; conversely, if
the b-block is shorter than or equal to some a-block, the automaton can nondeterministically
pop the blocks on top of the longest a-block off the stack before processing the b-block.
Furthermore, this automaton is GFG: the nondeterminism can be resolved by removing from
the stack all blocks until the longest a-block is at the top of the stack, and this choice can be
made once the third $ is processed.

We now argue that this GFG-PDA needs more than a pushdown resolver. The reason
is that a pushdown resolver needs to be able to determine which of the three blocks is the
longest while processing a prefix of the form a∗$a∗$a∗. However, at least one of the languages
induced by these three choices is not context-free, yielding the desired contradiction.

▶ Lemma 16. The GFG-PDA PB3 has no pushdown resolver.

Proof. Towards a contradiction, assume that there is a pushdown resolver r for PB3 , imple-
mented by a PDT T = (D, λ).

From T , for each i ∈ {1, 2, 3}, we can construct a PDA Di that recognises the language
of words w ∈ a∗$a∗$a∗ such that T chooses from q3 the transition of PB3 going to pi

when constructing a run on w$: this is simply the pushdown automaton D underlying T
where transitions of D processing non-ε transitions τ of PB3 are modified to now process
ℓ(τ) ∈ {a, b, $}, transitions of D processing ε-transitions of PB3 are removed, and states q of
D such that λ(q)(q3, X, $) = (q3, $, X, pi, X) are made final, intersected with a DFA checking
that the input is in a∗$a∗$a∗.
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Since T implements a resolver for P , each Di only accepts words of the form am1$am2$am3

such that max(m1, m2, m3) = mi. Furthermore, at least for one i ∈ {1, 2, 3}, Di accepts
am$am$am for infinitely many m.

To reach a contradiction, we now argue that this Di recognises a language that is not
context-free. Indeed, if it were, then by applying the pumping lemma for context-free
languages, there would be a large enough m such that the word am$am$am ∈ L(Di) could
be decomposed as uvwyz such that |vy| ⩾ 1 and uvnwynz is in the language of Di for all
n ⩾ 0. In this decomposition, v and y must be $-free. Then, if either v or y occurs in the ith

block and is non-empty, by setting n = 0 we obtain a contradiction as the ith block is no
longer the longest. Otherwise, we obtain a similar contradiction by setting n = 2. In either
case, this shows that T is not a pushdown resolver for P. ◀

Another restricted class of resolvers are finite-state resolvers, which can be seen as
pushdown resolvers that do not use their stack. Similarly to the case of ω-GFG-PDA [26],
the product of a GFG-PDA and a finite-state resolver yields a DPDA for the same language.

▶ Remark 17. Every GFG-PDA with a finite-state resolver is determinisable.

Note that the converse does not hold. For example, consider the regular, and therefore
deterministic context-free, language L10 of words w# with w ∈ {a, b}∗ with infix a10. A
GFG-PDA P10 recognising L10 can be constructed as follows: P10 pushes its input onto its
stack until processing the first #. Before processing this letter, P10 uses ε-transitions to
empty the stack again. While doing so, it can nondeterministically guess whether the next 10
letters removed from the stack are all a’s. If yes, it accepts; in all other cases (in particular
if the input word does not end with the first # or the infix a10 is not encountered on the
stack) it rejects. This automaton is good-for-games, as a resolver has access to the whole
prefix before the first # when searching for a10 while emptying the stack. This is sufficient
to resolve the nondeterminism. On the other hand, there is no finite-state resolver for P10,
as resolving the nondeterminism, intuitively, requires to keep track of the whole prefix before
the first # (recall that a finite-state resolver only has access to the topmost stack symbol).

In Appendix A.2 we consider another model of pushdown resolver, namely one that
does not only have access to the mode of the GFG-PDA, but can check the full stack for
regular properties. We show that this change does not increase the class of good-for-games
context-free languages that are recognised by a GFG-PDA with a pushdown resolver.

Finally, for GFG-VPA, the situation is again much better. The classical game-based
characterisation of GFGness of ω-regular automata by Henzinger and Piterman [16] can be
lifted to VPA. Then, using known results [27] about VPA games having VPA strategies, we
obtain our final theorem.

▶ Theorem 18. Every GFG-VPA has a (visibly) pushdown resolver.

Proof. Fix a VPA P = (Q, Σ, Γ, qI , ∆, F ) and consider the following two-player game G(P),
introduced by Henzinger and Piterman to decide GFGness of ω-automata [16]. In each
round, first Player 1 picks a letter from Σ or ends the play. If he has not ended the play,
then Player 2 picks a transition of P. Hence, once Player 1 has stopped the play, Player 1
has picked an input word w over Σ∗ and Player 2 has indicated a run ρ of P. A finite play
with outcome (w, ρ) is winning for Player 2 if either w /∈ L(P) or ρ induces an accepting
run of P on w. A strategy for Player 2 in this game is a mapping σ : Σ+ → ∆ and an
outcome (w(0) · · · w(k), ρ(0) · · · ρ(k)) is consistent with σ, if ρ(j) = σ(w(0) · · · w(j)) for every
0 ⩽ j ⩽ k. We say that σ is winning for Player 2, if every outcome of a finite play that is
consistent with σ is winning for her (note that we disregard infinite plays).
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Now, Player 2 wins G(P) if and only if P is a GFG-VPA. This follows as every winning
strategy for Player 2 can be turned into a resolver and vice versa.

Now, as the class of languages recognized by VPA, is closed under complementation
and union [2], one can encode G(P) as a Gale-Stewart game with a VPL winning condition.
Such games can be solved effectively [27] and the winner always has a winning strategy
implemented by a (visibly) PDT. Thus, if P is a GFG-VPA, i.e. Player 2 wins G(P), then
she has a winning strategy implemented by a (visibly) PDT, which can easily be turned into
a (visibly) pushdown resolver for P. ◀

7 Conclusion

We have continued the study of good-for-games pushdown automata, focusing on express-
iveness and succinctness. In particular, we have shown that GFG-PDA are not only more
expressive than DPDA (as had already been shown for the case of infinite words), but also
more succinct than DPDA: We have introduced the first techniques for using GFG nonde-
terminism to succinctly represent languages that do not depend on the coBüchi condition.
Similarly, for the case of VPA, for which deterministic and nondeterministic automata are
equally expressive, we proved a (tight) exponential gap in succinctness.

Solving games and universality are decidable for GFG-PDA, but GFGness is undecidable
and GFG-PDA have limited closure properties. On the other hand, GFGness for VPA
is decidable and they inherit the closure properties of VPA, e.g. union, intersection and
complementation, making GFG-VPA an exciting class of pushdown automata. Finally,
we have studied the complexity of resolvers for GFG-PDA, showing that positional ones
always suffice, but that they are not always implementable by pushdown transducers. Again,
GFG-VPA are better-behaved, as they always have a resolver implementable by a VPA.

Let us conclude by mentioning some open problems raised by our work.
It is known that the succinctness gap between PDA and DPDA is noncomputable [15, 38],
i.e. there is no computable function f such that any PDA of size n that has some
equivalent DPDA also has an equivalent DPDA of size f(n). Due to our hierarchy results,
at least one of the succinctness gaps between PDA and GFG-PDA and between GFG-PDA
and DPDA has to be uncomputable, possibly both.
We have shown that some GFG-PDA do not have pushdown resolvers. It is even open
whether every GFG-PDA has a computable resolver.
On the level of languages, it is open whether every language in GFG-CFL has a GFG-PDA
recognising it with a resolver implementable by a pushdown transducer.
We have shown that GFGness is undecidable, both for PDA and for context-free languages.
Is it decidable whether a given GFG-PDA has an equivalent DPDA?
Equivalence of DPDA is famously decidable [36] while it is undecidable for PDA [19]. Is
equivalence of GFG-PDA decidable?
Does every GFG-PDA that is equivalent to a DPDA have a finite-state resolver with
regular stack access (see Appendix A.2 for definitions)?
There is a plethora of fragments of context-free languages one can compare GFG-CFL to,
let us just mention a few interesting ones: Height-deterministic context-free languages [30],
context-free languages with bounded nondeterminism [17] and preorder typeable visibly
pushdown languages [21].
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A Appendix

A.1 Resolvers with End-of-word Markers
As mentioned in the main part, GFG-PDA are by definition required to end their run with
the last letter of the input word. Instead, one could also consider a model where they are
allowed to take some trailing ε-transitions after the last input letter has been processed. As a
resolver has access to the next input letter, which is undefined in this case, we need resolvers
with end-of-word markers to signal the resolver that the last letter has been processed. In the
following, we show that GFG-PDA with end-of-word resolvers are as expressive as standard
GFG-PDA, albeit exponentially more succinct.

Fix some distinguished end-of-word-marker #, which takes the role of the next input
letter to be processed, if there is none after the last letter of the input word is processed. Let
P = (Q, Σ, Γ, qI , ∆, F ) be a PDA with # /∈ Σ. An EoW-resolver for P is a function r : ∆∗ ×
(Σ ∪ {#}) → ∆ such that for every w ∈ L(P), there is an accepting run c0τ0 · · · τncn on w

such that τn′ = r(τ0 · · · τn′−1, w#(|ℓ(τ0 · · · τn′−1)|)) for all 0 ⩽ n′ < n. Note that the second
argument given to the resolver is a letter of w#, which is equal to # if the run prefix induced
by τ0 · · · τn′−1 has already processed the full input w.

▶ Lemma 19. GFG-PDA with EoW-resolvers are as expressive as GFG-PDA.

Proof. A (standard) resolver can be turned into an EoW-resolver that ignores the EoW-
marker. Hence, every GFG-PDA is a GFG-PDA with EoW-resolver recognizing the same
language. So, it only remains to consider the other inclusion.

To this end, let P = (Q, Σ, Γ, qI , ∆, F ) be a PDA with EoW-resolver. The language

Cacc = {γq | q ∈ F and γ ∈ ⊥Γ∗} ⊆ ⊥Γ∗Q

encoding final configurations of P is regular. Hence, the language

C = {γq ∈ ⊥Γ∗Q | there is a run infix (q, γ)τ0 · · · τn−1cn

with ℓ(τ0 · · · τn−1) = ε and cn ∈ Cacc}

can be shown to be regular as well by applying saturation techniques [7]4 to the restriction
of P to ε-transitions. If P reaches a configuration c ∈ C after processing an input w, then
w ∈ L, even if c’s state is not final.

Let A = (QA, Γ⊥ ∪ Q, qA
I , δA, FA) be a DFA recognizing C. We extend the stack alphabet

of P to Γ × QA × (QA ∪ {u}), where u is a fresh symbol. Then, we extend the transition
relation such that it keeps track of the unique run of A on the stack content: If P reaches a
stack content ⊥(X1, q1, q′

1)(X2, q2, q′
2) · · · (Xs, qs, q′

s), then we have

qj = δ∗
A(qA

I , ⊥X1 · · · Xj)

for every 1 ⩽ j ⩽ s as well as q′
j = qj−1 for every 2 ⩽ j ⩽ s and q′

1 = u. Here, δ∗
A is the

standard extension of δA to words. The adapted PDA is still good-for-games, as no new
nondeterminism has been introduced, and keeps track of the state of A reached by processing
the stack content as well as the shifted sequence of states of A, which is useful when popping
the top stack symbol: If the topmost stack symbol (X, q, q′) is popped of the stack then q′ is
the state of A reached when processing the remaining stack.

4 Also, see the survey by Carayol and Hague [8] for more details.
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Now, we double the state space of P, making one copy final, and adapt the transition
relation again so that a final state is reached whenever P would reach a configuration in
C. Whether a configuration in C is reached can be determined from the current state
of P being simulated, as well as the top stack symbol containing information on the run
of A on the current stack content. The resulting PDA P ′ recognizes L(P) and has on
every word w ∈ L(P) an accepting run without trailing ε-transitions. Furthermore, an
EoW-resolver for P can be turned into a (standard) resolver for P ′, as the tracking of stack
contents and the doubling of the state space does not introduce nondeterminism. ◀

As A has at most exponential size, P ′ is also exponential (both in the size of P). This
exponential blowup incurred by removing the end-of-word marker is in general unavoidable.
In Theorem 10, we show that the language Ln of bit strings whose nth bit from the end is a
1 requires exponentially-sized GFG-PDA. On the other hand, it is straightforward to devise
a polynomially-sized GFG-PDA PEoW with EoW-marker recognizing Ln: the underlying
PDA stores the input word on the stack, guesses nondeterministically that the word has
ended, uses n (trailing) ε-transitions to pop of the last n − 1 letters stored on the stack,
and then checks that the topmost stack symbol is a 1. With an EoW-resolver, the end of
the input does not have to be guessed, but is marked by the EoW-marker. Hence, PEoW is
good-for-games.

A.2 Pushdown Resolvers with Regular Stack Access
Recall that pushdown transducers implementing a resolver have access to the mode of the
GFG-PDA whose nondeterminism it resolves. Here, we consider a more general model
where the transducer can use information about the whole stack when determining the next
transition. More precisely, we consider a regular abstraction of the possible stack contents
by fixing a DFA running over the stack and allowing the transducer to base its decision on
the state reached by the DFA as well.

Then, given a PDA P = (Q, Σ, Γ, qI , ∆, F ), a pushdown resolver with regular stack access
T = (D, A, λ) consists a DPDA P with input alphabet ∆, a DFA A over Γ⊥ with state
set QA, and an output function λ with output alphabet Q × QA × Σ → ∆ such that the
function rT defined as follows, is a resolver for P:

rT (τ0 . . . τk, a) = λ(qT )(qP , qA, a)

where
qT is the state of the last configuration of the longest run of D on τ0 . . . τk (recall that
while D is deterministic, it may have several runs on an input which differ on trailing
ε-transitions).
Let c be the last configuration of the run of P induced by τ0 . . . τk. Then, qP is the state
of c and qA is the state of A reached when processing the stack content of c.

Every pushdown resolver with only access to the current mode is a special case of a
pushdown resolver with regular stack access. On the other hand, having regular access to
the stack is strictly stronger than having just access to the mode. However, by adapting
the underlying GFG-PDA, one can show that the languages recognised by GFG-PDA with
pushdown resolvers does not increase when allowing regular stack access.

▶ Lemma 20. Every GFG-PDA with a pushdown resolver with regular stack access can be
turned into an equivalent GFG-PDA with a pushdown resolver.
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Proof. Let P = (Q, Σ, Γ, qI , ∆, F ) be a GFG-PDA and let (D, A, λ) be a pushdown resolver
with stack access for P. We keep track of the state A reaches on the current stack as in the
proof of Lemma 19: If a stack content ⊥(X1, q1) · · · (Xs, qs) is reached, then qj is the unique
state of P reached when processing ⊥X1 · · · Xj . Now, it is straightforward to turn (D, A, λ)
into a pushdown resolver for P that has only access to the top stack symbol. ◀
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