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Abstract
In order to plan and schedule a demand-responsive public transportation system, both temporal and
spatial changes in demand should be taken into account even at the line planning stage. We study
the multi-period line planning problem with integrated decisions regarding dynamic allocation of
vehicles among the lines. Given the NP-hard nature of the line planning problem, the multi-period
version is clearly difficult to solve for large public transit networks even with advanced solvers. It
becomes necessary to develop algorithms that are capable of solving even the very-large instances in
reasonable time. For instances which belong to real public transit networks, we present results of a
heuristic local branching algorithm and an exact approach based on constraint propagation.
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1 Introduction

Responsive and flexible public transportation services become more indispensable as private
services are under the radar for their detrimental effect on the environment. Earlier research
on public transportation planning focused on fundamental issues such as identifying and
framing the problems and constructing accurate models for these problems while integration of
various problems associated with different planning stages has come forward [7] more recently
along with advancement in research and computational power. While on-demand services,
acclaimed for their responsiveness and utmost flexibility, are considered as the potential
future of public transportation, it is accepted that they cannot replace the traditional public
transit services. Yet, responsiveness of public services could be improved without sacrificing
efficiency and effectiveness. In this respect, transit demand as the main driver should be
pivotal in developing the plans and constructing the schedules for these services.

Traditional planning approaches consider demand as a static component particularly at
higher levels of decision making. This is natural and plausible for the network planning
and development stage. On the other hand, concurrent spatial and temporal changes in the
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demand are critical for operational schedules. Recently, [6] propose a novel multi-period
approach for the line planning stage supposing that line plans are the main link between
strategic and operational plans and should be made with careful consideration of operational
issues at the strategic level. With an effort to improve the demand-responsiveness of line
plans, their primary contribution is the development of a multi-period line planning model
which considers the changes in transit demand over time. Concurrently, they integrate
tactical resource allocation constraints in order to ensure feasibility of multi-period line plans
and exemplify this integration with dynamic allocation and assignment of vehicles to lines.

In their cost oriented multi-period approach with fixed costs of line selection and variable
costs of service frequency on lines, the planning horizon is divided into discrete time periods
each of which is associated with a different demand pattern. While the level of service on each
line is determined for each period with the corresponding demand pattern, the periods are
not independent from each other as they are coupled through the line selection decisions [6].
When compared to traditional static counterparts, allocation and assignment of resources to
activities throughout the planning horizon are crucial in the case of multi-period planning [8].
As the activity levels (line frequencies) change from one period to the next, the resources
(vehicles) are to be reallocated or reassigned. For vehicle scheduling and assignment, this
can be achieved by discretizing the planning horizon as in [1] and [4]. Accordingly, a vehicle
service (or a trip) is completed in one period; it can then be used on the same line or
transferred to another. In the case of the latter, consideration of appropriate transfer time
(i.e. the time it takes for the vehicle to travel from the ending station of one line to the
starting station of another) is necessary.

In [6], it is shown that a multi-period approach is necessary when demand variation in
time is a significant issue and also superior to a traditional approach that would combine line
planning solutions of independent individual periods. However, computational challenges
persist even at a higher level in comparison to single-period static line planning problems not
only because of the convoluted structure of the multi-period line planning problem but also
due to integration of vehicle transfer constraints. Out of the three PTN examples, finding
optimal solutions for the largest one, namely the Quito Trolebus system, is not possible with
a commercial solver. In this work, we discuss possible approaches that can be scaled to solve
multi-period line planning problems with vehicle transfers even for a very-large PTN.

2 Problem Setting

An instance of the multi-period line planning problem presented in [6] is denoted by a public
transportation network PTN = (S, E) defined by a set of stations S and set of edges E

connecting the stations, a set of time intervals T representing the planning horizon, transit
demand dt

e over the edges e ∈ E in each period t ∈ T , and a set of potential lines L. A
line l ∈ L can be described as a path with a starting station and an ending station along
with a subset of the edges to represent the path. Given the length of a discrete time period
along with the starting and ending stations of lines, the transfer time from line l to line k is
denoted by ρlk which should be calculated in multiples of time periods. In order to account
for idle vehicles during a time period, an artificial line l0 is used to represent a depot while
L0 = L ∪ {l0}.

The mathematical model in the form of a mixed integer programming problem formulation
for the multi-period line planning problem with vehicle transfers (MPLPP-VT) includes
a binary variable yl ∈ {0, 1} that takes value 1 if line l is selected, a non-negative integer
variable vt

l denoting the service level (and also corresponding to the number of vehicles
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dispatched) on line l in period t, and wst
lk denoting the number of vehicles from line l used in

period s to line k to be used in period t. Given that cf
l and co

l denote respectively the fixed
cost of selecting a line charged for the complete planning horizon and the operational cost
on a line for each service in a period, the resulting formulation becomes

min
∑
l∈L

cf
l yl +

∑
l∈L

∑
t∈t

co
l vt

l (1)

s.t.
∑
l∈Le

Kvt
l ≥ dt

e ∀ e ∈ E, ∀ t ∈ T (2)

Wyl − vt
l ≥ 0 ∀ l ∈ L, ∀ t ∈ T (3)∑

k∈L0
t−ρkl≥0

wt−ρkl,t
kl = vt

l ∀l ∈ L, ∀ t ∈ T (4)

∑
k∈L0

t−ρkl≥0

wt−ρkl,t
kl −

∑
k∈L0

t+ρkl≤|T |+1

wt,t+ρlk

lk = 0 ∀ l ∈ L0 , ∀ t ∈ T (5)

∑
l∈L0

∑
t∈T

w0t
l0l = U (6)

∑
l∈L0

∑
t∈T

w
t,|T |+1
ll0

= U (7)

yl ∈ {0, 1} ∀ l ∈ L (8)
vt

l ∈ N ∀ l ∈ L, ∀ t ∈ T (9)
wst

lk ∈ N ∀l, k ∈ L0, ∀s ∈ {0} ∪ T,

∀t ∈ T ∪ {|T | + 1}, s < t. (10)

The objective function (1) is to minimize the sum of total fixed costs for selecting lines
and variable costs for providing service. Constraints (2) ensure that the demand on an
edge in a period is covered by sufficient number of services with K denoting the capacity
of a vehicle and Le denoting the lines containing edge e in their path. Constraints (3)
associate the line selections with service level decisions and put an upper bound W on the
service level of a line in a period. Constraints (4) provide required number of vehicles to a
line in each period considering all transfers including the vehicles that are already on the
line (self-transfer represented with wt−1,t

ll ) and are to be retrieved from the depot. In each
period, constraints (5) balance the vehicles transferred to and transferred from the line, again
including self-transfers. Fleet size is controlled by constraints (6) and (7) ensuring that U
vehicles are released from the depot at the beginning of the planning horizon, period 0, and
all U vehicles are transferred back to the depot at the end of the planning horizon, period
|T | + 1.

Line planning problem is known to be NP-Hard, even for many special cases as shown
in [9]. Therefore, computational challenges are expected to increase when many line planning
problems are coupled with each other along with the addition of resource related constraints
as exemplified for a very large instance of a real PTN in [6] which cannot be solved to
optimality in reasonable time. Hence, it should be worthwhile to work on both heuristic and
efficient exact algorithms.

ATMOS 2021
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3 Algorithms

Our earlier attempts focused on methods that rely on Benders’ decomposition and Lagrangean
relaxation. However, both methods failed to produce reliable algorithms. As a heuristic
which still relies on solving the problem formulation (1)–(10), we use a local branching
algorithm in its traditional form. As an exact solution approach, we propose an algorithm
that solves a part of the problem formulation and adds missing constraints iteratively when
they are violated only.

3.1 Local Branching
Local branching is an iterative method which may provide a high-quality incumbent solution
within an acceptable computational time [3]. At each iteration, the original problem is
divided into two sufficiently smaller sub-problems by generating so-called local branching
cuts. The sub-problems include the feasible solutions of the original problem satisfying
the additional local branching cuts. The algorithm may either identify a better feasible
solution by solving the sub-problems within a short time or change the search region by a
diversification mechanism. The algorithm terminates when some stopping criteria, i.e., the
total time limit or the maximum number of diversifications, are reached. In the case of the
MPLPP-VT, binary decision variables for line selection are used to partition the original
solution space.

3.2 Logic-based Decomposition with Constraint Propagation
The spirit of our exact solution approach dates back to the original ideas in [2] for the TSP
in the sense that we first eliminate a subset of the constraints, find a feasible solution with
respect to the remaining constraints and identify which of the relaxed constraints are violated
by this solution, and add the violated constraints to the problem formulation.

The algorithm iteratively continues in this fashion until no constraint violation is detected
at an iteration. A critical feature of our algorithm is to explore only integer feasible solutions;
hence, the integrality constraints are not relaxed. This idea of generating integer solutions
for a relaxation of an integer programming problem formulation has been explored several
times, particularly for the TSP. However, a straightforward implementation of such a scheme
has only been presented recently in [5].

We adapt this idea to the MPLPP-VT and refer to this algorithm as logic-based decom-
position with constraint propagation (LbDwCP). When constraints (5) are eliminated, the
remaining problem is called the line planning subproblem (LPsP). The LPsP is solved to
optimality. Given the line selection and service level decisions from the optimal LPsP solution,
we check if the eliminated constraints associated with transfer of vehicles are satisfied; it
is called the vehicle transfer feasibility problem (VTfP). If all constraints are satisfied, the
solution of LPsP is also optimal for MPLPP-VT; otherwise, LPsP is extended with the
selected violated constraints of VTfP and resolved to optimality. Figure 1 illustrates the
mechanics of the algorithm.

4 Computational Results

We use the real PTN data from [6]; it includes the Istanbul Metrobus as the smaller problem
with 44 stations and 9 lines (with three variants of the demand data), the Athens Metro
as the medium-size problem with 51 stations and 59 lines and the Quito Trolebus as the
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Figure 1 Average utilization and distribution of inbound truck sizes.

large-scale problem with 278 stations and 318 lines (Quito-318). We also generate a smaller
version of the Quito Trolebus problem with the same network but only 122 lines (Quito-122)
by eliminating some of the lines whose paths are already included in longer lines. We compare
the performance of four alternative solution methods with the following settings:

The commercial solver Gurobi is run on its default integer programming solver settings
with a CPU time limit of 86400 seconds (1 day) for Quito-318.
The local branching algorithm is limited with 20, 420, 1800 and 3600 seconds to solve a
node problem and 60, 3600, 18000, and 86400 seconds for the total CPU time.
Although the LbDwCP algorithm is designed to solve the LPsP problem to optimality in
each iteration, the optimal LPsP solution cannot be found for the Quito-318 instance
even at the first iteration. Therefore, a time limit of 3600 seconds is set to solve the LPsP
in each iteration, and the best feasible solution found within this limit is used to check
for the violated constraints.
We also use Gurobi’s built-in lazy constraints functionality as a benchmark approach for
the LbDwCP algorithm; the violated constraints for every new integer incumbent solution
are added within the branch-and-bound procedure employing the callback function. A
CPU time limit of 86400 seconds (1 day) is set for Quito-318.

The results are shown in Table 1 where the Cost column shows the best feasible solution
found while the Time columns shows the CPU time in seconds.

Table 1 Performance of alternative solution approaches.

Gurobi Local branching LbDwCP Lazy constraints
Instance Cost Time Cost Time Cost Time Cost Time
Istanbul-1 61334.60 <1 61334.60 2 61334.60 6 61334.60 <1
Istanbul-2 48807.00 <1 48807.00 <1 48807.00 5 48807.00 1
Istanbul-3 35377.80 <1 35377.80 <1 35377.80 6 35377.80 1
Athens 68030.58 2070 68030.58 1050 68030.58 417 68030.58 286
Quito-122 21690.17 59134 21691.65 18000 21690.17 9509 21690.17 10512
Quito-318 21611.21 86400 21618.39 86400 21569.29 86400 21543.51 86400

The results with Istanbul instances do not help to distinguish between the alternative
approaches since the corresponding problems are already small enough to be solved to
optimality in less than 1 second while we verify that even the heuristic local branching may
reach optimality. Looking at the results for Athens and Quito-122, we observe that both the
LbDwCP algorithm and using the lazy constraints with Gurobi improve the performance of the
commercial solver significantly. The local branching heuristic also provides quite satisfactory
performance as it finds the optimal solution for Athens and almost optimal solutions for
Quito-122 within the CPU time limit of 18000 seconds, one third of the CPU time required
to find the optimal solution. With the largest instance, Quito-318, the solver terminates
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with an optimality gap of 4.39%. Given that the local branching finds solutions almost as
good as the solver, and both LbDwCP algorithm and the lazy constraints implementation
find even better solutions all within the same CPU time limit, it seems plausible to employ
either the LbDwCP or the lazy constraints implementation both of which use constraint
propagation also for large-scale instances. We conduct further experiments on instances of
the same problem set with different demand patterns and varying the problem parameters
such as the capacity of the vehicles, the size of the fleet and line service capacities.

5 Conclusion and Outlook

The multi-period version of the line planning problem in public transportation targets a more
demand-responsive underlying line plan considering the sufficiency and timeliness of services
on the PTN. We follow the footsteps of the developments in [6]; we present and discuss
computational results for solution approaches that can be considered as alternatives to solving
the problem directly with commercial solvers. Results show that it is still challenging to
obtain optimal solutions for very-large instances but good-quality solutions can be obtained
within reasonable time.

Further and ongoing research focuses on two challenges. First, solving LPsP to optimality
requires more effort . Secondly, the accuracy of the multi-period approach can be further
improved by avoiding approximations due to time-discretization.
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