
Syntactic Minimization Of
Nondeterministic Finite Automata
Robert S. R. Myers #

London, United Kingdom

Henning Urbat #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
Nondeterministic automata may be viewed as succinct programs implementing deterministic auto-
mata, i.e. complete specifications. Converting a given deterministic automaton into a small non-
deterministic one is known to be computationally very hard; in fact, the ensuing decision problem is
PSPACE-complete. This paper stands in stark contrast to the status quo. We restrict attention to
subatomic nondeterministic automata, whose individual states accept unions of syntactic congruence
classes. They are general enough to cover almost all structural results concerning nondeterministic
state-minimality. We prove that converting a monoid recognizing a regular language into a small
subatomic acceptor corresponds to an NP-complete problem. The NP certificates are solutions of
simple equations involving relations over the syntactic monoid. We also consider the subclass of
atomic nondeterministic automata introduced by Brzozowski and Tamm. Given a deterministic
automaton and another one for the reversed language, computing small atomic acceptors is shown to
be NP-complete with analogous certificates. Our complexity results emerge from an algebraic char-
acterization of (sub)atomic acceptors in terms of deterministic automata with semilattice structure,
combined with an equivalence of categories leading to succinct representations.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Algebraic language theory, Nondeterministic automata, NP-completeness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2021.78

Related Version Full Version: http://arxiv.org/abs/2107.03229

Funding Henning Urbat: Supported by Deutsche Forschungsgemeinschaft (DFG) under project
SCHR 1118/15-1.

1 Introduction

Regular languages arise from a multitude of different perspectives: operationally via finite-
state machines, model-theoretically via monadic second-order logic, and algebraically via
finite monoids. In practice, deterministic finite automata (dfas) and nondeterministic finite
automata (nfas) are two of the most common representations. Although the former may be
exponentially larger than the latter, there is no known efficient procedure for converting dfas
into small nfas, e.g. state-minimal ones. Jiang and Ravikumar proved the corresponding
decision problem (does an equivalent nfa with a given number of states exist?) to be PSPACE-
complete [14, 15], suggesting that exhaustively enumerating candidates is necessary. One
possible strategy towards tractability is to restrict the target automata to suitable subclasses
of nfas. The challenge is to identify subclasses permitting more efficient computation (e.g.
lowering the PSPACE bound to an NP bound, enabling the use of SAT solvers), while still
being general enough to cover succinct acceptors of regular languages.

In our present paper we will show that the class of subatomic nfas naturally meets the above
requirements. An nfa accepting the language L is subatomic if each individual state accepts
a union of syntactic congruence classes of L. In recent work [26] we observed that almost
all known results on the structure of small nfas, e.g. for unary [6, 13], bideterministic [30],

© Robert S. R. Myers and Henning Urbat;
licensed under Creative Commons License CC-BY 4.0

46th International Symposium on Mathematical Foundations of Computer Science (MFCS 2021).
Editors: Filippo Bonchi and Simon J. Puglisi; Article No. 78; pp. 78:1–78:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:me.robmyers@gmail.com
mailto:henning.urbat@fau.de
https://orcid.org/0000-0002-3265-7168
https://doi.org/10.4230/LIPIcs.MFCS.2021.78
http://arxiv.org/abs/2107.03229
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


78:2 Syntactic Minimization of Nondeterministic Finite Automata

topological [1] and biRFSA languages [19], implicitly construct small subatomic nfas. This
firmly indicates that the latter form a rich class of acceptors despite their seemingly restrictive
definition, i.e. in many settings computing small nfas amounts to computing small subatomic
ones. Restricting to subatomic nfas yields useful additional structure; in fact, their theory is
tightly linked to the algebraic theory of regular languages and the representation theory of
monoids. This suggests an algebraic counterpart of the dfa to nfa conversion problem: given
a finite monoid recognizing some regular language, compute an equivalent small subatomic
nfa. Denoting its decision version (does an equivalent subatomic nfa with a given number of
states exist?) by MON→ NFAsyn, our main result is:

▶ Theorem. The problem MON→ NFAsyn is NP-complete.

In addition we also investigate atomic nfas, a subclass of subatomic nfas earlier introduced by
Brzozowski and Tamm [4]. Similar to the subatomic case, their specific structure naturally
invokes the problem of converting a pair of dfas accepting mutually reversed languages into
a small atomic nfa. Denoting its decision version by DFA + DFAr → NFAatm, we get:

▶ Theorem. The problem DFA + DFAr → NFAatm is NP-complete.

The short certificates witnessing that both problems are in NP are solutions of equations
involving relations over the syntactic congruence or the Nerode left congruence, respectively.

The above two theorems sharply contrast the PSPACE-completeness of the general dfa to
nfa conversion problem, but also previous results on its sub-PSPACE variants. The latter are
either concerned with particular regular languages such as finite or unary ones [11,13], or
with target nfas admitting only very weak forms of nondeterminism, such as unambiguous
automata [15] or dfas with multiple initial states [22]. In contrast, our present work applies
to all regular languages and the restriction to (sub)atomic nfas is a purely semantic one.

Our results are fundamentally based upon a category-theoretic perspective on atomic
and subatomic acceptors. At its heart are two equivalences of categories as indicated below:

JSLop
f

≃←−−−−−−−−−−→
Structure theory

JSLf
≃←−−−−−−−−−−−→

Complexity theory
Dep.

As shown in [26], the structure theory of (sub)atomic nfas emerges by interpreting them as
dfas endowed with semilattice structure, and relating them to their dual automata under
the familiar self-duality of the category JSLf of finite semilattices. Similarly, the complexity
theory of (sub)atomic nfas developed in the present paper rests on the equivalence between
JSLf and a category Dep (see Definition 3.1) that yields succinct relational representations
of finite semilattices by their irreducible elements. To derive the NP-completeness theorems,
we reinterpret semilattice automata associated to (sub)atomic nfas inside Dep. We regard
this conceptually simple and natural categorical approach as a key contribution of our paper.

2 Atomic and Subatomic NFAs

We start by setting up the notation and terminology used in the rest of the paper, including
the key concept of a (sub)atomic nfa that underlies our complexity results. Readers are
assumed to be familiar with basic category [21].

Semilattices. A (join-)semilattice is a poset (S,≤S) in which every finite subset X ⊆ S has
a least upper bound (a.k.a. join)

∨
X. A morphism between semilattices is a map preserving

finite joins. If S is finite as we often assume, every subset X ⊆ S also has a greatest lower



R. S. R. Myers and H. Urbat 78:3

bound (a.k.a. meet)
∧

X, given by the join of its lower bounds. In particular, S has a least
element ⊥S =

∨
∅ and a greatest element ⊤S =

∧
∅. An element j ∈ S is join-irreducible

if j =
∨

X implies j ∈ X for every subset X ⊆ S. Dually, m ∈ S is meet-irreducible if
m =

∧
X implies m ∈ X. We put

J(S) = { j ∈ S : j is join-irreducible } and M(S) = {m ∈ S : m is meet-irreducible }.

Note ⊥S ̸∈ J(S) and ⊤S ̸∈M(S). The join-irreducibles form the least set of join-generators
of S, i.e. every element of S is a join of elements from J(S), and every other subset J ⊆ S

with that property contains J(S). Dually, M(S) is the least set of meet-generators of S.
Let 2 = {0, 1} be the two-element semilattice with 0 ≤ 1. Morphisms i : 2 → S

correspond to elements of S via i 7→ i(1). Morphisms f : S → 2 correspond to prime filters
via f 7→ f−1[1]. If S is finite, these are precisely the subsets Fs0 = {s ∈ S : s ̸≤S s0} for any
s0 ∈ S.

We denote by JSL the category of join-semilattices and their morphisms. Its full
subcategory JSLf of finite semilattices is self-dual [17]: there is an equivalence functor

JSLop
f

≃−→ JSLf

mapping (S,≤S) to the opposite semilattice Sop = (S,≥S) obtained by reversing the order,
and a morphism f : S → T to the morphism f∗ : T op → Sop sending t ∈ T to the ≤S-greatest
element s ∈ S with f(s) ≤T t. Thus, f and f∗ satisfy the adjoint relationship

f(s) ≤T t iff s ≤S f∗(t)

for all s ∈ S and t ∈ T . The morphism f is injective (equivalently a JSLf -monomorphism)
iff f∗ is surjective (equivalently a JSLf -epimorphism).

Relations. A relation between sets X and Y is a subset R ⊆ X × Y . We write R(x, y) if
(x, y) ∈ R. For x ∈ X and A ⊆ X we put

R[x] = { y ∈ Y : R(x, y) } and R[A] =
⋃

x∈A

R[x].

The converse of R is the relation R̆ ⊆ Y ×X (alternatively R̆ ) where R̆(y, x) iff R(x, y) for
x ∈ X and y ∈ Y . The composite of R ⊆ X×Y and S ⊆ Y ×Z is the relation R;S ⊆ X×Z

where R(x, z) iff there exists y ∈ Y with R(x, y) and S(y, z). Let Rel denote the category
whose objects are sets and whose morphisms are relations with the above composition. The
identity morphism on X is the identity relation idX ⊆ X ×X with idX(x, y) iff x = y.

A biclique of a relation R ⊆ X × Y is subset of the form B1 ×B2 ⊆ R, where B1 ⊆ X

and B2 ⊆ Y . A set C of bicliques forms a biclique cover if R =
⋃
C. The bipartite dimension

of R, denoted dim(R), is the minimum cardinality of any biclique cover.

Languages. Let Σ∗ be the set of finite words over an alphabet Σ including the empty
word ε. A language is a subset L of Σ∗. We let L = Σ∗ \ L denote the complement and
Lr = {wr : w ∈ L} the reverse of L, where εr = ε and wr = an . . . a1 for w = a1 . . . an. The
left derivatives and two-sided derivatives of L are, respectively, given by u−1L = {w ∈ Σ∗ :
uw ∈ L} and u−1Lv−1 = {w ∈ Σ∗ : uwv ∈ L} for u, v ∈ Σ∗; moreover for U ⊆ Σ∗ put
U−1L =

⋃
u∈U u−1L. For each fixed L ⊆ Σ∗, the following sets of languages will play a

prominent role:

LD(L) ⊆ SLD(L) ⊆ BLD(L) ⊆ BLRD(L)

MFCS 2021



78:4 Syntactic Minimization of Nondeterministic Finite Automata

where LD(L) = {u−1L : u ∈ Σ∗} is the set of left derivatives, and SLD(L), BLD(L), BLRD(L)
denote its closure under finite unions, all set-theoretic boolean operations, and all set-
theoretic boolean operations and two-sided derivatives, respectively. The final three form
∪-semilattices, and the final two are boolean algebras w.r.t. the set-theoretic operations.

A language L is regular if LD(L) is a finite set; then the other three sets are finite too.
The finite semilattices SLD(L) and SLD(Lr) are related by the fundamental isomorphism

drL : [SLD(Lr)]op ∼=−→ SLD(L), K 7→ (Kr)−1L, (2.1)

see [26, Proposition 3.13]. Equivalently, the map drL sends V −1Lr ∈ SLD(Lr) to the largest
element of SLD(L) disjoint from V r. It is closely connected to the dependency relation of L,

DRL ⊆ LD(L)× LD(Lr), DRL(u−1L, v−1Lr) :⇐⇒ uvr ∈ L for u, v ∈ Σ∗. (2.2)

In fact, by [26, Theorem 3.15] we have

DRL(u−1L, v−1Lr) ⇐⇒ u−1L ̸⊆ drL(v−1Lr) for u, v ∈ Σ∗. (2.3)

Since the boolean algebra BLD(L) is generated by the left derivatives of L, its atoms (=
join-irreducibles) are the congruence classes of the Nerode left congruence ∼L ⊆ Σ∗ × Σ∗,

u ∼L v iff ∀x ∈ Σ∗ : u ∈ x−1L⇔ v ∈ x−1L iff (ur)−1Lr = (vr)−1Lr. (2.4)

Note that this relation is left-invariant, i.e. u ∼L v implies wu ∼L wv for all w ∈ Σ∗.
Similarly, the atoms of BLRD(L) are the congruence classes of the syntactic congruence

≡L ⊆ Σ∗ × Σ∗, i.e. the monoid congruence on the free monoid Σ∗ defined by

u ≡L v iff ∀x, y ∈ Σ∗ : u ∈ x−1Ly−1 ⇔ v ∈ x−1Ly−1. (2.5)

The quotient monoid syn(L) = Σ∗/≡L is called the syntactic monoid of L, and the canonical
map µL : Σ∗ ↠ syn(L) sending u ∈ Σ∗ to its congruence class [u]≡L

is the syntactic morphism.

Automata. Fix a finite alphabet Σ. A nondeterministic finite automaton (a.k.a. nfa)
N = (Q, δ, I, F ) consists of a finite set Q (the states), relations δ = (δa ⊆ Q×Q)a∈Σ (the
transitions), and sets I, F ⊆ Q (the initial states and final states). We write q1

a−→ q2 whenever
q2 ∈ δa[q1]. The language L(N, q) accepted by a state q ∈ Q consists of all words w ∈ Σ∗

such that δw[q] ∩ F ̸= ∅, where δw ⊆ Q×Q is the extended transition relation δa1 ; . . . ; δan

for w = a1 . . . an and δε = idQ. The language accepted by N is defined L(N) =
⋃

i∈I L(N, i).
An nfa N is a deterministic finite automaton (a.k.a. dfa) if I = {q0} is a singleton set

and each transition relation is a function δa : Q → Q. A dfa is a JSL-dfa if Q is a finite
semilattice, each δa : Q→ Q is a semilattice morphism, and F ⊆ Q forms a prime filter. It is
often useful to represent a JSL-dfa in terms of morphisms

2
i−→ Q

δa−→ Q
f−→ 2

where i is the unique morphism with i(1) = q0 and f is given by f(q) = 1 iff q ∈ F . A JSL-
dfa morphism from A = (Q, δ, i, f) to A′ = (Q′, δ′, i′, f ′) is a JSLf -morphism h : Q → Q′

preserving transitions via h ◦ δa = δ′
a ◦ h, preserving the initial state via i′ = h ◦ i, and both

preserving and reflecting the final states via f = f ′ ◦ h. Equivalently, h is a dfa morphism
that is also a semilattice morphism, so in particular L(A) = L(A′). If Q is a subsemilattice
of Q′ and h : Q ↣ Q′ is the inclusion map, then A is called a sub JSL-dfa of A′.



R. S. R. Myers and H. Urbat 78:5

Fix a regular language L. Viewed as a ∪-semilattice, BLRD(L) carries the structure of a
JSL-dfa with transitions K

a−→ a−1K, initial state L, and finals {K : ε ∈ K}. This restricts
to sub JSL-dfas BLD(L) and SLD(L). Moreover LD(L) forms a sub-dfa of SLD(L), well-
known [5] to be the state-minimal dfa for L, so we denote it by dfa(L). The syntactic monoid
syn(L) is isomorphic to the transition monoid of dfa(L), i.e. the monoid of all extended
transition maps δw : LD(L)→ LD(L) (w ∈ Σ∗) with multiplication given by composition [27].

Analogously SLD(L) is the state-minimal JSL-dfa for L. Up to isomorphism, it is the
unique JSL-dfa for L that is JSL-reachable (i.e. every state is a join of states reachable from
the initial state via transitions) and simple (i.e. distinct states accept distinct languages).

Nfas, dfas and JSL-dfas are expressively equivalent and accept precisely the regular
languages. In particular, to every JSL-dfa A = (Q, δ, q0, F ) one can associate an equivalent
nfa J(A), the nfa of join-irreducibles [1, 2, 25]. Its states are given by the set J(Q) of
join-irreducibles of Q; for any q1, q2 ∈ J(Q) and a ∈ Σ there is a transition q1

a−→ q2 in J(A)
iff q2 ≤Q δa(q1); a state q ∈ J(Q) is initial iff q ≤S q0, and final iff q ∈ F . For any q ∈ J(Q),
we have L(A, q) = L(J(A), q). The canonical residual finite state automaton [7] for a regular
language L is given by NL = J(SLD(L)), the nfa of join-irreducibles of its minimal JSL-dfa.

Atomic and subatomic nfas. An nfa accepting the language L ⊆ Σ∗ is called atomic [4]
if each state accepts a language from BLD(L), and subatomic [26] if each state accepts a
language from BLRD(L). The nondeterministic atomic complexity natm(L) of a regular
language L is the least number of states of any atomic nfa accepting L. The nondeterministic
syntactic complexity nsyn(L) is the least number of states of any subatomic nfa accepting
L. Subatomic nfas are intimately connected to syntactic monoids: the atoms of BLRD(L)
are the elements of syn(L), so an nfa accepting L is subatomic iff its individual states
accept unions of syntactic congruence classes. Additionally nsyn(L) can be characterized via
boolean representations of syn(L), i.e. monoid morphisms ϱ : syn(L)→ JSLf (S, S) into the
endomorphisms of a finite semilattice [26]. For a detailed exposition we refer to op. cit.

These complexity measures are related to the nondeterministic state complexity ns(L),
i.e. the least number of states of any (unrestricted) nfa accepting L. In particular,

dim(DRL) ≤ ns(L) ≤ nsyn(L) ≤ natm(L). (2.6)

The first inequality is due to Gruber and Holzer [10] (see also [26, Theorem 4.8] for a purely
algebraic proof), while the others arise by restricting admissible nondeterministic acceptors.

Importantly, small atomic and subatomic nfas can be characterized in terms of JSL-dfas.
The following theorem involves two commuting diagrams of semilattice morphisms, whose
lower and upper paths are the canonical JSL-dfas described earlier.

▶ Theorem 2.1. Let L ⊆ Σ∗ be a regular language.

1. natm(L) is the least number k such that there exists a finite semilattice S with |J(S)| ≤ k

and JSLf -morphisms p, q and τa (a ∈ Σ) making the left-hand diagram below commute.

2. nsyn(L) is the least number k such that there exists a finite semilattice S with |J(S)| ≤ k

and JSLf -morphisms p, q and τa (a ∈ Σ) making the right-hand diagram below commute.

MFCS 2021



78:6 Syntactic Minimization of Nondeterministic Finite Automata

BLD(L)
δ′

a // BLD(L)
f ′

##
2

i′
;;

i
##

S

q

OO

τa // S

q

OO

2

SLD(L)

p

OO

δa

// SLD(L)

p

OO

f

;;

BLRD(L)
δ′′

a // BLRD(L)
f ′′

##
2

i′′
;;

i
##

S

q

OO

τa // S

q

OO

2

SLD(L)

p

OO

δa

// SLD(L)

p

OO

f

;;

Proof. We only prove part (1), the proof of (2) being completely analogous.

Suppose there exists a finite semilattice S with |J(S)| = k and JSLf -morphisms p, q and
(τa)a∈Σ making the left diagram commute. Then A = (S, τ, p ◦ i, f ′ ◦ q) is a JSL-dfa and
p : SLD(L) → A and q : A → BLD(L) are JSL-dfa morphisms. Since JSL-dfa morphisms
preserve the accepted language, and every state K ∈ BLD(L) accepts the language K, it
follows that A accepts L and every state of A accepts a language from BLD(L). Thus the
nfa J(A) of join-irreducibles corresponding to A is an atomic nfa for L with k states.

Conversely, assume N = (Q, δ, I, F ) is a k-state atomic nfa accepting L. Form the ∪-
semilattice S = langs(N) of all languages L(N, X) accepted by subsets X ⊆ Q. Note that
SLD(L) ⊆ S ⊆ BLD(L): the first inclusion holds because u−1L = L(N, δw[I]) ∈ S for every
u ∈ Σ∗, and the second one because N is atomic. We define the semilattice endomorphisms

τa : S → S by τa(K) = a−1K for K ∈ S,

Letting p : SLD(L) ↣ S and q : S ↣ BLD(L) denote the inclusions, the left diagram
commutes. Moreover |J(S)| ≤ k since S is join-generated by the elements L(N, q) for
q ∈ Q. ◀

3 Representing Finite Semilattices as Finite Relations

We have seen that atomic and subatomic nfas amount to certain dfas with semilattice structure.
To obtain our NP-completeness results concerning the computation of small (sub)atomic
acceptors we will study succinct representations of the corresponding JSLf -diagrams from
Theorem 2.1. For this purpose, we start with the following key observation:

Any finite semilattice S is completely determined by its poset of irreducibles [23], i.e.
the relation ̸≤S ⊆ J(S)×M(S) between join-irreducibles and meet-irreducibles.

We now prove that this extends to an equivalence between the category JSLf of finite
semilattices and another category called Dep. Its objects are the relations between finite sets
and its morphisms represent semilattice morphisms as relations. The equivalence is inspired
by Moshier’s categories of contexts [16,24] and will serve as the conceptual basis of our work.

▶ Definition 3.1 (The category of dependency relations). The objects of the category Dep
are the relations R ⊆ Rs ×Rt between finite sets. Far less obviously,

a morphism P : R → S is a relation P ⊆ Rs ×St that factorizes through R and S, i.e.
the left Rel-diagram below commutes for some Pl ⊆ Rs × Ss and Pu ⊆ St ×Rt.

The identity morphism for R is idR = R, see the central diagram below. The composite
P#Q : R → T of P : R → S andQ : S → T is any of the five equivalent relational compositions



R. S. R. Myers and H. Urbat 78:7

starting from the bottom left corner and ending at the top right corner of the rightmost
diagram below; that is, P #Q := Pl;Ql; T = Pl;Q = Pl;S; Q̆u = P; Q̆u = R;Pŭ; Q̆u. (Note
that we use the symbol # for composition in Dep and ; for composition in Rel, and recall
that (−)̆ denotes the converse relation.)

Rt
Pŭ // St

Rs

R

OO

P
88

Pl

// Ss

S

OO
Rt

id̆ // Rt

Rs

R

OO

R
88

id
// Rs

R

OO
Rt

Pŭ // St
Q̆u // Tt

Rs

R

OO

P
88

Pl

// Ss

S

OO
Q

88

Ql

// Ts

T

OO

One readily verifies that Dep is a well-defined category; in particular, the composition is
independent of the choice of the lower and upper witnesses (−)l and (−)u.

▶ Remark 3.2.
1. Using the converse upper witness may seem strange. Although technically unnecessary,

it fits the self-duality of Dep taking the converse on objects and morphisms. Moreover
f ;≰T = ≰S ; f∗̆ for any JSLf -morphism f : S → T via the adjoint relationship; that is, f

induces a Dep-morphism from ̸≤S to ̸≤T with lower witness f and upper witness f∗.
2. The witnesses of a Dep-morphism P : R → S are closed under unions. The maximal

lower witness P− ⊆ Rs × Ss is given by

P−(x, y) :⇐⇒ S[y] ⊆ P[x] for x ∈ Rs, y ∈ Ss,

and the maximal upper witness P+ ⊆ St ×Rt by

P+(y, x) :⇐⇒ R̆[x] ⊆ P̆[y] for x ∈ Rt, y ∈ St.

▶ Theorem 3.3 (Fundamental equivalence). The categories JSLf and Dep are equivalent.

1. The equivalence functor Pirr : JSLf → Dep maps a finite semilattice S to the Dep-object

Pirr(S) := ̸≤S ⊆ J(S)×M(S),

and a JSLf -morphism f : S → T to the Dep-morphism

Pirr(f) : Pirr(S)→ Pirr(T ), Pirr(f)(j, m) :⇔ f(j) ̸≤T m for j ∈ J(S), m ∈M(T ).

2. The inverse Open : Dep→ JSLf maps a Dep-object R to its semilattice of open sets

Open(R) := ({R[X] : X ⊆ Rs},⊆),

and a Dep-morphism P : R → S to the JSLf -morphism

Open(P) : Open(R)→ Open(S), Open(P)(O) := P+̆[O] for O ∈ Open(R),

where P+ ⊆ St ×Rt is the maximal upper witness of P.

▶ Remark 3.4. In the definition of Pirr(S) one may replace J(S) and M(S) by any two
sets J, M ⊆ S of join- and meet-generators modulo Dep-isomorphism. Indeed, since the
equivalence functor Open reflects isomorphisms, this follows immediately from the JSLf -
isomorphism Open(̸≤S ∩ J ×M) ∼= Open(̸≤S ∩ J(S)×M(S)) given by O 7→ O ∩M(S).

▶ Remark 3.5. Bijectively relabeling the domain and codomain of a relation defines a
Dep-isomorphism, the witnesses being the relabelings.

MFCS 2021



78:8 Syntactic Minimization of Nondeterministic Finite Automata

We now show that for every regular language L, the semilattices SLD(L), BLD(L) and
BLRD(L) equipped with their canonical JSL-dfa structure (see Section 2) translate under
the equivalence functor Pirr into familiar concepts from automata theory. The translations
are summarized in Table 1 and explained in Examples 3.6–3.8 below.

Table 1 Canonical JSL-dfas and their corresponding Dep-structures.

JSLf Dep

2
i−→ SLD(L) δa−→ SLD(L) f−→ 2 id1

I−→ DRL

DRL,a−−−−→ DRL
F−→ id1

2
i′
−→ BLD(L)

δ′
a−→ BLD(L) f ′

−→ 2 id1
I′
−→ idΣ∗/∼L

D′
a−−→ idΣ∗/∼L

F′
−−→ id1

2
i′′
−→ BLRD(L)

δ′′
a−−→ BLRD(L) f ′′

−−→ 2 id1
I′′
−−→ idsyn(L)

D′′
a−−→ idsyn(L)

F′′
−−→ id1

▶ Example 3.6 (State-minimal JSL-dfa vs. dependency relation DRL). Let us start with
the observation that SLD(L) is join-generated by LD(L) and meet-generated by drL[LD(Lr)].
The latter follows via the fundamental isomorphism (2.1). Then

Pirr(SLD(L))(u−1L, drL(v−1Lr)) def.⇐⇒ u−1L ⊈ drL(v−1Lr) (2.3)⇐⇒ DRL(u−1L, v−1Lr)

for every u−1L ∈ J(SLD(L)) and v−1Lr ∈ J(SLD(Lr)). Thus,

Pirr(SLD(L)) is a bijective relabeling of DRL restricted to J(SLD(L))× J(SLD(Lr)).

By Remark 3.4 we know Pirr(SLD(L)) is isomorphic to the domain-codomain extension
⊈ ⊆ LD(L) × drL[LD(Lr)] and thus also to the dependency relation DRL by Remark
3.5. Then the JSL-dfa structure of the semilattice SLD(L) translates into the category of
dependency relations as shown in Table 1, where id1 is the identity relation on 1 = {∗} and

I ⊆ 1× LD(Lr), DRL,a ⊆ LD(L)× LD(Lr), F ⊆ LD(L)× 1,

I(∗, v−1Lr)⇔ v ∈ Lr, DRL,a(u−1L, v−1Lr)⇔ uavr ∈ L, F(u−1L, ∗)⇔ u ∈ L.

▶ Example 3.7 (BLD(L) vs. the Nerode left congruence ∼L). In Section 2 we observed that
the atoms of the boolean algebra BLD(L) are the congruence classes of the Nerode left
congruence. Then the co-atoms are their relative complements, and

Pirr(BLD(L))([u]∼L
, [v]∼L

) def.⇐==⇒ [u]∼L
̸⊆ [v]∼L

⇐⇒ [u]∼L
= [v]∼L

.

By Remark 3.5, we see that BLD(L) corresponds to the Dep-object idΣ∗/∼L
, and its JSL-dfa

structure translates into the category of dependency relations as indicated in Table 1, where

I ′ ⊆ 1× Σ∗/∼L, D′
a ⊆ Σ∗/∼L × Σ∗/∼L, F ′ ⊆ Σ∗/∼L × 1,

I ′(∗, [u]∼L
)⇔ u ∈ L, D′

a([u]∼L
, [v]∼L

)⇔ [v]∼L
⊆ a−1[u]∼L

, F ′([u]∼L
, ∗)⇔ u ∼L ε.

We note that the above relations induce an nfa

(Σ∗/∼L, (D′
a)a∈Σ, I ′[∗], F̆ ′[∗]) known as the átomaton for the language L [4].

▶ Example 3.8 (BLRD(L) vs. the syntactic monoid syn(L)). Analogously, the boolean algebra
BLRD(L) corresponds to the Dep-object idsyn(L). Its semilattice dfa structure translates into
the category of dependency relations as shown in Table 1, where

I ′′ ⊆ 1× syn(L), D′′
a ⊆ syn(L)× syn(L), F ′′ ⊆ syn(L)× 1,

I ′′(∗, [u]≡L
)⇔ u ∈ L, D′′

a([u]≡L
, [v]≡L

)⇔ [v]≡L
⊆ a−1[u]≡L

, F ′′([u]≡L
, ∗)⇔ u ≡L ε.



R. S. R. Myers and H. Urbat 78:9

We conclude this section with two lemmas establishing important properties of the
equivalence. The first concerns the bipartite dimension of relations (see Section 2):

▶ Lemma 3.9. Let R be a relation between finite sets.
1. dim(R) is the least |J(S)| of any injective JSLf -morphism m : Open(R) ↣ S.
2. dim(R) is invariant under isomorphism, i.e. R ∼= S in Dep implies dim(R) = dim(S).
The second explicitly describes the join- and meet-irreducibles of the semilattice Open(R).

▶ Notation 3.10. For R ⊆ Rs ×Rt we define the following operator on the power set of Rt:

inR : P(Rt)→ P(Rt), Y 7→
⋃
{R[X] : X ⊆ Rs and R[X] ⊆ Y }.

Thus, inR(Y ) is the largest open set of R contained in Y ⊆ Rt.

▶ Lemma 3.11. Let R ⊆ Rs ×Rt be a relation between finite sets.
1. J(Open(R)) consists of all sets R[x] (x ∈ Rs) that cannot be expressed as a union of

smaller such sets, i.e. R[x] =
⋃

i∈I R[xi] implies R[x] = R[xi] for some i ∈ I.
2. M(Open(R)) consists of all sets inR(Rt \ {y}) such that R̆[y] lies in J(Open(R̆)).

4 Nuclear Languages and Lattice Languages

As a further technical tool, we now introduce two classes of regular languages. They are
well-behaved w.r.t. their small nfas and will emerge at the heart of our NP-completeness
proofs in Section 5. Their definition rests on the notion of a nuclear morphism in JSLf ,
originating from the theory of symmetric monoidal closed categories [12,28]. Recall that a
finite semilattice is a distributive lattice if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all elements
x, y, z.

▶ Definition 4.1 (Nuclear language). A JSLf -morphism f : S → T is nuclear if it factorizes
through a finite distributive lattice, i.e. f = (S g−→ D

h−→ T ) for some finite distributive
lattice D and JSLf -morphisms g, h. A regular language L ⊆ Σ∗ is nuclear if the transition
morphisms δa = a−1(−) : SLD(L)→ SLD(L) (a ∈ Σ) of its minimal JSL-dfa are nuclear.

▶ Example 4.2 (BiRFSA languages). A regular language L is biRFSA [19] if (NL)r ∼= NLr ,
that is, the canonical residual finite state automata for L and Lr (see Section 2) are reverse-
isomorphic. In [26, Example 5.7] we proved that the biRFSA languages are precisely those
whose semilattice SLD(L) is distributive. Thus biRFSA languages are nuclear.

There is a natural subclass of nuclear languages which need not be biRFSA:

▶ Definition 4.3 (Lattice language). For any S ∈ JSLf we define the language L(S) ⊆ Σ∗,

Σ := {⟨j| : j ∈ J(S)} ∪ {|m⟩ : m ∈M(S)} and L(S) :=
⋂

j≤Sm

Σ∗⟨j| |m⟩Σ∗.

Then Σ is the disjoint union of J(S) and M(S) (with the notation ⟨j| and |m⟩ used to
distinguish between elements of the two summands), and L(S) consists of all words over Σ
not containing any factor ⟨j| |m⟩ with j ≤S m.

▶ Lemma 4.4. For any S ∈ JSLf , the language L(S) is nuclear and S ∼= SLD(L(S)).

Crucially, for nuclear and lattice languages some of the relations (2.6) hold with equality:

▶ Proposition 4.5.
1. If L is a nuclear language then ns(L) = dim(DRL).
2. If L = L(S) is a lattice language then natm(L) = nsyn(L) = ns(L) = dim(DRL).
These equalities are the key fact making our reductions in the next section work.

MFCS 2021



78:10 Syntactic Minimization of Nondeterministic Finite Automata

5 Complexity of Computing Small (Sub)Atomic Acceptors

We are ready to present our main complexity results on small (sub)atomic nfas. First we
consider the slightly simpler atomic case, phrased as the following decision problem:

DFA + DFAr → NFAatm
Input: Two dfas A and B such that L(A) = L(B)r and a natural number k.
Task: Decide whether there exists a k-state atomic nfa equivalent to A, i.e. natm(L(A)) ≤ k.

▶ Remark 5.1. Taking mutually reverse dfas (A, B) as input permits an efficient computation
of the dependency relation DRL ⊆ LD(L)× LD(Lr) of L = L(A). One may assume A and
B are minimal dfas, so that their state sets QA and QB are in bijective correspondence
with LD(L) and LD(Lr). For p ∈ QA choose some wA(p) ∈ Σ∗ sending the initial state to p;
analogously choose wB(q) ∈ Σ∗ for q ∈ QB . Then DRL is a bijective relabeling of

D̃RL ⊆ QA ×QB where D̃RL(p, q) :⇐⇒ A accepts wA(p)wB(q)r
,

so it is computable in polynomial time from A and B. A completely analogous argument
applies to the relations I, DRL,a and F from Example 3.6.

▶ Theorem 5.2. The problem DFA + DFAr → NFAatm is NP-complete.

We establish the upper and lower bound separately in the next two propositions. Both their
proofs are based on the fundamental equivalence between JSLf and Dep.

▶ Proposition 5.3. The problem DFA + DFAr → NFAatm is in NP.

Proof.
1. One can check in polynomial time whether a given pair (A, B) of dfas forms a valid

input, i.e. satisfies L(A) = L(B)r. In fact, this condition is equivalent to L(A) ∩ L(B)r =
L(B) ∩ L(A)r = ∅. Using the standard methods for complementing dfas and reversing
and intersecting nfas, one can construct nfas for L(A) ∩ L(B)r and L(B) ∩ L(A)r of size
polynomial in |A| and |B|, the number of states of A and B, and check for emptyness by
verifying that no final state is reachable from the initial states.

2. Let A and B be dfas accepting the languages L and Lr, respectively, and let k be a
natural number. We claim the following three statements to be equivalent:
a. There exists an atomic nfa accepting L with at most k states.
b. There exists a finite semilattice S with |J(S)| ≤ k and JSLf -morphisms p, q and τa

(a ∈ Σ) making the left diagram below commute.
c. There exists a Dep-object S ⊆ Ss×St with |Ss| ≤ k and |St| ≤ |B| and Dep-morphisms
P , Q and Ta (a ∈ Σ) making the right diagram below commute (cf. Example 3.6/3.7).

BLD(L)
δ′

a // BLD(L)
f ′

!!
2

i′
==

i
!!

S

q

OO

τa // S

q

OO

2

SLD(L)

p

OO

δa

// SLD(L)

p

OO

f

==

idΣ∗/∼L

D′
a // idΣ∗/∼L

F ′

""

id1

I′
<<

I
""

S

Q

OO

Ta // S

Q

OO

id1

DRL

P

OO

DRL,a

// DRL

P

OO

F

<<
(5.1)



R. S. R. Myers and H. Urbat 78:11

In fact, (a)⇔(b) was shown in Theorem 2.1(1), and (b)⇔(c) follows from the equivalence
between JSLf and Dep. To see this, note that in the left diagram we may assume q to
be injective; otherwise, factorize q as q = q′ ◦ e′ with e surjective and q′ injective and
work with q′ instead of q. By the self-duality of JSLf , dualizing q yields a surjective
morphism from BLD(L) ∼= BLD(L)op to Sop. Thus,

|M(S)| = |J(Sop)| ≤ |J(BLD(L))| = |Σ∗/∼L| = |LD(Lr)| ≤ |B|.

In the two last steps, we use that the congruence classes of ∼L correspond bijectively to
left derivatives of Lr by (2.4), and that LD(Lr) is the set of states of the minimal dfa for
Lr.
By Example 3.6 and 3.7 the upper and lower path of the left diagram in JSLf correspond
under the equivalence functor Pirr to the upper and lower path of the right diagram in
Dep. Therefore, Theorem 3.3 shows the two diagrams to be equivalent.

3. From (a)⇔(c) we deduce that the relations S, P, Q and Ta (a ∈ Σ) constitute a short
certificate for the existence of an atomic nfa for L with at most k states. Commutativity
of the right diagram can be checked in polynomial time because all the relations appearing
in the upper and lower path can be efficiently computed from the given dfas A and B.
Indeed, for the lower path we have already noted this in Remark 5.1, and the upper path
emerges from the minimal dfa for Lr, using that Σ∗/∼L

∼= LD(Lr). ◀

▶ Remark 5.4. An alternative proof that DFA + DFAr → NFAatm is in NP uses the
following characterization of atomic nfas. Given an nfa N , let rsc(N r) denote the dfa
obtained by determinizing the reverse nfa N r via the subset construction and restricting to
its reachable part. Then N is atomic iff rsc(N r) is a minimal dfa [4, Corollary 2]. Thus, given
a pair (A, B) of mutually reversed dfas, to decide whether natm(L(A)) ≤ k one may guess a
k-state nfa N and verify that rsc(N r) is a minimal dfa equivalent to B. One advantage of our
above categorical argument is that it yields simple certificates in the form of Dep-morphisms
subject to certain commutative diagrams, which amount to solutions of equations in Rel.
The latter may be directly computed using a SAT solver, leading to a practical approach
to finding small atomic acceptors (cf. [9]). To this effect, let us note that the proof of
Proposition 5.3 actually shows how to construct small atomic nfas rather than just deciding
their existence: every certificate S,P,Q, Ta (a ∈ Σ) yields an atomic nfa with states Ss,
transitions given by (Ta)− ⊆ Ss × Ss for a ∈ Σ, initial states (I # P)−[∗] ⊆ Ss and final
states (Q # F ′)̆−[∗] ⊆ Ss. (Recall that # denotes composition in Dep and (−)− denotes the
maximum lower witness of a Dep-morphism, see Remark 3.2.) In fact, this is precisely the
nfa of join-irreducibles of the JSL-dfa (S, τ, p ◦ i, f ′ ◦ q) induced by the left diagram in (5.1).
Analogous reasoning also applies to the computation of small subatomic nfas treated in
Theorem 5.7 below.

▶ Proposition 5.5. The problem DFA + DFAr → NFAatm is NP-hard.

Proof. We devise a polynomial-time reduction from the NP-complete problem BICLIQUE
COVER [8]: given a pair (R, k) of a relation R ⊆ Rs×Rt between finite sets and a natural
number k, decide whether R has a biclique cover of size at most k, i.e. dim(R) ≤ k.

For any (R,k), let S = Open(R) be the finite semilattice of open sets corresponding to
the Dep-object R, cf. Theorem 3.3, and let L = L(S) be its lattice language. We claim that
the desired reduction is given by

(R, k) 7−→ (dfa(L), dfa(Lr), k),

MFCS 2021



78:12 Syntactic Minimization of Nondeterministic Finite Automata

where dfa(L) and dfa(Lr) are the minimal dfas for L and Lr. Thus, we need to prove that
(a) dim(R) = natm(L), and (b) the two dfas can be computed in polynomial time from R.

Ad (a). We have the following sequence of Dep-isomorphisms:

R
∼=←−−−−→

Thm 3.3
Pirr(Open(R)) = Pirr(S)

∼=←−−−→
Lem 4.4

Pirr(SLD(L(S))) = Pirr(SLD(L))
∼=←−−→

Ex 3.6
DRL.

Lemma 3.9(2) and Proposition 4.5 then imply dim(R) = dim(DRL) = natm(L).

Ad (b). Let J(Open(R)) = {j1, . . . , jn} and M(Open(R)) = {m1, . . . , mp}. Then dfa(L) and
dfa(Lr) are the automata depicted below, where L and Lr are their respective initial states.

L

|m⟩ : m∈M(S)

��

⟨j1|
ww

⟨jn|
''

⟨j1|−1L

⟨j1|

		

|m⟩:j1⊆m ((

|m⟩:j1⊈m 77

⟨jn| ,,
. . . ⟨jn|−1L

|m⟩:jn⊆mvv

|m⟩:jn⊈mgg

⟨jn|

		

⟨j1|
kk

∅

Σ

DD

Lr

⟨j| : j∈J(S)

��

|m1⟩
ww

|mp⟩
''

|m1⟩−1Lr

|m1⟩

		

⟨j|:j⊆m1 ((

⟨j|:j⊈m1 77

|mp⟩ --
. . . |mp⟩−1Lr

⟨j|:j⊆mpvv

⟨j|:j⊈mp
gg

|mp⟩

		

|m1⟩
ll

∅

Σ

DD

Both automata can be computed in polynomial time from R using Lemma 3.11. ◀

Next, we turn to the computation of small subatomic nfas. While in the atomic case the
input language was specified by a pair of dfas, we now assume an algebraic representation:

▶ Definition 5.6. A monoid recognizer is a triple (M, h, F ) of a finite monoid M , a map
h : Σ → M and a subset F ⊆ M . The language recognized by (M, h, F ) is given by
L(M, h, f) = h

−1[F ], where h : Σ∗ →M is the unique extension of h to a monoid morphism.

It is well-known [27] that a language L is regular iff it has a monoid recognizer. In this case,
a minimal monoid recognizer for L is given by (syn(L), µL, FL) where µL : Σ → syn(L) is
the domain restriction of the syntactic morphism and FL = {[w]≡L

: w ∈ L}. It satisfies
|syn(L)| ≤ |M | for every recognizer (M, h, F ) of L. Consider the following decision problem:

MON→ NFAsyn
Input: A monoid recognizer (M, h, F ) and a natural number k.
Task: Decide whether there exists a k-state subatomic nfa accepting L(M, h, F ).

Here we assume that the monoid M is explicitly given by its multiplication table.

▶ Theorem 5.7. The problem MON→ NFAsyn is NP-complete.

Proof sketch. The proof is conceptually similar to the one of Theorem 5.2. To show the
problem to be in NP, one uses the algebraic characterization of nsyn(L) in Theorem 2.1(2)
and translates the ensuing JSLf -diagram into Dep. To show NP-hardness, one reduces from
BICLIQUE COVER via

(R, k) 7→ ((syn(L), µL, FL), k),

where again L = L(Open(R)). ◀

Our complexity results indicate a trade-off, i.e. computing small subatomic nfas requires
a less succinct representation of the input language. Generally, |dfa(L)|, |dfa(Lr)| ≤ |syn(L)|
and the syntactic monoid can be far larger – even for nuclear languages.



R. S. R. Myers and H. Urbat 78:13

▶ Example 5.8. For any natural number n consider the dfa An = ({0, . . . , n− 1}, δ, 1, {1})
over the alphabet Σ = {π, τ} with δπ(i) = i + 1 mod n for i = 0, · · ·n− 1, and δτ (0) = 1,
δτ (1) = 0, δτ (i) = i otherwise. Let Ln = L(An) denote its accepted language. Then:
1. Both An and its reverse nfa are minimal dfas; in particular, |dfa(Ln)| = |dfa(Lr

n)| = n.
2. We have |syn(Ln)| = n!. To see this, recall that syn(Ln) is the transition monoid of

An
∼= dfa(Ln). It is generated by the n-cycle δπ = (0 1 · · · n− 1) and the transposition

δτ = (0 1); then it equals the symmetric group Sn on n letters.
3. By part (1) the language Ln is bideterministic [30], i.e. accepted by a dfa whose reverse

nfa is deterministic. This implies that the left derivatives of Ln are pairwise disjoint, so
SLD(Ln) is a boolean algebra. In particular, Ln is a nuclear language.

We finally further justify the inputs of DFA + DFAr → NFAatm and MON→ NFAsyn:
the two modified problems DFA → NFAatm and DFA → NFAsyn where only a (single)
dfa is given are computationally much harder.

▶ Theorem 5.9. DFA→ NFAatm and DFA→ NFAsyn are PSPACE-complete.

Proof. This follows by inspecting Jiang and Ravikumar’s [15] argument that DFA→ NFA
is PSPACE-complete. These authors give a polynomial-time reduction from the PSPACE-
complete problem UNIVERSALITY OF MULTIPLE DFAS, which asks whether a
given list A1, . . . , An of dfas over the same alphabet Σ satisfies

⋃
i L(Ai) = Σ∗. For any

A1, . . . , An they construct a dfa A over some alphabet Γ and a natural number k such that:
1. If

⋃
i L(Ai) ̸= Σ∗, then every nfa accepting L(A) requires at least k + 1 states.

2. If
⋃

i L(Ai) = Σ∗, then there exists an nfa accepting L(A) with k states.
In the proof of (2), an explicit k-state nfa N = (Q, δ, {q0}, F ) with L(N) = L(A) is given,
see [15, Fig. 1]. It has the property that, after ε-elimination, for every state q there
exists w ∈ Γ∗ with δw[q0] = {q}. This implies that every state q accepts a left derivative
w−1L(N), i.e. N is a residual nfa [7]. In particular, N is both atomic and subatomic.
Consequently, (A1, . . . , An) 7→ (A, k) is also a reduction to both DFA → NFAatm and
DFA→ NFAsyn. ◀

6 Applications

We conclude this paper by outlining some useful consequences of our NP-completeness results
concerning the computation of small nfas for specific classes of regular languages.

6.1 Nuclear Languages
As shown above, nuclear languages form a natural common generalization of bideterministic,
biRFSA, and lattice languages. Let DFA+DFAr → NFA be the variant of DFA+DFAr →
NFAatm where the target nfas are arbitrary, i.e. the task is to decide ns(L(A)) ≤ k. Then:

▶ Theorem 6.1. For nuclear languages, the problem DFA + DFAr → NFA is NP-complete.

In fact, by Proposition 4.5(1) we have ns(L) = dim(DRL) for nuclear languages, so NP
certificates are given by biclique covers. The NP-hardness proof is identical to the one of
Theorem 5.2: the reduction involves a lattice language, which is nuclear by Lemma 4.4.

6.2 Unary languages
For unary regular languages L ⊆ {a}∗, every two-sided derivative (ai)−1L(aj)−1 is equal to
the left derivative (ai+j)−1L. Therefore, we have natm(L) = nsyn(L) and the minimal dfa
for L is the dfa structure of the syntactic monoid. From Theorem 5.7 we thus derive

MFCS 2021



78:14 Syntactic Minimization of Nondeterministic Finite Automata

▶ Theorem 6.2. For unary languages, the problem DFA→ NFAsyn is in NP.

This theorem generalizes the best-known complexity result for unary nfas, which asserts
that the problem DFA→ NFA is in NP for unary cyclic languages [13], i.e. unary regular
languages whose minimal dfa is a cycle. In fact, for any such language L we have shown in [26,
Example 5.1] that nsyn(L) = ns(L), hence DFA→ NFA coincides with DFA→ NFAsyn.

6.3 Group languages
A regular language is called a group language if its syntactic monoid forms a group. Several
equivalent characterizations of group languages are known; for instance, they are precisely
the languages accepted by measure-once quantum finite automata [3]. Concerning their
state-minimal (sub)atomic acceptors, we have the following result:

▶ Proposition 6.3. For any group language L, we have nsyn(L) = natm(L).

Therefore, Theorem 5.2 implies

▶ Theorem 6.4. For group languages, DFA + DFAr → NFAsyn is in NP.

The complexity of the general DFA + DFAr → NFAsyn problem is left as an open problem.

7 Conclusion and Future Work

Approaching from an algebraic and category-theoretic angle we have studied the complexity
of computing small (sub)atomic nondeterministic machines. We proved this to be much
more tractable than the general case, viz. NP-complete as opposed to PSPACE-complete,
provided that one works with a representation of the input language by a pair of dfas or a
finite monoid, respectively. There are several interesting directions for future work.

The particular form of our main two NP-complete problems suggests an investigation of
their variants DFA + DFAr → NFA and MON→ NFA computing unrestricted nfas. The
reductions used in the proof of Theorem 5.2 and 5.7 show both problems to be NP-hard, and
we have seen in Theorem 6.1 that they are in NP for nuclear languages. The complexity of
the general case is left as an open problem.

The classical algorithm for state minimization of nfas is the Kameda-Weiner method [18],
recently given a fresh perspective based on atoms of regular languages [29]. The algorithm
involves an enumeration of biclique covers of the dependency relation DRL. Since our base
equivalence JSLf ≃ Dep reveals a close relationship between biclique covers and semilattice
morphisms (e.g. Lemma 3.9), we envision a purely algebraic account of the Kameda-Weiner
method. We should also compare our canonical machines to the Universal Automaton [20],
a language-theoretic presentation of the Kameda-Weiner algorithm. For example, our
morphisms preserve the language whereas the Universal Automaton uses simulations.

Finally, the classes of nuclear and lattice languages – introduced as technical tools for our
NP-completeness proofs – deserve to be studied in their own right. For instance, we expect
to uncover connections between lattice languages and the characterization of finite simple
non-unital semirings which are not rings [31, Theorem 1.7].

References
1 Jiří Adámek, Stefan Milius, Robert S. R. Myers, and Henning Urbat. On continuous non-

determinism and state minimality. In Bart Jacobs, Alexandra Silva, and Sam Staton, editors,
Proc. 30th Conference on Mathematical Foundations of Programming Science (MFPS’14),
volume 308 of Electron. Notes Theor. Comput. Sci., pages 3–23. Elsevier, 2014.



R. S. R. Myers and H. Urbat 78:15

2 Michael A. Arbib and Ernest G. Manes. Fuzzy machines in a category. Bulletin of the
Australian Mathematical Society, 13(2):169–210, 1975.

3 Alex Brodsky and Nicholas Pippenger. Characterizations of 1-way quantum finite automata.
SIAM J. Comput., 31:73–91, 1999.

4 Janusz Brzozowski and Hellis Tamm. Theory of átomata. Theoretical Computer Science,
539:13–27, 2014.

5 Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
6 Marek Chrobak. Finite automata and unary languages. Theoretical Computer Science,

47:149–158, 1986.
7 François Denis, Aurélien Lemay, and Alain Terlutte. Residual finite state automata. In Afonso

Ferreira and Horst Reichel, editors, Proc. 18th Annual Symposium on Theoretical Aspects of
Computer Science (STACS’01), pages 144–157. Springer, 2001.

8 Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

9 Jaco Geldenhuys, Brink van der Merwe, and Lynette van Zijl. Reducing nondeterministic
finite automata with SAT solvers. In Anssi Yli-Jyrä, András Kornai, Jacques Sakarovitch,
and Bruce Watson, editors, Proc. 8th International Workshop on Finite-State Methods and
Natural Language Processing (FSMNLP’09), pages 81–92. Springer, 2010.

10 Hermann Gruber and Markus Holzer. Finding lower bounds for nondeterministic state
complexity is hard. In Oscar H. Ibarra and Zhe Dang, editors, Proc. 10th International
Conference on Developments in Language Theory (DLT’06), pages 363–374. Springer, 2006.

11 Hermann Gruber and Markus Holzer. Computational complexity of NFA minimization for
finite and unary languages. In Remco Loos, Szilárd Zsolt Fazekas, and Carlos Martín-Vide,
editors, Proc. 1st International Conference on Language and Automata Theory and Applications
(LATA’07), pages 261–272. Research Group on Mathematical Linguistics, Universitat Rovira i
Virgili, Tarragona, 2007.

12 D.A. Higgs and K.A. Rowe. Nuclearity in the category of complete semilattices. Journal of
Pure and Applied Algebra, 57(1):67–78, 1989.

13 Tao Jiang, Edward McDowell, and B. Ravikumar. The structure and complexity of minimal
NFA’s over a unary alphabet. International Journal of Foundations of Computer Science,
02(02):163–182, 1991.

14 Tao Jiang and B. Ravikumar. Minimal NFA problems are hard. In Javier Leach Albert,
Burkhard Monien, and Mario Rodríguez Artalejo, editors, Proc. 18th International Colloquium
on Automata, Languages, and Programming (ICALP’91), pages 629–640. Springer, 1991.

15 Tao Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on Computing,
22(6):1117–1141, 1993.

16 Peter Jipsen. Categories of algebraic contexts equivalent to idempotent semirings and domain
semirings. In Wolfram Kahl and Timothy G. Griffin, editors, Proc. 13th International
Conference on Relational and Algebraic Methods in Computer Science (RAMiCS’12), pages
195–206. Springer, 2012.

17 Peter T. Johnstone. Stone spaces. Cambridge University Press, 1982.
18 T. Kameda and P. Weiner. On the state minimization of nondeterministic finite automata.

IEEE Transactions on Computers, C-19(7):617–627, 1970.
19 Michel Latteux, Yves Roos, and Alain Terlutte. Minimal NFA and biRFSA languages.

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications,
43(2):221–237, 2009.

20 Sylvain Lombardy and Jacques Sakarovitch. The universal automaton. In Logic and Automata:
History and Perspectives [in Honor of Wolfgang Thomas], pages 457–504, 2008.

21 Saunders Mac Lane. Categories for the working mathematician. Springer, 2 edition, 1998.
22 Andreas Malcher. Minimizing finite automata is computationally hard. Theor. Comput. Sci.,

327(3):375–390, 2004.

MFCS 2021



78:16 Syntactic Minimization of Nondeterministic Finite Automata

23 George Markowsky. The factorization and representation of lattices. Transactions of the
American Mathematical Society, 203:185–200, 1975.

24 M. Andrew Moshier. A relational category of formal contexts (preprint), 2016.
25 Robert S. R. Myers, Jiří Adámek, Stefan Milius, and Henning Urbat. Coalgebraic constructions

of canonical nondeterministic automata. Theor. Comput. Sci., 604:81–101, 2015.
26 Robert. S. R. Myers, Stefan Milius, and Henning Urbat. Nondeterministic syntactic complexity.

In Stefan Kiefer and Christine Tasson, editors, Proc. 24th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS’21). Springer, 2021.
arXiv:2101.03039.

27 Jean-Éric Pin. Mathematical foundations of automata theory. Available at http://www.liafa.
jussieu.fr/~jep/PDF/MPRI/MPRI.pdf, September 2020.

28 K. A. Rowe. Nuclearity. Canadian Mathematical Bulletin, 31(2):227–235, 1988.
29 Hellis Tamm. New interpretation and generalization of the Kameda-Weiner method. In

Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors,
Proc. 43rd International Colloquium on Automata, Languages, and Programming (ICALP’16),
volume 55 of LIPIcs, pages 116:1–116:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

30 Hellis Tamm and Esko Ukkonen. Bideterministic automata and minimal representations of
regular languages. Theoretical Computer Science, 328(1):135–149, 2004.

31 Jens Zumbrägel. Classification of finite congruence-simple semirings with zero. Journal of
Algebra and Its Applications, 7, March 2007.

http://arxiv.org/abs/2101.03039
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf
http://www.liafa.jussieu.fr/~jep/PDF/MPRI/MPRI.pdf

	1 Introduction
	2 Atomic and Subatomic NFAs
	3 Representing Finite Semilattices as Finite Relations
	4 Nuclear Languages and Lattice Languages
	5 Complexity of Computing Small (Sub)Atomic Acceptors
	6 Applications
	6.1 Nuclear Languages
	6.2 Unary languages
	6.3 Group languages

	7 Conclusion and Future Work

