
Space and Time Bounded Multiversion Garbage
Collection
Naama Ben-David #

VMware Research, Palo Alto, CA, USA

Guy E. Blelloch #

Carnegie Mellon University, Pittsburgh, PA, USA

Panagiota Fatourou #

FORTH ICS and University of Crete, Heraklion, Greece

Eric Ruppert #

York University, Toronto, Canada

Yihan Sun #

University of California, Riverside, CA, USA

Yuanhao Wei #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We present a general technique for garbage collecting old versions for multiversion concurrency
control that simultaneously achieves good time and space complexity. Our technique takes only O(1)
time on average to reclaim each version and maintains only a constant factor more versions than
needed (plus an additive term). It is designed for multiversion schemes using version lists, which are
the most common.

Our approach uses two components that are of independent interest. First, we define a novel
range-tracking data structure which stores a set of old versions and efficiently finds those that are
no longer needed. We provide a wait-free implementation in which all operations take amortized
constant time. Second, we represent version lists using a new lock-free doubly-linked list algorithm
that supports efficient (amortized constant time) removals given a pointer to any node in the list.
These two components naturally fit together to solve the multiversion garbage collection problem–the
range-tracker identifies which versions to remove and our list algorithm can then be used to remove
them from their version lists. We apply our garbage collection technique to generate end-to-end
time and space bounds for the multiversioning system of Wei et al. (PPoPP 2021).

2012 ACM Subject Classification Theory of computation → Concurrent algorithms; Theory of
computation → Data structures design and analysis

Keywords and phrases Lock-free, data structures, memory management, snapshot, version lists

Digital Object Identifier 10.4230/LIPIcs.DISC.2021.12

Related Version Full Version: https://arxiv.org/abs/2108.02775

Funding Guy E. Blelloch and Yuanhao Wei: NSF CCF-1901381, CCF-1910030, and CCF-1919223.
Eric Ruppert: NSERC Discovery Grant. Yihan Sun: NSF grant CCF-2103483.
Panagiota Fatourou: EU Horizon 2020, Marie Sklodowska-Curie GA No 101031688.

Acknowledgements We thank the anonymous referees for their helpful comments and suggestions.

1 Introduction

Supporting multiple “historical” versions of data, often called multiversioning or multiversion
concurrency control, is a powerful technique widely used in database systems [42, 10, 38, 32,
36, 51], transactional memory [40, 22, 39, 31, 29], and shared data structures [7, 21, 35, 49].

© Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, Yihan Sun, and Yuanhao
Wei;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bendavidn@vmware.com
mailto:guyb@cs.cmu.edu
mailto:faturu@csd.uoc.gr
mailto:ruppert@eecs.yorku.ca
mailto:yihans@cs.ucr.edu
mailto:yuanhao1@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.DISC.2021.12
https://arxiv.org/abs/2108.02775
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Space and Time Bounded Multiversion Garbage Collection

This approach allows complex queries (read-only transactions) to proceed concurrently with
updates while still appearing atomic because they get data views that are consistent with a
single point in time. If implemented carefully, queries do not interfere with one another or
with updates. The most common approach for multiversioning uses version lists [42] (also
called version chains): the system maintains a global timestamp that increases over time,
and each object maintains a history of its updates as a list of value-timestamp pairs, each
corresponding to a value written and an update time. Each node in the list has an associated
interval of time from that node’s timestamp until the next (later) node’s timestamp. A query
can first read a timestamp value t and then, for each object it wishes to read, traverse the
object’s version list to find the version whose interval contains t.

Memory usage is a key concern for multiversioning, since multiple versions can consume
huge amounts of memory. Thus, most previous work on multiversioning discusses how to
reclaim the memory of old versions. We refer to this as the multiversion garbage collection
(MVGC) problem. A widely-used approach is to keep track of the earliest active query and
reclaim the memory of any versions overwritten before the start of this query [22, 36, 30, 35, 49].
However, a query that runs for a long time, either because it is complicated or because
it has been delayed, will force the system to retain many unneeded intermediate versions
between the oldest required version and the current one. This has been observed to be a
major bottleneck for database systems with Hybrid Transaction and Analytical Processing
(HTAP) workloads [14] (i.e., many small updates concurrent with some large analytical
queries). To address this problem in the context of software transactional memory, Lu
and Scott [33] proposed a non-blocking algorithm that can reclaim intermediate versions.
Blocking techniques were later proposed by the database community [14, 32]. However, these
techniques add significant time overhead in worst-case executions.

We present a wait-free MVGC scheme that achieves good time and space bounds, using
O(1) time1 on average per allocated version and maintaining only a constant factor more
versions than needed (plus an additive term). The scheme is very flexible and it can be
used in a variety of multiversioning implementations. It uses a three-step approach that
involves 1) identifying versions that can be reclaimed, including intermediate versions, 2)
unlinking them from the version lists, and 3) reclaiming their memory. To implement these
three steps efficiently, we develop two general components – a range-tracking data structure
and a version-list data structure – that could be of independent interest beyond MVGC.

The range-tracking data structure is used to identify version list nodes that are no longer
needed. It supports an announce operation that is used by a query to acquire the current
timestamp t as well as protect any versions that were current at t from being reclaimed.
A corresponding unannounce is used to indicate when the query is finished. The data
structure also supports a deprecate operation that is given a version and its time interval,
and indicates that the version is no longer the most recent – i.e., is safe to reclaim once its
interval no longer includes any announced timestamp. When a value is updated with a new
version, the previous version is deprecated. A call to deprecate also returns a list of versions
that had previously been deprecated and are no longer cover any announced timestamp
– i.e., are now safe to reclaim. We provide a novel implementation of the range-tracking
data structure for which the amortized number of steps per operation is O(1). We also
bound the number of versions on which deprecate has been called, but have not yet been
returned. If H is the maximum, over all configurations, of the number of needed deprecated
versions, then the number of deprecated versions that have not yet been returned is at most

1 For time/space complexity, we count both local and shared memory operations/objects.

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 12:3

2H + O(P 2 log P), where P is the number of processes. To achieve these time and space
bounds, we borrow some ideas from real-time garbage collection [6, 11], and add several new
ideas such as batching and using a shared queue.

The second main component of our scheme is a wait-free version-list data structure that
supports efficient (amortized constant time) removals of nodes from anywhere in the list.
When the deprecate operation identifies an unneeded version, we must splice it out of its
version list, without knowing its current predecessor in the list, so we need a doubly-linked
version list. Our doubly-linked list implementation has certain restrictions that are naturally
satisfied when maintaining version lists, for example nodes may be appended only at one
end. The challenge is in achieving constant amortized time per remove, and bounded space.
Previously known concurrent doubly-linked lists [47, 43] do not meet these requirements,
requiring at least Ω(P) amortized time per remove. We first describe the implementation
of our version list assuming a garbage collector and then we show how to manually reclaim
removed nodes while maintaining our desired overall time and space bounds.

To delete elements from the list efficiently, we leverage some recent ideas from randomized
parallel list contraction [12], which asynchronously removes elements from a list. To avoid
concurrently splicing out adjacent elements in the list, which can cause problems, the approach
defines an implicit binary tree so that the list is an in-order traversal of the tree. Only nodes
corresponding to leaves of the tree, which cannot be adjacent in the list, may be spliced out.
Directly applying this technique, however, is not efficient in our setting. To reduce space
overhead, we had to develop intricate helping mechanisms for splicing out internal nodes
rather than just leaves. To achieve wait-freedom, we had to skew the implicit tree so that it
is right-heavy. The final algorithm ensures that at most 2(L − R) + O(P log Lmax) nodes
remain reachable in an execution with L appends and R removes across an arbitrary number
of version lists, and at most Lmax appends on a single version list. This means the version
lists store at most a constant factor more than the L − R required nodes plus an additive
term shared across all the version lists. Combining this with the bounds from the range
tracker, our MVGC scheme ensures that at most O(V + H + P 2 log P + P log Lmax) versions
are reachable from the V version lists. This includes the current version for each list, H

needed versions, plus additive terms from the range tracking and list building blocks.
After a node has been spliced out of the doubly-linked list, its memory must be reclaimed.

This step may be handled automatically by the garbage collector in languages such as Java,
but in non-garbage-collected languages, additional mechanisms are needed to safely reclaim
memory. The difficulty in this step is that while a node is being spliced out, other processes
traversing the list might be visiting that node. We use a reference counting reclamation
scheme and this requires modifying our doubly-linked list algorithm slightly to maintain the
desired space bounds. We apply an existing concurrent reference counting implementation [2]
that employs a local hash table per process which causes the time bounds of our reclamation
to become amortized O(1) in expectation. It also requires an additional fetch-and-add
instruction, whereas the rest of our algorithms require only read and CAS.

We apply our MVGC scheme to a specific multiversioning scheme [49] to generate end-
to-end bounds for a full multiversioning system. This multiversioning scheme takes a given
CAS-based concurrent data structure and transforms it to support complex queries (e.g.,
range queries) by replacing each CAS object with one that maintains a version list. Overall,
we ensure that the memory usage of the multiversion data structure is within a constant
factor of the needed space, plus O(P 2 log P + P 2 log Lmax). In terms of time complexity, our
garbage collection scheme takes only O(1) time on average for each allocated version.

Detailed proofs of correctness and of our complexity bounds appear in the full version [8].

DISC 2021

12:4 Space and Time Bounded Multiversion Garbage Collection

2 Related Work

Garbage Collection. One of the simplest, oldest techniques for garbage collection is reference
counting (RC) [16, 17, 28]. In its basic form, RC attaches to each object a counter of the
number of references to it. An object is reclaimed when its counter reaches zero. Some
variants of RC are wait-free [2, 46]. In Section 6, we apply the RC scheme of [2] to manage
version list nodes as it adds only constant time overhead (in expectation) and it is the only
concurrent RC scheme that maintains our desired time bounds.

Epoch-based reclamation (EBR) [23, 15] employs a counter that is incremented periodically
and is used to divide the execution into epochs. Processes read and announce the counter
value at the beginning of an operation. An object can be reclaimed only if it was retired
in an epoch preceding the oldest announced. EBR is often the preferred choice in practice,
as it is simple and exhibits good performance. However, a slow or crashed process with
timestamp t can prevent the reclamation of all retired objects with timestamps larger than t.
EBR, or variants, are used in a variety of MVGC schemes [22, 36, 49] to identify versions
that are older than any query. An advantage of these schemes is that identified versions can
be immediately reclaimed without first being unlinked from the version lists because the
section of the version list they belong to is old enough to never be traversed. However, they
inherit the same problem as EBR and are not able to reclaim intermediate versions between
the oldest needed version and the current version when a long-running query holds on to
an old epoch. This can be serious for multiversioned systems since EBR works best when
operations are short, but a key motivation for multiversioning is to support lengthy queries.

Hazard pointers (HP) [28, 34] can be used to track which objects are currently being
accessed by each process and are therefore more precise. Combinations of HP and EBR have
been proposed (e.g. [41, 50]) with the goal of preserving the practical efficiency of EBR while
lowering its memory usage. However, unlike EBR, none of these techniques directly solve
the MVGC problem. Other memory reclamation schemes have been studied that require
hardware support [1, 18] or rely on the signaling mechanism of the operating system [15, 45].
Hyaline [37] implements a similar interface to EBR and can be used for MVGC, but like
EBR, it cannot reclaim intermediate versions.

We are aware of three multiversioning systems based on version lists that reclaim inter-
mediate versions: GMV [33], HANA [32] and Steam [14]. To determine which versions are
safe to reclaim, all three systems merge the current version list for an object with the list
of active timestamps to check for overlap. The three schemes differ based on when they
decide to perform this merging step and how they remove and reclaim version list nodes. In
GMV, when an update operation sees that memory usage has passed a certain threshold,
it iterates through all the version lists to reclaim versions. Before reclaiming a version, it
has to help other processes traverse the version list to ensure traversals remain wait-free.
HANA uses a background thread to identify and reclaim obsolete versions while Steam scans
the entire version list whenever a new version is added to it. In HANA and Steam, nodes
are removed by locking the entire version list, whereas in GMV, nodes are removed in a
lock-free manner by first logically marking a node for deletion, as in Harris’s linked list [26].
If a remove operation in GMV experiences contention (i.e., fails a CAS), it restarts from the
head of the version list. None of these three techniques ensure constant-time removal from a
version list. Both Steam and GMV ensure O(PM) space where M is the amount of space
required in an equivalent sequential execution. In comparison, we use a constant factor more
than the required space plus an additive term of O(P 2 log P + P 2 log Lmax), where Lmax is
the maximum number of versions added to a single version list. This can be significantly less
than O(PM) in many workloads.

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 12:5

Lock-Free Data Structures and Query Support. We use doubly-linked lists to store
old versions. Singly-linked lists had lock-free implementations as early as 1995 [48]. Sev-
eral implementations of doubly-linked lists were developed later from multi-word CAS
instructions [5, 24], which are not widely available in hardware but can be simulated in
software [27, 25]. Sundell and Tsigas [47] gave the first implementation from single-word
CAS, although it lacks a full proof of correctness. Shafiei [43] gave an implementation with
a proof of correctness and amortized analysis. Existing doubly-linked lists are not efficient
enough for our application, so we give a new implementation with better time bounds.

Fatourou, Papavasileiou and Ruppert [21] used multiversioning to add range queries to
a search tree [19]. Wei et al. [49] generalized this approach (and made it more efficient) to
support wait-free queries on a large class of lock-free data structures. Nelson, Hassan and
Palmieri [35] sketched a similar scheme, but it is not non-blocking. In Appendix A, we apply
our garbage collection scheme to the multiversion system of [49].

3 Preliminaries

We use a standard model with asynchronous, crash-prone processes that access shared
memory using CAS, read and write instructions. For our implementations of data structures,
we bound the number of steps needed to perform operations, and the number of shared
objects that are allocated but not yet reclaimed.

We also use destination objects [13], which are single-writer objects that store a value
and support swcopy operations in addition to standard reads and writes. A swcopy(ptr)
atomically reads the value pointed to by ptr, and copies the value into the destination object.
Only the owner of a destination object can perform swcopy and write; any process may
read it. Destination objects can be implemented from CAS so that all three operations take
O(1) steps [13]. They are used to implement our range-tracking objects in Section 4.

Pseudocode Conventions. We use syntax similar to C++. The type T* is a pointer to an
object of type T. List<T> is a List of objects of type T. If x stores a pointer to an object,
then x->f is that object’s member f. If y stores an object, y.f is that object’s member f.

4 Identifying Which Nodes to Disconnect from the Version List

We present the range-tracking object, which we use to identify version nodes that are safe
to disconnect from version lists because they are no longer needed. To answer a query, a
slow process may have to traverse an entire version list when searching for a very old version.
However, we need only maintain list nodes that are the potential target nodes of such queries.
The rest may be spliced out of the list to improve space usage and traversal times.

We assign to each version node X an interval that represents the period of time when X
was the current version. When the next version Y is appended to the version list, X ceases to
be the current version and becomes a potential candidate for removal from the version list
(if no query needs it). Thus, the left endpoint of X’s interval is the timestamp assigned to X
by the multiversioning system, and the right endpoint is the timestamp assigned to Y.

We assume that a query starts by announcing a timestamp t, and then proceeds to access,
for each relevant object o, its corresponding version at time t, by finding the first node in the
version list with timestamp at most t (starting from the most recent version). Therefore, an
announcement of t means it is unsafe to disconnect any nodes whose intervals contain t.

DISC 2021

12:6 Space and Time Bounded Multiversion Garbage Collection

As many previous multiversioning systems [22, 32, 35, 36, 49] align with the general
scheme discussed above, we define the range-tracking object to abstract the problem of
identifying versions that are not needed. We believe this abstraction is of general interest.

▶ Definition 1 (Range-Tracking Object). A range-tracking object maintains a multiset A

of integers, and a set O of triples of the form (o,low,high) where o is an object of some
type T and low ≤ high are integers. Elements of A are called active announcements.
If (o,low,high) ∈ O then o is a deprecated object with associated half-open interval
[low, high). The range-tracking object supports the following operations.

announce(int* ptr) atomically reads the integer pointed to by ptr, adds the value read
to A, and returns the value read.
unannounce(int i) removes one copy of i from A, rendering the announcement inactive.
deprecate(T* o, int low, int high), where low ≤ high, adds the triple
(o,low,high) to O and returns a set S, which contains the deprecated objects of a
set O′ ⊆ O such that for any o ∈ O′, the interval of o does not intersect A, and removes
O′ from O.

The specification of Definition 1 should be paired with a progress property that rules out
the trivial implementation in which deprecate always returns an empty set. We do this by
bounding the number of deprecated objects that have not been returned by deprecate.

▶ Assumption 2. To implement the range-tracking object, we assume the following.
1. A process’s calls to deprecate have non-decreasing values of parameter high.
2. If, in some configuration G, there is a pending announce whose argument is a pointer

to an integer variable x, then the value of x at G is greater than or equal to the high
argument of every deprecate that has been invoked before G.

3. For every process p, the sequence of invocations to announce and unannounce performed
by p should have the following properties: a) it should start with announce; b) it
should alternate between invocations of announce and invocations of unannounce; c) each
unannounce should have as its argument the integer returned by the preceding announce.

4. Objects passed as the first parameter to deprecate operations are distinct.

In the context we are working on, we have a non-decreasing integer variable that works as
a global timestamp, and is passed as the argument to every announce operation. Moreover,
the high value passed to each deprecate operation is a value that has been read from this
variable. This ensures that parts 1 and 2 of Assumption 2 are satisfied. The other parts of
the assumption are also satisfied quite naturally for our use of the range-tracking object, and
we believe that the assumption is reasonably general. Under this assumption, we present
and analyze a linearizable implementation of the range-tracking object in Section 4.1.

4.1 A Linearizable Implementation of the Range-Tracking Object
Our implementation, RangeTracker, is shown in Figure 1. Assumption 2.3 means that

each process can have at most one active announcement at a time. So, RangeTracker
maintains a shared array Ann of length P to store active announcements. Ann[p] is a
destination object (defined in Section 3) that is owned by process p. Initially, Ann[p] stores
a special value ⊥. To announce a value, a process p calls swcopy (line 28) to copy the current
timestamp into Ann[p] and returns the announced value (line 29). To deactivate an active
announcement, p writes ⊥ into Ann[p] (line 31). Under Assumption 2.3, the argument to
unannounce must match the argument of the process’s previous announce, so we suppress
unannounce’s argument in our code. An announce or unannounce performs O(1) steps.

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 12:7

1 class Range { T* t, int low, int high; };
2 class RangeTracker {
3 // global variables
4 Destination Ann[P];
5 Queue<List<Range>> Q; //initially empty
6 // thread local variables
7 List<Range> LDPool; // initially empty
8 Array<int> sortAnnouncements() {
9 List<int> result;

10 for(int i = 0; i < P; i++) {
11 int num = Ann[i].read();
12 if(num != ⊥) result.append(num); }
13 return sort(toArray(result)); }

15 List<T*>, List<Range> intersect(
16 List<Range> MQ, Array<int> ar) {
17 Range r; int i = 0;
18 List<T*> Redundant;
19 List<Range> Needed;
20 for(r in MQ) {
21 while(i < ar.size() &&
22 ar[i] < r.high) i++;
23 if(i == 0 || ar[i-1] < r.low)
24 Redundant.append(r.t);
25 else Needed.append(r); }
26 return <Redundant, Needed>; }

27 int Announce(int* ptr) {
28 Ann[p].swcopy(ptr);
29 return Ann[p].read(); }

31 void unannounce() { Ann[p].write(⊥); }

33 List<T*> deprecate(T* o, int low, int high) {
34 List<T*> Redundant;
35 List<Range> Needed, Needed1, Needed2;
36 // local lists are initially empty
37 LDPool.append(Range(o, low, high));
38 if(LDPool.size() == B) {
39 List<Range> MQ = merge(Q.deq(),Q.deq());
40 Array<int> ar = sortAnnouncements();
41 Redundant, Needed = intersect(MQ, ar);
42 if(Needed.size() > 2*B) {
43 Needed1, Needed2 = split(Needed);
44 Q.enq(Needed1);
45 Q.enq(Needed2); }
46 else if(Needed.size() > B) {
47 Q.enq(Needed); }
48 else {
49 LDPool = merge(LDPool,Needed); }
50 Q.enq(LDPool);
51 LDPool = empty list; }
52 return Redundant; } };

Figure 1 Code for process p for our linearizable implementation of a range-tracking object.

A Range object (line 1) stores the triple (o,low,high) for a deprecated object o. It is
created (at line 37) during a deprecate of o. RangeTracker maintains the deprecated
objects as pools of Range objects. Each pool is sorted by its elements’ high values. Each
process maintains a local pool of deprecated objects, called LDPool. To deprecate an object,
a process simply appends its Range to the process’s local LDPool (line 37). Assumption 2.1
implies that objects are appended to LDPool in non-decreasing order of their high values.

We wish to ensure that most deprecated objects are eventually returned by a deprecate
operation so that they can be freed. If a process p with a large LDPool ceases to take steps,
it can cause all of those objects to remain unreturned. Thus, when the size of p’s LDPool hits
a threshold B, they are flushed to a shared queue, Q, so that other processes can also return
them. The elements of Q are pools that each contain B to 2B deprecated objects. For the
sake of our analysis, we choose B = P log P . When a flush is triggered, p dequeues two pools
from Q and processes them as a batch to identify the deprecated objects whose intervals do
not intersect with the values in Ann, and return them. The rest of the dequeued objects,
together with those in LDPool, are stored back into Q. We call these actions (lines 38–51),
the flush phase of deprecate. A deprecate without a flush phase returns an empty set.

During a flush phase, a process p dequeues two pools from Q and merges them (line 39)
into a new pool, MQ. Next, p makes a local copy of Ann and sorts it (line 40). It then uses
the intersect function (line 41) to partition MQ into two sorted lists: Redundant contains
objects whose intervals do not intersect the local copy of Ann, and Needed contains the rest.
Intuitively, a deprecated object in MQ is put in Redundant if the low value of its interval is
larger than the announcement value immediately before its high value. Finally, p enqueues
the Needed pool with its LDPool into Q (lines 44–47 and line 50). To ensure that the size of
each pool in Q is between B and 2B, the Needed pool is split into two halves if it is too large
(line 43), or is merged with LDPool if it is too small (line 49). A flush phase is performed
once every P log P calls to deprecate, and the phase executes O(P log P) steps. Therefore,
the amortized number of steps for deprecate is O(1).

DISC 2021

12:8 Space and Time Bounded Multiversion Garbage Collection

The implementation of the concurrent queue Q should ensure that an element can be
enqueued or dequeued in O(P log P) steps. The concurrent queue presented in [20] has step
complexity O(P) and thus ensures these bounds. To maintain our space bounds, the queue
nodes must be reclaimed. This can be achieved if we apply hazard-pointers on top of the
implementation in [20]. If Q is empty, then Q.deq() returns an empty list.

We sketch the proofs of the following three theorems. For detailed proofs, see [8].

▶ Theorem 3. If Assumption 2 holds, then RangeTracker is a linearizable implementation
of a range-tracking object.

The linearization points used in the proof of Theorem 3 are defined as follows. An
announce is linearized at its swcopy on line 28. An unannounce is linearized at its write on
line 31. A deprecate is linearized at line 50 if it executes that line, or at line 37 otherwise.

The most interesting part of the proof concerns a deprecate operation I with a flush
phase. I dequeues two pools from Q as MQ and decides which objects in MQ to return based on
the local copy of Ann array. To show linearizability, we must also show that intervals of the
objects returned by I do not intersect the Ann array at the linearization point of I. Because
of Assumption 2.2, values written into Ann after the pools are dequeued cannot be contained
in the intervals in MQ. Thus, if an object’s interval does not contain the value I read from
Ann[i], it will not contain the value in Ann[i] at I’s linearization point.

▶ Theorem 4. In the worst case, announce and unannounce take O(1) steps, while
deprecate takes O(P log P) steps. The amortized number of steps performed by each opera-
tion is O(1).

Let H be the maximum, over all configurations in the execution, of the number of needed
deprecated objects, i.e., those whose intervals contain an active announcement.

▶ Theorem 5. At any configuration, the number of deprecated objects that have not yet been
returned by any instance of deprecate is at most 2H + 25P 2 log P .

At any time, each process holds at most P log P deprecated objects in LDPool and at most
4P log P that have been dequeued from Q as part of a flush phase. We prove by induction
that the number of deprecated objects in Q at a configuration G is at most 2H + O(P 2 log P).
Let G′ be the latest configuration before G such that all pools in Q at G′ are dequeued
between G′ and G. Among the dequeued pools, only the objects that were needed at G′

are re-enqueued into Q, and there are at most H such objects. Since we dequeue two pools
(containing at least B elements each) each time we enqueue B new objects between G′ and
G, this implies that the number of such new objects is at most half the number of objects
in Q at G′ (plus O(P 2 log P) objects from flushes already in progress at G′). Assuming the
bound on the size of Q holds at G′, this allows us to prove the bound at G.

The constant multiplier of H in Theorem 5 can be made arbitrarily close to 1 by dequeuing
and processing k pools of Q in each flush phase instead of two. The resulting space bound
would be k

k−1 · H + (2k+1)(3k−1)
k−1 · P 2 log P . This would, of course, increase the constant factor

in the amortized number of steps performed by deprecate (Theorem 4).

5 Maintaining Version Lists

We use a restricted version of a doubly-linked list to maintain each version list so that we
can more easily remove nodes from the list when they are no longer needed. We assume each
node has a timestamp field. The list is initially empty and provides the following operations.

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 12:9

B, C concurrently
A B C D A B C DBefore After removing

Figure 2 An example of incorrect removals.

tryAppend(Node* old, Node* new): Adds new to the head of the list and returns true
if the current head is old. Otherwise returns false. Assumes new is not null.
getHead(): Returns a pointer to the Node at the head of the list (or null if list is empty).
find(Node* start, int ts): Returns a pointer to the first Node, starting from start
and moving away from the head of the list, whose timestamp is at most ts (or null if no
such node exists).
remove(Node* n): Given a previously appended Node, removes it from the list.

To obtain an efficient implementation, we assume several preconditions, summarized in
Assumption 6 (and stated more formally in the full version [8]). A version should be removed
from the object’s version list only if it is not current: either it has been superseded by another
version (6.1) or, if it is the very last version, the entire list is no longer needed (6.2). Likewise,
a version should not be removed if a find is looking for it (6.3), which can be guaranteed
using our range-tracking object. We allow flexibility in the way timestamps are assigned to
versions. For example, a timestamp can be assigned to a version after appending it to the
list. However, some assumptions on the behaviour of timestamps are needed to ensure that
responses to find operations are properly defined (6.4, 6.5).

▶ Assumption 6.
1. Each node (except the very last node) is removed only after the next node is appended.
2. No tryAppend, getHead or find is called after a remove on the very last node.
3. After remove(X) is invoked, no pending or future find operation should be seeking a

timestamp in the interval between X’s timestamp and its successor’s.
4. Before trying to append a node after a node B or using B as the starting point for a find,

B has been the head of the list and its timestamp has been set. A node’s timestamp does
not change after it is set. Timestamps assigned to nodes are non-decreasing.

5. If a find(X,t) is invoked, any node appended after X has a higher timestamp than t.
6. Processes never attempt to append the same node to a list twice, or to remove it twice.

5.1 Version List Implementation
Pseudocode for our list implementation is in Figure 4. A remove(X) operation first marks
the node X to be deleted by setting a status field of X to marked. We refer to the subsequent
physical removal of X as splicing X out of the list.

Splicing a node B from a doubly-linked list requires finding its left and right neighbours, A
and C, and then updating the pointers in A and C to point to each other. Figure 2 illustrates
the problem that could arise if adjacent nodes B and C are spliced out concurrently. The
structure of the doubly-linked list becomes corrupted: C is still reachable when traversing the
list towards the left, and B is still reachable when traversing towards the right. The challenge
of designing our list implementation is to coordinate splices to avoid this situation.

We begin with an idea that has been used for parallel list contraction [44]. We assign
each node a priority value and splice a node out only if its priority is greater than both of its
neighbours’ priorities. This ensures that two adjacent nodes cannot be spliced concurrently.

Conceptually, we can define a priority tree corresponding to a list of nodes with priorities
as follows. Choose the node with minimum priority as the root. Then, recursively define
the left and right subtrees of the root by applying the same procedure to the sublists to the

DISC 2021

12:10 Space and Time Bounded Multiversion Garbage Collection

7

1 3 2 5 4 5 3 7 6 7 5 7 6 7 4
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16counter

priority

3

5

priority
tree

16

15

14

13

12

11

10

9

8

7

6

4

2
priority
1

2

3

4

5

6

Figure 3 A list and its priority tree.

left and right of the root node. The original list is an in-order traversal of the priority tree.
See Figure 3 for an example. We describe below how we choose priorities to ensure that (1)
there is always a unique minimum in a sublist corresponding to a subtree (to be chosen as
the subtree’s root), and (2) if L nodes are appended to the list, the height of the priority
tree is O(log L). We emphasize that the priority tree is not actually represented in memory;
it is simply an aid to understanding the design of our implementation.

The requirement that a node is spliced out of the list only if its priority is greater than
its neighbours corresponds to requiring that we splice only nodes whose descendants in the
priority tree have all already been spliced out of the list. To remove a node that still has
unspliced descendants, we simply mark it as logically deleted and leave it in the list. If X’s
descendants have all been spliced out, then X’s parent Y in the priority tree is the neighbour of
X in the list with the larger priority. An operation that splices X from the list then attempts
to help splice X’s parent Y (if Y is marked for deletion and Y is larger than its two neighbours),
and this process continues up the tree. Conceptually, this means that if a node Z is marked
but not spliced, the last descendant of Z to be spliced is also responsible for splicing Z.

In this scheme, an unmarked node can block its ancestors in the priority tree from being
spliced out of the list. For example, in Figure 3, if the nodes with counter values 10 to 16 are
all marked for deletion, nodes 11, 13 and 15 could be spliced out immediately. After 13 and
15 are spliced, node 14 could be too. The unmarked node 9 prevents the remaining nodes
10, 12 and 16 from being spliced, since each has a neighbour with higher priority. Thus, an
unmarked node could prevent up to Θ(log L) marked nodes from being spliced out of the list.

Improving this space overhead factor to O(1) requires an additional, novel mechanism. If
an attempt to remove node B observes that B’s left neighbour A is unmarked and B’s priority
is greater than B’s right neighbour C’s priority, we allow B to be spliced out of the list using
a special-purpose routine called spliceUnmarkedLeft, even if A’s priority is greater than B’s.
In the example of the previous paragraph, this would allow node 10 to be spliced out after 11.
Then, node 12 can be spliced out after 10 and 14, again using spliceUnmarkedLeft, and
finally node 16 can be spliced out. A symmetric routine spliceUnmarkedRight applies if
C is unmarked and B’s priority is greater than A’s. This additional mechanism of splicing
out nodes when one neighbour is unmarked allows us to splice out all nodes in a string
of consecutive marked nodes, except possibly one of them, which might remain in the
list if both its neighbours are unmarked and have higher priority. However, during the
spliceUnmarkedLeft routine that is splicing out B, A could become marked. If A’s priority

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 12:11

is greater than its two neighbours’ priorities, there could then be simultaneous splices of A
and B. To avoid this, instead of splicing out B directly, the spliceUnmarkedLeft installs a
pointer to a Descriptor object into node A, which describes the splice of B. If A becomes
marked, the information in the Descriptor is used to help complete the splice of B before A
itself is spliced. Symmetrically, a spliceUnmarkedRight of B installs a Descriptor in C.

Multiple processes may attempt to splice the same node B, either because of the helping
coordinated by Descriptor objects or because the process that spliced B’s last descendant in
the priority tree will also try to splice B itself. To avoid unnecessary work, processes use a
CAS to change the status of B from marked to finalized. Only the process that succeeds
in this CAS has the responsibility to recursively splice B’s ancestors. (In the case of the
spliceUnmarkedLeft and spliceUnmarkedRight routines, only the process that successfully
installs the Descriptor recurses.) If one process responsible for removing a node (and its
ancestors) stalls, it could leave O(log L) marked nodes in the list; this is the source of an
additive P log L term in the bound we prove on the number of unnecessary nodes in the list.

We now look at the code in more detail. Each node X in the doubly-linked list has right
and left pointers that point toward the list’s head and away from it, respectively. X also has
a status field that is initially unmarked and leftDesc and rightDesc fields to hold pointers
to Descriptors for splices happening to the left and to the right of X, respectively. X’s counter
field is filled in when X is appended to the right end of the list with a value that is one greater
than the preceding node. To ensure that the height of the priority tree is O(log L), we use the
counter value c to define the priority of X as p(c), where p(c) is either k if c is of the form 2k,
or 2k + 1 − (number of consecutive 0’s at the right end of the binary representation of c), if
2k < c < 2k+1. The resulting priority tree has a sequence of nodes with priorities 1, 2, 3, . . .

along the rightmost path in the tree, where the left subtree of the ith node along this
rightmost path is a complete binary tree of height i − 1, as illustrated in Figure 3. (Trees of
this shape have been used to describe search trees [9] and in concurrent data structures [3, 4].)
This assignment of priorities ensures that between any two nodes with the same priority,
there is another node with lower priority. Moreover, the depth of a node with counter value
c is O(log L). This construction also ensures that remove operations are wait-free, since the
priority of a node is a bound on the number of recursive calls that a remove performs.

A Descriptor of a splice of node B out from between A and C is an object that stores
pointers to the three nodes A, B and C. After B is marked, we set its Descriptor pointers to a
special Descriptor frozen to indicate that no further updates should occur on them.

To append a new node C after the head node B, the tryAppend(B,C) operation simply
fills in the fields of C, and then attempts to swing the Head pointer to C at line 36. B’s right
pointer is then updated at line 37. If the tryAppend stalls before executing line 37, any
attempt to append another node after C will first help complete the append of C (line 32).
The boolean value returned by tryAppend indicates whether the append was successful.

A remove(B) first sets B’s status to marked at line 44. It then stores the frozen
Descriptor in both B->leftDesc and B->rightDesc. The first attempt to store frozen in
one of these fields may fail, but we prove that the second will succeed because of some
handshaking, described below. B is frozen once frozen is stored in both of its Descriptor
fields. Finally, remove(B) calls removeRec(B) to attempt the real work of splicing B.

The removeRec(B) routine manages the recursive splicing of nodes. It first calls splice,
spliceUnmarkedLeft or spliceUnmarkedRight, as appropriate, to splice B. If the splice of
B was successful, it then recurses (if needed) on the neighbour of B with the larger priority.

The actual updates to pointers are done inside the splice(A,B,C) routine, which is called
after reading A in B->left and C in B->right. The routine first tests that A->right = B
at line 96. This could fail for two reasons: B has already been spliced out, so there is no

DISC 2021

12:12 Space and Time Bounded Multiversion Garbage Collection

1 class Node {
2 Node *left, *right; // initially null
3 enum status {unmarked,marked,finalized};
4 // initially unmarked
5 int counter; // used to define priority
6 int priority; // defines implicit tree
7 int ts; // timestamp
8 Descriptor *leftDesc, *rightDesc;
9 // initially null

10 };

12 class Descriptor { Node *A, *B, *C; };
13 Descriptor* frozen = new Descriptor();

15 class VersionList {
16 Node* Head;
17 // public member functions:
18 Node* getHead() {return Head;}

20 Node* find(Node* start, int ts) {
21 VNode* cur = start;
22 while(cur != null && cur->ts > ts)
23 cur = cur->left;
24 return cur; }

26 bool tryAppend(Node* B, Node* C) {
27 // B can be null iff C is the initial node
28 if(B != null) {
29 C->counter = B->counter+1;
30 Node* A = B->left;
31 // Help tryAppend(A, B)
32 if(A != null) CAS(&(A->right), null, B);
33 } else C->counter = 2;
34 C->priority = p(C->counter);
35 C->left = B;
36 if(CAS(&Head, B, C)) {
37 if(B != null) CAS(&(B->right), null, C);
38 return true;
39 } else return false; }

41 // public static functions:
42 void remove(Node* B) {
43 // B cannot be null
44 B->status = marked;
45 for F in [leftDesc, rightDesc] {
46 repeat twice {
47 Descriptor* desc = B->F;
48 help(desc);
49 CAS(&(B->F), desc, frozen); } }
50 removeRec(B); }

52 // private helper functions:
53 bool validAndFrozen(Node* D) {
54 // rightDesc is frozen second
55 return D != null && D->rightDesc == frozen; }

57 void help(Descriptor* desc) {
58 if(desc != null && desc != frozen)
59 splice(desc->A, desc->B, desc->C); }

61 int p(int c) {
62 k = floor(log2(c));
63 if(c == 2^k) return k;
64 else return 2k + 1 - lowestSetBit(c); }

65 // private helper functions continued:
66 void removeRec(Node* B) {
67 // B cannot be null
68 Node* A = B->left;
69 Node* C = B->right;
70 if(B->status == finalized) return;
71 int a, b, c;
72 if(A != null) a = A->priority;
73 else a = 0;
74 if(C != null) c = C->priority;
75 else c = 0;
76 b = B->priority;
77 if(a < b > c) {
78 if(splice(A, B, C)) {
79 if(validAndFrozen(A)) {
80 if(validAndFrozen(C) && c > a) removeRec(C);
81 else removeRec(A); }
82 else if(validAndFrozen(C)) {
83 if(validAndFrozen(A) && a > c) removeRec(A);
84 else removeRec(C); } } }
85 else if(a > b > c) {
86 if(spliceUnmarkedLeft(A, B, C) &&
87 validAndFrozen(C)) {
88 removeRec(C); } }
89 else if(a < b < c) {
90 if(spliceUnmarkedRight(A, B, C) &&
91 validAndFrozen(A)) {
92 removeRec(A); } } } }

94 bool splice(Node* A, Node* B, Node* C) {
95 // B cannot be null
96 if(A != null && A->right != B) return false;
97 bool result = CAS(&(B->status), marked, finalized);
98 if(C != null) CAS(&(C->left), B, A);
99 if(A != null) CAS(&(A->right), B, C);

100 return result; }

102 bool spliceUnmarkedLeft(Node* A, Node* B, Node* C) {
103 // A, B cannot be null
104 Descriptor* oldDesc = A->rightDesc;
105 if(A->status != unmarked) return false;
106 help(oldDesc);
107 if(A->right != B) return false;
108 Descriptor* newDesc = new Descriptor(A, B, C);
109 if(CAS(&(A->rightDesc), oldDesc, newDesc)) {
110 // oldDesc != frozen
111 help(newDesc);
112 return true;
113 } else return false; }

115 bool spliceUnmarkedRight(Node* A, Node* B, Node* C) {
116 // B, C cannot be null
117 Descriptor* oldDesc = C->leftDesc;
118 if(C->status != unmarked) return false;
119 help(oldDesc);
120 if(C->left != B || (A != null && A->right != B))
121 return false;
122 Descriptor* newDesc = new Descriptor(A, B, C);
123 if(CAS(&(C->leftDesc), oldDesc, newDesc)) {
124 // oldDesc != frozen
125 help(newDesc);
126 return true;
127 } else return false; } };

Figure 4 Linearizable implementation of our doubly-linked list.

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 12:13

need to proceed, or there is a splice(A,D,B) that has been partially completed; B->left
has been updated to A, but A->right has not yet been updated to B. In the latter case, the
remove that is splicing out D will also splice B after D, so again there is no need to proceed
with the splice of B. If A->right = B, B’s status is updated to finalized at line 97, and
the pointers in C and A are updated to splice B out of the list at line 98 and 99.

The spliceUnmarkedLeft(A,B,C) handles the splicing of a node B when B’s left neighbour
A has higher priority but is unmarked, and B’s right neighbour C has lower priority. The
operation attempts to CAS a Descriptor of the splice into A->rightDesc at line 109. If there
was already an old Descriptor there, it is first helped to complete at line 106. If the new
Descriptor is successfully installed, the help routine is called at line 111, which in turn calls
splice to complete the splicing out of B. The spliceUnmarkedLeft operation can fail in
several ways. First, it can observe that A has become marked, in which case A should be
spliced out before B since A has higher priority. (This test is also a kind of handshaking: once
a node is marked, at most one more Descriptor can be installed in it, and this ensures that
one of the two attempts to install frozen in a node’s Descriptor field during the remove
routine succeeds.) Second, it can observe at line 107 that A->right ̸= B. As described above
for the splice routine, it is safe to abort the splice in this case. Finally, the CAS at line 109
can fail, either because A->rightDesc has been changed to frozen (indicating that A should
be spliced before B) or another process has already stored a new Descriptor in A->rightDesc
(indicating either that B has already been spliced or will be by another process).

The spliceUnmarkedRight routine is symmetric to spliceUnmarkedLeft, aside from a
slight difference in line 120 because splice changes the left pointer before the right pointer.
The return values of splice, spliceUnmarkedLeft and spliceUnmarkedRight say whether
the calling process should continue recursing up the priority tree to splice out more nodes.

5.2 Properties of the Implementation
Detailed proofs of the following results appear in the full version [8]. We sketch them here.

▶ Theorem 7. Under Assumption 6, the implementation in Figure 4 is linearizable.

Since the implementation is fairly complex, the correctness proof is necessarily quite
intricate. We say that X <c Y if node X is appended to the list before node Y. We prove
that left and right pointers in the list always respect this ordering. Removing a node has
several key steps: marking it (line 44), freezing it (second iteration of line 49), finalizing
it (successful CAS at line 97) and then making it unreachable (successful CAS at line 99).
We prove several lemmas showing that these steps take place in an orderly way. We also
show that the steps make progress. Finally, we show that the coordination between remove
operations guarantees that the structure of the list remains a doubly-linked list in which
nodes are ordered by <c, except for a temporary situation while a node is being spliced
out, during which its left neighbour may still point to it after its right neighbour’s pointer
has been updated to skip past it. To facilitate the inductive proof of this invariant, it is
wrapped up with several others, including an assertion that overlapping calls to splice of
the form splice(W,X,Y) and splice(X,Y,Z) never occur. The invariant also asserts that
unmarked nodes remain in the doubly-linked list; no left or right pointer can jump past a
node that has not been finalized. Together with Assumption 6.3, this ensures a find cannot
miss the node that it is supposed to return, regardless of how find and remove operations
are linearized. We linearize getHead and tryAppend when they access the Head pointer.

▶ Theorem 8. The number of steps a remove(X) operation performs is O(X->priority)
and the remove operation is therefore wait-free.

DISC 2021

12:14 Space and Time Bounded Multiversion Garbage Collection

Proof. Aside from the call to removeRec(X), remove(X) performs O(1) steps. Aside from
doing at most one recursive call to removeRec, a removeRec operation performs O(1) steps.
Each time removeRec is called recursively, the node on which it is called has a smaller priority.
Since priorities are non-negative integers, the claim follows. ◀

▶ Theorem 9. The tryAppend and getHead operations take O(1) steps. The amortized
number of steps for remove is O(1).

Consider an execution with R remove operations. Using the argument for Theorem 8, it
suffices to bound the number of calls to removeRec. There are at most R calls to removeRec
directly from remove. For each of the R nodes X that are removed, we show that at most
one call to removeRec(X) succeeds either in finalizing X or installing a Descriptor to remove
X, and only this removeRec(X) can call removeRec recursively.

We say a node is lr-reachable if it is reachable from the head of the list by following left
or right pointers. A node is lr-unreachable if it is not lr-reachable.

▶ Theorem 10. At the end of any execution by P processes that contains L successful
tryAppend operations and R remove operations on a set of version lists, and a maximum of
Lmax successful tryAppends on a single version list, the total number of lr-reachable nodes
across all the version lists in the set is at most 2(L − R) + O(P log Lmax).

Theorem 10 considers a set of version lists to indicate that the O(P log Lmax) additive
space overhead is shared across all the version lists in the system. A node X is removable if
remove(X) has been invoked. We must show at most (L − R) + O(P log Lmax) removable
nodes are still lr-reachable. We count the number of nodes that are in each of the various
phases (freezing, finalizing, making unreachable) of the removal. There are at most P

removable nodes that are not yet frozen, since each has a pending remove operation on it.
There are at most P finalized nodes that are still lr-reachable, since each has a pending
splice operation on it. To bound the number of nodes that are frozen but not finalized, we
classify an unfinalized node as Type 0, 1, or 2, depending on the number of its subtrees that
contain an unfinalized node. We show that each frozen, unfinalized node X of type 0 or 1
has a pending remove or removeRec at one of its descendants. So, there are O(P log Lmax)
such nodes. We show that at most half of the unfinalized nodes are of type 2, so there are at
most L − R + O(P log Lmax) type-2 nodes. Summing up yields the bound.

6 Memory Reclamation for Version Lists

We now describe how to safely reclaim the nodes spliced out of version lists and the Descriptor
objects that are no longer needed. We apply an implementation of Reference Counting
(RC) [2] with amortized expected O(1) time overhead to a slightly modified version of our
list. To apply RC in Figure 4, we add a reference count field to each Node or Descriptor and
replace raw pointers to Nodes or Descriptors with reference-counted pointers. Reclaiming an
object clears all its reference-counted pointers, which may lead to recursive reclamations if
any reference count hits zero. This reclamation scheme is simple, but not sufficient by itself
because a single pointer to a spliced out node may prevent a long chain of spliced out nodes
from being reclaimed (see Figure 5, discussed later). To avoid this, we modify the splice
routine so that whenever the left or right pointer of an node Y points to a descendant in
the implicit tree, we set the pointer to ⊤ after Y is spliced out. Thus, only left and right
pointers from spliced out nodes to their ancestors in the implicit tree remain valid. This
ensures that there are only O(log L) spliced out nodes reachable from any spliced out node.

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 12:15

10

15

16 head

p1

11

12

13
14

Figure 5 A portion of a version list where shaded nodes 15, 14, ..., 11 have been removed, in that
order. Dotted pointers represent left and right pointers set to ⊤ by our modified splice routine.
Node labels are counter values and vertical positioning represents nodes’ priorities (cf. Figure 3).

This modification requires some changes to find. When a find reaches a node whose
left pointer is ⊤, the traversal moves right instead; this results in following a valid pointer
because whenever splice(A, B, C) is called, it is guaranteed that either A or C is an ancestor
of B. For example in Figure 5, a process p1, paused on node 15, will next traverse nodes 14,
16, and 10. Breaking up chains of removed nodes (e.g., from node 15 to 11 in Figure 5) by
setting some pointers to ⊤ is important because otherwise, such chains can become arbitrarily
long and a process paused at the head of a chain can prevent all of its nodes from being
reclaimed. In the full version of the paper, we prove that traversing backwards does not have
any significant impact on the time complexity of find. Intuitively, this is because backwards
traversals only happen when the find is poised to read a node that has already been spliced
out and each backwards traversal brings it closer to a non-removed node.

Using the memory reclamation scheme described above, we prove Theorems 11 and 12
that provide bounds similar to Theorems 9 and 10 in [8]. Both theorems include the resources
needed by the RC algorithm, such as incrementing reference counts, maintaining retired lists,
etc. Since the RC algorithm uses process-local hash tables, the amortized time bounds in
Theorem 9 become amortized in expectation in Theorem 11. Using this scheme requires
that getHead and find return reference counted pointers rather than raw pointers. Holding
on to these reference counted pointers prevents the nodes that they point to from being
reclaimed. For the space bounds in Theorem 12, we consider the number of reference counted
pointers K, returned by version list operations that are still used by the application code. In
most multiversioning systems (including the one in Appendix A), each process holds on to a
constant number of such pointers, so K ∈ O(P).

▶ Theorem 11. The amortized expected time complexity of tryAppend, getHead, remove, and
creating a new version list is O(1). The amortized expected time complexity of find(V, ts)
is O(n + min(d, log c)), where n is the number of version nodes with timestamp greater than
ts that are reachable from V by following left pointers (measured at the start of the find), d

is the depth of the VNode V in the implicit tree and c is the number of successful tryAppend
from the time V was the list head until the end of the find. All operations are wait-free.

▶ Theorem 12. Assuming there are at most K reference-counted pointers to VNodes from the
application code, at the end of any execution that contains L successful tryAppend operations,
R remove operations and a maximum of Lmax successful tryAppends on a single version
list, the number of VNodes and Descriptors that have been allocated but not reclaimed is
O((L − R) + (P 2 + K) log Lmax).

In RC, cycles must be broken before a node can be reclaimed. While there are cycles in
our version lists, we show that VNodes that have been spliced out are not part of any cycle.

DISC 2021

12:16 Space and Time Bounded Multiversion Garbage Collection

References
1 Dan Alistarh, Patrick Eugster, Maurice Herlihy, Alexander Matveev, and Nir Shavit.

StackTrack: An automated transactional approach to concurrent memory reclamation.
In Proc. 9th European Conference on Computer Systems, pages 25:1–25:14, 2014. doi:
10.1145/2592798.2592808.

2 Daniel Anderson, Guy E Blelloch, and Yuanhao Wei. Concurrent deferred reference counting
with constant-time overhead. In Proc. 42nd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, pages 526–541, 2021.

3 James Aspnes, Hagit Attiya, and Keren Censor. Max registers, counters, and monotone
circuits. In Proc. 28th ACM Symposium on Principles of Distributed Computing, pages 36–45,
2009.

4 Hagit Attiya and Arie Fouren. Adaptive and efficient algorithms for lattice agreement and
renaming. SIAM Journal on Computing, 31(2):642–664, 2001.

5 Hagit Attiya and Eshcar Hillel. Built-in coloring for highly-concurrent doubly-linked lists.
Theory of Computing Systems, 52(4):729–762, 2013.

6 Henry G. Baker. List processing in real time on a serial computer. Commun. ACM,
21(4):280–294, 1978. doi:10.1145/359460.359470.

7 Dmitry Basin, Edward Bortnikov, Anastasia Braginsky, Guy Golan-Gueta, Eshcar Hillel, Idit
Keidar, and Moshe Sulamy. KiWi: A key-value map for scalable real-time analytics. ACM
Trans. Parallel Comput., 7(3):16:1–16:28, June 2020. doi:10.1145/3399718.

8 Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, Yihan Sun, and
Yuanhao Wei. Space and time bounded multiversion garbage collection, 2021. Available from
arXiv:2108.02775.

9 Jon Louis Bentley and Andrew Chi-Chih Yao. An almost optimal algorithm for unbounded
searching. Information Processing Letters, 5(3):82–86, 1976.

10 Philip A. Bernstein and Nathan Goodman. Multiversion concurrency control–theory and
algorithms. ACM Trans. Database Syst., 8(4):465–483, December 1983. doi:10.1145/319996.
319998.

11 Guy E. Blelloch and Perry Cheng. On bounding time and space for multiprocessor garbage
collection. In Proc. ACM Conf. on Programming Language Design and Implementation, pages
104–117, 1999. doi:10.1145/301618.301648.

12 Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in
the binary-forking model. In Proc. ACM Symp. on Parallelism in Algorithms and Architectures,
pages 89–102, 2020. doi:10.1145/3350755.3400227.

13 Guy E. Blelloch and Yuanhao Wei. LL/SC and atomic copy: Constant time, space efficient
implementations using only pointer-width CAS. In Proc. 34th International Symposium on
Distributed Computing, volume 179 of LIPICS, pages 5:1–5:17, 2020.

14 Jan Böttcher, Viktor Leis, Thomas Neumann, and Alfons Kemper. Scalable garbage collection
for in-memory MVCC systems. Proceedings of the VLDB Endowment, 13(2):128–141, 2019.

15 Trevor Alexander Brown. Reclaiming memory for lock-free data structures: There has to be a
better way. In Proc. ACM Symposium on Principles of Distributed Computing, pages 261–270,
2015. doi:10.1145/2767386.2767436.

16 Andreia Correia, Pedro Ramalhete, and Pascal Felber. Orcgc: automatic lock-free mem-
ory reclamation. In Proc. of the 26th ACM Symp. on Principles and Practice of Parallel
Programming, pages 205–218, 2021.

17 David L. Detlefs, Paul A. Martin, Mark Moir, and Guy L. Steele. Lock-free reference counting.
In Proc. 20th ACM Symposium on Principles of Distributed Computing, pages 190–199, 2001.
doi:10.1145/383962.384016.

18 Aleksandar Dragojević, Maurice Herlihy, Yossi Lev, and Mark Moir. On the power of hardware
transactional memory to simplify memory management. In Proc. 30th ACM Symposium on
Principles of Distributed Computing, pages 99–108, 2011. doi:10.1145/1993806.1993821.

https://doi.org/10.1145/2592798.2592808
https://doi.org/10.1145/2592798.2592808
https://doi.org/10.1145/359460.359470
https://doi.org/10.1145/3399718
https://arxiv.org/abs/2108.02775
https://doi.org/10.1145/319996.319998
https://doi.org/10.1145/319996.319998
https://doi.org/10.1145/301618.301648
https://doi.org/10.1145/3350755.3400227
https://doi.org/10.1145/2767386.2767436
https://doi.org/10.1145/383962.384016
https://doi.org/10.1145/1993806.1993821

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 12:17

19 Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck van Breugel. Non-blocking binary
search trees. In Proc. 29th ACM Symposium on Principles of Distributed Computing, pages
131–140, 2010. doi:10.1145/1835698.1835736.

20 Panagiota Fatourou and Nikolaos D Kallimanis. Highly-efficient wait-free synchronization.
Theory of Computing Systems, 55(3):475–520, 2014.

21 Panagiota Fatourou, Elias Papavasileiou, and Eric Ruppert. Persistent non-blocking binary
search trees supporting wait-free range queries. In Proc. 31st ACM Symposium on Parallelism
in Algorithms and Architectures, pages 275–286, 2019. doi:10.1145/3323165.3323197.

22 Sérgio Miguel Fernandes and João Cachopo. Lock-free and scalable multi-version software
transactional memory. In Proc. 16th ACM Symposium on Principles and Practice of Parallel
Programming, pages 179–188, 2011. doi:10.1145/1941553.1941579.

23 Keir Fraser. Practical lock-freedom. Technical report, University of Cambridge, Computer
Laboratory, 2004.

24 Michael Greenwald. Two-handed emulation: how to build non-blocking implementations
of complex data-structures using DCAS. In Proc. 21st ACM Symposium on Principles of
Distributed Computing, pages 260–269, 2002.

25 Rachid Guerraoui, Alex Kogan, Virendra J Marathe, and Igor Zablotchi. Efficient multi-word
compare and swap. In 34th International Symposium on Distributed Computing. Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

26 Timothy L Harris. A pragmatic implementation of non-blocking linked-lists. In Proc. Interna-
tional Symposium on Distributed Computing, pages 300–314. Springer, 2001.

27 Timothy L Harris, Keir Fraser, and Ian A Pratt. A practical multi-word compare-and-swap
operation. In International Symposium on Distributed Computing, pages 265–279. Springer,
2002.

28 Maurice Herlihy, Victor Luchangco, Paul Martin, and Mark Moir. Nonblocking memory
management support for dynamic-sized data structures. ACM Trans. Comput. Syst., 23(2):146–
196, 2005. doi:10.1145/1062247.1062249.

29 Idit Keidar and Dmitri Perelman. Multi-versioning in transactional memory. In Transactional
Memory. Foundations, Algorithms, Tools, and Applications, volume 8913 of LNCS, pages
150–165. Springer, 2015. doi:10.1007/978-3-319-14720-8_7.

30 Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Madhava Krishnan Ramanathan, and Changwoo
Min. MV-RLU: Scaling read-log-update with multi-versioning. In Proc. 24th International
Conference on Architectural Support for Programming Languages and Operating Systems, pages
779–792, 2019. doi:10.1145/3297858.3304040.

31 Priyanka Kumar, Sathya Peri, and K. Vidyasankar. A timestamp based multi-version STM
algorithm. In Proc. Int. Conference on Distributed Computing and Networking, pages 212–226,
2014.

32 Juchang Lee, Hyungyu Shin, Chang Gyoo Park, Seongyun Ko, Jaeyun Noh, Yongjae Chuh,
Wolfgang Stephan, and Wook-Shin Han. Hybrid garbage collection for multi-version concur-
rency control in SAP HANA. In Proc. International Conference on Management of Data,
page 1307–1318, 2016. doi:10.1145/2882903.2903734.

33 Li Lu and Michael L Scott. Generic multiversion STM. In Proc. International Symposium on
Distributed Computing, pages 134–148. Springer, 2013.

34 M.M. Michael. Hazard pointers: safe memory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Systems, 15(6):491–504, 2004. doi:10.1109/TPDS.
2004.8.

35 Jacob Nelson, Ahmed Hassan, and Roberto Palmieri. Poster: Bundled references: An
abstraction for highly-concurrent linearizable range queries. In Proc. ACM Symposium on
Principles and Practice of Parallel Programming, pages 448–450, 2021.

36 Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast serializable multi-version
concurrency control for main-memory database systems. In Proc. ACM SIGMOD International
Conference on Management of Data, pages 677–689, 2015.

DISC 2021

https://doi.org/10.1145/1835698.1835736
https://doi.org/10.1145/3323165.3323197
https://doi.org/10.1145/1941553.1941579
https://doi.org/10.1145/1062247.1062249
https://doi.org/10.1007/978-3-319-14720-8_7
https://doi.org/10.1145/3297858.3304040
https://doi.org/10.1145/2882903.2903734
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/TPDS.2004.8

12:18 Space and Time Bounded Multiversion Garbage Collection

37 Ruslan Nikolaev and Binoy Ravindran. Snapshot-free, transparent, and robust memory
reclamation for lock-free data structures. In Proceedings of the 42nd ACM International
Conference on Programming Language Design and Implementation, pages 987–1002, 2021.

38 Christos H Papadimitriou and Paris C Kanellakis. On concurrency control by multiple versions.
ACM Transactions on Database Systems, 9(1):89–99, 1984.

39 Dmitri Perelman, Anton Byshevsky, Oleg Litmanovich, and Idit Keidar. SMV: Selective
multi-versioning STM. In Proc. International Symposium on Distributed Computing, pages
125–140, 2011.

40 Dmitri Perelman, Rui Fan, and Idit Keidar. On maintaining multiple versions in STM. In
Proc. ACM Symposium on Principles of Distributed Computing, pages 16–25, 2010.

41 Pedro Ramalhete and Andreia Correia. Brief announcement: Hazard eras–non-blocking memory
reclamation. In Proc. 29th ACM Symp. on Parallelism in Algorithms and Architectures, pages
367–369, 2017. doi:10.1145/3087556.3087588.

42 D. Reed. Naming and synchronization in a decentralized computer system. Technical Report
LCS/TR-205, EECS Dept., MIT, 1978.

43 Niloufar Shafiei. Non-blocking doubly-linked lists with good amortized complexity. In Proc. 19th
Int. Conference on Principles of Distributed Systems, volume 46 of LIPIcs, pages 35:1–35:17,
2015.

44 Julian Shun, Yan Gu, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. Sequential
random permutation, list contraction and tree contraction are highly parallel. In Proc. 26th
ACM-SIAM Symposium on Discrete Algorithms, pages 431–448, 2015.

45 Ajay Singh, Trevor Brown, and Ali Mashtizadeh. NBR: Neutralization based reclamation. In
Proc. 26th ACM Symp. on Principles and Practice of Parallel Programming, pages 175–190,
2021. doi:10.1145/3437801.3441625.

46 H. Sundell. Wait-free reference counting and memory management. In Proc. 19th IEEE
Symposium Parallel and Distributed Processing, 2005. doi:10.1109/IPDPS.2005.451.

47 Håkan Sundell and Philippas Tsigas. Lock-free deques and doubly linked lists. J. Parallel and
Distributed Computing, 68(7):1008–1020, 2008.

48 John D. Valois. Lock-free linked lists using compare-and-swap. In Proc. 14th ACM Symposium
on Principles of Distributed Computing, pages 214–222, 1995.

49 Yuanhao Wei, Naama Ben-David, Guy E. Blelloch, Panagiota Fatourou, Eric Ruppert, and
Yihan Sun. Constant-time snapshots with applications to concurrent data structures. In Proc.
ACM Symposium on Principles and Practice of Parallel Programming, pages 31–46, 2021. A
full version is available from arXiv:2007.02372.

50 Haosen Wen, Joseph Izraelevitz, Wentao Cai, H. Alan Beadle, and Michael L. Scott. Interval-
based memory reclamation. In Proc. 23rd ACM Symp. on Principles and Practice of Parallel
Programming, pages 1–13, 2018. doi:10.1145/3178487.3178488.

51 Yingjun Wu, Joy Arulraj, Jiexi Lin, Ran Xian, and Andrew Pavlo. An empirical evaluation of
in-memory multi-version concurrency control. Proc. of the VLDB Endowment, 10(7):781–792,
2017.

A Application to Snapshottable Data Structures

We present a summary of the multiversioning scheme of Wei et al. [49], and describe how the
techniques in this paper can be applied to achieve good complexity bounds.

The Multiversioning Scheme. Wei et al. [49] apply multiversioning to a concurrent data
structure (DS) implemented from CAS objects to make it snapshottable. It does so by
replacing each CAS object by a VersionedCAS object which stores a version list of all earlier
values of the object. VersionedCAS objects support vRead and vCAS operations, which behave
like ordinary read and CAS. They also support a readVersion operation which can be used

https://doi.org/10.1145/3087556.3087588
https://doi.org/10.1145/3437801.3441625
https://doi.org/10.1109/IPDPS.2005.451
https://arxiv.org/abs/2007.02372
https://doi.org/10.1145/3178487.3178488

N. Ben-David, G. E. Blelloch, P. Fatourou, E. Ruppert, Y. Sun, and Y. Wei 12:19

to read earlier values of the object. Wei et al. present an optimization for avoiding the level
of indirection introduced by version lists. For simplicity, we apply our MVGC technique to
the version without this optimization.

Wei et al. also introduce a Camera object which is associated with these VersionedCAS
objects. The Camera object simply stores a timestamp. A takeSnapshot operation applied
to the Camera object attempts to increment the timestamp and returns the old value of the
timestamp as a snapshot handle. To support read-only query operations on the concurrent
DS (such as range-query, successor, filter, etc.), it suffices to obtain a snapshot handle s, and
then read the relevant objects in the DS using readVersion(s) to get their values at the
linearization point of the takeSnapshot that returned s. This approach can be used to add
arbitrary queries to many standard data structures.

For multiversion garbage collection, Wei et al. [49] uses a variation of EBR [23], inheriting
its drawbacks. Applying our range-tracking and version-list data structures significantly
reduces space usage, resulting in bounded space without sacrificing time complexity.

Applying Our MVGC Scheme. Operations on snapshottable data structures (obtained
by applying the technique in [49]) are divided into snapshot queries, which use a snapshot
handle to answer queries, and frontier operations, which are inherited from the original
non-snapshottable DS. We use our doubly-linked list algorithm (with the memory reclamation
scheme from Section 6) for each VersionedCAS object’s version list, and a range-tracking
object rt to announce timestamps and keep track of required versions by ongoing snapshot
queries. We distinguish between objects inherited from the original DS (DNodes) and version
list nodes (VNodes). For example, if the original DS is a search tree, the DNodes would be
the nodes of the search tree. See [8] for the enhanced code of [49] with our MVGC scheme.

At the beginning of each snapshot query, the taken snapshot is announced using
rt.announce(). At the end of the query, rt.unannounce() is called to indicate that
the snapshot that it reserved is no longer needed. Whenever a vCAS operation adds a new
VNode C to the head of a version list, we deprecate the previous head VNode B by call-
ing rt.deprecate(B, B.timestamp, C.timestamp). Our announcement scheme prevents
VNodes that are part of any ongoing snapshot from being returned by deprecate.

Once a VNode is returned by a deprecate, it is removed from its version list and the
reclamation of this VNode and the Descriptors that it points to is handled automatically
by the reference-counting scheme of Section 6. Thus, we turn our attention to DNodes. A
DNode can be reclaimed when neither frontier operations nor snapshot queries can access it.

We assume that the original, non-snapshottable DS comes with a memory reclamation
scheme, MRS, which we use to determine if a DNode is needed by any frontier operation.
We assume that this scheme calls retire on a node X when it becomes unreachable from
the roots of the DS, and free on X when no frontier operations need it any longer. This
assumption is naturally satisfied by many well-known reclamation schemes (e.g., [28, 41, 23]).

Even when MRS frees a DNode, it may not be safe to reclaim it, as it may still be needed
by ongoing snapshot queries. To solve this problem, we tag each DNode with a birth timestamp
and a retire timestamp. A DNode’s birth timestamp is set after a DNode is allocated but
before it is attached to the data structure. Similarly, a DNode’s retire timestamp is set when
MRS calls retire on it. We say that a DNode is necessary if it is not yet freed by MRS, or if
there exists an announced timestamp in between its birth and retire timestamp. We track this
using the same range-tracking data structure rt that was used for VNodes. Whenever MRS
frees a DNode N, we instead call rt.deprecate(N, N.birthTS, N.retireTS). When a
DNode gets returned by a deprecate, it is no longer needed so we reclaim its storage space.

DISC 2021

12:20 Space and Time Bounded Multiversion Garbage Collection

We say that a VNode is necessary if it is pointed to by a DNode that has not yet been
deprecated (i.e. freed by MRS) or if its interval contains an announced timestamp. Let D

and V be the maximum, over all configurations in the execution, of the number of necessary
DNodes and VNodes, respectively. Theorem 13 bounds the overall memory usage of our
memory-managed snapshottable data structure. Theorem 14 is an amortized version of the
time bounds proven in [49].

▶ Theorem 13. Assuming each VNode and DNode takes O(1) space, the overall space usage
of our memory-managed snapshottable data structure is O(D + V + P 2 log P + P 2 log Lmax),
where Lmax is the maximum number of successful vCAS operations on a single VCAS object.

▶ Theorem 14. A snapshot query takes amortized expected time proportional to its sequential
complexity plus the number of vCAS instructions concurrent with it. The amortized expected
time complexity of frontier operations is the same as in the non-snapshottable DS.

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Identifying Which Nodes to Disconnect from the Version List
	4.1 A Linearizable Implementation of the Range-Tracking Object

	5 Maintaining Version Lists
	5.1 Version List Implementation
	5.2 Properties of the Implementation

	6 Memory Reclamation for Version Lists
	A Application to Snapshottable Data Structures

