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Abstract
Local certification consists in assigning labels to the nodes of a network to certify that some given
property is satisfied, in such a way that the labels can be checked locally. In the last few years,
certification of graph classes received a considerable attention. The goal is to certify that a graph G

belongs to a given graph class G. Such certifications with labels of size O(log n) (where n is the size
of the network) exist for trees, planar graphs and graphs embedded on surfaces. Feuilloley et al. ask
if this can be extended to any class of graphs defined by a finite set of forbidden minors.

In this paper, we develop new decomposition tools for graph certification, and apply them to
show that for every small enough minor H, H-minor-free graphs can indeed be certified with labels
of size O(log n). We also show matching lower bounds with a new simple proof technique.
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1 Introduction

Local certification is an active field of research in the theory of distributed computing. On a
high level it consists in certifying global properties in such a way that the verification can be
done locally. More precisely, for a given property, a local certification consists of a labeling
(called a certificate assignment), and of a local verification algorithm. If the configuration of
the network is correct, then there should exist a labeling of the nodes that is accepted by the
verification algorithm, whereas if the configuration is incorrect no labeling should make the
verification algorithm accept.

Local certification originates from self-stabilization, and was first concerned with certifying
that a solution to an algorithmic problem is correct. However, it is also important to
understand how to certify properties of the network itself, that is, to find locally checkable
proofs that the network belongs to some graph class. There are several reasons for that. First,
because certifying some solutions can be hard in general graphs, while they become simpler
on more restricted classes. To make use of this fact, it is important to be able to certify that
the network does belong to the restricted class. Second, because some distributed algorithms
work only on some specific graph classes, and we need a way to ensure that the network does

© Nicolas Bousquet, Laurent Feuilloley, and Théo Pierron;
licensed under Creative Commons License CC-BY 4.0

35th International Symposium on Distributed Computing (DISC 2021).
Editor: Seth Gilbert; Article No. 49; pp. 49:1–49:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.bousquet@univ-lyon1.fr
https://orcid.org/0000-0003-0170-0503
mailto:laurent.feuilloley@univ-lyon1.fr
https://orcid.org/0000-0002-3994-0898
mailto:theo.pierron@univ-lyon1.fr
https://orcid.org/0000-0002-5586-5613
https://doi.org/10.4230/LIPIcs.DISC.2021.49
https://arxiv.org/abs/2108.00059
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


49:2 Brief Announcement: Local Certification of Graph Decompositions and Applications

belong to the class, before running the algorithm. Third, the distinction between certifying
solutions and network properties is rather weak, in the sense that the techniques are basically
the same. So we should take advantage of the fact that a lot is known about graph classes to
learn more about certification.

In the domain of graph classes certification, there have been several results on various
classes such as trees [10], bipartite graphs [9] or graphs of bounded diameter [3], but until
two years ago little was known about essential classes, such as planar graphs, H-free or
H-minor-free graphs. Recently, it has been shown that planar graphs and graphs of bounded
genus can be certified with O(log n)-bit labels [7, 8, 5]. This size, O(log n), is the gold
standard of certification, in the sense that little can be achieved with o(log n) bits, thus
O(log n) is often the best we can hope for. It happens that planar and bounded-genus graphs
are classic examples of graphs classes defined by forbidden minors, which naturally raises the
following question.

▶ Question 1 ([8, 6]). Can any graph class defined by a finite set of forbidden minors be
certified with O(log n)-bit certificates?

This open question is quite challenging: there are as many good reasons to believe that
the answer is positive as negative.

First, the literature provides some reasons to believe that the conjecture is true. Properties
that are known to be hard to certify, that is, that are known to require large certificates,
are very different from minor-freeness. Specifically, all these properties (e.g. small diameter
[3], non-3-colorability [9], having a non-trivial automorphism [9]) are non-hereditary. That
is, removing a node or an edge may yield a graph that is not in the class. Intuitively,
hereditary properties might be easier to certify in the sense that one does not need to encode
information about every single edge or node, as the class is stable by removal of edges and
nodes. Minor-freeness is a typical example of hereditary property. Moreover, this property,
that has been intensively studied in the last decades, is known to carry a lot of structure,
which is an argument in favor of the existence of a compact certification (that is a certification
with O(log n)-bit labels).

On the other hand, from a graph theory perspective, it might be surprising that a
general compact certification existed for minor-free graphs. Indeed, for the known results,
obtaining a compact certification is tightly linked to the existence of a precise constructive
characterization of the class (e.g. a planar embedding for planar graphs [7, 5], or a canonical
path to the root for trees [10]). While such a characterization is known for some restricted
minor-closed classes, we are far from having such a characterization for every minor-closed
class. Note that there are a lot of combinatorial and algorithmic results on H-minor free
graphs, but they actually follow from properties satisfied by H-minor free graphs, not from
exact characterizations of such graphs. For certification, we need to rule out the graphs that
do not belong to the class, hence a characterization is somehow necessary.

It is important to note that forbidden minor characterizations are about structures that
are absent from the graphs, and local certification is often about certifying the existence of
some structures, which explains why it is a challenge to certify all minor-free classes with
small certificates. On the other hand, as we will see later, certifying that a minor does appear
in the graph is easy.
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1.1 Our results

An extensive line of work in structural graph theory aims to provide characterizations of
classes using so-called decomposition theorems. Amongst the most famous examples of these
theorems is the proof of the 4-Color Theorem [1] or the Strong Perfect Graph Theorem [4]
which consists in decomposing graphs until we reach some elementary graphs.

Our goal in this paper is to prove that many of these decomposition tools can actually
be used in order to certify the fact that the graph belongs to the class. We first prove that
several classic decomposition techniques existing in the literature are suitable for certification.
We then apply these general tools on Question 1 to prove that several H-minor free graph
classes can be certified with O(log n) bits. In particular, our results provide evidence that, if
the answer to Question 1 is negative then it is certainly for large non-planar graphs H.

The decomposition tools we are able to certify are at the core of many decomposition
theorems: 2-(edge-)connectivity, 3-connectivity, block-cut trees, forbidden subgraphs, and
expansions of nodes or edges by new graphs. Note that these tools are also interesting by
themselves, in particular, connectivity is an important measure of robustness in networks.
One common challenge in the design of certification for decomposition is what we call
certificate congestion. Consider for example a situation in which we have a certification for k

graphs, and we want to merge these graphs by identifying one vertex in each of them. Then,
the straightforward technique to certify the merged graph is to give to the merged node
its certificate for every of these k graphs. But since k might be large, this implies a large
certificate size. Since we aim for small certificates, we want to avoid such congestion. We use
several solutions to cope with this problem.

Using these tools, we show that the answer to Question 1 is positive for many small
graphs. These results permit to illustrate our methods with simple and compact applications
of our tools. More generally, we aim at providing some evidence that graph decomposition
and these tools can be successfully used in the certification setting, and it is very likely that
many other minor-closed classes can be certified using our techniques.

Our main results are summarized in Figure 1, and illustrations of the corresponding
minors can be found in Figure 2. These are actually the hard cases of the following theorem.

▶ Theorem 2. H-minor-free classes can be certified in O(log n) bits when H has at most 4
vertices.

We also prove a general Ω(log n) lower bounds for H-minor-freeness for all 2-connected
graphs H. This generalizes and simplifies the lower bounds of [7] which apply only to Kk

and Kp,q-minor-free graphs, and use ad-hoc and more complicated techniques.

Class Optimal size Result

K3-minor free Θ(log n) Equivalent to
acyclicity [10, 9].

Diamond-minor-free Θ(log n) New.
K4-minor-free Θ(log n) New.

K2,3-minor-free Θ(log n) New.
(K2,3, K4)-minor-free

(i.e. outerplanar) Θ(log n) New.

K2,4-minor-free Θ(log n) New.

Figure 1 Our main results for the certification of minor-closed classes.
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Figure 2 From left to right: the diamond, the clique on 4 vertices K4, and the complete bipartite
graph K2,3.
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