
Self-Stabilization

22.10 - 27.10.2000

organized by

Prof. Dr. A. Arora (Ohio State University, Columbus, OH, USA),

Prof. Dr. J. Beauquier (Universitè Paris Sud, Orsay, France),
Prof. Dr. S. Dolev (Ben Guroin University, Beer-Sheva, Israel),

Prof. Dr. T. Herman (University of Iowa, Iowa City, IA, USA),
Prof. Dr. W. P. de Roever (Universität Kiel, Kiel, Germany)

Distributed system research is at an interesting juncture. Many basic problems
have been identified and intensively studied, often using traditional models of
distributed computing and networks. However the nature of applications of dis-
tributed systems is changing, and new technological developments are challenging
conventional system design. These trends encourage new approaches to problems
of distributed control, fault recovery, and adaptive behavior.
Self-stabilization is now acknowledged as an important theme in distributed com-
puting, with papers regularly appearing in prominent conferences. The impor-
tance derives from the fact that self-stabilization makes initialization independent
from desired convergence in system computations. As a consequence of this fact,
protocols and algorithms that are self-stabilizing can automatically adapt to dy-
namic environments and can recover from faults that put the system in arbitrary
states. Many examples of algorithms use only local information to stabilize, and
thus scale well to large distributed systems.
This report contains abstracts of presentations given at the second Dagstuhl Sem-
inar on Self-Stabilization. Specialists in the area of stabilization research see new
opportunities to apply stabilization to other areas of computer science and engi-
neering, and this was a theme of the seminar. Results presented at the seminar
included new directions: relating control theory ideas to self-stabilization; ap-
plication to higher-level systems research and middleware reliability; application
to data structures; group communication that is self-stabilizing; and stabiliza-
tion in the model of mobile agent computing. In addition to the presentations
described by the abstracts, there were several informal talks and open sessions
with lively discussions of future directions. Some traditional issues provoked
conversations on many topics: model conversions; atomicity and fairness im-
plementations; impossibility results; heuristics and frameworks for proving the
convergence of self-stabilizing algorithms; and experiments with new technical
definitions of self-stabilization that could benefit more applications.

1



Once again, the pleasant atmosphere of Dagstuhl was an important prerequisite
for the success of this seminar. We would like to thank all who contributed to it.
Particularly, the Scientific Directorate for their encouragement to organize the
seminar, the Schloß Dagstuhl Office for financial support and the excellent local
arrangements, and the National Science Foundation for providing travel support
to US participants.

The organizers

A. Arora
J. Beauquier
S. Dolev
T. Herman
W. P. de Roever

2



Contents

1 Stability of Long-lived Consensus 5

2 Communication Adaptive Self-Stabilizing
Group Communication 5

3 Time and Space Optimality of Distributed
Depth-First Token Circulation Algorithms 6

4 Self-Stabilization Aspects of Rollback Recovery 7

5 On the Benefits of Modeling Self-Stabilizing Algorithms as Vari-
able Structure Feedback Systems 7

6 A Theory of Composition 8

7 Stabilization in Device Networks 8

8 A Space Optimal, Deterministic Self-Stabilizing Leader Election
Algorithm for Unidirectional Rings 9

9 Self-Stabilizing Minimum Spanning Tree Construction on Message-
Passing Networks 10

10 Universal Dynamic Synchronous Self-Stabilization 10

11 Defining Redundancy: In Search of the Holy Grail 11

12 Compositional Reasoning about
(Shared-Variable) Concurrency 11

13 Questions about Snap-Stabilization 12

14 Self-Stabilizing Local Mutual Exclusion and Daemon Refinement 12

15 A Universal Self-Stabilizing Mutual Exclusion Algorithm 13

16 Composite Available and Stabilizing Data Structures 14

17 A Framework for Constructing Self-Stabilizing Systems 14

18 Stabilizing Agents 16

19 The Convergence Theorem 16

3



20 Formal Framework to Prove Probabilistic Self-Stabilizing Algo-
rithms 17

4



1 Stability of Long-lived Consensus

Shlomi Dolev
Ben Gurion University of the Negev, Beer Sheva, Israel

This work introduces the notion of stability for a long-lived consensus system.
This notion reflects how sensitive to changes the decisions of the system are,
from one invocation of the consensus algorithm to the next, with respect to
input changes. Stable long-lived consensus systems are proposed, and tight lower
bounds on the achievable stability are proved, for several different scenarios. The
scenarios include systems that keep memory from one invocation of consensus to
the next versus memoryless systems; systems that take their decisions based on
the number of different inputs but not on the source identities of those inputs
versus non-symmetric systems. These results intend to study essential aspects of
stability, and hence are independent of specific models of distributed computing.
Applications to particular asynchronous and synchronous systems are described.

Joint work with Sergio Rajsbaum.

2 Communication Adaptive Self-Stabilizing

Group Communication

Shlomi Dolev and Elad Schiller
Ben-Gurion University of the Negev, Beer-Sheva, Israel

This paper presents the first (randomized) algorithm for implementing self-stabi-
lizing group communication services in an asynchronous system. Our algorithm
converges fast to a legal behavior and is communication adaptive. Namely, the
communication volume is high when the system recovers from the occurrence of
faults and is low once a legal state is reached. The communication adaptability
is achieved by a new technique that combines transient fault detectors.

5



3 Time and Space Optimality of Distributed

Depth-First Token Circulation Algorithms

Franck Petit
LaRIA, University of Picardie Jules Verne, Amiens, France

We address the depth-first token circulation problem (DFTC) in this work. DFTC
is to implement a token circulation scheme where the token is passed from one
processor to another in the depth-first order such that every processor gets the
token at least once in every token circulation cycle.
We first consider rooted tree networks where every processor knows which of
its neighbors leads to a particular processor called the root. On such trees,
we propose a state optimal DFTC algorithm—each processor p requires Dp + 1
states (proven in [1]), where Dp is the degree of p. Next, we propose a second
algorithm, also for trees, but where no processor knows which of its neighbor leads
to the root. This algorithm is also optimal in terms of the number of states per
processor (Dp + 2 states [2]). Furthermore, both algorithms are snap-stabilizing

[1]. A snap-stabilizing protocol guarantees that the system always maintains the
desirable behavior. In other words, a snap-stabilizing algorithm is also a self-
stabilizing algorithm which stabilizes in 0 steps. Obviously, any snap-stabilizing
protocol is optimal in terms of the stabilization time. Therefore, they are state
and time optimal, even without considering the property of self-stabilization.

References

[1] A. Bui, A. K. Datta, F. Petit, and V. Villain. State-optimal snap-
stabilizing PIF in tree networks. In Proceedings of the Fourth Workshop
on Self-Stabilizing Systems. IEEE Computer Society Press, 78–85, 1999.

[2] F. Petit and V. Villain. Optimality and self-stabilization in rooted net-
works. Parallel Processing Letters, 10(1), 3–14, 2000.

Joint work with Vincent Villain, LaRIA, University de Picardie Jules Verne,
Amiens, France.
Please refer to http://www.laria.u-picardie.fr/~petit/publi/dimacs_dftc.ps.gz

6



4 Self-Stabilization Aspects of Rollback Recov-

ery

Augusto Ciuffoletti
Universita’ di Pisa, Pisa, Italy

I introduce endo-stabilization as a tool to approach the design of distributed
algorithms that take action even in the absence of complete information.
I present a case study related to the problem of backward recovery, as composed of
three sub-problems: checkpointing, rollback, and disposal of obsolete checkpoints.
A simple session-level algorithm is introduced to gather information about the
state of the system, in the form of a timestamp that advances consistently on
each unit in the system.
I show that this information is sufficient to control the checkpointing protocol,
but is not sufficient to control rollback and disposal.
In the case of rollback, we can apply to the endo-stabilization concept to restore
consistency using a lazy algorithm.
The disposal operation appears to be intractable using endo-stabilization, since
the intermediate behavior of the system can be unsafe.

5 On the Benefits of Modeling Self-Stabilizing

Algorithms as Variable Structure Feedback

Systems

Oliver Theel
Darmstadt University of Technology, Darmstadt, Germany

The self-stabilizing property of certain distributed algorithms exhibits interest-
ing analogies to stable feedback systems used in various engineering domains, like
electrical or mechanical engineering. Informally, a feedback system is stable, if af-
ter a certain finite period of time, the system reaches and remains in a pre-defined
state. Contrary to the self-stabilization research domain, which is a rather new
area of research in computer science, control theory in the engineering domain
has a century-old background and offers a broad theoretical foundation with pow-
erful criteria for reasoning about the stability of feedback systems. In this talk,

7



we show how to model a distributed algorithm implemented an a set of processes
executing guarded commands as an instance of a discrete-time variable structure
system model. Based on this modeling, we prove convergence (and closure) of
the sample algorithm by means of Ljapunov’s “Second Method.” The talk closes
with remarks on how Ljapunov Theory can furthermore be used to derive up-
per and lower bounds for the convergence speed as well as how to automatically
identify variant functions for a certain subclass of self-stabilizing algorithms.

6 A Theory of Composition

I.S.W.B. Prasetya and S.D. Swierstra
Utrecht University, Utrecht, The Netherlands

A theory of composition is a theory that allows us to decompose a property of
a system into local properties of its component. Because local properties can
be verified locally, this can save us some proof steps. Another advantage is
that a component is guaranteed to behave correctly in system without having
to fix its partner components. This optimizes the component’s reusability. The
composition of progress properties is however believed to be problematical. There
have been many approaches, but for one reason or another they are unsatisfactory.
Our approach is based on the idea of temporary interference and non-interference.
It is a simple idea, and it works very well. The whole theory is based on UNITY
and has already been mechanically verified. Two more specialized composition
theories derived from the main theory is in the field of self stabilization and fault
tolerance.
Note: Best reference to the work is available in the form of a paper available at
request (wishnu@cs.uu.nl). The paper. “Factorizing Fault Tolerance” is sched-
uled to appear in the coming Journal of Theoretical Computer Science, special
edition on Fault Tolerance.

7 Stabilization in Device Networks

Anish Arora
Ohio State University, Columbus, OH, USA

8



Dependability of applications involving access and control of diverse devices over
potentially different networks may be achieved via system stabilization. This
talk describes Aladdin, a stabilizing device networking system developed for the
home environment. Abstractions such as Soft-State Storage and Model-Based
Detection/Correction are outlined that enable stabilization in Aladdin. Experi-
ences in the difficulty of validating its stabilization and in measuring its overall
dependability are presented, to motivate a new direction for research in stabiliza-
tion. Lastly a Dagstuhl Manifesto is laid out to challenge researchers to address
pragmatic issues in stabilization.

8 A Space Optimal, Deterministic Self-Stabi-

lizing Leader Election Algorithm for Unidi-

rectional Rings

Faith E. Fich
University of Toronto, Toronto, Canada

A deterministic, self-stabilizing, leader election algorithm for unidirectional rings
is presented that uses 10n states per processor. This improves the number of
states per processor of previously known algorithms and matches, to within a
small constant factor, a lower bound of n.
The approach first develops an algorithm that stabilizes for a restricted class
of schedules, the alternating schedules, where between successive steps of each
processor there is exactly one step of each of its neighbors. Then this algorithm
is combined with the deterministic token algorithm to ensure stabilization for all
schedules.

This work is joint with Colette Johnen.

9



9 Self-Stabilizing Minimum Spanning Tree Con-

struction on Message-Passing Networks

Lisa Higham
University of Calgary, Calgary, Canada

Self-stabilizing algorithms for constructing a spanning tree of an arbitrary net-
work have been studied for many models of distributed networks including those
that communicate via registers (either composite or read/write atomic) and those
that employ message-passing. In contrast, much less has been done for the corre-
sponding minimum spanning tree problem. In particular, we present the first self-
stabilizing algorithm for minimum spanning tree for deterministic, synchronous
message-passing networks of known size, and discuss possible extensions to asyn-
chronous ones (with time-outs) and to ones of unknown size.

10 Universal Dynamic Synchronous Self-Stabi-

lization

Paolo Boldi and Sebastiano Vigna
Università di Milano, Milano, Italy

We prove the existence of a “universal” synchronous self-stabilizing protocol, that
is, a protocol that allows a distributed system to stabilize to a desired nonreactive
behavior (as long as a protocol stabilizing to that behavior exists). Previous pro-
posals required drastic increases in asymmetry and knowledge to work, whereas
our protocol does not use any additional knowledge, and does not require more
symmetry-breaking conditions than available; thus, it is also stabilizing with re-
spect to dynamic changes in the topology. We prove an optimal quiescence time
n + D for a synchronous network of n processors and diameter D; the protocol
can be made finite state with a negligible loss in quiescence time. Moreover, an
optimal D + 1 protocol is given for the case of unique identifiers. Finally, we
highlight the intimate connection between self-stabilizing and anonymous com-
putations showing how to turn any anonymous algorithm into a self-stabilizing
protocol.

10



11 Defining Redundancy: In Search of the Holy

Grail

Felix Gärtner
TU Darmstadt, Darmstadt, Germany

Redundancy is a key concept in fault-tolerance, however it still lacks a formal
definition. In this work we explore the notions of redundancy which are inherent
in the fault-tolerance theory of Arora and Kulkarni. In this theory, every fault-
tolerance mechanism can be constructed from two simple components: detectors
and correctors. Detectors are necessary and sufficient to maintain safety specifi-
cations, while correctors are necessary and sufficient to eventually satisfy safety
specifications. We investigate the assumptions of this theory and discover that
fault-tolerance components contain either non-reachable states or non-reachable
transitions. This gives rise to definitions of redundancy in space and redundancy
in time. This is very much unfinished work, not all theorems have been proven
yet, and the definitions are somewhat orthogonal to the understanding of the
terms in the literature. Because of this and several other reasons, this work
might never be finished. Thus, it resembles – at least to the authors – a search
for the holy grail.

12 Compositional Reasoning about

(Shared-Variable) Concurrency

Willem-Paul de Roever
Christian-Albrechts-Universität zu Kiel, Kiel, Germany

• The notion of compositionality is explained from the viewpoint of the verify-
while-develop paradigm.

• The advantages of compositional reasoning about concurrent programs are
discussed.

• The Assume-Guarantee method for specifying and reasoning about concur-
rent (and distributed) programs is introduced.

11



• The interpretation of this paradigm is investigated for shared-variable con-
currency: Should one use reactive sequences or so-called Aczel traces? We
give a reactive sequences interpretation which leads to an unsound parallel
composition rule. The Aczel-traces interpretation is proved to be sound
and complete.

13 Questions about Snap-Stabilization

Vincent Villain
LaRIA (Laboratoire de Recherche en Informatique d’Amiens), UPJV
(Universite de Picardie Jules Verne), Amiens, France

Snap-stabilization has been introduced in 1999 by Bui, Datta, Petit, and Villain.
A snap-stabilizing protocol guarantees that, starting from an arbitrary system
configuration, the protocol always behaves according to its specification. So, a
snap-stabilizing protocol is a time optimal self-stabilizing protocol (stabilizes in
0 rounds). We present snap-stabilizing wave algorithms on particular topologies
(rings, chains, and trees). We show that any single initiator application using such
protocols guarantees that the first computation starting after the occurrence of
a fault will give the expected result. We then present some open questions.

• Is it possible to design snap-stabilizing wave algorithms on general graphs?

• More generally, can we characterize the class of problems which admit a
snap-stabilizing protocol?

14 Self-Stabilizing Local Mutual Exclusion and

Daemon Refinement

Ajoy K. Datta
University of Nevada, Las Vegas, NV, USA

12



Refining self-stabilizing algorithms which use tighter scheduling constraints (wea-
ker daemon) into corresponding algorithms for weaker or no scheduling con-
straints (stronger daemon), while preserving the stabilization property, is useful
and challenging. Designing transformation techniques for these refinements has
been the subject of serious investigations in recent years. This paper proposes a
transformation technique to achieve the above task. The core of the transformer
is a self-stabilizing local mutual exclusion algorithm. The local mutual exclusion
problem is to grant a process the privilege to enter the critical section if and only
if none of the neighbors of the process has the privilege. The contribution of
this paper is twofold. First, we present a bounded-memory self-stabilizing local
mutual exclusion algorithm for arbitrary network, assuming any arbitrary dae-
mon. After stabilization, this algorithm maintains a bound on the service time
(the delay between two successive executions of the critical section by a particular
process). This bound is (n×(n−1))/2 where n is the network size. Second, we use
the local mutual exclusion algorithm to design two scheduler transformers which
convert the algorithms working under a weaker daemon to ones which work under
the distributed, arbitrary (or unfair) daemon, both transformers preserving the
self-stabilizing property. The first transformer refines algorithms written under
the central daemon, while the second transformer refines algorithms designed for
the k-fair (k ≥ (n − 1)) daemon.

Co-authors: Joffroy Beauquier, Maria Gradinariu, Frederic Magniette

15 A Universal Self-Stabilizing Mutual Exclu-

sion Algorithm

Hirotsugu Kakugawa and Masafumi Yamashita
Kyushu University, Fukuoka, Japan

A distributed algorithm is said to be self-stabilizing if it converges to a correct
state from any initial state. In this talk, we characterize the class of networks
on which there is a self-stabilizing mutual exclusion algorithm, and present a
universal self-stabilizing mutual exclusion algorithm for the class in the sense
that the algorithm works as a self-stabilizing mutual exclusion algorithm on each
of the networks in the class.

13



16 Composite Available and Stabilizing Data

Structures

Ted Herman
University of Iowa, Iowa City, IA, USA

A data structure is called available if the effect of any operation on the structure
is consistent with its response even if internal variables of the structure have
arbitrarily invalid values. For example, if an insert(x) operation’s response is
ack, then the operation inserted x into the structure; if the response is full, then
x was not inserted into the structure. A data structure is called stabilizing if, for
any arbitrary (and possibly illegal) initial state, any sequence of sufficiently many
operations brings the data structure to a legal state. Availability also constrains
the time complexity of operations: even in an illegal state, the response time
for an operation is bounded by the operation time for some legal state; typically
this bound is the worst-case operation time for a full data structure. After the
structure has stabilized to a legal state, all operations have normal running times
and responses.
This work constructs an available stabilizing data structure made from two con-
stituents, a heap and a search tree. These constituents are themselves available
and stabilizing data structures described in previous papers. Each item of the
composite data structure is a pair (key,value), which allows items to be removed
by either minimum value (via the heap) or by key (via the search tree) in logarith-
mic time. This is the first research to address the problem of constructing larger
data structures from smaller ones that have desired availability and stabilization
properties. The research has negative and positive results: it is impossible to
construct a heap-search-tree composite without relaxing requirements on at least
one of the data structure’s operations; and on the positive side, with a suitable
relaxation of one operation requirement, an available and stabilizing composite
data structure is obtained using a mark-and-sweep technique.

17 A Framework for Constructing Self-Stabi-

lizing Systems

Luc Onana Alima
Royal Institute of Technology, Kista, Sweden

14



The ability of a self-stabilizing system to tolerate any number and any type
of transient faults makes the concept of self-stabilization very attractive in dis-
tributed systems. However, designing and proving correct a self-stabilizing system
can be a hard task. We have to deal with the proof of convergence for each design.
To alleviate this complication, we propose a simple and powerful framework that
can be used to construct self-stabilizing systems in a systematic manner. By
simple we mean a tool that is easy to understand and thus to use, and by powerful
we mean a tool that can be used to generate a great variety of self-stabilizing
systems.
The proposed framework is based on:

1. The assumption that the network’s topology is a rooted tree.

2. A scheme for generating infinite sequence of waves in a self-stabilizing man-
ner on a rooted tree system;

3. Two concepts we introduce: pyramidal and pseudo-pyramidal functions.
We regard a problem to be solved on a distributed system as a function
that takes a multi-set of input values (one per node) and returns a multi-
set of output values (one per node). Then we distinguish two important
classes of functions:

(a) The class of pyramidal functions, which contains any function that can
be computed on a rooted tree in two phases as follows: from the leaves
towards the root, each node performs the same calculation, which is
based on the values received from its children (if any) and its own
input value. At the root, the final result (the output value at each
node) is computed by performing the same calculation and possibly
an additional calculation. Then, the root starts the second phase that
consists in broadcasting the output value which is the same for each
node of the system.

(b) The class of pseudo-pyramidal functions, which contains any function
that can be computed on a rooted tree in two phases as in the case of
pyramidal functions except that during the second phase, each node,
depending on the specific value received from its parent (if any), com-
putes its own output and produces a specific value for each of its
children.

4. Two theorems that we call Tree Embedding Theorems. The minor theo-
rem gives a generic algorithm for computing any pyramidal function in a
self-stabilizing manner. The major theorem gives a generic algorithm to
compute any pseudo-pyramidal function in a self-stabilizing manner.

15



We demonstrate the viability of our framework by constructing self-stabilizing
systems for a significant number of tasks including: counting/topology updated,
distributed reset, distributed selection, determining an upper-bound of the sys-
tem diameter, ranking, distributed sorting, load-balancing, max/min-heap main-
tenance.
The main benefits of the proposed framework are: (i) it releases the designer
from the proof of convergence. He/She only needs to design correct non-self-
stabilizing solutions (that is, finding pyramidal or pseudo-pyramidal functions).
(ii) The stabilization time of the resulting systems is O(h) rounds, where h is the
height of the tree. However, for some functions, the memory required may be
O(n), where n is the system size.

18 Stabilizing Agents

Sukumar Ghosh
University of Iowa, Iowa City, IA, U.S.A.

This paper illustrates the use of mobile agents in the stabilization of distributed
systems. The goal is to build stabilizing systems on the Internet, where the
component processes are not under the control of a single administration. Two
examples are presented to illustrate the idea: the first is that of mutual exclusion
on a unidirectional ring, and the second deals with the construction of a DFS
spanning tree.

19 The Convergence Theorem

Mohamed G. Gouda and Chin-Tser Huang
The University of Texas at Austin, Austin, TX, U.S.A.

To prove the convergence of a system, according to the theorem of convergence,
it is sufficient to exhibit a ranking function whose value decreases by each action
execution in that system (until the system convergence is completed). Unfortu-
nately, the theorem of convergence does not hint on how to construct the required
ranking function. To solve this problem, we present an interesting variation of

16



the convergence theorem. In this variation, the required ranking function can
be constructed based on a partitioning of the system actions, or based on some
decomposition of the system actions followed by a partitioning of the decomposed
actions.

20 Formal Framework to Prove Probabilistic Self-

Stabilizing Algorithms

Colette Johnen
Université Paris-Sud, Orsay, France

We give a strong motivation for the design of a formal framework to analyze
probabilistic self-stabilizing algorithms.
An important issue is to make a clear distinction between what is non-deterministic
(the scheduler behavior) and what is probabilistic (the output of the transition).
Also, our model can analyze a self-stabilizing algorithm under k-bounded, fair,
weakly fair, or unfair schedulers.
We propose a framework based on scheduler strategies: a probabilistic self-
stabilizing algorithm designer has to analyze all the scheduler strategies. If on
any strategy of the scheduler, ”most of the computations converge” then the
algorithm is self-stabilizing under the studied scheduler. We give a formal defini-
tion of a strategy, and we have also presented a probabilistic space on top of the
strategy structure that is suitable to analyze an algorithm.
We finally present an useful formal tool to prove the converge. If there is a pattern
in any strategy such that “on any computation of the strategy, a legitimate state
can be reached in least than n steps with a probability greater than E” then the
probability of the computations set that converge is 1, on any strategy.
This model is formally presented in the research report no. 1225 of LRI “Random-
ized Self-Stabilizing and Space Optimal Leader Election under Arbitrary Sched-
uler on Rings,” Joffroy Beauquier, Maria Gardinariu, Colette Johnen.

17


