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Abstract
Matching demand (riders) to supply (drivers) efficiently is a fundamental problem for ride-hailing
platforms who need to match the riders (almost) as soon as the request arrives with only partial
knowledge about future ride requests. A myopic approach that computes an optimal matching for
current requests ignoring future uncertainty can be highly sub-optimal. In this paper, we consider a
two-stage robust optimization framework for this matching problem where future demand uncertainty
is modeled using a set of demand scenarios (specified explicitly or implicitly). The goal is to match
the current request to drivers (in the first stage) so that the cost of first stage matching and the
worst-case cost over all scenarios for the second stage matching is minimized. We show that this
two-stage robust matching is NP-hard under both explicit and implicit models of uncertainty. We
present constant approximation algorithms for both models of uncertainty under different settings
and show they improve significantly over standard greedy approaches.
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1 Introduction

Matching demand (riders) with supply (drivers) is a fundamental problem for ride-hailing
platforms such as Uber, Lyft and DiDi. These platforms need to continually make efficient
matching decisions with only partial knowledge of future ride requests. A common approach
in practice is batched matching: instead of matching each request sequentially as it arrives,
aggregate the requests for a short amount of time (typically one to two minutes) and match
the aggregated requests to available drivers in one batch [42, 33, 44]. However, computing
this batch matching myopically without considering future requests can lead to a highly
sub-optimal outcome for some subsequent drivers and riders.

Motivated by this shortcoming, and by the possibility of using historical data to hedge
against future uncertainty, we study a two-stage framework for matching problems where
the future demand uncertainty is modeled as a set of scenarios that are specified explicitly or
implicitly. The goal is to compute a matching between the available drivers and the first
batch of riders such that the total worst-case cost of first stage and second stage matching
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is minimized. More specifically, we consider an adversarial model of uncertainty where the
adversary observes the first stage matching of our algorithms and presents a worst-case
scenario from the list of specified scenarios in the second stage. We focus on the case where
the first stage cost is the average weight of the first stage matching, and the second stage
cost is the highest edge weight in the second stage matching. This is motivated by the goal of
computing a low-cost first stage matching while also minimizing the worst case waiting time
for any rider in any second stage. All the results of this paper hold when the first stage cost
is the highest edge weight of the first stage matching. We also study several other metrics in
the full version. We consider two common models to describe the uncertainty in the second
stage: an explicit list of all possible scenarios and an implicit description of the scenarios
using a cardinality constraint. Two-stage robust optimization is a popular model for hedging
against uncertainty [8, 19]. Several combinatorial optimization problems have been studied
in this model, including Set Cover, Capacity Planning [7, 11] and Facility Location [22].
While online matching is a classical problem in graph theory, two-stage matching problems
with uncertainty, have not been studied extensively. We present related work in Section 1.2.

1.1 Our Contributions
Problem definition. We consider the following Two-stage Robust Matching Problem. We
are given a set of drivers D, a set of first stage riders R1, a universe of potential second stage
riders R2 and a set of second stage scenarios S ⊆ P(R2)1. We are given a metric distance d

on V = R1 ∪ R2 ∪ D. The goal is to find a subset of drivers D1 ⊆ D (|D1| = |R1|) to match
all the first stage riders R1 such that the sum of cost of first stage matching and worst-case
cost of second stage matching (between D \ D1 and the riders in the second stage scenario)
is minimized. More specifically,

min
D1⊂D

{
cost1(D1, R1) + max

S∈S
cost2(D \ D1, S)

}
.

The first-stage decision is denoted D1 and its cost is cost1(D1, R1). Similarly, the second
stage cost for scenario S is denoted cost2(D \ D1, S), and max{cost2(D \ D1, S) | S ∈ S}
is the worst-case cost over all possible scenarios. Let |R1| = m, |R2| = n. We denote the
objective function for a feasible solution D1 by

f(D1) = cost1(D1, R1) + max
S∈S

cost2(D \ D1, S).

We assume that there are sufficiently many drivers to satisfy both first and second stage
demand. Given an optimal first-stage solution D∗

1 , we denote

OPT1 = cost1(D∗
1 , R1), OPT2 = max{cost2(D \ D∗

1 , S) | S ∈ S},

OPT = OPT1 + OPT2.

We consider the setting where the first stage cost is the average weight of the matching
between D1 and R1, and the second stage cost is the bottleneck matching cost between
D \ D1 and S. The bottleneck matching is the matching that minimizes the longest edge
in a maximum cardinality matching between D \ D1 and S. We refer to this variant as
the Two-Stage Robust Matching Bottleneck Problem (TSRMB). Formally, let M1 be the
minimum weight perfect matching between R1 and D1, and given a scenario S, let MS

2 be

1 P(R2) is the power set of R2, the set of all subsets of R2.
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Figure 1 Bipartite graph of drivers and riders in our two-stage matching problem.

the bottleneck matching between the scenario S and the available drivers D \ D1, then the
cost functions for the TSRMB are:

cost1(D1, R1) = 1
m

∑
(i,j)∈M1

d(i, j), and cost2(D \ D1, S) = max
(i,j)∈MS

2

d(i, j).

The difference between the first and second stage metrics is motivated by the fact that
the platform has access to the current requests and can exactly compute the cost of the
matching. On the other hand, to ensure the robustness of the solution, we require all
second stage assignments to have low waiting times by accounting for the maximum wait
time in every scenario. We choose the first stage cost to be the average matching weight
instead of the total weight for homogeneity reasons, so that first and second stage costs have
comparable magnitudes. The bottleneck objective, i.e., finding a subgraph of a certain kind
that minimizes the maximum edge cost in the subgraph, has been considered extensively in
the literature [21, 16, 17]. While the main body of this paper will focus on studying TSRMB,
we note that all our results hold when the first (resp. second) stage cost is equal to the
highest edge weight in the first (resp. second) stage matching. In the full version, we study
other variants of cost metrics, including a stochastic variant of TSRMB, and the case where
both first and second stage costs are simply the total matching weights.

Hardness. We show that TSRMB is NP-hard even for two scenarios and NP-hard to
approximate within a factor better than 2 for three scenarios. We also show that even when
the scenarios are singletons, the problem is NP-hard to approximate within a factor better
than 2. Given these hardness results, we focus on approximation algorithms for the TSRMB
problem. A natural candidate is the greedy approach that minimizes only the first stage cost
without considering the uncertainty in the second stage. However, we show that this myopic
approach can be bad as Ω(m) · OPT (See Figure 2.)

Approximations algorithms. We consider both explicit and implicit models of uncertainty.
For the case of explicit model with two scenarios, we give a constant factor approximation
algorithm for TSRMB (Theorem 4). We further generalize the ideas of this algorithm to a

APPROX/RANDOM 2021
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Table 1 Summary of our results, where surplus ℓ = |D| − |R1| − k.

Uncertainty Approx Hardness
Explicit (2 scenarios) 5 NP-Hard
Explicit (p scenarios) O(p1.59) 2

Implicit (surplus ℓ = 0 ) 3 -
Implicit (ℓ < k and k ≤

√
n/2) 17 2

constant approximation for any fixed number of scenarios (Theorem 6). Our approximation
does not depend on the number of first stage riders or the size of scenarios but depends on
the number of scenarios. The main idea is to reduce the problem with multiple scenarios
to an instance with a single representative scenario while losing only a small factor. We
then solve the single scenario instance (in polynomial time) to get an approximation for our
original problem. The challenge in constructing the representative scenario is to find the
right trade-off between capturing the demand of all second stage riders and keeping the cost
of this scenario close to the optimal cost of the original instance.

For the implicit model of uncertainty, we consider the setting where we are given a
universe of second stage riders R2 and an integer k, and any subset of size less than k can
be a scenario. Therefore, S = {S ⊂ R2 s.t. |S| ≤ k}. The scenarios can be exponentially
many in k, which makes even the evaluation of the cost of a feasible solution challenging
and not necessarily achievable in polynomial time. Our analysis depends on the imbalance
between supply and demand. In fact, when the number of drivers is very large compared to
riders, the problem is less interesting in practice. However, it becomes interesting when the
supply and demand are comparable. In this case, drivers might need to be shared between
different scenarios. This leads us to define the notion of surplus ℓ = |D| − |R1| − k, which is
the maximum number of drivers that we can afford not to use in a solution. As a warm-up,
we first show that if the surplus is equal to zero (all the drivers are used), using any scenario as
a representative scenario gives a 3-approximation. The problem becomes significantly more
challenging even with a small surplus. We show that under a reasonable assumption on
the size of scenarios, there is a constant approximation in the regime when the surplus ℓ is
smaller than the demand k (Theorem 9). Our algorithm is based on finding a clustering of
drivers and riders that yields a simplified instance of TSRMB which can be solved within
a constant factor. We show that we can cluster the riders into a ball (riders close to each
others) and a set of outliers (riders far from each others) and apply ideas from the explicit
scenario analysis. Finally, since the number of scenarios can be exponential, we construct a
set of a polynomial number of proxy scenarios on which we evaluate any feasible solution within
a constant approximation. Table 1 summarizes our results. Due to space constraints, we defer
some of the proofs to the appendix.

1.2 Related Work

Online bipartite matching. Finding a maximum cardinality bipartite matching has received a
considerable amount of attention over the years. Online matching was first studied by Karp
et al. [27] in the adversarial model. Since then, many online variants have been studied [37].
This includes AdWords [4, 5, 38], vertex-weighted [1, 6], edge-weighted [20, 31], stochastic
matching [12, 35, 39, 13], random vertex arrival [18, 26, 34, 23], and batch arrivals [32, 14, 44].
In the online bipartite metric matching variant, servers and clients correspond to points
from a metric space, and the objective is to find the minimum weight maximum cardinality
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matching. Khullet et al. [29] and Kalyanasundaram and Pruhs [24] provided deterministic
algorithms in the adversarial model. In the random arrival model, Meyerson, et al. [40] and
Bansal et al. [2] provided poly-logarithmic competitive algorithms. Recently, Raghvendra
[41] presented a O(log n)-competitive algorithm.
Two-stage stochastic combinatorial optimization. Within two-stage stochastic optimization,
matching has been studied under various models. Kong and Schaefer [30] and Escoffier et al.
[9] studied the stochastic two-stage maximum matching problem. Katriel et al. [28] studied
the two-stage stochastic minimum weight maximum matching. Feng and Niazadeh [14] study
K-stage variants of vertex weighted bipartite b-matching and AdWords problems, where
online vertices arrive in K batches. More recently, Feng et al. [15] initiate the study and
present online competitive algorithms for vertex-weighted two-stage stochastic matching as
well as two-stage joint matching and pricing.
Two-stage robust combinatorial optimization. Within two-stage robust optimization, match-
ings have not been studied extensively. Matuschke et al. proposed a two-stage robust model
for minimum weight matching with recourse [36]. Our model for TSRMB is different in
three main aspects: i) We use a general class of uncertainty sets to describe the second stage
scenarios while in [36] the only information given is the number of second stage vertices. ii)
We do not allow any recourse and our first stage matching is irrevocable. iii) Our second
stage cost is the bottleneck weight instead of the total weight.

2 Preliminaries

2.1 NP-hardness
We show that TSRMB is NP-hard under both the implicit and explicit models. In the explicit
model, it is NP-hard even for two scenarios and NP-hard to approximate within a factor
better than 2 even for three scenarios.

In the explicit model with a polynomial number of scenarios, it is clear that the problem
is in NP. However, in the implicit model, the problem can be described with a polynomial
size input, but it is not clear that we can compute the total cost in polynomial time since
there could be exponentially many scenarios. We show that it is NP-hard to approximate
TSRMB in the implicit model within a factor better than 2 even when k = 1. The proof is
presented in Appendix A.

▶ Theorem 1. In the explicit model of uncertainty, TSRMB is NP-hard even with two
scenarios. Furthermore, when the number of scenarios is ≥ 3, there is no (2−ϵ)-approximation
algorithm for any fixed ϵ > 0, unless P = NP. In the implicit model of uncertainty, even
when k = 1, there is no (2 − ϵ)-approximation algorithm for TSRMB for any fixed ϵ > 0,
unless P = NP .

2.2 Greedy Approach
A natural greedy approach is to choose the optimal matching for the first stage riders R1
without considering the second stage uncertainty. It can lead to a solution with a total
cost that scales linearly with m (cardinality of R1) while OPT is a constant, even with one
scenario. Consider the line example in Figure 2. We have m first stage riders and m + 1
drivers alternating on a line with distances 1 and 1 − ϵ. There is one second stage rider at
the right endpoint of the line. The greedy matching minimizes the first stage cost and incurs
a total cost of (2 − ϵ)(m + 1), while the optimal cost is equal to 2. Therefore any attempt to
have a good approximation needs to consider the second stage riders.

APPROX/RANDOM 2021
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Figure 2 Riders in first stage are depicted as black dots and drivers as black triangles. The
second stage rider is depicted as a blue cross.

▶ Lemma 2. The cost of the Greedy algorithm can be Ω(m) · OPT .

2.3 Single Scenario
The deterministic version of the TSRMB problem, i.e., when there is only a single scenario
in the second stage, can be solved exactly in polynomial time. This is a simple preliminary
result which we need for the general case. Denote S a single second stage scenario. The
instance (R1, S, D) of TSRMB is then simply given by

min
D1⊂D

{
cost1(D1, R1) + cost2(D \ D1, S)

}
.

Since the second stage problem is a bottleneck problem [21], the value of the optimal second
stage cost w is one of the edge weights between D and S. We iterate over all possible values
of w (at most |S| · |D| values), delete all edges between R2 and D with weights strictly higher
than w and set the weight of the remaining edges between S and D to zero. This reduces
the problem to finding a minimum weight maximum cardinality matching. We can also use
binary search to iterate over the edge weights. We present the details of this algorithm below
and refer to it as TSRMB-1-Scenario in the rest of this paper.

We define the bottleneck graph of w to be BOTTLENECKG(w) = (R1 ∪S ∪D, E1 ∪E2)
where E2 = {(i, j) ∈ D×S, d(i, j) ≤ w} and E1 = {(i, j) ∈ D×R1}. Furthermore, we assume
that there are q edges {e1, . . . , eq} between S and D with weights w1 ≤ w2 ≤ . . . ≤ wq.

Algorithm 1 TSRMB-1-Scenario(R1, S, D).

Input: First stage riders R1, scenario S and drivers D.
Output: First stage decision D1.

1: for i ∈ {1, . . . , q} do
2: Gi := BOTTLENECKG(wi).
3: Set all weights between D and S in Gi to be 0.
4: Mi := minimum weight maximum cardinality matching on Gi.
5: if R1 ∪ S is not completely matched in Mi then
6: output certificate of failure.
7: else
8: Di

1 := first stage drivers in Mi.
9: end if

10: end for
11: return D1 = arg min

Di
1:1≤i≤q

{
cost1(Di

1, R1) + cost2(D \ Di
1, S)

}
.

Note that the arg min in the last step of Algorithm 1 is only taken over values of i for
which there was no certificate of failure.

▶ Lemma 3. TSRMB-1-Scenario gives an optimal solution for the single scenario case.
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Proof of Lemma 3. Let OPT1 and OPT2 be the first and second stage cost of an optimal
solution, and i ∈ {1, . . . , q} such that wi = OPT2. In this case, Gi contains all the edges of
this optimal solution. By setting all the edges in E2 to 0, we are able to compute a minimum
weight maximum cardinality matching between R1 ∪ S and D that matches both R1 and S

and minimizes the weight of the edges matching R1. The first stage cost of this matching is
less than OPT1, the second stage cost is clearly less than OPT2 because we only allowed
edges with weight less than OPT2 in Gi. ◀

We also observe that we can use binary search in Algorithm 1 to iterate over the edge
weights. For an iteration i, a failure to find a minimum weight maximum cardinality matching
on Gi that matches both R1 and S implies that we need to try an edge weight higher than
wi. On the other hand, if Mi matches R1 and S such that Di

1 gives a smaller total cost, then
the optimal bottleneck value is lower than wi.

3 Explicit Scenarios

3.1 Two scenarios
Our main contribution in this section is a constant approximation algorithm for TSRMB
with two scenarios. Our analysis shows that we can reduce the problem to an instance with
a single representative scenario by losing a small factor. We then use TSRMB-1-Scenario to
solve the single representative scenario case.

Consider two scenarios S = {S1, S2}. First, we can assume without loss of generality
that we know the exact value of OPT2 which corresponds to one of the edges connecting
second stage riders R2 to drivers D (we can iterate over all the weights of second stage edges).
We construct a representative scenario that serves as a proxy for S1 and S2 as follows. In
the second stage, if a pair of riders i ∈ S1 and j ∈ S2 is served by the same driver in the
optimal solution, then they should be close to each other. Therefore, we can consider a single
representative rider for each such pair. While it is not easy to guess all such pairs, we can
approximately compute the representative riders by solving a maximum matching on S1 ∪ S2
with edges less than 2OPT2. More formally, let GI be the induced bipartite subgraph of
G on S1 ∪ S2 containing only edges between S1 and S2 with weight less than or equal to
2OPT2. We compute a maximum cardinality matching M between S1 and S2 in GI , and
construct a representative scenario containing S1 as well as the unmatched riders of S2. We
solve the single scenario problem on this representative scenario and return its optimal first
stage solution. We show in Theorem 4 that this solution leads to a 5-approximation.

Algorithm 2 Two explicit scenarios.

Input: First stage riders R1, two scenarios S1 and S2, drivers D and value of OPT2.
Output: First stage decision D1.

1: Let GI be the induced subgraph of G on S1 ∪ S2 with only the edges between S1 and S2
of weights less than 2OPT2 .

2: Set M := maximum cardinality matching between S1 and S2 in GI .
3: Set SMatch

2 := {r ∈ S2 | ∃ s ∈ S1 s.t (s, r) ∈ M} and SUnmatch
2 = S2 \ SMatch

2 .
4: return D1 := TSRMB-1-Scenario(R1, S1 ∪ SUnmatch

2 , D).

▶ Theorem 4. Algorithm 2 yields a solution with total cost less than OPT1 + 5OPT2 for
TSRMB with 2 scenarios.

APPROX/RANDOM 2021
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The proof of Theorem 4 relies on the following structural lemma where we show that the
set D1 returned by Algorithm 2 yields a total cost at most (OPT1 + 3OPT2) when evaluated
only on the single representative scenario S1 ∪ SUnmatch

2 .

▶ Lemma 5. Let D1 be the set of first stage drivers returned by Algorithm 2. Then
cost1(D1, R1) + cost2(D \ D1, S1 ∪ SUnmatch

2 ) ≤ OPT1 + 3OPT2.

Proof. It is sufficient to show the existence of a matching Ma between R1 ∪ S1 ∪ SUnmatch
2

and D with a total cost less than OPT1 +3OPT2. This would imply that the optimal solution
D1 of TSRMB-1-Scenario(R1, S1 ∪ SUnmatch

2 , D) has a total cost less than OPT1 + 3OPT2
and concludes the proof. We show the existence of Ma by construction.
Step 1. We first match R1 with their mates in the optimal solution of TSRMB. Hence, the

first stage cost of our constructed matching Ma is OPT1.
Step 2. Now, we focus on SUnmatch

2 . Let SUnmatch
2 = S12 ∪ S22 be a partition of SUnmatch

2
where S12 contains riders with a distance less than 2OPT2 from S1 and S22 contains
riders with a distance strictly bigger than 2OPT2 from S1, where the distance from a
set is the minimum distance to any element of the set. A rider in S22 cannot share any
driver with a rider from S1 in the optimal solution of TSRMB, because otherwise, the
distance between these riders will be less than 2OPT2 by using the triangle inequality.
Therefore we can match S22 to their mates in the optimal solution and add them to Ma,
without using the optimal drivers of S1. We pay less than OPT2 for matching S22.

Step 3. We still need to simultaneously match riders in S1 and S12 to finish the construction
of Ma. Notice that some riders in S12 might share their optimal drivers with riders in
S1. We can assume without loss of generality that all riders in S12 share their optimal
drivers with S1 (otherwise we can match them to their optimal drivers without affecting
S1). Denote S12 = {r1, . . . , rq} and S1 = {s1, . . . , sk}. For each i ∈ [q] let’s say si ∈ S1
is the rider that shares its optimal driver with ri. We show that q ≤ |M |. In fact, every
rider in S12 shares its optimal driver with a different rider in S1, and is therefore within
a distance 2OPT2 from S1 by the triangle inequality. But since S12 is not covered by
the maximum cardinality matching M , this implies by the maximality of M that there
are q other riders from SMatch

2 that are covered by M . Hence q ≤ |M |. Finally, let
{t1, . . . , tq} ⊂ SMatch

2 be the mates of {s1, . . . , sq} in M , i.e., (si, ti) ∈ M for all i ∈ [q].
Recall that d(si, ti) ≤ 2OPT2 for all i ∈ [q]. In what follows, we describe how to match
S12 and S1:

(i) For i ∈ [q], we match ri to its optimal driver and si to the optimal driver of ti. This
is possible because the optimal driver of ti cannot be the same as the optimal driver
of ri since both ri and ti are part of the same scenario S2. Therefore, we pay a cost
OPT2 for the riders ri and a cost 3OPT2 (follows from the triangle inequality) for the
riders si where i ∈ [q].

(ii) We still need to match {sq+1, . . . , sk}. Consider a rider sj with j ∈ {q + 1, . . . , k}. If
the optimal driver of sj is not shared with any ti ∈ {t1, . . . , tq}, then this optimal
driver is still available and can be matched to sj with a cost less than OPT2. If the
optimal driver of sj is shared with some ti ∈ {t1, . . . tq}, then sj is also covered by
M . Otherwise M can be augmented by deleting (si, ti) and adding (ri, si) and (sj , ti).
Therefore sj is covered by M and has a mate t̃j ∈ SMatch

2 \ {t1, . . . , tq}. Furthermore,
the driver assigned to t̃j is still available. We can then match sj to the optimal driver
of t̃j . Similarly if the optimal driver of some sj′ ∈ {sq+1, . . . , sk} \ {sj} is shared with
t̃j , then sj′ is covered by M . Otherwise (ri, si, ti, sj , t̃j , sj′) is an augmenting path in
M . Therefore sj′ has a mate in M and we can match sj′ to the optimal driver of its
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mate. We keep extending these augmenting paths until all the riders in {sq+1, . . . , sk}
are matched. Furthermore, the augmenting paths (ri, si, ti, sj , t̃j , sj′ . . .) starting from
two different riders ri ∈ S12 are vertex disjoint. This ensures that every driver is used
at most once. Again, by the triangle inequality, the edges that match {sq+1, . . . , sk}
in our solution have weights less then 3OPT2.

Putting it all together, we have constructed a matching Ma where the first stage cost is
exactly OPT1 and the second-stage cost is less than 3OPT2 since the edges used for matching
S1 ∪ SUnmatch

2 in Ma have a weight less than 3OPT2. Therefore, the total cost of Ma is less
than OPT1 + 3OPT2. ◀

Proof of Theorem 4. Let D1 be the drivers returned by Algorithm 2. Lemma 5 implies

cost1(D1, R1) + cost2(D \ D1, S1) ≤ OPT1 + 3OPT2 (1)

and

cost1(D1, R1) + cost2(D \ D1, SUnmatch
2 ) ≤ OPT1 + 3OPT2.

We have S2 = SMatch
2 ∪ SUnmatch

2 . If the scenario S2 is realized, we use the drivers that were
assigned to S1 in the matching constructed in Lemma 5 to match SMatch

2 . This is possible
with edges of weights less than cost2(D \ D1, S1) + 2OPT2 because SMatch

2 is matched to S1
with edges of weight less than 2OPT2. Hence,

cost2(D \ D1, S2) ≤ max
{

cost2(D \ D1, SUnmatch
2 ), cost2(D \ D1, S1) + 2OPT2

}
,

and therefore

cost1(D1, R1) + cost2(D \ D1, S2) ≤ OPT1 + 5OPT2. (2)

From (1) and (2), cost1(D1, R1) + max
S∈{S1,S2}

cost2(D \ D1, S) ≤ OPT1 + 5OPT2. ◀

Algorithm 3 p explicit scenarios.

Input: First-stage riders R1, scenarios {S1, S2, . . . , Sp}, drivers D and value of OPT2.
Output: First stage decision D1.

1: Initialize Ŝj := Sj for j = 1, . . . , p.
2: for i = 1, . . . , log2 p do
3: for j = 1, 2, . . . , p

2i do
4: σ(j) = j + p

2i

5: Mj := maximum cardinality matching between Ŝj and Ŝσ(j) with edges of weight
less than 2 · 3i−1 · OPT2.

6: ŜMatch
σ(j) := {r ∈ Ŝσ(j) | ∃ s ∈ Ŝj s.t (s, r) ∈ Mj}.

7: ŜUnmatch
σ(j) := Ŝσ(j) \ ŜMatch

σ(j)

8: Ŝj = Ŝj ∪ ŜUnmatch
σ(j) .

9: end for
10: end for
11: return D1 := TSRMB-1-Scenario(R1, Ŝ1, D).

APPROX/RANDOM 2021
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3.2 Constant number of scenarios
We now consider the case of explicit list of p scenarios, i.e., S = {S1, S2, . . . , Sp}. Building
upon the ideas from Algorithm 2, we present a O(p1.59)-approximation in this case. The
idea is to construct the representative scenario recursively by processing pairs of “scenarios”
at each step. Hence, we need O(log2 p) iterations to reduce the problem to an instance of a
single scenario. At each iteration, we show that we only lose a multiplicative factor of 3 so
that the final approximation ratio is O(3log2 p) = O(p1.59). We present details in Algorithm 3.

The approximation guarantee of our algorithm grows sub-quadratically with p and it is
an interesting question if there exists an approximation that does not depend on the number
of scenarios.

▶ Theorem 6. Algorithm 3 yields a solution with total cost of O(p1.59) · OPT for TSRMB
with an explicit list of p scenarios.

Proof of Theorem 6. The algorithm reduces the number of considered “scenarios” by half
in every iteration, until only one scenario remains. In iteration i, we have p

2i−1 scenarios
that we aggregate in p

2i pairs, namely (Ŝj , Ŝσ(j)) for j ∈ {1, 2, . . . , p
2i }. For each pair, we

construct a single representative scenario which plays the role of the new Ŝj at the start of
the next iteration i + 1.

▷ Claim. There exists a first stage decision D∗
1 , such that at every iteration i ∈ {1, . . . , log2 p},

we have for all j ∈ {1, 2, . . . , p
2i }:

(i) R1 can be matched to D∗
1 with a first stage cost of OPT1.

(ii) Ŝj ∪ ŜUnmatch
σ(j) can be matched to D \ D∗

1 with a second stage cost less than 3i · OPT2.
(iii) There exists a matching between ŜMatch

σ(j) and Ŝj with edge weights less than 2 · 3i−1 ·
OPT2.

Proof of the claim. Statement (iii) follows from the definition of ŜMatch
σ(j) in Algorithm 3. Let’s

show (i) and (ii) by induction over i.
Initialization: for i = 1, let’s take any two scenarios Ŝj = Sj and Ŝσ(j) = Sσ(j). We
know that these two scenarios can be matched to drivers of the optimal solution in the
original problem with a cost less than OPT2. In the proof of Lemma 5, we show that if
we use the optimal first stage decision D∗

1 of the original problem, then we can match Ŝj

and ŜUnmatch
σ(j) simultaneously to D \ D∗

1 with a cost less than 3OPT2.

Maintenance. Assume the claim is true for all values less than i ≤ log2 p − 1. We
show it is true for i + 1. Since the claim is true for iteration i, we know that at the
start of iteration i + 1, for j ∈ {1, . . . , p

2i }, Ŝj can be matched to D \ D∗
1 with a cost less

than 3i · OPT2. We can therefore consider a new TSRMB problem with p
2i scenarios,

where using D∗
1 as a first stage decision ensures a second stage optimal value less than

ÔPT 2 = 3i · OPT2. By the proof of Lemma 5, and by using D∗
1 as a first stage decision in

this problem, we ensure that for j ∈ {1, . . . , p
2i+1 }, Ŝj and ŜUnmatch

σ(j) can be simultaneously
matched to D \ D∗

1 with a cost less than 3ÔPT 2 = 3i+1 · OPT2. ◁
Our claim implies that in the last iteration i = log2 p:

R1 can be matched to D∗
1 with a first stage cost of OPT1.

Ŝ1 can be matched to D \ D∗
1 with a second stage cost less than 3log2 p · OPT2.

Computing the single scenario solution for Ŝ1 will therefore yield a first stage decision D1
that gives a total cost less than OPT1 + 3log2 p · OPT2 when the second stage is evaluated
on the scenario Ŝ1. We now bound the cost of D1 on the original scenarios {S1, . . . , Sp}.
Consider a scenario S ∈ {S1, . . . , Sp}. The riders in S ∩ Ŝ1 can be matched to some drivers
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in D \ D1 with a cost less than OPT1 + 3log2 p · OPT2. As for other riders of S \ Ŝ1, they
are not part of Ŝ1 because they have been matched and deleted at some iteration i < log2 p.
Consider riders r in S \ Ŝ1 that were matched and deleted from a representative scenario at
some iteration, then by statement (iii) in our claim, each r can be connected to a different
rider in Ŝ1 \ (Ŝ1 ∩ S) within a path of length at most

log2 p∑
t=1

2 · 3t−1 · OPT2 = (3log2 p − 1) · OPT2.

We know that R1 and Ŝ1 can be matched respectively to D1 and D \ D1 with a total cost
less than OPT1 + 3log2 p · OPT2. Therefore, we can match R1 and S respectively to D1 and
D \ D1 with a total cost less than

OPT1 + 3log2 p · OPT2 + (3log2 p − 1) · OPT2 = O(3log2 p) · OPT ≃ O(p1.59) · OPT.

Therefore, the worst-case total cost of the solution returned by Algorithm 3 is O(p1.59) ·
OPT . ◀

4 Implicit Scenarios

Consider an implicit model of scenarios S = {S ⊂ R2 s.t. |S| ≤ k}. While this model is widely
used, it poses a challenge because the number of scenarios can be exponential. Therefore,
even computing the worst-case second stage cost, for a given first stage solution, might not
be possible in polynomial time and we can no longer assume that we can guess OPT2. Note
that the worst-case scenarios have size exactly k. Our analysis for this model depends on the
balance between supply (drivers) and demand (riders). We define the surplus ℓ as the excess
in the number of available drivers for matching first-stage riders and a second-stage scenario:
ℓ = |D| − |R1| − k. As a warm-up, we study the case of no surplus (ℓ = 0). Then, we address
the more general case with a small surplus of drivers.

4.1 Warm-up: no surplus
When the number of drivers equals the number of first stage riders plus the size of scenarios
(i.e., ℓ = 0), we show a 3-approximation by simply solving a single scenario TSRMB with
any of the scenarios. In fact, since ℓ = 0, all scenarios are matched to the same set of drivers
in the optimal solution. Hence, between any two scenarios, there exists a matching where all
edge weights are less than 2OPT2. So by solving TSRMB with only one of these scenarios,
we can recover a solution and bound the cost of the other scenarios within OPT1 + 3OPT2
using the triangle inequality. The algorithm and proof are presented below.

Algorithm 4 Implicit scenarios with no surplus.

Input: First stage riders R1, second stage riders R2, size k and drivers D.
Output: First stage decision D1.

1: S1 := a second stage scenario of size k.
2: D1 := TSRMB-1-Scenario(R1, S1, D).
3: return D1.

▶ Lemma 7. Algorithm 4 yields a solution with total cost less than OPT1 + 3OPT2 for
TSRMB with implicit scenarios and no surplus.

APPROX/RANDOM 2021
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Proof of Lemma 7. Let OPT1 and OPT2 be the first and second stage cost of the optimal
solution. Let f(D1) be the total cost of the solution returned by the algorithm. We claim that
f(D1) ≤ OPT1 + 3OPT2. It is clear that cost1(D1, R1) + cost2(D \ D1, S1) ≤ OPT1 + OPT2.
Let S ∈ S be another scenario. Because |D| = |R1| + k, the optimal solution uses exactly
the same k drivers to match all the second stage scenarios. This implies that we can use
the triangular inequality to find a matching between S and S1 of bottleneck cost less than
2OPT2. Hence for any scenario S,

cost1(D1, R1) + cost2(D \ D1, S) ≤ cost1(D1, R1) + cost2(D \ D1, S1) + 2OPT2

≤ OPT1 + 3OPT2. ◀

If the surplus is strictly greater than 0, the above procedure can have an approximation
ratio of Ω(m). Consider the example in Figure 3, with k = 1 and two second stage riders.
The single scenario solution for S1 uses the optimal second stage driver of S2. Hence, if S2 is
realized, the cost of matching S2 to the closest available driver is Ω(m). Similarly, the single
scenario problem for S2 yields a Ω(m) cost for S1.

Figure 3 First stage riders are depicted as black dots and drivers as black triangles. The two
second stage riders are depicted as blue crosses. Second stage optimum are depicted as solid green
edges. S = {S1, S2}, k = 1 and ℓ = 1.

4.2 Small surplus

The TSRMB problem becomes challenging even with a unit surplus. Motivated by this,
we focus on the case of a small surplus ℓ. In particular, we assume that ℓ < k, i.e., the
excess in the total available drivers is smaller than the size of any scenario. We present a
constant approximation algorithm in this regime for the implicit model of uncertainty where
the size of scenarios is relatively small with respect to the size of the universe (k = O(

√
n)).

This technical assumption is needed for our analysis but it is not too restrictive and still
captures the regime where the number of scenarios can be exponential. Our algorithm
attempts to cluster the second stage riders in different groups (a ball and a set of outliers) in
order to reduce the number of possible worst-case configurations. We then solve a sequence
of instances with representative riders from each group. In what follows, we present our
construction for these groups of riders.
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Our construction. First, we show that many riders are contained in a ball with radius
3OPT2. The center of this ball, δ, can be found by selecting the driver with the least
maximum distance to its closest k second-stage riders, i.e.,

δ = arg min
δ′∈D

max
r∈Rk(δ′)

d(δ′, r), (3)

where Rk(δ′) is the set of the k closest second stage riders to δ′. Formally, we have the
following lemma. We present the proof in Appendix B.

▶ Lemma 8. Suppose k ≤
√

n
2 and ℓ < k and let δ be the driver given by (3). Then, the

ball B centered at δ with radius 3OPT2 contains at least n − ℓ second stage riders. Moreover,
the distance between any of these riders and any rider in Rk(δ) is less than 4OPT2.

Now, we focus on the rest of second stage riders. We say that a rider r ∈ R2 is
an outlier if d(δ, r) > 3OPT2. Denote {o1, o2, . . . , oℓ} the farthest ℓ riders from δ with
d(δ, o1) ≥ d(δ, o2) ≥ . . . ≥ d(δ, oℓ). By Lemma 8, the n − ℓ riders in B are not outliers
and the only potential outliers can be in {o1, o2, . . . , oℓ}. Let j∗ be the threshold such that
o1, o2, . . . , oj∗ are outliers and oj∗+1, . . . , oℓ are not, with the convention that j∗ = 0 if there
is no outlier. There are ℓ + 1 possible values for j∗. We call each of these possibilities
a configuration. For j = 0, . . . , ℓ, let Cj be the configuration corresponding to threshold
candidate j. C0 is the configuration where there is no outlier and Cj∗ is the correct
configuration.

Algorithm 5 Implicit scenarios with small surplus and k ≤
√

n
2 .

Input: First stage riders R1, second stage riders R2, size k and drivers D.
Output: First stage decision D1.

1: Set δ := driver given by (3).
2: Set S1:= the closest k second stage riders to δ.
3: Set S2 := {o1, . . . , oℓ} the farthest ℓ second stage riders from δ (o1 being the farthest).
4: for j = 0, . . . , ℓ do
5: D1(j) := TSRMB-1-Scenario(R1, S1 ∪ {o1 . . . oj}, D).
6: end for
7: return D1 = arg min

D1(j): j∈{0,...,ℓ}
cost1

(
D1(j), R1

)
+ max

S∈{S1,S2}
cost2

(
D \ D1(j), S

)
.

Recall that Rk(δ) are the closest k second-stage riders to δ. For the sake of simplicity,
we denote S1 = Rk(δ) and S2 = {o1 . . . oℓ}. S2 is a feasible scenario since ℓ < k. For
every configuration Cj , we form a representative scenario using S1 and {o1 . . . oj}. We
solve TSRMB with this single representative scenario S1 ∪ {o1 . . . oj} and denote D1(j) the
corresponding optimal solution, i.e.,

D1(j) = TSRMB-1-Scenario(R1, S1 ∪ {o1 . . . oj}, D).

Since we can not evaluate the cost of D1(j) on all scenarios, we use the two proxy scenarios
S1 and S2. We show that the candidate D1(j) with minimum cost over S1 and S2 gives a
constant approximation to our original problem. The details are presented in Algorithm 5.
We state the result in the next theorem.

▶ Theorem 9. Algorithm 5 yields a solution with total cost less than 3OPT1 + 17OPT2 for
TSRMB with implicit scenarios when k ≤

√
n
2 and ℓ < k.
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Before proving the theorem, we first introduce some notation. For all j ∈ {0, . . . , ℓ},
denote

Ωj = cost1
(
D1(j), R1

)
∆j = cost2

(
D \ D1(j), S1 ∪ {o1, . . . , oj}

)
βj = cost1

(
D1(j), R1

)
+ max

S∈{S1,S2}
cost2

(
D \ D1(j), S

)
Recall that f the objective function of TSRMB. In particular,

f
(
D1(j)

)
= cost1

(
D1(j), R1

)
+ max

S∈S
cost2

(
D \ D1(j), S

)
Our proof is based on the following two claims. Claim 10 establishes a bound on the cost

of D1(j∗) when evaluated on the proxy scenarios S1 and S2 and on all the scenarios in S.
Recall that j∗ is the threshold index for the outliers as defined earlier in our construction.
Claim 11 bounds the cost of f(D1(j)) for any j.

▷ Claim 10. Ωj∗ + ∆j∗ ≤ OPT1 + OPT2. and f(D1(j∗)) ≤ OPT1 + 5OPT2.

Proof of Claim 10.
1. In the optimal solution of the original problem, R1 is matched to a subset D∗

1 of drivers.
The scenario S1 is matched to a set of drivers DS1 where D∗

1 ∩ DS1 = ∅. Let Do be the
set of drivers that are matched to o1, . . . , o∗

j in a scenario that contains o1, . . . , o∗
j . It is

clear that D∗
1 ∩ Do = ∅. We claim that Do ∩ DS1 = ∅. In fact, suppose there is a driver

ρ ∈ Do∩DS1 . This implies the existence of some oj with j ≤ j∗ and some rider r ∈ S1 such
that d(ρ, oj) ≤ OPT2 and d(ρ, r) ≤ OPT2. But then d(δ, oj) ≤ d(δ, r)+d(ρ, r)+d(ρ, oj) ≤
3OPT2 which contradicts the fact the oj is an outlier. Therefore Do ∩ DS1 = ∅. We show
that D∗

1 is a feasible first stage solution to the single scenario problem of S1 ∪ {o1, . . . o∗
j }

with a cost less than OPT1 + OPT2. In fact, D∗
1 can be matched to R1 with a cost less

than OPT1, DS1 to S1 and Do to {o1, . . . , o∗
j } with a cost less than OPT2. Therefore

Ωj∗ + ∆j∗ ≤ OPT1 + OPT2.

2. Recall that cost1
(
D1(j∗), R1

)
= Ωj∗ . Consider a scenario S and a rider r ∈ S. Let B′ be

the set of the n − ℓ closest second stage riders to δ. Let DS1(j∗) be set of second stage
drivers matched to S1 in the single scenario problem for scenario S1 ∪ {o1, . . . , oj∗}. Let
Do(j∗) be the set of second stage drivers matched to {o1, . . . , oj∗} in the single scenario
problem for scenario S1 ∪ {o1, . . . , oj∗}. Recall that the second stage cost for this single
scenario problem is ∆j∗ . We distinguish three cases:
a. If r ∈ B′, then by Lemma 8, r is connected to every driver in DS1(j∗) within a distance

less than ∆j∗ + 4OPT2.
b. If r ∈ {oj∗+1, . . . , oℓ}, then r is connected to every driver in DS1(j∗) within a distance

less than 3OPT2 + OPT2 + ∆∗
j .

c. If r ∈ {o1, . . . , oj∗} (i.e., r an outlier), then r can be matched to a different driver in
Do(j∗) within a distance less than OPT2.

This means that in every case, we can match r to a driver in D \ D1(j∗) with a cost less
than 4OPT2 + ∆j∗ . This implies that

max
S∈S

cost2
(
D \ D1(j∗), S

)
≤ 4OPT2 + ∆j∗

and therefore

Ωj∗ + max
S∈S

cost2
(
D \ D1(j∗), S

)
≤ Ωj∗ + ∆j∗ + 4OPT2 ≤ OPT1 + 5OPT2. ◁
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▷ Claim 11. For all j ∈ {0, . . . , l} we have, βj ≤ f(D1(j)) ≤ max{βj+4OPT2, 3βj+2OPT2}.

Proof of Claim 11. Let αj be the second stage cost of D1(j) on the TSRBM instance with
scenarios S1 and S2. Formally, αj = max

S∈{S1,S2}
cost2

(
D \ D1(j), S

)
. Therefore βj = Ωj + αj .

Let’s consider the two sets

O1 = {r ∈ {o1, . . . , oℓ} | d(r, δ) > 2αj + OPT2}.

O2 = {o1, . . . , oℓ} \ O1.

Consider D1(j) as a first stage decision to TSRMB with scenarios S1 and S2. Let D̃1 ⊂
D \ D1(j) be the set of drivers that are matched to O1 when the scenario S2 = {o1, . . . , oℓ}
is realized. Similarly, let D̃2 ⊂ D \ D1(j) be the drivers matched to scenario S1. We claim
that D̃1 ∩ D̃2 = ∅. Suppose that there exists some driver ρ ∈ D̃1 ∩ D̃2, this implies the
existence of some o ∈ O1 and r ∈ S1 such that d(ρ, o) ≤ αj and d(ρ, r) ≤ αj . And since
d(r, δ) ≤ OPT2 by definition of δ we would have

d(o, δ) ≤ d(ρ, o) + d(ρ, r) + d(r, δ) ≤ 2αj + OPT2,

which contradicts the definition of O1. Therefore D̃1 ∩ D̃2 = ∅.

Now consider a scenario S ∈ S. The riders of S ∩ O1 can be matched to D̃1 with a
bottleneck cost less than αj . Recall that by Lemma 8, any rider in R2 \ {o1, . . . , oℓ} is within
a distance less than 4OPT2 from any rider in S1. The riders r ∈ S \{o1, . . . , oℓ} can therefore
be matched to any driver ρ ∈ D̃2 within a distance less than

d(r, ρ) ≤ d(r, S1) + d(S1, ρ) ≤ 4OPT2 + αj .

As for riders r ∈ S ∩ O2, they can also be matched to any driver ρ of D̃2 within a distance
less than

d(r, ρ) ≤ d(r, δ) + d(δ, S1) + d(S1, ρ) ≤ 2αj + OPT2 + OPT2 + αj = 3αj + 2OPT2.

Therefore we can bound the second stage cost

max
S∈S

cost2
(
D \ D1(j), S

)
≤ max{αj + 4OPT2, 3αj + 2OPT2}

and we get that

cost1
(
D1(j), R1

)
+ max

S∈S
cost2

(
D \ D1(j), S

)
≤ max{βj + 4OPT2, 3βj + 2OPT2}

The other inequality βj ≤ cost1
(
D1(j), R1

)
+ max

S∈S
cost2

(
D \ D1(j)

)
is trivial. ◁

We are now ready to prove the theorem.

Proof of Theorem 9. Suppose Algorithm 5 returns D1(j̃) for some j̃. From Claim 11 and
the minimality of βj̃ :

f
(
D1(j̃)

)
≤ max{βj̃ + 4OPT2, 3βj̃ + 2OPT2} ≤ max{βj∗ + 4OPT2, 3βj∗ + 2OPT2}.

From Claim 10 and Claim 11, we have βj∗ ≤ f
(
D1(j∗)

)
≤ OPT1 + 5OPT2. We conclude

that,

f
(
D1(j̃)

)
≤ max

{
OPT1 + 9OPT2, 3OPT1 + 17OPT2

}
= 3OPT1 + 17OPT2. ◀
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5 Conclusion

In this paper, we present a new two-stage robust optimization framework for matching
problems under both explicit and implicit models of uncertainty. Our problem is motivated
by real-life applications in the ride-hailing industry. We study the Two-Stage Robust Matching
Bottleneck problem, prove its hardness, and design approximation algorithms under different
settings. Our algorithms give a constant approximation if the number of scenarios is fixed,
but require additional assumptions when there are polynomially or exponentially many
scenarios. It is an interesting question if there exists a constant approximation in the general
case that does not depend on the number of scenarios.
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A NP-Hardness proofs for TSRMB

We start by presenting the 3-Dimensional Matching (3-DM) and Set Cover problems, that we
use in our reductions to show Theorem 1. Both problems are known to be strongly NP-hard
[10, 25].

title3-Dimensional Matching (3-DM). Given three sets U , V , and W of equal cardinality
n, and a subset T of U × V × W , is there a subset M of T with |M | = n such that whenever
(u, v, w) and (u′, v′, w′) are distinct triples in M , u ̸= u′, v ̸= v′, and w ̸= w′ ?

Set Cover Problem. Given a set of elements U = {1, 2, ..., n} (called the universe), a
collection S1, . . . , Sm of m sets whose union equals the universe and an integer p.
Question: Is there a set C ⊂ {1, . . . , m} such that |C| ≤ p and

⋃
i∈C

Si = U ?

Proof of Theorem 1.

Explicit uncertainty. Consider an instance of the 3-Dimensional Matching Problem. We can
use it to construct (in polynomial time) an instance of TSRMB with 2 scenarios as follows:

Create two scenarios of size n: S1 = U and S2 = V .
Set D = T , every driver corresponds to a triple in T .
For every w ∈ W , let dT (w) be the number of sets in T that contain w. We create
dT (w) − 1 first stage riders, that are all copies of w. The total number of first stage riders
is therefore |R1| = |T | − n.

https:// marketplace.uber.com/ matching
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For (w, e) ∈ R1 × D, d(w, e) =
{

1 if w ∈ e

3 otherwise.

For (u, e) ∈ S1 ∪ S2 × D, d(u, e) =
{

1 if u ∈ e

3 otherwise.
For u, v ∈ R1 ∪ S1 ∪ S2, d(u, v) = min

e∈D
d(u, e) + d(v, e).

For e, f ∈ D, d(e, f) = min
u∈R1∪S1∪S2

d(u, e) + d(u, f).
This choice of distances induces a metric graph. We claim that there exists a 3-dimensional
matching if and only if there exists a solution to this TSRMB instance with total cost equal
to 2. Suppose that M = {e1, . . . , en} ⊂ T is a 3-Dimensional matching. Let e1, . . . , en

be the drivers that correspond to M in the TSRMB instance. We show that by using
D1 = D \ {e1, . . . , en} as a first stage decision, we ensure that the total cost for the TSRMB
instance is equal to 2. For any rider u in scenario S1, by definition of M , there exits a unique
edge ei ∈ M that covers u. The corresponding driver ei ̸∈ D1 can be matched to u with
a distance equal to 1. Furthermore, ei cannot be matched to any other rider in S1 with a
cost less than 1. Similarly, for any rider v in scenario S2, since there exits a unique edge
ej ∈ M that covers v, the corresponding driver can be matched to v with a cost of 1. The
second stage cost is therefore equal to 1. As for the first stage cost, we know by definition of
M , that every element w ∈ W is covered exactly once. Therefore, for every w ∈ W , there
exists dT (w) − 1 edges that contain w in T \ M . This means that every 1st stage rider can
be matched to a driver in D1 with a cost equal to 1. Hence the total cost of this two-stage
matching is equal to 2.

Suppose now that there exists a solution to the TSRMB instance with a cost equal to 2.
This means that the first and second stage costs are both equal to 1. Let M = {e1, . . . , en} be
the set of drivers used in the second stage of this solution. We show that M is a 3-dimensional
matching. Let ei = (u, v, w) and ej = (u′, v′, w′) be distinct triples in M . Since the second
stage cost is equal to 1, the driver ei (resp. ej) must be matched to u (resp. u′) in S1. Since
we have exactly n second stage drivers and n riders in S1, this means that ei and ej have to
be matched to different second stage riders in S1. Therefore we get u′ ≠ u. Similarly we
see that v′ ̸= v. Assume now that w = w′, this means that the TSRMB solution has used
two drivers (triples) ei and ej that contain w in the second stage. It is therefore impossible
to match all the dT (w) − 1 copies of w in the first stage with a cost equal to 1. Therefore
w ̸= w′. The above construction can be performed in polynomial time of the 3-DM input,
and therefore shows that TSRMB with two scenarios is NP-hard.

Now, to show that TSRMB is hard to approximate within a factor better than 2, we
consider three scenarios. Consider an instance of 3-DM. We can use it to construct an
instance of TSRMB with 3 scenarios as follows:

Create 3 scenarios of size n: S1 = U , S2 = V and S3 = W .
Set D = T .
Create |R1| = |T | − n first stage riders.
For (w, e) ∈ R1 × D, d(w, e) = 1.

For (u, e) ∈ S1 ∪ S2 ∪ S3 × D, d(u, e) =
{

1 if u ∈ e

3 otherwise.
For u, v ∈ R1 ∪ S1 ∪ S2 ∪ S3, d(u, v) = min

e∈D
d(u, e) + d(v, e).

For e, f ∈ D, d(e, f) = min
u∈R1∪S1∪S2∪S3

d(u, e) + d(u, f).
This choice of distances induces a metric graph. Similarly to the proof of 2 scenarios, we
can show that there exists a 3-dimensional matching if and only if there exists a TSRMB
solution with cost equal to 2. Furthermore, any solution for this TSRMB instance has
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either a total cost of 2 or 4 (the first stage cost is always equal to 1). We show that if a
(2 − ϵ)-approximation (for some ϵ > 0) to the TSRMB exists then 3-Dimensional Matching is
decidable. We know that this instance of TSRMB has a solution with total cost equal to 2
if and only if there is a 3-dimensional matching. Furthermore, if there is no 3-dimensional
matching, the cost of the optimal solution to TSRMB must be 4. Therefore, if an algorithm
guarantees a ratio of (2 − ϵ) and a 3-dimensional matching exists, the algorithm delivers a
solution with total cost equal to 2. If there is no 3-dimensional matching, then the solution
produced by the algorithm has a total cost of 4.

Implicit uncertainty. We prove the hardness for k = 1. We start from an instance of the Set
Cover problem and construct an instance of the TSRMB problem. Consider an instance of
the decision problem of set cover. We can use it to construct the following TSRMB instance:

Create m drivers D = {1, . . . , m}. For each j ∈ {1, . . . , m}, driver j corresponds to set
Sj .
Create m − p first stage riders, R1 = {1, . . . , m − p}.
Create n second stage riders, R2 = {1, . . . , n}.
Set S = {{1}, . . . , {n}}. Every scenario is of size 1.

As for the distances between riders and drivers, we define them as follows:
For (i, j) ∈ R1 × D, d(i, j) = 1.

For (i, j) ∈ R2 × D, d(i, j) =
{

1 if i ∈ Sj

3 otherwise.
For i, i′ ∈ R1 ∪ R2, d(i, i′) = min

j∈D
d(i, j) + d(i′, j).

For j, j′ ∈ D, d(j, j′) = min
i∈R1∪R2

d(i, j) + d(i, j′).

This choice of distances induces a metric graph. Moreover, every feasible solution to this
TSRMB instance has a first stage cost of exactly 1. We show that a set cover of size ≤ p

exists if and only if there is a TSRMB solution with total cost equal to 2. Suppose without
loss of generality that S1, . . . , Sp is a set cover. Then by using the drivers {1, . . . , p} in the
second stage, we ensure that every scenario is matched with a cost of 1. This implies the
existence of a solution with total cost equal to 2. Now suppose there is a solution to the
TSRMB problem with cost equal to 2. Let D2 be the set of second stage drivers of this
solution, then we have |D2| = p. We claim that the sets corresponding to drivers in D2 form
a set cover. In fact, since the total cost of the TSRMB solution is equal to 2, the second
stage cost is equal to 1. This means that for every scenario i ∈ {1, . . . , n}, there is a driver
j ∈ D2 within a distance 1 from i. Therefore i ∈ Sj and {Sj : j ∈ D2} is a set cover.

Next we show that if (2 − ϵ)-approximation (for some ϵ > 0) to the TSRMB exists then
Set Cover is decidable. We know that the TSRMB problem has a solution of cost 2 if and
only if there is a set cover of size less than p. Furthermore, if there is no such set cover, the
cost of the optimal solution must be 4. Therefore, if the algorithm guarantees a ratio of
(2 − ϵ) and there is a set cover of size less than p, the algorithm delivers a solution with a
total cost of 2. If there is no set cover, then clearly the solution produced by the algorithm
has a cost of 4. ◀

▶ Remark 12. For k ≥ 2, we can use a generalization of Set Cover to show that the problem
is hard for any k. We use a reduction from the Set MultiCover Problem ([3, 43]) defined
below.
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Set MultiCover Problem. Given a set of elements U = {1, 2, ..., n} (called the universe)
and a collection S1, . . . , Sm of m sets whose union equals the universe. A “coverage factor”
(positive integer) k and an integer p. Is there a set C ⊂ {1, . . . , m} such that |C| ≤ p and for
each element x ∈ U , |j ∈ C : x ∈ Sj | ≥ k ?

We can create an instance of TSRMB from a Set MultiCover instance similarly to Set
Cover with the exception that S = {S ⊂ R2 s.t. |S| = k}. The hardness result follows
similarly.

B Implicit scenarios: small surplus

Proof of Lemma 8. Let δ be the driver given by (3). We claim that the k closest riders
to δ are all within a distance less than OPT2 from δ. Consider D∗

2 to be the k + ℓ drivers
left for the second stage in the optimal solution. Every driver in D∗

2 can be matched to a
set of different second stage riders over different scenarios. Let us rank the drivers in D∗

2
according to how many different second stage riders they are matched to over all scenarios,
in descending order. Formally, let D∗

2 = {δ1, δ2, . . . , δk+ℓ} and let R∗(δi) be the second stage
riders that are matched to δi in the optimal solution in some scenario, such that

|R∗(δ1)| ≥ . . . ≥ |R∗(δk+ℓ)|.

We claim that |R∗(δ1)| ≥ k. In fact, we have
k+ℓ∑
i=1

|R∗(δi)| ≥ n because every second stage

rider is matched to at least one driver in some scenario. Therefore

|R∗(δ1)| ≥ n

k + ℓ
≥ n

2k
≥ k.

We know that all the second stage riders in R∗(δ1) are within a distance less than OPT2
from δ1. Therefore max

r∈Rk(δ1)
d(δ1, r) ≤ OPT2. But we know that by definition of δ,

max
r∈Rk(δ)

d(δ, r) ≤ max
r∈Rk(δ1)

d(δ1, r) ≤ OPT2

This proves that the k closest second stage riders to δ are within a distance less than
OPT2. Let R(δ) be the set of all second stage riders that are within a distance less than
OPT2 from δ. Recall that Rk(δ) is the set of the k closest second stage riders to δ. In
the optimal solution, the scenario Rk(δ) is matched to a set of at least new k − 1 drivers
{δi1 , . . . δik−1} ⊂ D∗

2 \ {δ}. We show a lower bound on the size of R(δ) and the number of
riders matched to {δi1 , . . . δik−1} over all scenarios in the optimal solution.

▷ Claim 13.
∣∣R(δ)

k−1⋃
j=1

R∗(δij
)
∣∣ ≥ n − ℓ

Proof. Suppose the opposite, suppose that at least ℓ + 1 riders from R2 are not in the union.
Let F be the set of these ℓ + 1 riders. Since ℓ + 1 ≤ k, we can construct a scenario S that
includes F . In the optimal solution, and in particular, in the second stage matching of S,
at least one rider from F needs to be matched to a driver from {δ, δi1 , . . . δik−1}. Otherwise
there are only ℓ second stage drivers left to match all of F . Therefore there exists r ∈ F such
that either r ∈ R(δ) or there exists j ∈ {1, . . . , k − 1} such that r ∈ R∗(δij ). This shows that

r ∈ R(δ)
k−1⋃
j=1

R∗(δij
), which is a contradiction. Therefore, at most ℓ second stage riders are

not in the union. ◁
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▷ Claim 14. For any rider r ∈ R(δ)
k−1⋃
j=1

R∗(δij ), we have d(r, δ) ≤ 3OPT2.

Proof. If r ∈ R(δ) then by definition we have d(r, δ) ≤ OPT2. Now suppose r ∈ R∗(δij
) for

j ∈ [k − 1]. Let r′ be the rider from scenario Rk(δ) that was matched to δij
in the optimal

solution. Then by the triangular inequality

d(r, δ) ≤ d(r, δij
) + d(δij

, r′) + d(r′, δ) ≤ 3OPT2. ◁

From Claim 14, we see that the ball centered at δ, with radius 3OPT2, contains at least

n − ℓ second stage riders in R(δ)
k−1⋃
j=1

R∗(δij
). This proves the first part of the lemma. The

second part is proved in the next claim.

▷ Claim 15. For r1 ∈ Rk(δ) and r2 ∈ R(δ)
k−1⋃
j=1

R∗(δij
), we have d(r1, r2) ≤ 4OPT2.

Proof. Let r1 ∈ Rk(δ). If r2 ∈ R(δ) then d(r1, r2) ≤ d(r1, δ) + d(δ, r2) ≤ 2OPT2. If
r2 ∈ R∗(δij ) for some j, and r′ is the rider from scenario Rk(δ) that was matched to δij

d(r1, r2) ≤ d(r1, δ) + d(δ, r′) + d(r′, δij ) + d(δij , r2) ≤ 4OPT2. ◁

Claim 13 shows that the number of riders included in R(δ)
k−1⋃
j=1

R∗(δij ) is at least n− ℓ. Claim

14 shows that each one of this rider has distance less than 3OPT2 from δ. Finally, Claim 15
shows that the distance between any one of this riders and any rider in Rk(δ) is less than
3OPT2. This concludes the proof of Lemma 8. ◀
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