LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

- Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
- Christel Baier (TU Dresden, DE)
- Mikolaj Bojanczyk (University of Warsaw, PL)
- Roberto Di Cosmo (Inria and Université de Paris, FR)
- Faith Ellen (University of Toronto, CA)
- Javier Esparza (TU München, DE)
- Daniel Král’ (Masaryk University - Brno, CZ)
- Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
- Anca Muscholl (University of Bordeaux, FR)
- Chih-Hao Luke Ong (University of Oxford, GB)
- Phillip Rogaway (University of California, Davis, US)
- Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
- Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics
Contents

Preface

Seth Gilbert 0:xi

Organization

.. 0:xiii–0:xvi

Awards

.. 0:xvii

2021 Edsger W. Dijkstra Prize in Distributed Computing

.. 0:xix

2021 Principles of Distributed Computing Doctoral Dissertation Award

.. 0:xxi

Invited Talks

The Quest for Universally-Optimal Distributed Algorithms

Bernhard Haeupler 1:1–1:1

Tech Transfer Stories and Takeaways

Dahlia Malkhi 2:1–2:1

Regular Papers

Frugal Byzantine Computing

Lower Bounds for Shared-Memory Leader Election Under Bounded Write Contention

Dan Alistarh, Rati Gelashvili, and Giorgi Nadiradze 4:1–4:17

Deterministic Distributed Algorithms and Lower Bounds in the Hybrid Model

Ioannis Anagnostides and Themis Gouleakis 5:1–5:19

Ruling Sets in Random Order and Adversarial Streams

Sepehr Assadi and Aditi Dudeja 6:1–6:18

Impossibility of Strongly-Linearizable Message-Passing Objects via Simulation by Single-Writer Registers

Hagit Attiya, Constantin Enea, and Jennifer L. Welch 7:1–7:18

Locally Checkable Labelings with Small Messages

Alkida Balliu, Keren Censor-Hillel, Yannic Maus, Dennis Olivetti, and Jukka Suomela 8:1–8:18

Randomized Local Fast Rerouting for Datacenter Networks with Almost Optimal Congestion

Gregor Bankhammer, Robert Elsässer, and Stefan Schmid 9:1–9:19
Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic Logarithmic Completeness in the Distributed Sleeping Model</td>
<td>10:1–10:19</td>
</tr>
<tr>
<td>Denis Bédin, François Lépine, Achour Mostefaoui, Damien Perez, and Matthieu Perrin</td>
<td></td>
</tr>
<tr>
<td>Wait-Free CAS-Based Algorithms: The Burden of the Past</td>
<td>11:1–11:15</td>
</tr>
<tr>
<td>Denis Bédin, François Lépine, Achour Mostefaoui, Damien Perez, and Matthieu Perrin</td>
<td></td>
</tr>
<tr>
<td>Space and Time Bounded Multiversion Garbage Collection</td>
<td>12:1–12:20</td>
</tr>
<tr>
<td>Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, Yihan Sun, and Yuanhao Wei</td>
<td></td>
</tr>
<tr>
<td>Marthe Bonamy, Linda Cook, Carla Groenland, and Alexandra Wesolek</td>
<td></td>
</tr>
<tr>
<td>Fast Nonblocking Persistence for Concurrent Data Structures</td>
<td>14:1–14:20</td>
</tr>
<tr>
<td>Wentao Cai, Haosen Wen, Vladimir Maksimovski, Mingzhe Du, Rafaello Sanna, Shreif Abdallah, and Michael L. Scott</td>
<td></td>
</tr>
<tr>
<td>Massively Parallel Correlation Clustering in Bounded Arboricity Graphs</td>
<td>15:1–15:18</td>
</tr>
<tr>
<td>Mélanie Cambus, Davin Choo, Havu Miikonen, and Jara Uitto</td>
<td></td>
</tr>
<tr>
<td>Fully Read/Write Fence-Free Work-Stealing with Multiplicity</td>
<td>16:1–16:20</td>
</tr>
<tr>
<td>Armando Castañeda and Miguel Piña</td>
<td></td>
</tr>
<tr>
<td>Optimal Error-Free Multi-Valued Byzantine Agreement</td>
<td>17:1–17:19</td>
</tr>
<tr>
<td>Jinyuan Chen</td>
<td></td>
</tr>
<tr>
<td>Tame the Wild with Byzantine Linearizability: Reliable Broadcast, Snapshots, and Asset Transfer</td>
<td>18:1–18:18</td>
</tr>
<tr>
<td>Shir Cohen and Idit Keidar</td>
<td></td>
</tr>
<tr>
<td>Wake up and Join Me! an Energy-Efficient Algorithm for Maximal Matching in Radio Networks</td>
<td>19:1–19:14</td>
</tr>
<tr>
<td>Varsha Dani, Aayush Gupta, Thomas P. Hayes, and Seth Pettie</td>
<td></td>
</tr>
<tr>
<td>The Canonical Amoebot Model: Algorithms and Concurrency Control</td>
<td>20:1–20:19</td>
</tr>
<tr>
<td>Joshua J. Daymude, Andréa W. Richa, and Christian Scheideler</td>
<td></td>
</tr>
<tr>
<td>Improved Weighted Additive Spanners</td>
<td>21:1–21:15</td>
</tr>
<tr>
<td>Michael Elkin, Yuval Gitlitz, and Ofer Neiman</td>
<td></td>
</tr>
<tr>
<td>Adam Gańczorz, Tomasz Jurdiński, Mateusz Lewko, and Andrzej Pęlc</td>
<td></td>
</tr>
<tr>
<td>Broadcast CONGEST Algorithms against Adversarial Edges</td>
<td>23:1–23:19</td>
</tr>
<tr>
<td>Yael Hitron and Merav Parter</td>
<td></td>
</tr>
<tr>
<td>General CONGEST Compilers against Adversarial Edges</td>
<td>24:1–24:18</td>
</tr>
<tr>
<td>Yael Hitron and Merav Parter</td>
<td></td>
</tr>
<tr>
<td>Fast Arrays: Atomic Arrays with Constant Time Initialization</td>
<td>25:1–25:19</td>
</tr>
<tr>
<td>Siddhartha Jayanti and Julian Shun</td>
<td></td>
</tr>
<tr>
<td>Byzantine Consensus with Local Multicast Channels</td>
<td>26:1–26:16</td>
</tr>
<tr>
<td>Muhammad Samir Khan and Nitin H. Vaidya</td>
<td></td>
</tr>
</tbody>
</table>
Singularly Near Optimal Leader Election in Asynchronous Networks

Permissionless and Asynchronous Asset Transfer
Petr Kuznetsov, Yvonne-Anne Pignolet, Pavel Ponomarev, and Andrei Tonikikh .. 28:1–28:19

Detectable Sequential Specifications for Recoverable Shared Objects
Na Li and Wojciech Golab ... 29:1–29:19

Constant RMR Group Mutual Exclusion for Arbitrarily Many Processes and Sessions
Liat Maor and Gadi Taubenfeld .. 30:1–30:16

Efficient CONGEST Algorithms for the Lovász Local Lemma
Yannic Maus and Jara Uitto ... 31:1–31:19

Optimal Communication Complexity of Authenticated Byzantine Agreement
Atsuki Momose and Ling Ren .. 32:1–32:16

Algorithms for the Minimum Dominating Set Problem in Bounded Arboricity Graphs: Simpler, Faster, and Combinatorial
Adir Morgan, Shay Solomon, and Nicole Wein 33:1–33:19

Smoothed Analysis of Population Protocols
Gregory Schwartzman and Yuichi Sudo .. 34:1–34:19

VBR: Version Based Reclamation
Gali Sheffi, Maurice Herlihy, and Erez Petrank 35:1–35:18

Extension-Based Proofs for Synchronous Message Passing
Yilun Sheng and Faith Ellen .. 36:1–36:17

Truthful Information Dissemination in General Asynchronous Networks
Lior Solodkin and Rotem Oshman ... 37:1–37:19

In Search for an Optimal Authenticated Byzantine Agreement
Alexander Spiegelman ... 38:1–38:19

The Power of Random Symmetry-Breaking in Nakamoto Consensus
Lili Su, Quanquan C. Liu, and Neha Narula 39:1–39:19

Time-Optimal Loosely-Stabilizing Leader Election in Population Protocols
Yuichi Sudo, Ryota Eguchi, Taisuke Izumi, and Toshimitsu Masuzawa 40:1–40:17

Efficient Distribution of Quantum Circuits
Ranjani G Sundaram, Himanshu Gupta, and C. R. Ramakrishnan 41:1–41:20

Game Theoretical Framework for Analyzing Blockchains Robustness
Paolo Zappalà, Marianna Belotti, Maria Potop-Butucaru, and Stefano Secci 42:1–42:18

Brief Announcements

Brief Announcement: Fast Graphical Population Protocols
Dan Alistarh, Rati Gelashvili, and Joel Rybicki 43:1–43:4
Brief Announcement: How to Trust Strangers – Composition of Byzantine Quorum Systems
Orestis Alpos, Christian Cachin, and Luca Zanolini 44:1–44:4

Brief Announcement: Using Nesting to Push the Limits of Transactional Data Structure Libraries
Gal Assa, Hagar Meir, Guy Golan-Gueta, Idit Keidar, and Alexander Spiegelman 45:1–45:4

Brief Announcement: Twins – BFT Systems Made Robust
Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li, Avery Ching, and Dahlia Malkhi .. 46:1–46:4

Brief Announcement: On Extending Brandt’s Speedup Theorem from LOCAL to Round-Based Full-Information Models
Paul Bastide and Pierre Fraigniaud ... 47:1–47:4

Brief Announcement: Automating and Mechanising Cutoff Proofs for Parameterized Verification of Distributed Protocols
Shreesha G. Bhat and Kartik Nagar .. 48:1–48:4

Brief Announcement: Local Certification of Graph Decompositions and Applications to Minor-Free Classes
Nicolas Bousquet, Laurent Fauilloley, and Théo Pierron 49:1–49:4

Brief Announcement: Memory Efficient Massively Parallel Algorithms for LCL Problems on Trees
Sebastian Brandt, Rustam Latypov, and Jara Uitto 50:1–50:4

Brief Announcement: Revisiting Signature-Free Asynchronous Byzantine Consensus
Christian Cachin and Luca Zanolini .. 51:1–51:4

Brief Announcement: Non-Blocking Dynamic Unbounded Graphs with Worst-Case Amortized Bounds
Bapi Chatterjee, Sathya Peri, and Muktikanta Sa 52:1–52:4

Brief Announcement: Auditable Register Emulations
Vinicius Vielmo Cogo and Alysson Bessani ... 53:1–53:4

Brief Announcement: Accountability and Reconfiguration – Self-Healing Lattice Agreement
Luciano Freitas de Souza, Petr Kuznetsov, Thibault Rieutord, and Sara Tucci-Piergiovanni ... 54:1–54:5

Brief Announcement: On Strong Observational Refinement and Forward Simulation
John Derrick, Simon Doherty, Brijesh Dongal, Gerhard Schellhorn, and Heike Wehrheim ... 55:1–55:4

Brief Announcement: Persistent Software Combining
Panagiota Fatourou, Nikolaos D. Kallimanis, and Eleftherios Kosmas 56:1–56:4

Brief Announcement: Probabilistic Indistinguishability and The Quality of Validity in Byzantine Agreement
Guy Goren, Yoram Moses, and Alexander Spiegelman 57:1–57:4
Brief Announcement: Sinkless Orientation Is Hard Also in the Supported LOCAL Model	Janne H. Korhonen, Ami Paz, Joel Rybicki, Stefan Schmid, and Jukka Suomela	58:1–58:4
Brief Announcement: Simple Majority Consensus in Networks with Unreliable Communication	Ariel Livshits, Yonatan Shadmi, and Ran Tamir (Averbuch)	59:1–59:4
Brief Announcement: Crystalline: Fast and Memory Efficient Wait-Free Reclamation	Ruslan Nikolaev and Binoy Ravindran	60:1–60:4
Welcome to the DISC 2021, the 35th International Symposium on Distributed Computing, held on October 4–18, 2021. DISC is an international forum on the theory, design, analysis, and implementation of distributed systems and networks, focusing on distributed computing in all its forms. DISC is organized in cooperation with the European Association for Theoretical Computer Science (EATCS).

This volume contains the papers presented at DISC 2021, including 40 regular papers and 21 brief announcements. Overall, there were 135 papers submitted to DISC on a wide variety of topics in distributed computing. Submissions were double-blind, and they were each reviewed by at least three experts. Final decisions were made during two virtual PC meetings.

This volume also includes the abstracts for two keynote talks, given by Dahlia Malkhi and Bernhard Haeupler. It includes the citations for the best paper and best student paper awards at DISC 2021, as well as citations for two awards jointly sponsored by DISC and the ACM Symposium on Principles of Distributed Computing (PODC):

- The 2021 Edsger W. Dijkstra Prize in Distributed Computing will be presented at DISC 2021 to Paris C. Kanellakis (posthumously) and Scott A. Smolka for their paper “CCS Expressions, Finite State Processes, and Three Problems of Equivalence”.
- The 2021 Principles of Distributed Computing Doctoral Dissertation Award will be presented at PODC 2021 to Dr. Leqi Zhu, for his dissertation titled “On the Space Complexity of Colourless Tasks,” and to Dr. Goran Zuzic, for his dissertation titled “Towards Universal Optimality in Distributed Optimization.”

I would like to thank everyone who contributed to DISC 2021: the authors of the submitted papers, PC members and external reviewers, keynote speakers, members of the organizing committee, workshop organizers, members of the award committees, and participants at the conference. I would also like to thank the members of the steering committee, former chairs and many other members of the community for their valuable assistance and suggestions, EATCS for their support, and the staff at Schloss Dagstuhl – Leibniz-Zentrum für Informatik for their help in preparing these proceedings.

October 2021

Seth Gilbert
DISC 2021 Program Chair
Organization

DISC, the International Symposium on Distributed Computing, is an annual forum for presentation of research on all aspects of distributed computing. It is organized in cooperation with the European Association for Theoretical Computer Science (EATCS). The symposium was established in 1985 as a biannual International Workshop on Distributed Algorithms on Graphs (WDAG). The scope was soon extended to cover all aspects of distributed algorithms and WDAG came to stand for International Workshop on Distributed AlGorithms, becoming an annual symposium in 1989. To reflect the expansion of its area of interest, the name was changed to DISC (International Symposium on DIstributed Computing) in 1998, opening the symposium to all aspects of distributed computing. The aim of DISC is to reflect the exciting and rapid developments in this field.

Program Chair

Seth Gilbert
National University of Singapore, Singapore

Program Committee

- Antonio Fernández Anta
 IMDEA Networks Institute
- Ittai Abraham
 VMware
- Dan Alistarh
 IST Austria
- Naama Ben David
 VMware
- Michael A. Bender
 Stony Brook University
- Gregory Chockler
 University of Surrey
- Michael Dinitz
 Johns Hopkins University
- Michal Dory
 ETH
- Yuval Emek
 Technion
- Seth Gilbert (Chair)
 NUS
- Rachid Guerraoui
 EPFL
- Diksha Gupta
 NUS
- Maurice Herlihy
 Brown University
- Prasad Jayanti
 Dartmouth
- Alex Kogan
 Oracle Labs
- Kuba Łącki
 Google Research
- Christoph Lenzen
 Max-Planck-Institut für Informatik
- Alessia Milani
 Université de Bordeaux
- Dennis Olivetti
 University of Freiburg
- Rotem Oshman
 Tel Aviv University
- Ami Paz
 University of Vienna
- Franck Petit
 Sorbonne Université
- Peter Robinson
 City University of Hong Kong
- Gregory Schwartzman
 JAIST
- Michael L. Scott
 University of Rochester
- Ilya Sergey
 Yale-NUS College
- Hsin-Hao Su
 Boston College
- Lili Su
 Northeastern University

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
Organization

Lewis Tseng Boston College
Jara Uitto Aalto University
Jennifer Welch Texas A&M University
Maxwell Young Mississippi State University
Leqi Zhu University of Michigan

Organizing Committee

Alkida Balliu University of Freiburg
Philipp Bamberger University of Freiburg
Salwa Faour (Publicity Co-Chair) University of Freiburg
Marc Fuchs (Publicity Co-Chair) University of Freiburg
Seth Gilbert (PC Chair) National University of Singapore
Fabian Kuhn (General Chair) University of Freiburg
Moti Medina (Workshops/Tutorials Chair) Bar-Ilan University
Dennis Olivetti University of Freiburg
Christian Schindelhauer University of Freiburg
Philipp Schneider University of Freiburg

Steering Committee

Hagit Attiya Technion
Seth Gilbert National University of Singapore
Calvin Newport Georgetown University
Merav Parter Weizmann Institute
Andréa Richa (Chair) Arizona State University
Ulrich Schmid TU Wien
Jukka Suomela (Vice Chair) Aalto University

External Reviewers

Vitaly Aksenov Angel Alvarez Saeed Amiri
Yackolley Amoussou-Guenon Pablo Andres-Martinez Alex Aravind
Sergio Arévalo James Aspnes Sepehr Assadi
Hagit Attiya John Augustine Chen Avin
Leonid Barenboim Joao Barreto Alan Beadle
Soheil Behnezhad Michael Ben-Or Shimon Bitton
Lélia Blin Hans-Joachim Böckenhauer Greg Bodwin
Borzoo Bonakdarpour Quentin Bramas Sebastian Brandt
Johannes Bund Janna Burman Angela Sara Cacciapuoti
Christian Cachin Wentao Cai Irina Calciu
Mélanie Cambus Armando Castañeda Hubert T.H. Chan
Daryus Chandra Yi-Jun Chang Soumyottam Chatterjee
Marco Chiesa Ashish Choudhury Nachshon Cohen
Biagio Cosenza Peter Davies Stéphane Devismes
Laxman Dhulipala Stefan Dobrev Aleksandar Dragojevic
Mingzhe Du Swan Dubois Anaïs Durand
Yuval Efron Faith Ellen Constantin Enea
Chuchu Fan Wu Feng Laurent Feuilloley
Sponsors

DISC 2021 acknowledges the use of HotCRP for handling submissions and managing the review process, LIPIcs for producing and publishing the proceedings, and Zulip for providing virtual interaction space for conference participants.

DISC thanks VMware for their support.

DISC is organized in cooperation with the European Association for Theoretical Computer Science (EATCS).
Awards

Best Paper

The DISC Program Committee has selected the following paper to receive the DISC 2021 best paper award:

Lower Bounds for Shared-Memory Leader Election under Bounded Write Contention
by Dan Alistarh, Giorgi Nadiradze, and Rati Gelashvili.

This paper examines a classical and long-studied problem: electing a leader in a shared memory system. It focuses on the question of how fast a leader election protocol can terminate in a good execution, e.g., when a single process runs all alone. It provides an elegant proof that $\Omega(\log n)$ steps are needed, developing new techniques for proving this type of lower bound. Moreover, the new bound matches the best existing algorithms, showing that the result is tight. As leader election is a foundational problem in distributed computing the new insights in this paper have significant value that merit the best paper award at DISC 2021.

Best Student Paper

The DISC Program Committee has selected the following two papers to receive the DISC 2021 best student paper award:

Broadcast CONGEST Algorithms against Adversarial Edges
by Yael Hitron and Merav Parter.

and

General CONGEST Compilers against Adversarial Edges
by Yael Hitron and Merav Parter.

Both of these papers focus on a new class of problems in distributed graph theory: algorithms for the adversarial CONGEST model. In the traditional CONGEST model, the network is modeled as a graph where each node can communicate reliably with its neighbors; the key restriction is that nodes can only send a limited amount of information to each neighbor in each round. In the adversarial CONGEST model, by contrast, a subset of the edges are controlled by a malicious adversary that can send arbitrary malicious messages on those edges. The first paper focuses specifically on the task of broadcast, while the second paper develops a general “compiler” that can be used to transform any algorithm into one that is robust to adversarial edge control. For their development of new techniques to design algorithms for malicious distributed networks, the program committee chose these papers for the best student paper award.
The Edsger W. Dijkstra Prize in Distributed Computing is awarded for outstanding papers on the principles of distributed computing, whose significance and impact on the theory or practice of distributed computing have been evident for at least a decade. It is sponsored jointly by the ACM Symposium on Principles of Distributed Computing (PODC) and the EATCS Symposium on Distributed Computing (DISC). The prize is presented annually, with the presentation taking place alternately at PODC and DISC. The committee decided to award the 2021 Edsger W. Dijkstra Prize in Distributed Computing to Paris C. Kanellakis and Scott A. Smolka for their paper:

CCS Expressions, Finite State Processes, and Three Problems of Equivalence

This paper was a foundational contribution to the fundamental challenge of assigning semantics to concurrent processes, for specification and verification. It addressed the computational complexity of the previously introduced celebrated notion of behavioral equivalence, a cornerstone of Milner’s Calculus of Communicating Systems (CCS), aimed at tackling semantics by considering equivalence classes.

With the publication of their PODC 1983 paper, Kanellakis and Smolka pioneered the development of efficient algorithms for deciding behavioral equivalence of concurrent and distributed processes, especially bisimulation equivalence, which is the cornerstone of the process-algebraic approach to modeling and verifying concurrent and distributed systems. Specifically, the main result of their paper is what has come to be known as the K-S Relational Coarsest Partitioning algorithm, which at the time was a new combinatorial problem of independent interest.

The paper also presented complexity results that showed certain behavioral equivalences are computationally intractable. Collectively, Kanellakis and Smolka’s results founded the subdiscipline of algorithmic process theory, and helped jump-start the field of Formal Verification.

2021 Award Committee:

Keren Censor-Hillel (chair), Technion
Pierre Fraigniaud, Université de Paris and CNRS
Cyril Gavoille, LaBRI – Université de Bordeaux
Seth Gilbert, National University of Singapore
Andrzej Pelc, Université du Québec en Outaouais
David Peleg, Weizmann Institute of Science
2021 Principles of Distributed Computing
Doctoral Dissertation Award

A pleasingly large number of doctoral dissertations were submitted for the 2021 Principles of Distributed Computing Doctoral Dissertation Award, all of outstanding quality. After careful deliberation, the Committee made the choice to share the award between two theses:

On the Space Complexity of Colourless Tasks
by Leqi Zhu,

and

Towards Universal Optimality in Distributed Optimization
by Goran Zuzic.

Zhu’s thesis establishes general memory lower bounds for both deterministic and randomized algorithms for a variety of basic synchronization tasks including consensus, k-set agreement, and epsilon-approximate agreement. These bounds hold under a weak liveness assumption – obstruction-freedom – making them very general. Among the results in the thesis one stands out. It provides a definitive solution to a classic and long-standing open problem in distributed computing: to determine the space complexity of consensus in asynchronous, shared-memory systems. Besides the significance of the result, the Committee also appreciated its beautiful execution – a clean, textbook-quality proof. On the basis of this achievement the Committee made its decision to assign the award to this excellent piece of work.

Zuzic’s thesis tackles another fundamental problem, in the area of distributed graph algorithms. Loosely speaking, the thesis concerns graph theoretic problems that are non-local, in the sense that they require a number of steps at least proportional to the diameter of the network. This is a large class containing fundamental algorithmic problems such as MST, shortest paths, and min cut. The stated goal is to come up with distributed algorithms that are optimal for every graph topology. In doing so, one must first divine the relevant graph-topology parameters embodying the computational obstruction, and then design algorithms whose performance matches those topological bounds. This is an arduous and ambitious research program, and Zuzic’s thesis insightfully covers a lot of ground. For this impressive overall achievement the Committee judged this excellent thesis also worthy of the award.

The 2021 Principles of Distributed Computing Doctoral Dissertation Award Committee:

Marcos K. Aguilera, VMware
Hagit Attiya, Technion
Christian Cachin, University of Bern
Alessandro Panconesi (chair), Sapienza University of Rome