
Rigorous Analysis and Design

for Software Intensive Systems

07.11 - 12.11.1999

organized by

S. Jähnichen (Technical University, Berlin),
M. Lemoine (CERT, Tolouse),

T. Maibaum (King’s College, London),
M. Wirsing (Ludwig-Maximilians-University, München)



Preface

The seminar was concerned with a challenging problem in current software tech-
nology: the use of non-sequential components in heterogeneous systems. Both
topics are related and raise many interesting issues, such as concurrency, distri-
bution, reliability, etc. They challenge existing formalisms and methods and were
addressed at the workshop by various speakers. Heterogeneity of systems (e.g.,
hardware vs. software, continuous vs. discrete, etc.) is asking for the assumption
that software can be considered in isolation. The methods used for sequential
component development are being extended in an attempt to cope with these
new requirements. At present, it is not clear whether these methods are in fact
extendable. New methods and formalisms are being invented to address the
challenges of building such systems.

To tackle the task of rigorous analysis of large systems, the methods will focus
on high level specifications. That is, complex heterogeneous systems and the
constituent components are described more abstractly, say on the level of system
architecture rather than on the level of mere programs. A system architecture
reflects interaction and interfaces between the components without specifying all
their complex internal functionality. Analysis of such an architecture is a new
challenge for methods being applied to ordinary software systems so far.

When discussing about systems in the large, we are also faced with refinement
issues. Detailed information about timing or any physical limitation is not known
on the abstract level of specification. For supporting the incremental development
new strategies for refinement are introduced, i.e. how to develop a system design
straightforward from a high level specification.

In practice, semi formal methods like UML are accepted by a broad audience
of software engineers in order to describe heterogeneous systems on a high level.
Although UML models are primarily used to communicate only a design, the
emerging question is how formal notations and languages, which are developed
for rigorous analysis already, can support the design phase. A formalization that
bridges the gap between semi formal and formal notations is to be developed and
investigated.
In order to make technologies available and useful, adequate tool support has to
be provided for actual usage in real applications. We aim at environments in
which tools and notations are adequately integrated and which support method-
ological guidance without constraining the users creativity and individual progress.

2



In addition to the topics dealt with by the speakers, the workshop participants
formed three working groups to discuss further questions of interest:

In order to get a comparison in the results of the different formal approaches,
the community should benefit from treating a particular case study with the
different formalisms. A new case study reflecting the needs of software intensive
systems has to be found. In one working group a list of criteria to be characteristic
for a suitable case study was worked out. According to these criteria the group
agreed upon a rapid transportation management system (including a train control
system, data management, etc.) to be a suitable case study.

In a second working group possible integrations of UML with formal meth-
ods were discussed. Although UML is known as an uprising formalism it lacks
a formal foundation as well as tool support through formal treatment. Several
suggestions how to relate the notations of UML with formal notations were dis-
cussed.

A standardization of formal methods based on a formal methods web repository
was discussed in the third working group. The repository to be set up should
collect all current formalisms as well as their corresponding software environments
(if available) and case studies treated so far. This is to give a survey to industry
or other potential users.

As a result of these discussions and the subsequent presentations, it was decided
to apply for another Dagstuhl seminar, with a similar orientation but calling
additionally for the presentation of techniques and methods in the framework
of a common case study to be distributed with the call for participation. A
suggestion for this case study was the development of a train-control system (the
result of one of the working groups).

The organizers wish to thank all the workshop participants for their work and
interest in the topic. Special thanks go to the organizers of the working groups
and especially to those who arranged the accompanying musical programme.

The organizers Stephan Jähnichen
Michel Lemoine
Tom Maibaum
Martin Wirsing

3



Some rigorous people at Dagstuhl
considered the rules for a new tool:

can be used by a fool
by the pool where it’s cool

it should be a present for next Jul

BKB

4



Contents

Incremental Development of Real-Time Specifications

Graeme Smith 8

A Mechanized Logical Model of Z and Object-Oriented Specification

Thomas Santen 8

Specification of Safety-Critical Software with Complex Data Models

Maritta Heisel 9

Modular, Changeable Requirements for Telephone Switching

Jan Bredereke 10

Architectural specifications in CASL

Andrzej Tarlecki 10

The integration of coordinated formalisms

Antonia Lopes 11

Consistent Transformations for Software Architecture Styles of Distributed Systems

Ugo Montanari 11

Modeling Software Architecture Styles and Reconfiguration

Dan Hirsch 12

Debugging Architectural Designs based on UML and High-level Petri-nets

Harald Störrle 13

Modelling for mere Mortals

Jeff Kramer 14

Analyse This!

Dimitra Giannakopoulou 15

Distance functions for defaults in reactive systems

Sofia Guerra 16

Introducing New Software Engineering Techniques into Practice

Barbara Paech 16

A Case Study in Statistical Testing of Reusable Concurrent Objects

Helene Waeselynck 17

5



The UniForM Workbench

Bernd Krieg-Brückner 18

The Process Web-Centre

Carla Purper 18

Graphical Animation of Behavior Models

Jeff Magee 19

Analysing scheduling with a model checker

Thorsten Gerdsmeier 19

Validation of UML designs with Z formal specifications

Michel Lemoine 20

Modelling agent-based system with Graph Transformation and UML

Reiko Heckel 20

From Informal Requirements to COOP: a Concurrent Automata Approach

Pascal Poizat 21

From CSP-OZ to Java

Clemens Fischer 22

Using CASL to Specify the Requirements and the Design

Christine Choppy 22

From Development environments to a Conceptualisation of Engineering

Armando Haeberer, Tom Maibaum 23

Towards an epistemology-based methodology for verification and validation testing

Maria Victoria Cengarle, Armando Haeberer 24

Software Architectures and Component Programming

Paola Inverardi 25

Developing Critical Software Systems with the SCR Requirements Method

Constance Heitmeyer 25

Using ASMs for Integrating Different Design And Analysis Methods

Egon Börger 27

Methodology for Model Checking ASM

Kirsten Winter 28

6



Locales, a Sectioning Concept for Isabelle

Florian Kammüller 28

Topology in Process Calculus

Mingsheng Ying 29

Black Box View of State Machines

Max Breitling 30

Software Development with OCL: From Classes to Programs

Martin Wirsing 30

7



Incremental Development

of Real-Time Specifications

Graeme Smith
SVRC, University of Queensland

Formally refining a real-time specification to an implementation is only possible
when the specification allows for all physical limitations, and timing and signal
errors inherent in the implementation. Allowing for such implementation-specific
details in a top-level specification can, however, obscure the desired functionality
and complicate analysis. Furthermore, such an approach assumes the specifier
has an understanding of the physical limitations and errors of the implementation
which may not yet have been developed. As an alternative, we propose introduc-
ing a notion of realisation into the formal development process. Realisation is
an approach to specification development which allows errors and physical limi-
tations to be introduced. It also allows properties of the new specification to be
derived from those proved for the original.

A Mechanized Logical Model

of Z and Object-Oriented Specification

Thomas Santen
Technische Universität Berlin

We present a mechanized logical theory for specifying and analyzing object-
oriented software components. The theory is based on the specification nota-
tion Z, higher-order logic (HOL), and its implementation in the tactical theorem
prover Isabelle/HOL.
Building proof support for analyzing specifications “in-the-small” with
Isabelle/HOL is the first step in the construction of our theory. An investi-
gation of the semantic relation between Z and HOL reveals that the two for-
malisms are very similar. That observation justifies a “shallow” embedding of Z
in HOL. Its implementation HOL-Z in Isabelle/HOL preserves the structure of
a Z-specification, as it is given by Z-schemas. Proof tactics tailored for Z exploit
that structure to analyze operation specifications efficiently. It turns out that this
structural reasoning is essential to make proofs about non-trivial specifications
possible in practice.
For specifying “in-the-large”, we define the essential concepts of object-oriented
extensions of Z in HOL. We develop a theory of classes, objects, and method

8



invocations within Isabelle/HOL. The theory allows us to specify the components
of a class in Z and compose them to make up a class specification in HOL later.
This is possible because a HOL-theory of isomorphisms combines the shallow
embedding HOL-Z with the concepts of object-orientation as they are defined in
HOL (used as a meta-language).
Behavioral conformance is the logical relationship between classes that guar-
antees that polymorphism induced by inheritance does not lead to unexpected
behavior of objects. Our HOL-theory of object-oriented specification allows us
to interactively prove non-trivial, general properties of behavioral conformance
in the system Isabelle/HOL. Examples are the transitivity and compositionality
of conformance. Theorems about conformance are directly applicable to concrete
class specifications. In this way, we can reduce propositions about concrete speci-
fications in-the-large to verification conditions in-the-small in a reliable, uniform,
and efficient way. Using HOL-Z to prove the resulting verification conditions,
we achieve a chain of reasoning that is completely checked, and to a large extent
automated within Isabelle.
We have validated our approach by case studies that are based on real, existing
software products: the Z specification of a radiation therapy machine, and the
specification of a part of the Eiffel Base Libraries, which we set up and analyzed
for behavioral conformance induced by inheritance relationships.

Specification of Safety-Critical Software with

Complex Data Models: A Systematic Approach

Maritta Heisel
University of Magdeburg

joint work with:
Kirsten Winter, GMD FIRST, Berlin

Thomas Santen, Technical University of Berlin

We have developed a method to specify software for a special kind of safety-critical
embedded systems, where sensors deliver low-level values that must be abstracted
and pre-processed to express functional and safety requirements adequately.
These systems are characterized by a reference architecture. The method is ex-
pressed as an agenda, which is a list of activities to be performed for setting
up the software specification, complemented by validation conditions that help
detect and correct errors.

9



The method was developed in the ESPRESS project, a joint project of if
academia, research institutes, and industry. It was validated be an industrial
case study, the safety-controller of traffic light systems.

Modular, Changeable Requirements for

Telephone Switching

Jan Bredereke
University of Bremen

We are concerned with structuring software requirements with regard to future
modifications. This is particularly difficult for telephone switching requirements,
both due to the inherent=20 dependences among them and due to their current,
rapid change. We perceive all variants and revisions as a single requirements fam-
ily, documented together. We employ the Functional Documentation approach
to requirements specification, also known as ”Parnas tables”. But we structure
the requirements in a different, modular way suitable to =20 our application
area; and we present a way to compose the partial =20 specifications written
in Functional Documentation. We facilitate =20 avoiding undesired interactions
introduced by extensions, and we support the detection of remaining interactions
by specifying =20 explicitly the dependences among the partial requirements,
and by distinguishing explicitly the essential part of each specified =20 feature.

Architectural specifications in CASL

Andrzej Tarlecki
Institute of Informatics, Warsaw University

Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland

joint work with:
M. Bidoit and D. Sannella

One of the most novel features of CASL, the Common Algebraic Specification
Language, designed by the CoFI group (Common Framework Initiative) is the
provision of so-called architectural specifications for describing the modular struc-
ture of software systems. In this talk, a brief presentation of CASL specifications

10



and discussion of their refinement provides a setting for the rationale behind ar-
chitectural specifications. I follow with some details of the features provided in
CASL for architectural specifications, hints concerning their semantics, and sim-
ple results justifying their usefulness in the development process. I conclude with
a list of technical issues yet to be resolved to make CASL architectural specifica-
tions fully usable, and discuss the possibility of using architectural specifications
in this ”static” form to design architecture of reactive systems, with dynamic,
interacting modules.

The integration of coordinated formalisms

Antonia Lopes
University of Lisbon

joint work with:
Jose Luiz Fiadeiro

In this talk we present a formal account of some of the contributions of coordina-
tion, in the sense of recently proposed languages and models, to the integration
of different formalisms for software specification and design. We use an extension
of Goguen’s categorical approach to systems design as a platform for the formali-
sation of coordination and as a framework for defining the integration. Goguen’s
categorical approach was extended in order to capture the vertical structuring
principles of a design formalism as well as the specific rules that govern the in-
terconnection of components.

Consistent Transformations for Software

Architecture Styles of Distributed Systems

Ugo Montanari
Universita’ di Pisa

joint work with:
Dan Hirsch, Universidad de Buenos Aires

One major problem for the specification and verification of software architec-
tures and specially with distributed systems, is when system evolution includes
dynamic changes and reconfigurations of components and connections.
This paper presents a method for specifying reconfigurations or transformations
over the topology of the architecture style, being sure that if the transformation

11



can be specified, then its application over the system will be consistent with
respect to the expected architecture style configuration. Styles are described
by context-free hyperedge graph grammars. In this context, an instance of an
architecture style is determined by a graph generated by the grammar.
The formalization of the method will be introduced in two ways. The first ap-
proach is a visual presentation and has the intention of showing that it can be
used by software architects in real life in a simple way. For this, as we mentioned,
graph grammars represent styles and their generated graphs specific system ar-
chitectures. A transformation is visualized as a rule that takes a graph generated
by the grammar and applies a reconfiguration to part of that graph, obtaining
a new graph that is surely another valid graph of the grammar. The second
approach presents a formal model for the first one using lambda-terms and tile
sequents showing also that it is implementable.

Modeling Software Architecture Styles and

Reconfiguration

Dan Hirsch
Universidad de Buenos Aires

joint work with:
Paola Inverardi, Universita’ di L’Aquila

Ugo Montanari, Universita’ di Pisa

A software architecture style is a class of architectures exhibiting a common
pattern. The description of a style must include the structure model of the
component types and their interactions or connections (structural topology), the
communication pattern (interactions among component types) and the laws gov-
erning the dynamic changes in the architecture (reconfiguration and/or mobility).
A simple and natural way to describe a system is by using graphs, and as an ex-
tension of this, by using grammars to describe styles. So a grammar will generate
all possible instances of that style. In our work we represent a system as a graph
where hyperedges are components and nodes are ports of communication. The
construction and dynamic evolution of the style will be represented as context-free
productions and graph rewriting. To model the evolution and reconfiguration of
the system we need to choose a way of selecting which components will evolve and
communicate. For this we propose to use techniques of constraint solving already
applied in the representation of distributed systems. In the case of software ar-
chitectures we use constraint productions to coordinate communications between

12



components. To model reconfiguration, we add the possibility of creating new
names to identify ports (nodes) of communication and use constraint productions
to communicate and share the names among components (hyperedges), i.e., al-
lowing complex reconfigurations of components and connections. This approach
is well suited to model architectures of distributed systems obtaining a unique
language to describe the style.

References

[1] D. Hirsch and P. Inverardi and U. Montanari, Graph Grammars and
Constraint Solving for Software Architecture Styles, Proceedings of the
Third International Software Architecture Workshop, Orlando, E.E.U.U.,
November 1-2, 1998

[2] D. Hirsch and P. Inverardi and U. Montanari, Modeling Software Archi-
tectures and Styles with Graph Grammars and Constraint Solving, In Pro-
ceedings of the First Working IFIP Conference on Software Architecture,
San Antonio, Texas, E.E.U.U., February 22-24, 1999

[3] D. Hirsch and U. Montanari, Consistent Transformations for Soft-
ware Architecture Styles of Distributed Systems, Proceedings of the
Workshop on (formal methods applied to) Distributed Systems, Ghe-
orghe Stefanescu, Ed., Iasi, Rumania, September 2-3. Electronic
Notes in Theoretical Computer Science, Vol. 28, pages 23-40, 1999,
http://www.elsevier.nl/locate/entcs/volume28.html

Debugging Architectural Designs - An approach

based on UML and High-level Petri-nets

Harald Störrle
Ludwig-Maximilians Universität München

Architecture is the basis for the most important tasks in Software Engineering
(SE), in particular functional evolution, concurrent engineering and reuse of sys-
tems.
However, there is currently very little support for working on this level of ab-
straction, in particular wrt. (automated) tools. What one would really like to
have is a system, where one could not only design an architecture, but also play
around with it: making little changes here and there and observe (some of) the
implications and repercussions. The following issues would have to be addressed:

1. Concepts and Syntax

There are several approaches (e.g. Wright, Darwin,...) that already provide

13



most of the concepts for Architectural Designs (ADs). Given that the UML
is likely to stay the lingua franca of SE for some time to come, the existing
concepts for ADs should be embeded into the framework of the UML. This
would also result in syntax (and tools!) to be instantly available, and fairly
well-known.

2. Semantics

Working with ADs, one would need tools like simulators, generators and
analzsis tools of all kinds. They require formal semantics for the fragment
of the UML that will be used. Considering the nature architectural units,
Petri-nets seem to be a good choice for a semantical domain, as they allow
to easily represent causality, location, true concurrency, state and events.
Also, they feature a rich theory and a wealth of tools. All conceivable
extensions (time, probability,...) have been studied, too.

3. Properties

Finally, practically interesting properties have to be defined on the basis of
the semantics. From the large number of available analysis algorithms, the
appropriate ones have to be determined experimentally.

In my talk, I will present the approach in general, along with some of the con-
siderations on possible choice-points. I will present the concept of capsules, their
syntax, embedding in the UML metamodel, and the semantics. Together with the
semantics of scenarios (in the form of Sequence Diagrams), I give some examples
on intuitive consistency conditions, and how they can be checked.

Modelling for mere Mortals

Jeff Kramer
Imperial College London

In the past, attempts to convince practising software engineers to adopt formal
methods of software development were generally unsuccessful. The methods were
too difficult to learn and use, provided inadequate tool support and did not
integrate well into the software development process. In short, they could only
be used effectively by the gods who created them! Are we in a better position
today? Recent advances in and experience with specification techniques and
automated model checking have demonstrated the utility of these techniques. In
this talk we outline one such effort which is specifically intended to facilitate
modelling as part of the software process. We use the familiar formalism of

14



state machines (Labelled transition Systems LTS) to specify system processes
in a process algebra, the software structure to dictate the composition of these
processes, and compositional reachability analysis (CRA) to perform safety and
liveness model checking using the analysis tool, LTSA. The intention is to make
model specification and model checking accessible to mere mortals.

Analyse This!

Dimitra Giannakopoulou
Imperial College London

To be usable by software engineers, modelling and analysis should be an integral
part of software development. To achieve this, our approach performs modelling
and analysis based on the software architecture of a system. A user provides
models for the primitive components in the architectural hierarchy of a system.
Then the architecture is used to drive the process of putting models together, to
obtain the overall system model. This is performed automatically, and has been
achieved by a mapping that we defined between features of our ADL (architecture
description language) Darwin, and operators of our specification notation, FSP.
In this context, one can then check both safety and progress properties.
We presented our experience with analysing the ”Bounded Retransmission Pro-
tocol”, a protocol that is use in one of Philip’s products. We have explained
how we model (discrete) time in our framework, and how we can express both
the condition of maximal progress, and the property that a timed system should
exhibit neither zeno exexutions, nor time deadlock. In fact, our approach deals
very elegantly with these issues, by using a simple action priority operator, and a
simple progress property. We have shown how, by checking safety properties with
different values of timeouts in the protocol, we managed to establish the mini-
mum values that these timeouts can acquire in order for the protocol to work
correctly.
Finally, we have discussed some open problems, and plans for future work. This
mainly concerns the issue of compositionality in the presence of time, and the
issue of choosing the right unit of time, when the latter is modelled as a discrete
entity.

15



Distance functions for defaults in reactive

systems

Sofia Guerra
University College London

Default reasoning has become an important topic in software engineering. In
particular, defaults can be used to revise specifications, to enhance reusability of
existing systems, and to allow a more economic description of systems. In this
talk I present a framework for default specifications of reactive systems.
Non-monotonicity in temporal logic is formalised by defining a pre-order between
temporal morphisms. This formalism is based on the notion of default institution,
where the semantics of defaults are given by a (generalised) distance between
interpretations. In this way, using temporal logic as a specification language, we
get a way of handling defaults in specifications of reactive systems. I illustrate
the developed formalism with an example in which a specification is reused, but
where the new behaviour contradicts the initial specification. In this example,
the initial specification is seen as a default to which exceptions are added.

Introducing New Software Engineering

Techniques into Practice

Barbara Paech
Fraunhofer Institute for Experimental Software Engineering

This talk describes the IESE approach for putting specification techniques into
practice. Two major obstacles for introducing new techniques are to identify
which techniques are adequate for which process and to convince the process
participants to adopt the new techniques. These obstacles are met by the Qual-
ity Improvement Paradigm (QIP) published in 1994 by Vic Basili. The main idea
is to characterize the existing process to achieve a common understanding, to set
explicit improvement goals and to break them down into metrics. Then data is
collected giving evidence on the weaknesses of the existing process, new tech-
niques are chosen and introduced and again data is collected giving evidence on
the goal achievement. Experiences with these new techniques are gathered and
managed within an experience factory. The Fraunhofer requirements assessment
and improvement method (RE-KIT-FRAIME) tailors this paradigm to the im-
provement of requirements processes. In particular, it emphasizes the importance

16



of treating requirements as knowledge which is used throughout the software en-
gineering tasks. Thus, the general goal for improving requirements processes is
to establish professional knowledge management for requirements within the or-
ganisation. RE-KIT-FRAIME also provides a framework for choosing adequate
techniques. According to this framework all the stakeholders interested in using
requirements documents are interviewed in order to determine the contents to
be captured in requirements documents. Then the steps for creating, validat-
ing and managing the documents are drafted and only then specific specification
techniques are chosen according to the degree of which they support these steps.
Experiences show that specfication techniques which

• support light weight application (e.g. in the form of perspective-based
inspections),

• integrate well with natural language requirements,

• have methodological support, and

• come with empirical evidence on their value are most easy to introduce.

A Case Study in Statistical Testing of Reusable

Concurrent Objects

Helene Waeselynck
LAAS - CNRS, Toulouse

joint work with:
P. Thevenod-Fosse

A test strategy is presented which makes use of the information got from OO
analysis and design documents to determine the testing levels (unit, integration)
and the associated test objectives. It defines solutions for some of the OO testing
issues: here, emphasis is put on applications which consist of concurrent objects
linked by client-server relationships. Two major concerns have guided the choice
of the proposed techniques: component reusability, and nondeterminism induced
by asynchronous communication between objects. The strategy is illustrated on
a control program for a production cell. The program was developed using the
Fusion method and implemented in Ada 95. We used a probabilistic method for
generating test inputs, called statistical testing. Test experiments were conducted
from the unit to the system levels, and a few errors were detected.

17



The UniForM Workbench a Universal

Development Environment for Formal Methods

Bernd Krieg-Brückner
Universität Bremen

The UniForM Workbench supports combination of Formal Methods (on a solid
logical foundation), provides tools for the development of hybrid, real-time or
reactive systems, transformation, verification, validation and testing. Moreover,
it comprises a universal framework for the integration of methods and tools in a
common development environ-ment. We describe the relation to a repository for
Formal Methods structured by Language, Logics, Methods, and Tolls Graphs,
resp., driven by process model standards (cf. presentation by Carla Purper). see
http://www.tzi.de/ uniform/

The Process Web-Centre

Carla Purper
Universität Bremen

The process web-centre GDPA is presented. It consists in a web-based infor-
mation system to supply information on process technologies applying formal
methods.
Process Technologies:
Meta-models for safety-critical systems process based on existing standards in
order to consider:

• Modeling of heterogeneous components
• Interoperability of components from multiple paradigms
• Analysis techniques for non-sequential systems
• Methodology for non-sequential systems are outlined.

Formal Methods:
Taxonomical forms in order to identify formal methods and tools:

• for each phase of the meta-models
• for each system property
• to compare formal methods
• to disseminate the use of formal methods and tools are introduced.

18



Graphical Animation of Behavior Models

Jeff Magee
Imperial College London

Graphical animation is a way of visualizing the behavior of design models. This
visualization is of use in validating a design model against informally specified
requirements and in interpreting the meaning and significance of analysis results
in relation to the problem domain. We describe how behavior models specified
by Labeled Transition Systems (LTS) can drive graphical animations. The se-
mantic framework for the approach is based on Timed Automata. Animations
are described by an XML document that is used to generate a set of JavaBeans.
The elaborated JavaBeans perform the animation actions as directed by the LTS
model.
Keywords:
Labeled Transition System, Graphic Animation, Behavior Analysis

Analysing scheduling with a model checker

Thorsten Gerdsmeier
University of Essex

We are analysing timed and functional behaviour of a concurrent real-time im-
plementation in Ada95. If a set of tasks is running on a uniprocessor or multipro-
cessor system, there are in general more tasks than processors. Scheduling tasks
influences timed behaviour and can influence functional behaviour as well. We
want to prove properties about concurrent implementations in Ada95. Functional
behaviour in non concurrent systems has been well studied. For analysing timed
behaviour traditionally scheduling theory is used. We combine the analysis of
functional behaviour and timed behaviour in the framework of timed automata
with effective tool support. Analysing scheduling with a model checker turns out
to be superiour to traditional scheduling theory. We are illustrating our approach
with a simple case study of a mine pump.

19



Validation of UML designs

with Z formal specifications

Michel Lemoine
ONERA, Centre de Toulouse

In this talk we emphasized the fact that the (re)development of a safety critical
system should follow a Rigorous and Systematic Life Cycle that embeds semi
formal and formal methodologies.
Among others, UML, as a set of standardized notations, is a well suited candi-
date. But being semi formal, its notations are not rigorous enough to guarantee
they met all the non functional and functional requirements of the system to be
(re)developed.
We suggested to complement each UML notation by a formal one which will help
demonstrating the expected qualities of the final product.
We showed how the Z formal notation can be fruitfully used to formally specify
functional requirements. Moreover the Z method help satisfying 3 main proper-
ties: satisfiability, consistency and robustness of specifications.
It is as well mandatory to support developers with a right development process
integrating both semi formal and formal methodologies in a very homogeneous
manner. This can be achieved with a dedicated Development Process we call
Evolutionary Process. We described it, insisting on the validation phases
We gave a flavor of 2 successful (re)designs achieved according to the evolutionary
process.
We concluded confirming that formal methods can be fruitfully used iff

1. they complement semi formal industrial methods such as UML

2. experts of formal notations / methods are required to realize the formal
specifications

3. a dedicated process is set up.

Modelling agent-based system with Graph

Transformation and UML

Reiko Heckel
Universität Paderborn

As the concept of autonomous agents becomes increasingly attractive to software
industry, the methods for developing agent-based systems have to be incorpo-
rated into the common practice of software engineering. Today, the analysis and

20



design phases of software development largely rely on visual techniques like the
Unified Modeling Language (UML). We present an approach which integrates the
modeling of object-oriented and agent-based systems. It is based on the formal
framework of typed graph transformation systems with temporal logic to formally
specify agents goals and state diagrams to represent the plans that they might
follow.
Altogether, this provides a visual modeling approach, based on UML notation,
which accounts for the main aspects of agency like autonomy, reactivity, and pro-
activity in a formal and integrated way. The concepts are justified and explained
by a running example of an agent-based extension for a commercial online banking
system currently under development.

From Informal Requirements to COOP:

a Concurrent Automata Approach

Pascal Poizat
Universite de Nantes

joint work with:
Christine Choppy, Universite de Paris Nord
Jean-Claude Royer, Universite de Nantes

Methods are needed to help using formal specifications in a practical way. We
present a method for the development of mixed systems, i.e. systems with both
a static and a dynamic part. Our method helps the specifier providing means to
structure the system in terms of communicating subcomponents and to give the
sequential components using a semi-automatic concurrent automata generation
with associated algebraic data types. These components and the whole system
may be verified using common set of tools for transition systems or algebraic
specifications. Furthermore, our method is equipped with object oriented code
generation in Java, to be used for prototyping concerns. Our method is presented
on a small example: a transit node component in a communication network.

21



From CSP-OZ to Java

Clemens Fischer
Universität Oldenburg

Object-Z and CSP are specification languages which offer powerful formal support
for the design of distributed, communicating systems. CSP-OZ is a combination
of both using CSP to specify dynamic and Object-Z to specify data aspects.
Java is an ideal implementation language for CSP-OZ. It offers build in constructs
for programming distributed systems and a synchronized modifier that closely
models synchronous CSP communication. But developing provably correct Java
implementations from these specifications is notoriously difficult.
To bridge this gap we suggest to use Jass, which extends Java with assertions,
as an intermediate language. The idea presented in the talk, is to generate these
assertions automatically from CSP-OZ specifications. This does not guarantee
a provably correct implementation, but allows an easy way of run-time refine-
ment check. Furthermore, error messages can be linked directly to the formal
specification.

Using CASL to Specify the Requirements and

the Design: A Problem Specific Approach

Christine Choppy
LIPN, Universit Paris

and
Gianna Reggio

Universit di Genova

In [1] M. Jackson introduces the concept of problem frames to describe specific
classes of problems, to help in the specification and design of systems, and also
to provide a framework for reusability. He thus identifies some particular frames,
such as the translation frame (e.g., a compiler), the information system frame,
the control frame (or reactive system frame), ... Each frame is described along
three viewpoints that are application domains, requirements, and design.
Our aim is to use CASL (or possibly a sublanguage or an extension of CASL
if and when appropriate) to formally specify the requirements and the design
of particular classes of problems (”problem frames”). This goal is related to
methodology issues for CASL, that are here addressed in a more specific way,
having in mind some particular problem frame, i.e. a class of systems.

22



It is hoped that this will provide both a help in using, in a really effective way,
CASL for system specifications, a link with approaches that are currently used
in the industry, and a framework for the reusability of CASL specifications.
This approach is illustrated with some case studies, e.g., the information system
frame is illustrated with the invoice system case study.

References

[1] M. Jackson, Software Requirements & Specifications: a lexicon of practice,
principles and prejudices, Addison-Wesley, 1995

From Development environments to a

Conceptualisation of Engineering: revisiting and

revitalising the logical empiricists

Armando Haeberer
visiting Ludwig-Maximilians-Universität, Germany

and
Tom Maibaum

King’s College London

Attempts at building CASE tools and SW development environments have largely
been perceived as failures. If we are to continue building tools (and methods)
to support SW development, what criteria should we use to characterise require-
ments and designs for such tools? To begin to answer this question, we should
first understand what engineering is. We do this by borrowing ideas from episte-
mology, in particular Carnap’s two level theory of the language of science and its
variants. We see there many ideas, with sophisticated theoretical and operational
characterisations, which help us understand what activities, such as specification,
testing, validation, refinement, etc., actually are. This aids us in developing the
criteria mentioned above, as well as in developing more exact characterisations
of what tools should do in order to be useful.

23



Towards an epistemology-based methodology

for verification and validation testing

Maria Victoria Cengarle
Ludwig-Maximilians-Universität München

and
Armando Martin Haeberer

visiting Ludwig-Maximilians-Universität München

How can evidence stated in a language restricted to an observable vocabulary
confirm hypotheses stated in a theoretical language that outstrips the first in
both vocabulary and expressiveness?
This is a problem that puzzled philosophers of science by decades. It is a central
issue in validation testing of design specifications and (software) artifacts, in
testing of design against requirements specifications, and in verification testing
of (software) artifacts against design specifications.
Based on the seminal paper Testability and Meaning by Rudolf Carnap, the so-
called bootstrap approach to testing of scientific theories was further developed in
a more precise manner by Clark Glymour. The bootstrap testing schemata were
born. After suffering sharp criticism and further polishing by the epistemology
community, a relatively stable proposal was published in 1983.
The bootstrap testing approach, goes from evidence to the falsifiability of theoret-
ical hypotheses, i.e., in opposite direction to the hypothetico-deductive method,
which derives observational consequences from theoretical statements.
We have taken the bootstrap schemata and applied them to our setting of software
engineering. In fact, they have proved to be useful in more than one sense. They
can be used for testing a program against a design specification (i.e. verification)
without taking into account the structure of the former, thus proving suitable for
reverse engineering; for testing a design specification against a requirements one
(i.e. validation); etc.
Summarising, we have presented a testing strategy that promises to be powerful,
is independent of the architecture of the realisation, doesn’t force the nature
of the evidence, and is suited for distributed realisations as well as for reverse
engineering.
We now plan to: clean up the setting by, for instance, applying correspondence
rules to enable -conversion; address the infinitary domain issue by looking back
at Carnap’s and Hintikka’s inductive logics; study which schema is better suited
for different scenarios; extend the ideas to other (non-equational) logics, like for
instance 1st-order, modal, and temporal; and bring to the surface inherent (inter-
nal) issues of different models of computation so that we can analyse the strategies
for testing in relation to these models. This setting suggests a starting point for
the analysis of the relationship between design and requirements specifications.

24



Software Architectures and Component

Programming

Paola Inverardi
Universita degli Studi di l’Aquila

In recent years the focus of software engineering is continuosly moving towards
systems of larger dimensions and complexity. Software production is becoming
more and more involved with distributed applications running on heterogeneous
networks, while emerging technologies such as commercial off-the-shelf (COTS)
products are becoming a market reality. As a result, applications are increasingly
being designed as sets of autonomous, decoupled components, promoting faster
and cheaper system development. The development of these systems poses new
challenges and exacerbates old ones. A critical problem is understanding if system
components integrate correctly. To this respect the most relevant issue concerns
dynamic integration. Indeed, component integration can result in architectural
mismatches when trying to assemble components with incompatible interaction
behavior, leading to system deadlocks, livelocks or in general failure to satisfy
desired functional and non-funtional system properties. In this context Software
Architecture (SA) can play a significant role. SAs have in the last years been
considered, both by academia and software industries, as a way to improve the
dependability of large complex software products, while reducing development
times and costs. SA represents the most promising approach to tackle the problem
of scaling up in software engineering applications manageable. The originality
of the SA approach is to focus on the overall organization of a large software
system (the glue) using abstractions of individual components. This approach
makes it possible to design and apply tractable methods for the development,
analysis, validation, and maintenance of large software systems. In this talk I
will present our research efforts in the area of analysis of SA, system testing at
the architectural level and performance analysis of SA.

Developing Critical Software Systems

with the SCR Requirements Method

Constance Heitmeyer
Naval Research Laboratory, Washington

(This research is supported by the Office of Naval Research.)

This talk provided an overview of the SCR (Software Cost Reduction) require-
ments method—a method for developing software systems introduced in the late

25



1970s, which has since been applied to a wide range of critical software sys-
tems. These systems include control systems for nuclear power plants, telephone
networks, space systems, and avionics systems. To support the SCR method,
our group at the Naval Research Laboratory has developed a set of integrated
tools, including a consistency checker, a simulator, a model checker, an invariant
checker, and a theorem prover (see, e.g., [2],[3]). In SCR, the required system
behavior is represented using a state machine model. The SCR tools are designed
to analyze state machine specifications expressed in the SCR tabular notation.
To date, the SCR method has been applied successfully to a number of practical
applications, including the International Space Station, a commercial flight guid-
ance system, a weapons system [2], and a cryptographic device. In addition, more
than 80 organizations in industry, academia, and government are experimenting
with the SCR method.
The SCR requirements method was demonstrated by showing its application
to a complex system called the Advanced Automatic Train Control (AATC)
system [4], which controls the movement of trains traveling on the Bay Area
Rapid Transit (BART) system, a subway system in San Francisco. The AATC
system receives periodic updates from the trains (i.e., position, velocity, and
timing information) and information about the status of gates along the track
(i.e., whether a gate is open or closed). It controls the trains’ speed and velocity
by sending each train periodic velocity and acceleration commands. The design
of the BART control system is complex because the system must operate the
trains in a manner that satisfies a set of complex functional and safety properties.
Examples of these properties are:

• When traveling in a particular track segment, a train should travel close to
the maximum speed allowed for that segment.

• A train in a segment must not exceed the maximum speed for the segment.

• A train must not collide with a closed gate.

• A train behind a second train must never get so close that if the train ahead
stopped, the trains would collide.

• The change in the speed of a train must be gradual enough to prevent injury
to the passengers.

The SCR specification of the required behavior of the AATC system consists of
a collection of tables. A number of challenging issues arose in developing this
requirements specification. These issues include

• how should we describe the various environmental aspects that constrain the
velocity of trains (e.g, the grade of a given segment of track, the maximum
speed allowed on a given track segment),

26



• in what order should various parts of the specification of this complex con-
trol system be developed, and

• how should we describe the required train velocity and acceleration, both
complex functions of many variables that must simultaneously satisfy the
properties listed above.

A way was proposed to resolve some of these issues using the SCR method, and
some open problems (e.g., the last issue) were discussed.

References

[1] C. Heitmeyer, J. Kirby, B. Labaw, M. Archer, and R. Bharadwaj. Using
abstraction and model checking to detect safety violations in requirements
specifications. IEEE Trans. on Softw. Eng., 24(11), November 1998.

[2] C. L. Heitmeyer, R. D. Jeffords, and B. G. Labaw. Automated consistency
checking of requirements specifications. ACM Transactions on Software
Engineering and Methodology, 5(3):231–261, April–June 1996.

[3] Constance Heitmeyer, James Kirby, Jr., Bruce Labaw, and Ramesh
Bharadwaj. SCR*: A toolset for specifying and analyzing software re-
quirements. In Moshe Vardi and Alan Hu, editors, Proc. Computer-Aided
Verification, 10th Annual Int’l Conf. (CAV’98), (LNCS 1427), pages 526–
531, Vancouver, Canada, June/July 1998.

[4] V. Winter, R. Berg, and J. Ringland. Bay Area Rapid Transit District
Advanced Automated Train Control System: Case study description, 1999.

Using ASMs for Integrating Different Design

And Analysis Methods

Egon Börger
Universita degli Studi di Pisa

We illustrate through a case study the possibilities to use ASM for integrating
functional and operational desing and analysis methods. We provide a rigorous
framework for language and platform independent design and analysis of modern
exception handling mechanisms in object oriented programming languages and
their implementations. To illustrate the practicality of the method we develop
it for the exception handling mechanism of Java and show that its implementa-
tion on the Java Virtual Machine (JVM) is correct. For this purpose we define
precise abstract models for exception handling in Java and in the JVM and de-
fine a compilation scheme of Java to JVM code which allow us to prove that
in corresponding runs, Java and the JVM throw the same exceptions and with

27



equivalent effect. Thus the compilation scheme can with reasonable confidence be
used as a standard reference for Java exception handling compilation. Through
this case study we develop a novel combination of Abstract State Machine based
run time analysis with structural design and verification methods. (Joint work
with Wolfram Schulte (Microsoft Research Redmond), to appear in TSE 2000.)

Methodology for Model Checking ASM:

Lessons learned from the FLASH Case Study

Kirsten Winter
GMD First, Berlin

Gurevich’s Abstract State Machines (ASM) constitute a high-level specification
language for a wide range of applications. The existing tool support for ASM
was extended, in a previous work, to support computer-aided verification, in
particular by model checking. In this paper we discuss the applicability of the
model checking approach in general and describe the steps that are necessary
to fit different kinds of ASM models for the model checking process. Along the
example of the FLASH cache coherence protocol we show how model checking
can support development and debugging of ASM models. We show the necessary
refinement for the message passing behavior in the protocol and give examples
for errors found by model checking the resulting model. We conclude with some
general remarks on the existing transformation algorithm.

Locales

A Sectioning Concept for Isabelle

Florian Kammüller
GMD First, Berlin

Locales are a means to define local scopes for the interactive proving process of
the theorem prover Isabelle. They delimit a range in which fixed assumption are
made, and theorems are proved that depend on these assumptions. A locale may
also contain constants defined locally and associated with pretty printing syntax.
Locales can be seen as a simple form of modules. They are similar to sections as in
AUTOMATH or Coq. Locales are used to enhance abstract reasoning and similar
applications of theorem provers. This talk introduces Isabelle and summarizes

28



research presented in [1]. It motivates the concept of locales by examples from
abstract algebraic reasoning.

References

[1] F. Kammüller and M. Wenzel and L. C. Paulson, Locales – a Section-
ing Concept for Isabelle, Theorem Proving in Higher Order Logics, 12th
International Conference, TPHOLs’99, Nice, France, 1999

Topology in Process Calculus

Mingsheng Ying
Ludwig-Maximilians-Universität München

Various behaviour equivalences between agents are central notions in process cal-
culus. In its applications, specification and implementation are described as two
agents. Then correctness of programs is treated as a certain behaviour equiv-
alence between specification and implementation. But in many situations, the
implementation can only approximate the specification. Thus a problem natu-
rally raises: What is approximate correctness of programs and how to describe it
formally?
In this talk, we provide some suitable and useful mathematical concepts and
tools for the understanding and analysis of approximate correctness and infinite
evolution of programs in concurrent systems. The main idea of our work is to
construct some natural and reasonable topological structures which can reveal
suitably mechanism of approximate computation in process calculus. We con-
struct two different classes of topological structures: one is determined by the
behaviours of processes and so completely extensional and observable; and the
other involves somewhat intensional factors in the sense that a certain topological
structure on actions is presumed and it is employed to induce some topological
structures on processes. The presumed topology on actions is given according to
the concrete applications that we are dealing with. We have two different kinds
of methods to construct our intended topological structures: one is a dynamic
approach in which we consider the topologies possessed by a sequence (or more
general, net) of processes with Moore-Smith theory of convergence in topology;
and the other is a static approach in which we introduce some weakened (looser,
approximate) versions of behaviour equivalences and they are given in a topolog-
ical way.
In this talk, we propose the concepts of bisimulation limits, near bisimulations
and bisimulation indexes and present some applications of bisimulation indexes
in timed CCS and real time ACP to show how they can be used to describe
approximate implementations.

29



Black Box View of State Machines

Max Breitling
Techniche Univeristät München

joint work with:
Jan Philipps, Techniche Univeristät München

The behaviour of reactive systems could be specified in (at least) two ways:

• Using a Black Box View, a system’s behaviour is decribed as a relation of
input and output streams, not reflecting any internals.

• Using a State Transition System, a behaviour is described in an operational,
step-by-step manner, and specifies how its behaviour is achieved.

In our work, we propose a way to prove that a State Transition System has in-
deed the property described by a Black Box View. To achieve this, we introduce
an intermediate level that is based on streams of messages, but is also reflecting
intermediate states using internal variables of the system. We present schemes
to prove safety and progress properties, using invariants and leads-to properties.
Based on verification diagrams, all necessary proof tasks can be generated auto-
matically, and in most cases even proved automatically by tools. Closing the gap
between the two views, we hope to contribute to the effort to reach an integrated
use of development tools from specification down to code generation, including
verification.

Software Development with OCL:

From Classes to Programs

Martin Wirsing
Ludwig-Maximilians-Universität München

joint work with:
Rolf Hennicker, Ludwig-Maximilians-Universität München

The Object Constraint Language OCL is a new specification language which is
used for formalizing semantic constraints of UML diagrams. In this lecture we
present a method for applying OCL for the development of class implementations
and introduce a new Hoare-Calculus for OCL. For simplicity we restrict our
approach to total OCL formulae.
In the first part of the lecture we characterize OCL as a first-order logic with
bounded quantification whose basic data types such as containers, sets, multisets

30



and sequences can be algebraically axiomatized. ”Internal” consistency condi-
tions in the spirit of Z and Z++ are given to ensure the semantic well-definedness
of class specifications.
In the second part of the lecture a new Hoare-Calculus for OCL is presented.
As programming language we choose a (sequential) kernel of Java. The Hoare
rules are as usual for while programs and for method calls. Access and update of
instance variables is handled by an explicit substitution operator which also takes
care of aliasing. The rule for creation of objects uses the ”allInstances”-operator
of OCL.
Our calculus is inspired by Poetzsch-Heffter and Mueller’s Hoare calculus for
Java; the main difference is that we do not have any explicit representation of
state in our formulas. In this respect we rather follow the ideas of Gries and De
Boer for handling arrays and references by explicit substitution.
As main result we prove the soundness of our Hoare-Calculus.

31


