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Abstract
Byzantine agreement (BA) is a distributed consensus problem where n processors want to reach
agreement on an ℓ-bit message or value, but up to t of the processors are dishonest or faulty. The
challenge of this BA problem lies in achieving agreement despite the presence of dishonest processors
who may arbitrarily deviate from the designed protocol. In this work by using coding theory,
together with graph theory and linear algebra, we design a coded BA protocol (termed as COOL)
that achieves consensus on an ℓ-bit message with optimal resilience, asymptotically optimal round
complexity, and asymptotically optimal communication complexity when ℓ ≥ t log t, simultaneously.
The proposed COOL is a deterministic BA protocol that is guaranteed to be correct in all executions
(error free) and does not rely on cryptographic technique such as signatures, hashing, authentication
and secret sharing (signature free). It is secure against computationally unbounded adversary who
takes full control over the dishonest processors (information-theoretic secure). The main idea of the
proposed COOL is to use a carefully-crafted error correction code that provides an efficient way of
exchanging “compressed” information among distributed nodes, while keeping the ability of detecting
errors, masking errors, and making a consistent and validated agreement at honest distributed nodes.
We show that our results can also be extended to the setting of Byzantine broadcast, aka Byzantine
generals problem, where the honest processors want to agree on the message sent by a leader who
is potentially dishonest. The results reveal that coding is an effective approach for achieving the
fundamental limits of Byzantine agreement and its variants. Our protocol analysis borrows tools
from coding theory, graph theory and linear algebra.
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1 Introduction

Byzantine agreement (BA), as originally proposed by Pease, Shostak and Lamport in 1980,
is a distributed consensus problem where n processors want to reach agreement on some
message (or value), but up to t of the processors are dishonest or faulty [52]. The challenge of
this BA problem lies in achieving agreement despite the presence of dishonest processors who
may arbitrarily deviate from the designed protocol. One variant of the problem is Byzantine
broadcast (BB), aka Byzantine generals problem, where the honest processors want to agree
on the message sent by a leader who is potentially dishonest [39]. Byzantine agreement and
its variants are considered to be the fundamental building blocks for distributed systems and
cryptography including Byzantine-fault-tolerant (BFT) distributed computing, distributed
storage, blockchain protocols, state machine replication and voting, just to name a few
[52, 39, 26, 45, 23, 41, 25, 42, 48, 50, 9, 43, 1, 13, 57, 49, 53, 27, 58].
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Table 1 Comparison of the proposed and some other error-free synchronous BA protocols.

Protocols Resilience Communication Round Error Free Signature Free
ℓ-1-bit n ≥ 3t + 1 Ω(n2ℓ) Ω(ℓt) yes yes

[41] n ≥ 3t + 1 O(nℓ + n4√ℓ + n6) Ω(
√

ℓ + n2) yes yes
[25] n ≥ 3t + 1 O(nℓ + n4) O(t) yes yes
[42] n ≥ 3t + 1 O(nℓ + n4) O(t) yes yes
[48] n ≥ 3t + 1 O(nℓ + n3) O(t) yes yes

Proposed n ≥ 3t + 1 O(max{nℓ, nt log t}) O(t) yes yes

To solve the Byzantine agreement problem, a designed protocol needs to satisfy the
following conditions: every honest processor eventually outputs a message and terminates
(termination); all honest processors output the same message (consistency); and if all honest
processors hold the same initial message then they output this initial message (validity). A
protocol that satisfies the above three conditions in all executions is said to be error free.
The quality of a BA protocol is measured primarily by using three parameters:

Resilience: the number of processors n as a function of t allowed.
Round complexity: the number of rounds of exchanging information, denoted by r.
Communication complexity: the total number of communication bits, denoted by b.

For any error-free BA protocol, the known lower bounds on those parameters are respectively

n ≥ 3t + 1 (cf. [52, 39]), r ≥ t + 1 (cf. [22, 20]), b ≥ Ω(max{nℓ, nt}) (cf. [19, 23])

where ℓ denotes the length of message. It is worth mentioning that, in practice the consensus
is often required for multi-valued message rather than just single-bit message [23, 41, 25, 42,
48, 50, 51]. For example, in BFT consensus protocols of Libra (or Diem) and Hyperledger
Fabric proposed by Facebook and IBM respectively, the message being agreed upon could be
a transaction or transaction block with size scaled from 1KB to 1MB [4, 59, 28, 33, 60, 5, 3].
Also, in practice the consensus is often expected to be 100% secure and error free in mission-
critical applications such as online banking and smart contracts [8, 30, 44, 12, 18].

The multi-valued BA problem of achieving consensus on an ℓ-bit message could be
solved by invoking ℓ instances of 1-bit consensus in sequence, which is termed as ℓ-1-bit
scheme. However, this scheme will result in communication complexity of Ω(n2ℓ) bits,
because Ω(n2) is the lower bound on communication complexity of 1-bit consensus given
n ≥ 3t + 1 [16, 7, 19]. In 2006, Fitzi and Hirt provided a probabilistically correct multi-valued
BA protocol by using a hashing technique, which results in communication complexity of
O(nℓ + n3(n + κ)) bits for some constant κ [23]. In 2011, Liang and Vaidya provided an
error-free BA protocol with communication complexity O(nℓ + n4

√
ℓ + n6) bits, which is

optimal when ℓ ≥ n6 [41]. However, in the regime of ℓ < n6, this communication complexity
is sub-optimal. The result of [41] was improved recently in [25], [42] and [48]. Specifically, the
communication complexities of the BA protocols proposed in [25], [42] and [48] are O(nℓ+n4)
bits, O(nℓ + n4) bits, and O(nℓ + n3) bits, respectively. Although the communication
complexity has been improved in [25], [42] and [48], the achievable performance is still
sub-optimal in the regime of ℓ < n2. In some previous work, randomized algorithms were
proposed to reduce communication and round complexities but the termination cannot be
100% guaranteed [21, 50, 2, 11, 15, 35, 46, 47]. In some other work, the protocols were
designed with cryptographic technique such as signatures, hashing, authentication and
secret sharing [54, 35, 1, 20]. However, the protocols with such cryptographic technique
are vulnerable to attacks from the adversary with very high computation power, e.g., using
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Figure 1 Four-phase operation and block diagram at Processor i (Pi) of the proposed COOL.

supercomputer or quantum computer possibly available in the future, and hence not error
free. A protocol that doesn’t rely on cryptographic technique mentioned above is said to be
signature free. A protocol is said to be information-theoretic secure if it is secure against
computationally unbounded adversary who takes full control over the dishonest processors.

In this work we focus on the fundamental limits of error-free multi-valued Byzantine
agreement. Specifically by using coding theory, together with graph theory and linear algebra,
we are able to design an error-free signature-free information-theoretic-secure multi-valued BA
protocol (named as COOL) with optimal resilience, asymptotically optimal round complexity,
and asymptotically optimal communication complexity when ℓ ≥ t log t, simultaneously (see
Table 1), focusing on the BA setting with synchronous communication network. In a nutshell,
carefully-crafted error correction codes provide an efficient way of exchanging “compressed”
information among distributed processors, while keeping the ability of detecting errors,
masking errors, and making a consistent agreement at honest distributed processors.

The main difference between the protocols of [41, 25, 42, 48] and our proposed protocol is
that, while coding is also used, in the protocols of [41, 25, 42, 48] each distributed processor
needs to send an n-bit information to all other processors after generating a graph based
on the exchanged information, which results in a communication complexity for this step of
at least Ω(n3) bits. This is a limitation in the protocols of [41, 25, 42, 48]. Our proposed
protocol, which is carefully designed by using coding theory, graph theory and linear algebra,
avoids the limitation appeared in [41, 25, 42, 48]. Specifically, our proposed protocol consists
of at most four phases (see Fig. 1 and Section 4). After the third phase, it is guaranteed that
at most one group of honest processors output the same non-empty value and the size of this
group is bigger than the group size of dishonest processors. In this way honest processors can
calibrate their values based on majority rule and error-correction decoding (see Section 4).
The high-level insights and used tools are described below.

Coding theory: Error correction code is used here to reduce the communication complexity
in a way that the distributed processors exchange the encoded (“compressed”) information
symbols but not the initial ℓ-bit messages, where the encoded information symbol is a
projection of a message on an encoding vector, e.g., hT

i w̄1 is a projection of a message
w̄1 on an encoding vector hi (see Fig. 2-(a)). The challenge is that the encoded symbols
could not reveal enough information about the original messages, which might lead to some
illusions at distributed processors and result in an inconsistent consensus. For example, as
shown in Fig. 2-(a), when Processor i having an initial message as w̄1 sends out an encoded
symbol hT

i w̄1, this encoded symbol might be expressed as hT
i w̄1 = hT

i w̄2 if w̄1 − w̄2 is in
the null space of hi. In this case, it creates an illusion at other processors that Processor i

might initially hold the message as w̄2 but not w̄1. Our goal is to control the number of
the aforementioned illusions to be small in the designed protocol and finally remove those
illusions, by using graph theory and linear algebra.

DISC 2021
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Figure 2 (a) Two vectors w̄1 and w̄2 have the same projection on an encoding vector hi. (b)
An illustration of n-processor network. Group F denotes the indices of all dishonest processors.
Group Al denotes the indices of honest processors whose initial messages are all equal to a value w̄l,
for some w̄l and for l ∈ [1 : η]. Al,j denotes a subset of Al such that hT

i w̄l = hT
i w̄j , ∀i ∈ Al,j , which

means that the encoded information symbols sent from the processors in Al,j seem to be projected
from the value w̄j but actually projected from the value w̄l, for j ̸= l, j, l ∈ [1 : η].

Graph theory and linear algebra: To control the number of the aforementioned illusions
to be small, we first classify the n-processor network into different groups. As shown in
Fig. 2-(b), Group Al denotes a set of honest processors holding the same value of initial
messages, i.e., w̄l, for l ∈ [1 : η], while Al,j denotes a subset of Al such that the encoded
symbols sent from Al,j seem to be projected from the value w̄j , but actually projected from
the value w̄l. Therefore, the encoded information symbols sent from ∪η

l=1,l ̸=jAl,j seem to
be projected from the value w̄j , but actually not. The idea of our design is to control the
size of ∪η

l=1,l ̸=jAl,j to be small for any j. Specifically, in our protocol the parameter η is
controlled to be small by using graph theory, while the size of each Al,j is controlled to be
bounded by using linear algebra. For the use of graph theory, our approach is to map the
n-node network into a specific type of graph, with one graph example depicted in Fig. 3, and
bound the value of η based on this defined graph such that η cannot be more than 2 at the
end of the second phase (see Lemma 22 and Lemma 18). For the use of linear algebra, our
approach is to construct a set of linear equations based on the constraints related to Al,j , as
well as the encoding matrix property, and then bound the size of Al,j (see Lemma 21).

Coding has been used previously as an exciting approach in network communication
and cooperative data exchange for improving throughput and tolerating attacks or failures
[40, 37, 24, 10, 31, 34, 36, 38, 63, 32, 29, 62, 61, 17]. However, one common assumption in
those previous works is that the source of the data is always fault-free, i.e., the source node
is always honest or trustworthy, or the initial messages of the honest nodes are consistent
and generated from the trustworthy source node. This is very different from the BA and BB
problems considered here, in which the leader (or the source node) can be dishonest and the
original messages of the distributed nodes can be controlled by the Byzantine adversary. One
of the main difficulties of the BA and BB problems lies in the unknown knowledge about the
leader (honest or dishonest) and about initial messages (consistent or inconsistent).
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Figure 3 (a) One example of a type of graph, where each vertex in C = {2, 3, 4, 5, 6} is connected
with at least 6 edges: one of the edges is connected to vertex i⋆ = 1 and the rest are connected to
the vertices in D = {2, 3, 4, 5, 6, 7, 8}. (b) A three-layer representation of the graph in (a).

2 System models

In the BA problem, n processors want to reach agreement on an ℓ-bit message (or value),
but up to t of the processors are dishonest (or faulty). Processor i holds an ℓ-bit initial
message wi, ∀i ∈ [1 : n]. To solve this BA problem, a designed protocol needs to satisfy
the termination, consistency and validity conditions mentioned in the previous section. We
consider the synchronous BA, in which every two processors are connected via a reliable and
private communication channel, and the messages sent on a channel are guaranteed to reach
to the destination on time. We assume that a Byzantine adversary takes full control over
the dishonest processors and has complete knowledge of the state of the other processors,
including the ℓ-bit initial messages.

As mentioned, a protocol that satisfies the termination, consistency and validity conditions
in all executions is said to be error free. A protocol that doesn’t rely on the cryptographic
technique such as signatures, hashing, authentication and secret sharing is said to be signature
free. A protocol that is secure (satisfying the termination, consistency and validity conditions)
against computationally unbounded adversary is said to be information-theoretic secure. In
the BB problem, the validity condition requires that, if the leader is honest then all honest
processors should agree on the message sent by the leader. Other definitions follow similarly
from that of the BA problem.

3 Main results

The main results of this work are summarized in the following theorems.

▶ Theorem 1 (BA problem). The proposed COOL is an error-free signature-free information-
theoretic-secure multi-valued BA protocol that achieves the consensus on an ℓ-bit message
with optimal resilience, asymptotically optimal round complexity, and asymptotically optimal
communication complexity when ℓ ≥ t log t, simultaneously.

Proof. The description of the proposed COOL is provided in Section 4. The proposed
COOL achieves the consensus on an ℓ-bit message with resilience of n ≥ 3t + 1 (optimal),
round complexity of O(t) rounds (asymptotically optimal), and communication complexity
of O(max{nℓ, nt log t}) bits (asymptotically optimal when ℓ ≥ t log t), simultaneously. Note
that, for any error-free BA protocol, the known lower bounds on resilience, round complexity
and communication complexity are 3t+1 (cf. [52, 39]), t+1 (cf. [22, 20]), and Ω(max{nℓ, nt})
(cf. [19, 23]), respectively. ◀

DISC 2021
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Figure 4 Communication complexity exponent β vs. message size exponent α of the proposed
COOL, the protocols in [41, 25, 42, 48], and ℓ-1-bit scheme, focusing on the case with δ = 1.

▶ Theorem 2 (BB problem). The proposed adapted COOL is an error-free signature-free
information-theoretic-secure multi-valued BB protocol that achieves the consensus on an ℓ-bit
message with optimal resilience, asymptotically optimal round complexity, and asymptotically
optimal communication complexity when ℓ ≥ t log t, simultaneously.

Proof. The proposed COOL designed for the BA setting can be adapted into the BB setting,
which achieves the consensus on an ℓ-bit message with the same performance of resilience,
round complexity and communication complexity as in the BA setting. Note that the known
lower bounds on resilience, round complexity and communication complexity for error-free
BA protocols, can also be applied to any error-free BB protocols. The description of adapted
COOL for the BB setting is provided in Appendix A. ◀

For an error-free BA (or BB) protocol, we define the notions of communication complexity
exponent, message size exponent and faulty size exponent as β(α, δ)≜ limn→∞

log b(n,δ,α)
log n ,

α≜ limn→∞
log ℓ
log n , and δ ≜ limn→∞

log t
log n , respectively. Intuitively, β (resp. α and δ) captures

the exponent of communication complexity b (resp. message size ℓ and faulty size t) with
n as the base, when n is large. In this work we characterize the optimal communication
complexity exponent β∗(α, δ) achievable by any error-free BA protocol when n ≥ 3t + 1.

▶ Theorem 3 (communication complexity exponent). The optimal communication complexity
exponent β∗(α, δ) achievable by any error-free BA (or BB) protocol when n ≥ 3t + 1, is

β∗(α, δ) = max{1 + α, 1 + δ}. (1)

Proof. Based on the known lower bound, the optimal communication complexity exponent is
lower bounded by β∗(α, δ) ≥ limn→∞

log Ω(max{nℓ,nt})
log n = max{1+α, 1+δ}. This lower bound

is achievable by the proposed COOL, as the communication complexity exponent of COOL,
denoted by β[cool], is β[cool](α, δ) = limn→∞

log O(max{nℓ,nt log t})
log n = max{1 + α, 1 + δ}. ◀

As shown in Fig. 4, the proposed COOL achieves the optimal communication complexity
exponent. Compared to the protocols in [41, 25, 42, 48], COOL provides additive gains up to
4, 2, 2, 1, respectively, in terms of communication complexity exponent. Compared to ℓ-1-bit
scheme without coding, COOL provides a communication complexity exponent gain of 1 for
any α ≥ 1, which can be considered as a coding gain resulted from carefully-crafted coding.
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4 COOL: coded Byzantine agreement protocol

This section describes the proposed COOL: coded Byzantine agreement protocol. Error
correction code is used in COOL. The (n, k) Reed-Solomon error correction code encodes
k data symbols from Galois Field GF (2c) into a codeword consisting of n symbols from
GF (2c), for n ≤ 2c − 1 (cf. [55])1. We can use c bits to represent each symbol from
GF (2c), which implies that a vector consisting of k symbols from GF (2c) can be represented
using kc bits of data. The error correction code can be constructed by Lagrange polynomial
interpolation. An (n, k) error correction code can correct up to ⌊n−k

2 ⌋ errors by applying some
efficient decoding algorithms for Reed-Solomon code, such as, Berlekamp-Welch algorithm
and Euclid’s algorithm[56, 6, 55].

In the proposed COOL, at first the parameters k and c are designed as

k ≜
⌊ t

5

⌋
+ 1, c≜

⌈max{ℓ, (t/5 + 1) · log(n + 1)}
k

⌉
. (2)

As will be shown later, our design of k and c as above is one of the key elements in COOL,
which guarantees that the proposed COOL satisfies the termination, consistency and validity
conditions. With the above values of k and c, it holds true that the condition of the Reed-
Solomon error correction code, i.e., n ≤ 2c − 1, is satisfied. The (n, k) Reed-Solomon error
correction code is used to encode the ℓ-bit initial message wi, ∀i ∈ [1 : n]. When ℓ is less
than kc bits, the ℓ-bit message wi will be first extended to a kc-bit data by adding (kc− ℓ)
bits of redundant zeros (zero padding). The proposed COOL will work as long as t ≤ n−1

3 .
In the description of the proposed COOL, t is considered such that t ≤ n−1

3 and t = Ω(n).
Later on we will discuss the case when t is relatively small compared to n.

The proposed COOL consists of at most four phases (see Fig. 1), which are described in
the following sub-sections. The proposed COOL is also described in Algorithm 1 later. Let
us first define w(i) as the updated message at Processor i, i ∈ [1 : n]. w(i) can be updated
via decoding, or via comparing its own information and the obtained information. In this
proposed protocol, the decoding is required at Phase 4 only. The value of w(i) is initially set
as w(i) = wi, i ∈ [1 : n].

4.1 Phase 1: exchange compressed information and update message
Phase 1 has three steps. The idea is to exchange “compressed” information and learn it.

1) Exchange compressed information: Processor i, i ∈ [1 : n], first encodes its ℓ-bit initial
message wi into ℓ/k-bit symbols as

y
(i)
j ≜hT

jwi, j ∈ [1 : n] (3)

where hj is defined as hj ≜[hj,1, hj,2, · · · , hj,k]T and hj,m ≜
∏k

p=1
p ̸=m

j−p
m−p , m ∈ [1 : k]. Then,

Processor i sends coded symbols (y(i)
j , y

(i)
i ) to Processor j for i, j ∈ [1 : n], j ̸= i.

2) Update information: Processor i, i ∈ [1 : n], compares the observation (y(j)
i , y

(j)
j )

received from Processor j with its observation (y(i)
i , y

(i)
j ) and sets a binary indicator for the

link between Processor i and Processor j, denoted by ui(j), as

ui(j) =
{

1 if (y(j)
i , y

(j)
j ) = (y(i)

i , y
(i)
j ) (4)

0 else

1 For extended Reed-Solomon codes, the constraint can be relaxed to n ≤ 2c + 2 in some cases.

DISC 2021
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for j ∈ [1 : n]. ui(j) can be considered as a link indicator for Processor i and Processor j.
The value of ui(j) = 0 reveals that Processor i and Processor j have mismatched messages,
i.e., w(i) ̸= w(j). However, the value of ui(j) = 1 does not mean that Processor i and
Processor j have matched messages; it just means that Processor i and Processor j share a
common information at a certain degree, i.e., (y(j)

i , y
(j)
j ) = (y(i)

i , y
(i)
j ). When ui(j) = 0, the

observation of (y(j)
i , y

(j)
j ) received from Processor j is considered as a mismatched observation

at Processor i. In this step Processor i, i ∈ [1 : n], checks if its own initial message
successfully matches the majority of other processors’ initial messages, by counting the
number of mismatched observations. Specifically, Processor i sets a binary success indicator,
denoted by si, as

si =
{

1 if
∑n

j=1 ui(j) ≥ n− t (5)
0 else .

The event of si = 0 means that the number of mismatched observations is more than t, which
implies that the initial message of Processor i doesn’t match the majority of other processors’
initial messages. If si = 0, Processor i updates the message as w(i) = ϕ (a default value),
else keeps the original value of w(i).

3) Exchange success indicators: Processor i, i ∈ [1 : n], sends the binary value of success
indicator si to all other processors. Based on the received success indicators {si}n

i=1, each
processor creates the following two sets:

S1 ≜{i : si = 1, i ∈ [1 : n]}, S0 ≜{i : si = 0, i ∈ [1 : n]}. (6)

Note that different processors might have different views on S1 and S0, due to the inconsistent
information possibly sent from dishonest processors.
▶ Remark 4. Since y

(i)
j defined in (3) has only c bits, the total communication complexity

among the network for the first step of Phase 1, denoted by b1, is b1 = 2cn(n − 1) bits.
If Processor i, i ∈ [1 : n], sends the whole message wi to other processors, then the total
communication complexity would be ℓn(n− 1) bits. Compared to the whole message wi, the
value of y

(i)
j can be considered as a compressed information. By exchanging compressed

information, instead of whole messages, the communication complexity is significantly reduced
in this step. Since the success indicator si has only 1 bit, the communication complexity for
the third step of Phase 1, denoted by b2, is b2 = n(n− 1) bits.

▶ Remark 5. In Phase 1, exchanging “compressed” information reduces the communication
complexity, however, it also creates some potential issues due to the lack of full original
information. Fig. 5 describes an example with three disjoint groups in n-processor network:
Group F , Group A1 and Group A2, where Group Ai is a set of honest processors holding the
same initial message w̄i, given |A1| = t + 1, |A2| = t, and w̄1 ̸= w̄2. To attack the protocol,
in Phase 1 each dishonest processor could send inconsistent information to two different
groups of honest processors, that is, sending symbols (hT

jw̄1, hT
i w̄1) to Processor j for j ∈ A1

and sending different symbols (hT
j′w̄2, hT

i w̄2) to Processor j′ for j′ ∈ A2, respectively, for
i ∈ F . Due to this inconsistent information, together with the condition of hT

1w̄1 = hT
1w̄2

and hT
12w̄1 = hT

12w̄2, the honest processors from different groups consequently have different
updated messages, which might lead to inconsistent consensus outputs. In Phase 1 Processor i,
i ∈ [13 : 21] ⊂ A2, sets ui(j) = 0,∀j ∈ [1 : 11] and si = 0, from which it identifies that
its initial message doesn’t match the majority of other processors’ initial messages and
then updates its message as w(i) = ϕ. However, Processor 12 still thinks that its initial
message does match the majority of other processors’ initial messages because of the condition
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Figure 5 Illustration of COOL for an example with (t = 10, n = 31). The number under the
node indicates the identity. The value inside the ith node denotes the value of updated message
w(i) at the end of the corresponding phase. Here A1 = [1 : 11], A2 = [12 : 21], F = [22 : 31],
wi = w̄1,∀i ∈ A1 and wi′ = w̄2, ∀i′ ∈ A2. It is assumed that hT

1w̄1 = hT
1w̄2 and hT

12w̄1 = hT
12w̄2,

for w̄1 ̸= w̄2. All honest processors eventually make the same consensus output.

hT
1w̄1 = hT

1w̄2 and hT
12w̄1 = hT

12w̄2. This condition implies that (y(j)
12 , y

(j)
j ) = (y(12)

12 , y
(12)
j )

for any j ∈ {1} ∪ A2 from the view of Processor 12, and hence results in a “wrong” (i.e.,
mismatched) output of s12 = 1 at Processor 12. In the next phases the effort is to detect
errors (mismatched information), mask errors, and identify “trusted” information.

4.2 Phase 2: mask errors, and update success indicator and message
Phase 2 has three steps. The goal is to mask errors from the honest processors.

1) Mask errors identified in the previous phase: Processor i, i ∈ S1, sets

ui(j) = 0, ∀j ∈ S0. (7)

2) Update and send success indicator: Processor i, i ∈ S1, updates si as in (5) using
updated values of {ui(1), · · · , ui(n)}. If the updated value of success indicator is si = 0, then
Processor i sends the updated success indicator of si = 0 to others and updates the message
as w(i) = ϕ.

3) Update S1 and S0: Processor i, i ∈ [1 : n], updates the sets of S1 and S0 as in (6)
based on the newly received success indicators {si}n

i=1.
▶ Remark 6. Since the success indicator si has only 1 bit, the total communication complexity
for the second step of Phase 2, denoted by b3, is bounded by b3 ≤ n(n− 1) bits.
▶ Remark 7. The idea of Phase 2 is to mask errors from honest processors whose initial
messages don’t match the majority of other processors’ initial messages, but could not
be detected out in Phase 1. For the example in Fig. 5, at the second step of Phase 2,
Processor 12 updates the message as w(12) = ϕ. This is because at Step 2 of Phase 2,
from the view of Processor 12, the number of mismatched observations is at least 19, since
u12(j) = 0,∀j ∈ [2 : 11] ∪ [13 : 21] based on the updated information in (7).

4.3 Phase 3: mask errors, update information, and vote
Phase 3 has five steps. The goal is to mask the rest of errors from the honest processors,
and then vote for going to next phase or stopping in this phase.
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1) Mask errors identified in the previous phase: Processor i, i ∈ S1, sets

ui(j) = 0, ∀j ∈ S0. (8)

2) Update and send success indicator: Processor i, i ∈ S1, updates si as in (5) using
updated values of {ui(1), · · · , ui(n)}. If the updated value of success indicator is si = 0, then
Processor i sends si = 0 to others and updates the message as w(i) = ϕ.

3) Update S1 and S0: Processor i, i ∈ [1 : n], updates the sets of S1 and S0 as in (6)
based on the newly received success indicators {si}n

i=1.
4) Vote: Processor i, i ∈ [1 : n], sets a binary vote as

vi =
{

1 if
∑n

j=1 sj ≥ 2t + 1 (9)
0 else .

The indicator vi can be considered as a vote for going to next phase or stopping in this phase.
5) One-bit consensus on the n votes: In this step the system runs one-bit consensus

[7, 16] on the n votes {v1, v2, · · · , vn} from all processors. If the consensus of the votes
{v1, v2, · · · , vn} is 1, then every honest processor goes to next phase, else every honest
processor sets w(i) = ϕ and considers it as a final consensus and stops here.

▶ Remark 8. Since si has only 1 bit, the total communication complexity for the second step
of Phase 3, denoted by b4, is bounded by b4 ≤ n(n− 1) bits.

▶ Remark 9. Since the system runs the one-bit consensus from [7, 16], the total communication
complexity for the last step of Phase 3, denoted by b5, is b5 = O(nt) bits, while the round
complexity of this step is O(t) rounds, which dominates the round complexity of COOL.

▶ Remark 10. The goal of the first two steps of Phase 3 is to mask the remaining errors from
honest processors. As shown in Lemma 17 later, it is guaranteed that at the end of Phase 3
there exists at most 1 group of honest processors, where the honest processors within this
group have the same non-empty updated message (like A1 in Fig. 5).

4.4 Phase 4: identify trusted information and make consensus

This phase is taken place only when one-bit consensus of {v1, v2, · · · , vn} is 1.
1) Update information with majority rule: Processor i, i ∈ S0, updates y

(i)
i as

y
(i)
i ← Majority({y(j)

i : j ∈ S1}) (10)

where the symbols of y
(j)
i were received in Phase 1. Majority(•) is a function that returns the

most frequent value in the list, based on majority rule. For example, Majority(1, 2, 2) = 2.
2) Broadcast updated information: Processor i, i ∈ S0, sends the updated value of y

(i)
i to

Processor j, ∀j ∈ S0, j ̸= i.
3) Decode the message: Processor i, i ∈ S0, decodes its message using the observations

{y(1)
1 , y

(2)
2 , · · · , y

(n)
n }, where {y(j)

j : j ∈ S0} were updated and received in this phase and
{y(j)

j : j ∈ S1} were received in the Phase 1. The value of w(i) is updated as the decoded
message at Processor i, i ∈ S0. For Processor i, i ∈ S1, it keeps the original value of w(i).

4) Stop: Processor i, i ∈ [1 : n], outputs consensus as the message w(i) and stops.

▶ Remark 11. Since y
(i)
i has only c bits, the total communication complexity for the second

step of Phase 4, denoted by b6, is upper bounded by b6 ≤ cn(n− 1) bits.
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▶ Remark 12. The idea of Phase 4 is to identify “trusted” information from the set of honest
processors whose initial messages match the majority of other processors’ initial messages.
In this way, the set of honest processors whose initial messages don’t match the majority
of other processors’ initial messages could calibrate and update their information. For the
example in Fig. 5, since the size of A1 is bigger than the size of F , it guarantees that Group
A2 could calibrate and update their information successfully in the first step of Phase 4,
eventually making the same consensus output as Group A1.

5 Provable performance of COOL

In this section we analyze the performance of COOL. At first we define some groups of
processors in the n-processor network. For the ease of notation, let us use s[1]

i , s[2]
i and s[3]

i to
denote the values of si updated in Phase 1, Phase 2 and Phase 3, respectively. Similarly, let
us use u[1]

i (j), u[2]
i (j) and u[3]

i (j) to denote the values of ui(j) updated in Phase 1, Phase 2
and Phase 3, respectively. Let us first define Group F as the indices of all of the dishonest
processors. Without loss of generality, in the analysis we just focus on the case with t

dishonest nodes, i.e., |F| = t (no matter how the dishonest nodes act). Note that when
|F| = t′ for some t′ < t, this case is indistinguishable from the case with |F| = t in which
t − t′ out of t dishonest nodes act normally like honest nodes. Therefore, if a protocol is
correct in the extreme case with |F| = t, it is also correct in the case with |F| < t.

Let us then define some groups of honest processors as

Al ≜{i : wi = w̄l, i /∈ F , i ∈ [1 : n]}, l ∈ [1 : η] (11)

A[p]
l ≜{i : s[p]

i = 1, wi = w̄l, i /∈ F , i ∈ [1 : n]}, l ∈ [1 : η[p]], p ∈ {1, 2, 3} (12)

B[p] ≜{i : s[p]
i = 0, i /∈ F , i ∈ [1 : n]}, p ∈ {1, 2, 3} (13)

for some different non-empty ℓ-bit values w̄1, w̄2, · · · , w̄η and some non-negative integers
η, η[1], η[2], η[3] such that η[3] ≤ η[2] ≤ η[1] ≤ η. Group Al is a subset of honest processors who
have the same value of initial messages. A[p]

l (resp. B[p]) is a subset of honest processors who
have the same non-empty (resp. empty) value of updated messages at the end of Phase p, for
p ∈ {1, 2, 3}. As shown in Fig. 2-(a), two different messages might have the same projection
on an encoding vector. With this motivation, Group Al (and Group A[p]

l ) can be divided
into some possibly overlapping sub-groups defined as

Al,j ≜{i : i ∈ Al, hT
i w̄l = hT

i w̄j}, j ̸= l, j, l ∈ [1 : η] (14)
Al,l ≜Al \ {∪η

j=1,j ̸=lAl,j}, l ∈ [1 : η] (15)

A[p]
l,j ≜{i : i ∈ A[p]

l , hT
i w̄l = hT

i w̄j}, j ̸= l, j, l ∈ [1 : η[p]], p ∈ {1, 2, 3} (16)

A[p]
l,l ≜A

[p]
l \ {∪

η[p]

j=1,j ̸=lA
[p]
l,j}, l ∈ [1 : η[p]], p ∈ {1, 2, 3}. (17)

The provable performance of COOL is summarized in the following Lemmas 13-16.

▶ Lemma 13 (termination). Given n ≥ 3t + 1, all honest processors eventually output
messages and terminate in COOL.

Proof. Given n ≥ 3t + 1, it is guaranteed in COOL that all honest processors eventually
terminate together at the last step of Phase 3 or Phase 4. It is also guaranteed that every
honest processor eventually outputs a message when it terminates. ◀

▶ Lemma 14 (validity). Given n ≥ 3t + 1, if all honest processors have the same initial
message, then at the end of COOL all honest processors agree on this initial message.
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Proof. When all honest processors have the same initial message, in the first three phases all
honest processors will set their success indicators as ones and keep their updated messages
exactly the same as the initial message, no matter what information sent by the dishonest
processors. In this scenario, all honest processors will go to Phase 4 and eventually make the
consensus outputs exactly the same as the initial message at the last step of Phase 4. ◀

▶ Lemma 15 (consistency). Given n ≥ 3t+1, all honest processors reach the same agreement.

Proof. We prove this lemma by considering each of the following two cases.
Case (a): In Phase 3, the consensus of the votes {v1, v2, · · · , vn} is 0.
Case (b): In Phase 3, the consensus of the votes {v1, v2, · · · , vn} is 1.

Analysis for Case (a): In Phase 3 of COOL, if the consensus of the votes {v1, v2, · · · , vn}
is 0, then each honest processor will set the updated message as ϕ and consider ϕ as a final
consensus and stop here. In this case, all of the honest processors agree on the same message.

Analysis for Case (b): In Phase 3 of COOL, if the consensus of the votes {v1, v2, · · · , vn}
is 1, then all honest processors will go to Phase 4. In this case, at least one of the honest
processors votes vi = 1, for some i /∈ F . Otherwise, all of the honest processors vote the
same value such that vi = 0, ∀i /∈ F and the consensus of the votes {v1, v2, · · · , vn} should
be 0, contradicting the condition of this case. In COOL, the condition of voting vi = 1
(see (9)) is that Processor i receives no less than 2t + 1 number of ones from n success
indicators {s[3]

1 , s[3]
2 , · · · , s[3]

n }, i.e.,
∑n

j=1 s[3]
j ≥ 2t + 1. Since t dishonest processors might send

the success indicators as ones, the above outcome implies that∑
j∈∪η[3]

l=1 A[3]
l

s[3]
j ≥ t + 1. (18)

Lemma 17 (see Section 5.1) reveals that at the end of Phase 3 there exists at most 1 group
of honest processors, where the honest processors in this group have the same non-empty
updated message, that is, η[3] ≤ 1. Then, for this Case (b), the conclusions in (18) and
Lemma 17 imply that at the end of Phase 3 there exists exactly 1 group of honest processors
with group size bigger than or equal to t + 1, where the honest processors within this group
have the same non-empty updated message. In other words, for this Case (b), we have

η[3] = 1, |A[3]
1 | ≥ t + 1, wi = w̄1, ∀i ∈ A[3]

1 (19)

by following from (18) and Lemma 17, as well as the definition of A[3]
l .

In Phase 4 Processor i, i ∈ S0, updates the value of y
(i)
i as y

(i)
i ← Majority({y(j)

i : j ∈ S1})
based on the majority rule, where the symbols of y

(j)
i were received in Phase 1. In this

step it is true that A[3]
1 ⊆ S1 and |A[3]

1 | > |F| (see (19)), which guarantees that Processor i,
i ∈ S0 \ F , could use the majority rule to update the value of y

(i)
i as y

(i)
i ← Majority({y(j)

i :
j ∈ S1}) = hT

i w̄1. At the end of this step, for any honest Processor i, i /∈ F , the value
of y

(i)
i becomes y

(i)
i = hT

i w̄1, which is encoded with w̄1. In the second step of Phase 4,
Processor i, i ∈ S0, sends the updated value of y

(i)
i to Processor j, ∀j ∈ S0, j ≠ i. After this,

Processor i, i ∈ S0, decodes its message using the updated observations {y(1)
1 , y

(2)
2 , · · · , y

(n)
n },

where n − t observations of which are guaranteed to be y
(j)
j = hT

jw̄1,∀j /∈ F . Since the
number of mismatched observations, i.e., the observations not encoded with the message w̄1,
is no more than t, then Processor i, i ∈ S0 \ F , decodes its message and outputs w(i) = w̄1.
At the same time, Processor i, i ∈ S1 \ F , outputs the original value as w(i) = w̄1. Thus,
all of the honest processors successfully agree on the same message, i.e., w(i) = w̄1, ∀i /∈ F .
With this we complete the proof of Lemma 15. ◀
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▶ Lemma 16 (complexity). When n ≥ 3t + 1, COOL achieves the consensus on an ℓ-bit
message with the communication complexity of O(max{nℓ, nt log t}) bits and O(t) rounds.

Proof. The total communication complexity of COOL, denoted by b, is computed as
b =

∑6
i=1 bi = O(cn(n − 1) + n2) = O

(⌈
max{ℓ, (t/5+1)·log(n+1)}

⌊ t
5 ⌋+1

⌉
· n(n − 1) + n2

)
=

O(max{ℓn2/t, n2 log n}) bits, where b1, b2, · · · , b6 are expressed in Remarks 4, 6, 8, 9 and 11,
and the parameters c and k are defined in (2). In the description of the proposed protocol, t

is considered such that t ≤ (n− 1)/3 and t = Ω(n). In this case, the total communication
complexity computed as above can be rewritten in the form of b = O(max{ℓn, nt log t}) bits.
For the case when t is relatively small, we show that COOL can be slightly modified to
achieve the communication complexity as b = O(max{ℓn, nt log t}) bits (see the long version
[14] for more details). The round complexity of COOL is dominated by the round complexity
of the one-bit consensus in Phase 3, which is O(t) rounds. ◀

From Lemmas 13-15, it reveals that given n ≥ 3t + 1 the termination, validity and
consistency conditions are all satisfied in COOL in all executions (error free). Note that
Lemmas 13-15 hold true without using any assumptions on the cryptographic technique
(signature-free). Lemmas 13-15 also hold true even when the adversary, who takes full control
over the dishonest processors, has unbounded computational power (information-theoretic-
secure). The results of Lemmas 13-16 serve as the achievability proof of Theorem 1.

5.1 Some lemmas
Below we provide some lemmas that are used in the protocol analysis.

▶ Lemma 17. Given n ≥ 3t + 1, at the end of Phase 3 of COOL there exists at most 1 group
of honest processors, where honest processors in this group have the same non-empty updated
message, and honest processors outside this group have the same empty updated message.

Proof. Based on (12), it is equivalent to prove η[3] ≤ 1. In the first step we prove that
η[2] ≤ 2 (see Lemma 18 below). Clearly, it is true η[3] ≤ 1 when η[2] ≤ 1, using the fact that
η[3] ≤ η[2] (see (11) and (12)). Then in the second step we prove that η[3] ≤ 1 when η[2] = 2
(see Lemma 19). Thus, it is concluded that η[3] ≤ 1 for COOL with n ≥ 3t + 1. ◀

▶ Lemma 18. For the proposed COOL with n ≥ 3t + 1, it holds true that η[2] ≤ 2.

Proof. Proof by contradiction is used in this proof. Let us first assume that the claim in
Lemma 18 is false. Specifically let us assume that

η[2] ≥ 3. (20)

From Lemma 22 that will be shown later, we have |Al| ≥ n−9t/4, l ∈ [1 : η[2]]. By combining
the above η[2] bounds together we have

η[2]∑
l=1
|Al| ≥ η[2](n− 9t/4) ≥ 3(n− 9t/4) = (n− t) + (2n− 23t/4) > (n− t) (21)

where the second inequality uses the assumption in (20); and the last inequality stems from the
derivation that 2n− 23t/4 ≥ 6t + 2− 23t/4 > 0 by using the condition of n ≥ 3t + 1. One can
see that the conclusion in (21) contradicts with the identify of

∑η[2]

l=1 |Al| ≤
∑η

l=1 |Al| = n− t,
i.e., the total number of honest processors should be n − t. Therefore, the assumption in
(20) leads to a contradiction and thus η[2] should be bounded by η[2] ≤ 2. ◀

DISC 2021



17:14 Optimal Error-Free Multi-Valued Byzantine Agreement

▶ Lemma 19. For COOL with n ≥ 3t + 1, it holds true that η[3] ≤ 1 when η[2] = 2.

Proof. Given η[2] = 2, it is concluded from Lemma 20 (shown below) that η[1] = 2. Further-
more, given η[1] = 2, it is concluded from Lemma 23 (shown later) that η[3] ≤ 1. We then
conclude that η[3] ≤ 1 when η[2] = 2. ◀

▶ Lemma 20. For the proposed COOL with n ≥ 3t + 1, it is true that η[1] = 2 when η[2] = 2.

Proof. Proof by contradiction is also used here. Given η[2] = 2, let us assume that η[1] > 2.
Given η[2] = 2 and Lemma 22 (shown later), we have |Al| ≥ n− 9t/4, ∀l ∈ [1 : 2] and have

η∑
l=3
|Al| = n− |F| − |A1| − |A2| ≤ n− t− 2(n− 9t/4) ≤ t/2− 1. (22)

If η[1] > 2, there exists an i⋆ ∈ A[1]
l⋆ ⊆ Al⋆ for l⋆ ≥ 3, such that s[1]

i⋆ = 1 (see (12)) and
that

∑
j∈∪η

l=1Al
u[1]

i⋆ (j) ≥ n− t− t (see (5)). Based on the definition of Al,j in (14), it is true
that u[1]

i⋆ (j) = 0, ∀j ∈ {∪η
l=1Al} \ {Al⋆ ∪ {∪η

l=1,l ̸=l⋆Al,l⋆}}. Therefore, the aforementioned
inequality resulted from (5) can be rewritten as∑

j∈Al⋆ ∪{∪η

l=1,l ̸=l⋆ Al,l⋆ }

u[1]
i⋆ (j) ≥ n− t− t. (23)

On the other hand, the size of Al⋆ ∪ {∪η
l=1,l ̸=l⋆Al,l⋆} can be upper bounded by

|Al⋆ ∪ {∪η
l=1,l ̸=l⋆Al,l⋆}| ≤ |A1,l⋆ |+ |A2,l⋆ |+

η∑
l=3
|Al| (24)

≤ |A1,l⋆ |+ |A2,l⋆ |+ t/2− 1 (25)
≤ (k − 1) + (k − 1) + t/2− 1 (26)
= 2(⌊t/5⌋+ 1− 1) + t/2− 1 (27)
< n− 2t (28)

for i⋆ ∈ A[1]
l⋆ ⊆ Al⋆ and l⋆ ≥ 3, where (24) uses the fact that Al⋆ ∪ {∪η

l=1,l ̸=l⋆Al,l⋆} ⊆
A1,l⋆ ∪ A2,l⋆ ∪ {∪η

l=3Al}; (25) is from (22); (26) stems from the result in Lemma 21 shown
below; (27) uses the definition of k as in (2); (28) follows from the condition of n ≥ 3t + 1.

One can see that the conclusion in (28) contradicts with (23). Therefore, the assumption
of η[1] > 2 leads to a contradiction and thus η[1] should be η[1] = 2, given η[2] = 2. ◀

▶ Lemma 21. For η ≥ η[1] ≥ 2, the following inequalities hold true

|Al,j |+ |Aj,l| <k, ∀j ̸= l, j, l ∈ [1 : η] (29)

|A[1]
l,j |+ |A

[1]
j,l| <k, ∀j ̸= l, j, l ∈ [1 : η[1]] (30)

where k is defined in (2).

Proof. This proof borrows tool from linear algebra. Our approach is to construct a set of
linear equations based on Al,j and Aj,l, as well as the full rank property of encoding matrix,
and then bound the size of Al,j and Aj,l. Details are provided in the long version [14]. ◀

▶ Lemma 22. When η[2] ≥ 1, it holds true that |Al| ≥ n− 9t/4, for any l ∈ [1 : η[2]].
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Figure 6 An example with η[3] ≤ 1 given η[1] = 2.

Proof. This proof borrows tool from graph theory. It consists of the following steps:
Step (a): Transform the network into a graph that is within the family of graphs, for a
fixed i⋆ in A[2]

l⋆ and l⋆ ∈ [1 : η[2]]. One graph example is depicted in Fig. 3.
Step (b): Bound the size of a group of honest processors, denoted by D′, using the result
of a derived lemma based on the defined graph, i.e., |D′| ≥ n− 9t/4− 1.
Step (c): Argue that every processor in D′ has the same initial message as Processor i⋆.
Step (d): Conclude from Step (c) that D′ is a subset of Al⋆ , i.e., D′ ∪ {i⋆} ⊆ Al⋆ and
conclude that the size of Al⋆ is bounded by the number determined in Step (b), i.e.,
|Al⋆ | ≥ |D′|+ 1 ≥ n− 9t/4− 1 + 1, for l⋆ ∈ [1 : η[2]].

More details are provided in the long version [14] due to the lack of space here. ◀

▶ Lemma 23. For COOL with n ≥ 3t + 1, if η[1] = 2 then it holds true that η[3] ≤ 1.

Proof. Given two groups of honest processors with two non-empty updated messages at
the end of Phase 1 (i.e., η[1] = 2), we prove that at least one group will be reduced to the
one with empty updated message after error detecting and masking in Phases 2 and 3 (i.e.,
η[3] ≤ 1, see one example in Fig. 5). The high-level proof procedure is described in Fig. 6 for
one scenario. Specifically, given η[1] = 2, at the end of Phase 1 Groups A1 and A2 all have
their success indicators as ones. After error detecting and masking in Phase 2 (resp. Phase
3), then Sub-group A2,2 (resp. A2,1) will update their success indicators as zeros. In this
case, Group A2 will be reduced to the one with zero indicators at the end of Phase 3 (i.e.,
η[3] ≤ 1). Details are provided in the long version [14]. ◀

6 Conclusion and discussion

In this work we proposed COOL, a deterministic error-free signature-free BA protocol
designed from coding theory, together with graph theory and linear algebra, with optimal or
near optimal performance in resilience, round complexity, and communication complexity,
simultaneously. The results reveal that coding is an effective approach for achieving the
fundamental limits of Byzantine agreement and its variants. To see the advantages of coding,
let us compare three schemes below.

Scheme with full data transmission (DT): The multi-valued consensus problems could
be solved by invoking ℓ instances of 1-bit consensus in sequence (ℓ-1-bit scheme). Since
distributed processors need to exchange the whole message data, it is not surprising that
this scheme results in a high communication complexity (see Fig. 4).
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Non-coding scheme with reduced DT: To reduce the communication complexity, one
possible solution is to let distributed processors exchange only one piece of data, instead
of the whole data. However, if the data is uncoded, this reduction in data exchange could
possibly lead to a consensus error. This is because honest processors might not get enough
information from others and hence this protocol is more vulnerable to the Byzantine attacks.

Coding scheme with reduced DT: If the data is coded with error correction code, the
distributed processors could possibly be able to detect and correct errors, even with reduced
data transmission. Hence, the coding scheme with reduced DT could be robust against
attacks from dishonest processors and could be error free. One example of the coding scheme
with reduced DT is the proposed COOL in the BA and BB settings. Table 2 provides some
comparison between the above three schemes. We believe that the coding schemes could be
applied to broader settings of distributed algorithms.

Table 2 Comparison of three consensus schemes.

Schemes communication complexity error free
Scheme with full DT high yes

Non-coding scheme with reduced DT low no
Coding scheme with reduced DT low yes
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A The extension of COOL to the Byzantine broadcast problem

For the BB setting, at first the leader sends each processor an ℓ-bit message that can be
considered as the initial message. Then, COOL is applied into this BB setting from this step
to achieve the consistent and validated consensus, with similar performance as in BA setting.

B Algorithm of the proposed COOL protocol

Algorithm 1 : COOL protocol, code for Processor i, i ∈ [1 : n].
1: Initially set w(i) = wi.
2: Processor i encodes its message into n symbols as y

(i)
j ≜hT

j wi, j ∈ [1 : n].
Phase 1

3: Processor i sends (y(i)
j , y

(i)
i ) to Processor j, ∀j ∈ [1 : n], j ̸= i.

4: for j = 1 : n do
5: if ((y(j)

i , y
(j)
j ) == (y(i)

i , y
(i)
j )) then

6: Processor i sets ui(j) = 1.
7: else
8: Processor i sets ui(j) = 0.
9: if (

∑n

j=1 ui(j) >= n− t) then
10: Processor i sets its success indicator as si = 1.
11: else
12: Processor i sets si = 0 and w(i) = ϕ.
13: Processor i sends the value of si to all other processors.
14: Processor i creates sets Sp = {j : sj = p, j ∈ [1 : n]}, p ∈ {0, 1}, from received {sj}n

j=1.
Phase 2

15: if (si == 1) then
16: Processor i sets ui(j) = 0, ∀j ∈ S0.
17: if (

∑n

j=1 ui(j) < n− t) then
18: Processor i sets si = 0 and w(i) = ϕ.
19: Processor i sends the value of si to all other processors.
20: Processor i updates S0 and S1 based on the newly received success indicators.

Phase 3
21: if (si == 1) then
22: Processor i sets ui(j) = 0, ∀j ∈ S0.
23: if (

∑n

j=1 ui(j) < n− t) then
24: Processor i sets si = 0 and w(i) = ϕ.
25: Processor i sends the value of si to all other processors.
26: Processor i updates S0 and S1 based on the newly received success indicators.
27: if (

∑n

j=1 sj >= 2t + 1) then
28: Processor i sets the binary vote as vi = 1.
29: else
30: Processor i sets the binary vote as vi = 0.
31: Processor i runs the one-bit consensus with all other processors on votes {vj}j using one-bit

consensus from [7, 16].
32: if (the consensus of the votes {v1, v2, · · · , vn} is 1) then
33: Processor i goes to next phase.
34: else
35: Processor i sets w(i) = ϕ and considers it as a final consensus and stops here.

Phase 4
36: if (si == 0) then
37: Processor i updates y

(i)
i ← Majority({y(j)

i : sj = 1, j ∈ [1 : n]}).
38: Processor i sends updated y

(i)
i to Processor j, ∀j ∈ S0, j ̸= i.

39: Processor i decodes message with new observations {y(1)
1 , · · · , y

(n)
n } and updates w(i).

40: Processor i outputs consensus as the updated message w(i) and stops.
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