
Combining Clause Learning and Branch and Bound
for MaxSAT
Chu-Min Li #

Huazhong University of Science and Technology, Wuhan, China
Université de Picardie Jules Verne, Amiens, France
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Zhenxing Xu #

Huazhong University of Science and Technology, Wuhan, China

Jordi Coll #

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Felip Manyà #

Artificial Intelligence Research Institute, CSIC, Bellaterra, Spain

Djamal Habet #

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Kun He #

Huazhong University of Science and Technology, Wuhan,China

Abstract
Branch and Bound (BnB) is a powerful technique that has been successfully used to solve many
combinatorial optimization problems. However, MaxSAT is a notorious exception because BnB
MaxSAT solvers perform poorly on many instances encoding interesting real-world and academic
optimization problems. This has formed a prevailing opinion in the community stating that BnB
is not so useful for MaxSAT, except for random and some special crafted instances. In fact, there
has been no advance allowing to significantly speed up BnB MaxSAT solvers in the past few years,
as illustrated by the absence of BnB solvers in the annual MaxSAT Evaluation since 2017. Our
work aims to change this situation and proposes a new BnB MaxSAT solver, called MaxCDCL,
by combining clause learning and an efficient bounding procedure. The experimental results show
that, contrary to the prevailing opinion, BnB can be competitive for MaxSAT. MaxCDCL is ranked
among the top 5 solvers of the 15 solvers that participated in the 2020 MaxSAT Evaluation, solving
a number of instances that other solvers cannot solve. Furthermore, MaxCDCL, when combined
with the best existing solvers, solves the highest number of instances of the MaxSAT Evaluations.

2012 ACM Subject Classification Software and its engineering → Constraints

Keywords and phrases MaxSAT, Branch&Bound, CDCL

Digital Object Identifier 10.4230/LIPIcs.CP.2021.38

Supplementary Material Software (Source Code): https://home.mis.u-picardie.fr/~cli/
EnglishPage.html

Funding This work has been partially funded by the French Agence Nationale de la Recherche,
reference ANR-19-CHIA-0013-01, and the Spanish AEI project PID2019-111544GB-C2.

Acknowledgements This work has been partially supported by Archimedes Institute, Aix-Marseille
University. We thank the anonymous reviewers for their comments and suggestions that helped to
improve the manuscript.

1 Introduction

The Maximum satisfiability problem (MaxSAT) is an optimization version of a well-studied
and canonical NP-Complete problem, the satisfiability problem (SAT). Although SAT and
MaxSAT share many aspects, solving MaxSAT is much harder than solving SAT in practice.

© Chu-Min Li, Zhenxing Xu, Jordi Coll, Felip Manyà, Djamal Habet, and Kun He;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 38; pp. 38:1–38:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chu-min.li@u-picardie.fr
mailto:lxadd515@hust.edu.cn
mailto:jordi.coll@lis-lab.fr
mailto:felip@iiia.csic.es
mailto:Djamal.Habet@univ-amu.fr
mailto:brooklet60@hust.edu.cn
https://doi.org/10.4230/LIPIcs.CP.2021.38
https://home.mis.u-picardie.fr/~cli/EnglishPage.html
https://home.mis.u-picardie.fr/~cli/EnglishPage.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Combining Clause Learning and Branch and Bound for MaxSAT

Indeed, since several clauses can be falsified in an optimal MaxSAT solution, some fundamental
SAT techniques such as unit propagation cannot be used in MaxSAT as they are used in
SAT. Despite this difficulty, huge efforts made by researchers make it possible nowadays to
solve many interesting real-world and academic NP-hard optimization problems encoded as
MaxSAT instances [11, 26]. For this reason, MaxSAT has attracted increasing interest from
the academy and industry in recent years.

As for many NP-hard problems, algorithms for MaxSAT are divided into two categories:
exact algorithms, which return optimal solutions and prove their optimality; and heuristic
algorithms, which quickly find solutions of good quality without guaranteeing their optimality.
This paper will focus on exact algorithms for (unweighted) MaxSAT.

We roughly distinguish two types of exact algorithms for MaxSAT: branch-and-bound
(BnB) algorithms [26], which directly tackle MaxSAT with a bounding procedure, but
without unit propagation and clause learning; and SAT-based algorithms [11], which transform
MaxSAT into a sequence of SAT instances and call a CDCL (Conflict-Driven Clause Learning)
SAT solver to solve them. The performance of SAT-based MaxSAT algorithms is usually
much better than BnB MaxSAT solvers in solving many real-world NP-hard optimization
problems, because they indirectly exploit clause learning via the SAT solver. Unfortunately,
it is hard for a BnB solver to exploit clause learning. In a CDCL SAT solver, a backtracking
happens only when a clause is falsified, from which a sequence of resolution steps is performed
to learn a clause explaining the backtracking. However, a BnB MaxSAT solver also need to
backtrack when it computes a lower bound equal to the upper bound. In this case, no clause
is explicitly falsified, making it hard to learn a clause. Probably because of this difficulty,
there has been no advance allowing to significantly speed up BnB MaxSAT solvers in recent
years, as illustrated by their absence in the annual MaxSAT Evaluation since 2017.

In this paper, we propose an original approach that allows a BnB MaxSAT solver to learn
a clause when it computes a lower bound equal to the upper bound, together with a new
bounding procedure, because the one in current BnB MaxSAT solvers is not adequate for large
instances. This approach is implemented in a new BnB MaxSAT solver, called MaxCDCL,
that combines the new bounding procedure and clause learning. The experimental results
show that MaxCDCL is ranked among the top 5 solvers of the 15 solvers that participated
in the 2020 MaxSAT Evaluation, solving a number of instances that other solvers cannot
solve. Furthermore, MaxCDCL, when combined with the best existing solvers, solves the
highest number of instances of the MaxSAT Evaluations.

Combining clause learning and BnB, as clause learning itself, belongs to the general
framework consisting in explaining a failure in the search to avoid the same failure in
the future. In other fields such as Pseudo-Boolean Optimization (PBO), there are also
works in this framework (e.g. [17]). The general framework is not hard to understand.
However, making it effective for solving a particular problem such as SAT or MaxSAT is quite
challenging, because this requires a deep understanding of the problem and the related solving
techniques. So, one important contribution of our work is that we found a configuration and
an efficient implementation of this configuration allowing to make the combination of clause
learning and BnB effective for MaxSAT, as presented in this paper.

More importantly, our results refute a prevailing opinion in the field stating that, although
BnB is a powerful technique that has successfully been used to solve many combinatorial
optimization problems, it is not so useful for MaxSAT. Indeed, as the first BnB MaxSAT
solver successfully exploiting clause learning, MaxCDCL opens promising research directions.

This paper is organized as follows: Section 2 presents the preliminaries. Section 3 reviews
state-of-the-art MaxSAT solvers. Section 4 describes MaxCDCL. Section 5 empirically
evaluates and analyzes MaxCDCL. Section 6 concludes.

C.-M. Li, Z. Xu, J. Coll, F. Manyà, D. Habet, and K. He 38:3

2 Preliminaries

A propositional variable x can take values 0 or 1 (false or true). A literal is a variable x or
its negation ¬x. A clause is a disjunction of k literals l1 ∨ · · · ∨ lk. A propositional formula
in Conjunctive Normal Form (CNF) is a conjunction (or a set) of m clauses c1, . . . , cm. An
assignment of truth values to the propositional variables satisfies a literal x if x = 1, and
satisfies a literal ¬x if x = 0. A literal x or ¬x is assigned if x is assigned a value, otherwise
it is free. An assignment is complete if all the variables are assigned a value, otherwise it is
partial. A (partial) assignment is usually represented by a (sub)set of satisfied literals. A
clause is satisfied if at least one of its literals is satisfied. A CNF is satisfied if all its clauses
are satisfied. The Boolean satisfiability (SAT) problem for a CNF ϕ is to determine whether
there exists an assignment that satisfies ϕ.

MaxSAT is the problem of finding an assignment that satisfies the maximum number of
clauses in a given multiset of clauses. In partial MaxSAT, there are hard and soft clauses,
and the goal is to satisfy all the hard clauses and the maximum number of soft clauses. In
weighted (partial) MaxSAT, each soft clause has a cost to pay if it is violated. This paper
will focus exclusively on unweighted (partial) MaxSAT.

The state-of-the-art SAT solvers implement the CDCL algorithm. CDCL alternates a
search phase, where literals are assigned until either a solution or a conflict is found, and
a learning phase, which is executed after finding a conflict in order to learn a new clause.
Unit Propagation (UP) is the main inference rule applied during the search: If there is a unit
clause {l} in ϕ, literal l must be satisfied (i.e., set to 1). Then, any clause containing l is
removed from ϕ, and all the occurrences of ¬l in clauses of ϕ are (implicitly) removed. UP is
applied during the search until an empty clause (conflict) is found or no unit clause exists in
ϕ. If UP finishes without finding a conflict, a new literal is picked following a heuristic and
is set to 1 (we make a decision), and UP is applied again. If all the variables are assigned
without finding a conflict, ϕ is satisfiable. The decision level of an assigned literal is the
number of decisions made before being assigned. When a conflict is found, a conflict analysis
is performed on the implication graph to derive a new clause explaining the conflict.

Figure 1 shows an example of implication graph. It is a directed acyclic graph where each
node represents an assignment l@dl, where l is a literal set to 1 and dl is its decision level.
The negations of the literals of incoming edges of a node l@ld represent the reason (clause)
why UP has set l = 1. For instance, node x12@5 is propagated due to clause ¬x6 ∨¬x4 ∨ x12
(i.e., x6 ∧ x4 → x12), given that x4 and x6 have been set to 1. A node without incoming
edges represents a decision. All decisions are painted in grey, and the last one is dashed. A
conflicting clause is represented by incoming edges to □; in this example, clause ¬x3 ∨ ¬x35.
A Unique Implication Point (UIP) is a node of the implication graph that belongs to all
paths from the last decision to the conflict. Figure 1 contains three UIPs: the last decision
x4, and literals x13 and x25. The most used learning schema in CDCL SAT solvers is called
first UIP (1UIP), guided by the closest UIP to the conflict in the implication graph.

When a conflict is found in the decision level dl (i.e., dl decisions were made before the
conflict is found), a node in the decision level dl is said active if it is not the 1UIP but is in a
path from the 1UIP to the conflict. In other words, the active nodes are those nodes that
allow to reach the conflict from the 1UIP in the decision level dl. For example, in Figure 1, a
conflict is found in the decision level 5, and x3@5 and x35@5 are active nodes. The 1UIP
learning schema identifies, in each path from a node in a decision level lower than dl to an
active node, the last literal in the lower decision level. The new learnt clause is composed of

CP 2021

38:4 Combining Clause Learning and Branch and Bound for MaxSAT

x6@1

x4@5

x8@2

x12@5

¬x27@5
x13@5 x25@5

x5@3
x3@5

x35@5

x1@4 ¬x11@4

1UIP

Figure 1 Example of implication graph.

the negation of these literals and the 1UIP. For instance, in Figure 1, clause ¬x8 ∨x11 ∨¬x25
is learnt, because there are two paths from lower decision levels to an active node, in which
x8 and ¬x11 are the last literals in lower decision levels, respectively.

The learnt clause explains the conflict: when all its literals are falsified, unit propagation
reproduces the implication graph to derive the same conflict. So, adding the learnt clause
prevents the same conflict in the future search. After learning a clause, CDCL backtracks
to the second highest decision level of the learnt clause (level 4 in the above example).
Unsatisfiability is determined when a conflict is found at decision level 0.

3 Related Work

A major difference between MaxSAT and SAT solvers is that each clause must be satisfied in
a SAT solution while a soft clause can be falsified in an optimal MaxSAT solution, making
MaxSAT much harder to solve than SAT in practice. Despite this, the MaxSAT community
has made huge efforts to implement exact MaxSAT solvers with impressive performance
over the last decade [11, 26]. On the other hand, heuristic MaxSAT algorithms such as
SatLike [25] have also been proposed.

Roughly speaking, we find two main groups of exact MaxSAT solvers: branch-and-bound
(BnB) and SAT-based solvers. BnB MaxSAT solvers implement the branch-and-bound
scheme and incorporate a lookahead procedure that detects inconsistent subsets of soft
clauses by applying unit propagation and computes a lower bound [26]. They also apply some
inference rules at each node of the search tree. Representative BnB solvers are MaxSatz [30],
MiniMaxSat [20], Ahmaxsat [1, 14] and Akmaxsat [24]. Closely related to MaxSAT, we can
find BnB solvers for the Weighted Constraint Satisfaction Problem (WCSP). Recently, it was
presented a technique to improve BnB WCSP solving by avoiding branching on variables
which are unlikely to increase the lower bound [43].

SAT-based MaxSAT solvers proceed by reformulating the MaxSAT optimization problem
into a sequence of SAT decision problems [11]. These solvers could still be divided into
three subgroups: model-guided, core-guided and Minimum Hitting Sets (MHS-)guided.
Model-guided approaches reduce to SAT the problem of deciding whether there exists an
assignment for the MaxSAT instance with a cost less than or equal to a certain k, and
successively decrease k until an unsatisfiable SAT instance is found. Among such solvers
we find SAT4J-Maxsat [12], QMaxSat [23, 44], Open-WBO [37] or Pacose [40]. Core-guided
and MHS-guided approaches consider a MaxSAT instance as a SAT instance and call a
CDCL SAT solver to identify an unsatisfiable subset of soft clauses, called a core. Then, they
relax this core and solve the relaxed instance with a CDCL SAT solver to identify another
core, repeating this process until deriving a satisfiable instance. The difference between
them is that core-guided solvers relax a core using cardinality constraints, while MHS-guided
solvers remove one clause from each detected core so that the number of different clauses
removed from the cores is minimized by solving a minimum hitting set instance with an

C.-M. Li, Z. Xu, J. Coll, F. Manyà, D. Habet, and K. He 38:5

integer programming solver. The most representative core-guided solvers include msu1.2 [36],
WBO [35], Open-WBO [37], WPM1 [3], PM2 [5], WPM2 [4], WPM3 [6], Eva [39], RC2 [21],
and the most representative MHS-guided solvers include MHS [41] and MaxHS [8, 10, 15, 16].
Core-guided search has also been extended to constraint programming [19].

A common point of SAT-based MaxSAT solvers is that they indirectly exploit the clause
learning technique by repeatedly calling a CDCL SAT solver. Unfortunately, it is hard
for BnB solvers to exploit clause learning, which might explain their poor performance on
real-world optimization problems. We are aware of only one tentative in [2]: when the
number of falsified soft clauses reaches the upper bound, the falsification of these soft clauses
is analyzed to learn a clause. Nevertheless, no clause is learnt when the lookahead procedure
returns a lower bound equal to the upper bound, and the reported results are not competitive.

4 MaxCDCL: A BnB Algorithm Using CDCL for MaxSAT

This section first presents the general structure of MaxCDCL, and then the different com-
ponents of our approach implemented in MaxCDCL.

4.1 General Structure of MaxCDCL

We distinguish between hard and soft conflicts in the MaxSAT context. A hard conflict
occurs when the current partial assignment falsifies a hard clause. Given an upper bound
UB, a soft conflict occurs when the current partial assignment cannot be extended to a
complete one falsifying fewer than UB soft clauses. A CDCL SAT solver only considers
hard conflicts, learns a hard clause from each hard conflict and backtracks. A BnB CDCL
MaxSAT solver extends the CDCL SAT solver by also learning a hard clause from each
discovered soft conflict and backtracks. Algorithm 1 depicts such a BnB CDCL MaxSAT
solver called MaxCDCL.

Given a MaxSAT instance with a set of hard clauses and a set of soft clauses, MaxCDCL
works with H and S, where H contains the hard clauses and S contains a new literal y for
each soft clause sc after adding the hard clauses encoding y ↔ sc to H. We call such y

soft literal, because it represents a soft clause (i.e., a soft literal is satisfied if and only if
the corresponding soft clause is satisfied). To solve the MaxSAT instance, MaxCDCL is
repeatedly called with UB= 20, 21, 22, 23, . . . without exceeding |S| + 1 or UBf + 1 where
UBf is a feasible upper bound computed by a heuristic solver with a short cutoff. This
process stops when it obtains an assignment satisfying all clauses in H and falsifying fewer
than UB soft literals in S. After that, MaxCDCL is repeatedly called with UB set to the
number of falsified soft literals in the previous call, until no better solution can be found.

MaxCDCL is like a CDCL SAT solver except for two points. First, when UP does not
falsify any hard clause in the UPLA procedure, it calls, under certain condition, a lookahead
(LA) procedure to compute a lower bound |cores| of the number of soft literals that will be
falsified if the current partial assignment is extended. If a soft conflict is discovered, i.e., if
|falseS|+ |cores| ≥UB, it is analyzed to learn a clause for backtracking. Second, if no soft
conflict is discovered, but it is discovered that the falsification of any free soft literal y not
used in |cores| would result in a soft conflict, y is satisfied by a procedure called hardening.

Note that model-guided MaxSAT solvers also set a UB in their search. However, they do
not compute a lower bound to discover soft conflicts as MaxCDCL. Consequently, MaxCDCL
is able to backtrack much earlier than model-guided MaxSAT solvers for a given UB. See the
next subsection for details and illustrative examples.

CP 2021

38:6 Combining Clause Learning and Branch and Bound for MaxSAT

Algorithm 1 MaxCDCL(H, S,UB), a generic CDCL procedure with lookahead for
MaxSAT.

Input: H: a set of hard clauses, S: a set of soft literals, UB: an upper bound.
Output: |falseS|, where falseS is the set of falsified soft literals, if |falseS| <UB;

or UB otherwise
1 begin
2 while true do
3 currentLevel← 0; /* start or restart search */
4 while true do
5 (cl, falseS, cores, reasons)← UPLA(H, S, UB, currentLevel);
6 if cl is a falsified hard clause or |falseS|+ |cores| ≥UB then
7 if currentLevel = 0 then
8 return UB;
9 else

10 newLearntClause← analyze(cl, falseS, reasons);
11 level← the second highest level in newLearntClause;
12 backtrackTo(level);
13 currentLevel← level;

14 else
15 if all variables are assigned then
16 return |falseS|;
17 else if |falseS|+ |cores| = UB−1 then
18 hardening();
19 else if restart condition is satisfied then
20 backtrackTo(0);
21 break; /* restart */
22 else
23 currentLevel++;
24 H ← H ∪ {l} where l is a free literal selected using a heuristic;

4.2 Combining Lookahead and Clause Learning

A subset of soft literals Si = {y1, . . . , y|Si|} is inconsistent if they cannot be simultaneously
satisfied. This inconsistency can be represented by the hard clause ¬y1 ∨ · · · ∨ ¬y|Si|. Note
that |Si| can be 1. If the inconsistency is independent of any partial assignment, the subset
is called a global core. Otherwise, the inconsistency is implied by a subset of literals and
the inconsistent subset of soft literals is called a local core. The core-guided or MHS-guided
SAT-based MaxSAT solvers only detect global cores to relax them, while our approach
detects local cores, given a partial assignment, to discover a soft conflict.

▶ Example 1. Let H = {¬y1∨x1∨¬x2,¬x1∨¬x3∨¬x4, ¬y2∨x3,¬y3∨x5}, where y1, y2 and
y3 are soft literals. If no variable is assigned, all soft literals can be simultaneously satisfied.
So, no global core exists. However, if the current partial assignment is {x2 = 1, x4 = 1}, the
subset of soft literals {y1, y2} is a local core implied by the partial assignment. We write the
implication by H ∪ {x2, x4} → ¬y1 ∨ ¬y2.

C.-M. Li, Z. Xu, J. Coll, F. Manyà, D. Habet, and K. He 38:7

Proposition 2 provides the foundation of our approach in the general case.

▶ Proposition 2. Let H be a set of hard clauses, S = {y1, . . . , y|S|} be the set of all
soft literals, k be an integer, and Li = {li1, . . . , li|Li|} (1 ≤ i ≤ k) be a set of literals.
If, for every i (1 ≤ i ≤ k), H ∪ Li implies a local core Si = {zi1, . . . , zi|Si|} ⊂ S (i.e.,
H ∪ Li → ¬zi1 ∨ · · · ∨ ¬zi|Si|), and Si and Sj are disjoint for any j ̸= i such that 1 ≤ j ≤ k,
then every assignment that satisfies H ∪ {¬y1 + · · · + ¬y|S| < k} also satisfies the clause
¬l11 ∨ · · · ∨ ¬l1|L1| ∨ · · · ∨ ¬lk1 ∨ · · · ∨ ¬lk|Lk|.

Proof. It is easy to see that H ∪ L1 ∪ · · · ∪ Lk implies (¬z11 ∨ · · · ∨ ¬z1|S1|) ∧ · · · ∧ (¬zk1 ∨
· · · ∨ ¬zk|Sk|), meaning that H ∪ L1 ∪ · · · ∪ Lk falsifies the constraint ¬y1 + · · ·+ ¬y|S| < k,
because each clause ¬zi1∨· · ·∨¬zi|Si| implies at least one different falsified soft literal. Hence,
any assignment satisfying H ∪ {¬y1 + · · · + ¬y|S| < k} must falsify at least one literal in
L1∪· · ·∪Lk, and satisfy the clause ¬l11∨· · ·∨¬l1|L1|∨· · ·∨¬lk1∨· · ·∨¬lk|Lk|. Note that we
use “z” (instead “y”) to denote a soft literal in a local core to avoid complex subscripts. ◀

Given a partial assignment F of H, the application of Proposition 2 consists in first
detecting a local core Si and then identifying the smallest Li ⊂ F such that H ∪Li implies Si.
We call Li the reason of Si. If k is the current upper bound UB and k disjoint local cores are
detected, a soft conflict is discovered, and the clause ¬l11∨· · ·∨¬l1|L1|∨· · ·∨¬lk1∨· · ·∨¬lk|Lk|,
which is implied by H∪{¬y1+· · ·+¬y|S| < k} and is falsified by the current partial assignment,
can be considered by an implicit clause explaining the soft conflict. This clause can be further
analyzed using the 1UIP schema in line 10 of Algorithm 1 to learn a clause to be explicitly
added to H to prevent the same soft conflict in the future as in the hard conflict case.

The detection of a local core Si is implemented by using UP in a lookahead procedure as
in existing BnB MaxSAT solvers [27, 28, 29]. The advantage of this procedure is that Si is
minimal w.r.t. UP, in the sense that UP cannot detect any local core that is a proper subset
of Si under the same partial assignment [27], which is essential for our approach, because
MaxCDCL needs to learn clauses of good quality from the detected local cores. Recall that
BnB MaxSAT solvers detect disjoint local cores but do not explain them. When a soft
conflict is discovered, they simply backtrack without learning a hard clause from the soft
conflict, which is very different from MaxCDCL.

Concretely, MaxCDCL calls Algorithm 2 at decision level dl with a partial assignment F ,
under which the already falsified soft literals are stored in a set named falseS. The lookahead
procedure starts at line 5 in Algorithm 2 when no hard conflict is found, and terminates at
line 10 or line 24. This procedure proceeds in decision level dl+1 by maintaining a set of
detected local cores (cores). Every iteration of the loop (line 8) propagates a free soft literal
y not occurring in cores, until a clause h in H is falsified or a soft literal sl not occurring in
cores is falsified (line 13). These unit propagations construct an implication graph G. The
propagated free soft literals y1, y2, . . . in the loop can be seen as temporary assumptions at
decision level dl+1 that have no incoming edge in G.

Inspecting G, let z1, . . . , zb be the subset of literals y1, y2, . . . at level dl+1 and without
incoming edge, from which there is a path to h or to ¬sl. Then, {z1, . . . , zb} (resp.
{z1, . . . , zb, sl}) is a local core Si implied by the partial assignment F at decision level
dl. Based on G, we can also define Li as the set containing, from each path to h (resp. ¬sl),
the last literal assigned before level dl + 1. Clearly, H ∪ Li implies ¬z1 ∨ . . . ∨ ¬zb (resp.
¬z1 ∨ . . . ∨ ¬zb ∨ ¬sl).

Note that each already falsified soft literal y in falseS constitutes a local core Si={y} not
in cores, implied by H ∪ {¬y} (i.e. Li={¬y}). Therefore, when k = |falseS|+ |cores| = UB
in MaxCDCL, we have UB disjoint local cores. According to Proposition 2, ¬l11 ∨ · · · ∨

CP 2021

38:8 Combining Clause Learning and Branch and Bound for MaxSAT

Algorithm 2 UPLA(H, S, UB, dl), Unit propagation followed by lookahead.

Input: H: a set of hard clauses, S: a set of soft literals, UB: an upper bound, dl:
the current decision level.

Output: cl: a hard clause; falseS: the set of falsified soft literals; cores: a set of
disjoint local cores; reasons: a set of literals that are reasons of cores

1 begin
2 (cl, falseS)← UP(H);
3 if cl is a falsified hard clause or |falseS| ≥ UB or the condition to lookahead is

not satisfied then
4 return (cl, falseS, ∅, ∅);
5 H ′ ← H; F ← {¬l|l is falsified in H};
6 reasons← ∅; cores← ∅; S′ ← ∅;
7 Increase the decision level to dl + 1;
8 while true do
9 if all soft literals of S either are non-free or occur in cores then

10 return (cl, falseS, cores, reasons);
11 Let y be a free soft literal not occurring in cores;
12 H ← H ∪ {y}; S′ ← S′ ∪ {y};
13 (h, sl)← UPforLA(H) ;
14 if h is a falsified hard clause or sl a falsified soft literal not in cores then
15 if h is a falsified hard clause then
16 core← {l|l ∈ S′ and l has no incoming edge and

there is a path from l to h in the implication graph};
17 else
18 core← {sl} ∪ {l|l ∈ S′ and l has no incoming edge and

there is a path from l to ¬sl in the implication graph};
19 reason← {l|l ∈ F and there is a path from l to h or ¬sl

in the implication graph, and the literal next to l in the path is
of decision level dl + 1};

20 cores← cores ∪ {core};
21 reasons← reasons ∪ reason;
22 H ← H ′; S′ ← ∅; /*Cancel UP done by lookahead*/
23 if |cores|+ |falseS| ≥ UB then
24 return (cl, falseS, cores, reasons);

¬l1|L1| ∨ · · · ∨¬lk1 ∨¬lk2 ∨ · · · ∨¬lk|Lk| could be considered as an implicit clause in H, which
is falsified by the current partial assignment and is analyzed using the 1UIP schema in line 10
of Algorithm 1 to learn a clause as in the hard conflict case.

▶ Example 3. Let y1, . . . , y7 be soft literals, and let H be formed by

¬y1 ∨ y2 ∨ ¬x2 ¬y2 ∨ ¬x3 ∨ ¬x4 ¬y2 ∨ ¬y5 ∨ x6 ¬x1 ∨ x4 ¬y3 ∨ x3
¬x6 ∨ ¬x5 ∨ y6 ¬y6 ∨ ¬x2 ∨ x7 ¬x7 ∨ ¬y6 ¬y4 ∨ x8 ¬y7 ∨ x9

If no variable is assigned, all soft literals can be simultaneously satisfied. So, no global core
exists. Let the current partial assignment be {y7=0, x2=1, x1=1, x4=1, x5=1}, where x4 is
propagated due to ¬x1 ∨ x4, and the other literals have been decided. Hence falseS = {y7}
and the current decision level is 4. Let also UB=3. We show how Algorithm 2 detects cores

and reaches UB by propagating the free soft literals y1, . . . , y6, by means of Figure 2.

C.-M. Li, Z. Xu, J. Coll, F. Manyà, D. Habet, and K. He 38:9

x2@2

y1@5 y2@5

x1@3

¬x3@5

x4@3

¬y3@5

A)

x1@3 y4@5 y5@5 x5@4 x2@2 x7@5

x4@3 x8@5 y2@5 x6@5 y6@5

B)

Figure 2 Implication graphs involved in the detection of cores in Example 3. Grey nodes represent
decisions or assumptions, and dashed nodes represent assignments made in the lookahead process.

After propagating y1, y2 is satisfied and y3 is falsified. Hence sl=y3 is detected, the
implication graph in Figure 2A is obtained, looking at which core={y1, y3} will be identified
at line 18 with reason={x2, x4}, because there are paths from x2 and x4 to ¬y3, and the
next literals to x2 and x4 in the paths are from decision level 5.

Note that since y2 is not in cores, it can be used to detect new cores. After propagating
y2, y4, y5, the implication graph of Figure 2B is obtained, and a conflicting clause h={¬x7 ∨
¬y6} is detected. Then, core={y2, y5} is detected at line 16 with reason={x2, x5}.

Since |cores| + |falseS| = 2 + 1 = UB, a soft conflict is found at line 23, with
reasons={x2, x4, x5,¬y7}. According to Proposition 2, clause ¬x2 ∨ ¬x4 ∨ ¬x5 ∨ y7 is
implied by H ∪ {¬y1 + · · ·+ ¬y|S| < 3}, which is falsified at decision level 4, and hence can
be analysed with the 1UIP scheme at level 4 to learn a new clause and backtrack. Note that
a model-guided MaxSAT solver would not discover this soft conflict at this stage, because
UB=3 but only one soft literal is falsified.

Proposition 2 also provides the basis for hardening. If k = |falseS|+ |cores| = UB−1,
for each free soft literal z not in the k local cores, H ∪ {¬z} implies a new local core {z}.
The hardening procedure (line 18 in Algorithm 1) satisfies z with the reason z ∨ ¬l11 ∨
· · · ∨ ¬l1|L1| ∨ · · · ∨ ¬lk1 ∨ · · · ∨ ¬lk|Lk|. Note that this hardening satisfies a fundamental
requirement of CDCL SAT solvers: except the decision (i.e., branching) variables, the value
of every variable must be explicitly associated with a reason. In contrast, although existing
BnB MaxSAT solvers also implement hardening, no reason is associated with the hardening.

Let m = |H| + |S|. UP is in O(m) for detecting one local core. Since the lookahead
procedure detects at most UB cores, its whole complexity is in O(m×UB).

4.3 A Probing Strategy for Lookahead

Existing BnB MaxSAT solvers usually tackle random or crafted instances of limited size and
look ahead at each branch. However, such a treatment might be too costly and useless for
large instances. If the lower bound is not tight enough to prune the current branch, the time
spent to compute the lower bound is lost. When k = UB−|falseS|, the lookahead procedure
has to detect k disjoint local cores to be successful. Generally, the greater the value of k, the
lower the probability of lookahead to be successful.

MaxCDCL uses a probing strategy to determine if lookahead has to be applied at the
current branch. With probability p, where p is a parameter intuitively fixed to 0.01, lookahead
is applied for probing purpose. The mean avgp and the standard deviation devp of the
number of detected disjoint local cores in a successful probing lookahead are computed (not
shown here due to the lack of space) to select the branches where lookahead is applied.

CP 2021

38:10 Combining Clause Learning and Branch and Bound for MaxSAT

Inspired by the 68-95-99.7 rule in statistics, which says that the values within one (two,
three) standard deviation of the mean account for about 68% (95%, 99.7%) of a normal data
set, we reasonably assume that the number of cores detected in a successful lookahead is
probably lower than avgp + coef ∗ devp when coef = 3. So, lookahead is not applied at the
current branch when k > avgp + coef ∗ devp. However, since the probing may not get exact
information and the values may not follow a perfect normal distribution, coef is dynamically
adjusted to maintain the success rate of lookahead between lowRate and highRate, where
lowRate and highRate are parameters intuitively fixed to 0.6 and 0.75, respectively.

Concretely, coef is initialized to 2 for each UB. At each probing, if the success rate of
lookahead since the last probing is greater than highRate, it is increased by 0.1; and if it is
lower than lowRate, it is decreased by 0.1. There are no lower and upper bounds on coef .
When it is too low so that no lookahead is performed between two probings, it is reset to 2.

4.4 Soft literal ordering in lookahead
Existing BnB MaxSAT solvers such as MaxSatz usually propagate soft unit clauses in the
ordering these clauses become unit, or in their ordering in the input formula when detecting
disjoint cores [28]. MaxCDCL propagates first the soft literals in the cores detected in the
previous lookahead. We use this ordering for two intuitive reasons.

Before backtracking, a local core detected in the previous lookahead remains to be a core.
Re-detecting a previous local core allows to obtain a possibly smaller local core due to
additional assignments.
After backtracking, re-detecting local cores in the previous soft conflict may allow to
detect a new soft conflict sharing many local cores with the previous conflict. In this way,
the clauses learnt from consecutive soft conflicts allow to intensify the search, because
the clause learnt from a soft conflict is derived from the reasons of the detected cores.

The quality of a clause learnt from a soft conflict highly depends on the detected cores,
which in turn highly depends on the soft literal ordering. How to improve the quality of the
learnt clause by further improving the soft literal ordering definitely deserves future study.

4.5 Improving the VSIDS heuristic by lookahead
When there is no unit clause, a CDCL SAT solver chooses a free literal l using a decision
heuristic, satisfies l and then performs unit propagation. VSIDS [38] is one of the widely
used decision heuristics: it initializes the score of each variable to 0, and then at each conflict,
it increases the score of each variable in a path to the conflict in the implication graph
by var_inc, where var_inc is initialized to 1 and, after each conflict, it is divided by a
parameter usually set to 0.95 to give more importance to the next conflict. Note that VSIDS
is a heuristic based on lookback, because it is based on the conflicts in the past.

VSIDS is also used in MaxCDCL by increasing the score of a variable in a soft or hard
conflict as in a CDCL SAT solver, but is modified as follows by taking lookahead into account.
Every time the lookahead procedure detects a local core, the score of the variables encountered
when identifying the reason of the core (see Subsection 4.2) is increased by var_inc × γ,
where γ is a discount-rate parameter as in reinforcement learning, and is empirically fixed to
0.1. The intuition of this modification is the following. A soft conflict is derived when UB
local cores are detected. So a variable contributing to many local cores should be favoured to
reach a soft conflict as early as possible. However, a local core represents only a component
of a future possible soft conflict but not a soft conflict for sure. So the increase of the score
of a variable contributing to a core should be discounted by γ.

C.-M. Li, Z. Xu, J. Coll, F. Manyà, D. Habet, and K. He 38:11

4.6 Implementation of MaxCDCL
Since MaxCDCL can be considered as an extension of a CDCL SAT solver, it is implemented
on top of the CDCL SAT solver MapleCOMSPS_LRB [32], winner of the application track
of SAT competition 2016. We chose MapleCOMSPS_LRB because it was one of the best
SAT solvers with deterministic behavior when we started this work in 2017. Nevertheless,
some of the recent advances in SAT solving are incorporated, including1:

The approach from [31, 34] is applied to minimize the learnt clauses.
The clause size reduction with the all-UIP learning technique from [18] is applied to
reduce the clauses learnt from soft conflicts. This technique is particularly useful for
MaxCDCL, because a clause learnt from a soft conflict is usually longer than a clause
learnt from a hard conflict. The all-UIP technique allows to significantly reduce the size
of a clause learnt from a soft conflict.
The learnt clause management technique proposed in [22] is incorporated into MaxCDCL,
allowing more learnt clauses to be kept in the clause database.

In addition, let S = {y1, . . . , y|S|} be the set of all soft literals. When |S|× (UB−1) ≤ 104,
the sequential SAT encoding [42] of the cardinality constraint ¬y1 + ¬y2 + · · ·+ ¬y|S| <UB
is added to the input instance before starting the search. MaxCDCL alternates LRB phases
and VSIDS phases for its search as MapleCOMSPS_LRB, using the LRB heuristic and
the VSIDS heuristic modified as in subsection 4.5, respectively. Each phase is limited to a
number of unit propagations specified by the parameter phaseLength, which is initialized to
2× 107 and is doubled every cycle of LRB phase and VSIDS phase. In the VSIDS phase, the
glucose restart strategy [7] is used; in the LRB phase, the Luby restart strategy [33] is used.

We plan to implement MaxCDCL on top of Kissat [13], the winner of the SAT2020
competition, which might further improve its performance.

5 Experimental Evaluation

We report on an experimental investigation to assess the performance of MaxCDCL. We
ran all experiments with Intel Xeon CPUs E5-2680@2.40GHz under Linux with 32GB of
memory, using the following benchmark sets, unless otherwise stated:

MSE19∪20: The union of all the instances used in the complete unweighted track of the
MaxSAT Evaluations (MSE) 2019 and 2020, a total of 1000 distinct instances.
MC: A subset of the Master Collection of instances from the MaxSAT evaluations held until
2019 2. It contains 16080 unweighted (partial) MaxSAT instances, classified into 51 families
and 76 subfamilies. MC includes all the instances of the 63 subfamilies having 100 instances
or less, and the first 100 instances as they occur in the natural order in each of the remaining
13 subfamilies, considering a total of 3614 instances. This selection provides a simple,
deterministic and objective criterion that does not favor any solver; and the experiments can
be easily reproduced. MC contains 726 instances that also belong to MSE19∪20.

The cutoff time is one hour (3600s) per instance as in the MaxSAT Evaluation. For
MaxCDCL and its variants, this includes 60 seconds to find a feasible upper bound UBf

with SatLike (version 3.0). Note that MaxCDCL and its variants do not start the search

1 The source code of MaxCDCL is available at https://home.mis.u-picardie.fr/~cli/EnglishPage.
html

2 https://www.cs.toronto.edu/maxsat-lib/maxsat-instances/master-set/unweighted/

CP 2021

https://home.mis.u-picardie.fr/~cli/EnglishPage.html
https://home.mis.u-picardie.fr/~cli/EnglishPage.html
https://www.cs.toronto.edu/maxsat-lib/maxsat-instances/master-set/unweighted/

38:12 Combining Clause Learning and Branch and Bound for MaxSAT

Table 1 Comparison of MaxCDCL with its variants for MSE19∪20 (left) and MC (right).

#solv avg
MaxCDCL\LA 505 255s
MaxCDCL\harden 664 281s
MaxCDCLalwaysLA 681 249s
MaxCDCLioLA 704 268s
MaxCDCL\VSIDSbyLA 724 268s
MaxCDCL 734 256s

#solv avg
2183 194s
2878 194s
2962 193s
2963 168s
3003 165s
3022 156s

from UB=UBf , but from UB=20, then 21, 22, . . . , until a feasible solution is found or 2i >

UBf . In the latter case, UB is set to UBf + 1. Then, UB is gradually decreased until no
better solution can be found (see Section 4.1).

The experiments are presented as follows. Firstly, we analyse the impact of the components
implemented in MaxCDCL. Secondly, we compare the performance of MaxCDCL with that
of the top 5 solvers in MSE2020. Thirdly, we show the complementarity of MaxCDCL with
the top 5 solvers by comparing the number of instances solved using a portfolio solver with
and without MaxCDCL. Finally, we compare MaxCDCL with a state-of-the-art BnB solver.

5.1 MaxCDCL Components
Table 1 compares MaxCDCL with the following variants:

MaxCDCL\LA. MaxCDCL without lookahead, i.e. the condition to lookahead is never
satisfied in line 3 of Algorithm 2. Note that after finding a feasible UB, MaxCDCL\LA
performs linear SAT-UNSAT search as a model-guided SAT-based MaxSAT solver.

MaxCDCL\harden. MaxCDCL without hardening (i.e., lines 17 and 18 in Algorithm 1 are
removed).

MaxCDCLalwaysLA. MaxCDCL that looks ahead at every branch, i.e., the condition to
lookahead is always satisfied in line 3 of Algorithm 2.

MaxCDCLioLA. MaxCDCL that, when detecting cores in lookahead, always propagates the
soft literals in the ordering as the corresponding soft clauses occur in the input instance.

MaxCDCL\VSIDSbyLA. MaxCDCL that does not increase the VSIDS score of the variables
contributing to a local core detected in lookahead as described in Subsection 4.5.

In Table 1, columns “#solv” give the number of solved instances and columns “avg” give
the mean time in seconds (including the 60s used by SatLike) needed to solve these instances.
These results indicate that a careful configuration combining clause learning and BnB is
crucial for the performance of MaxCDCL, including: hardening based on local core detection
and clause learning, the selective and adaptive application of lookahead and the ordering to
propagate the soft literals when detecting local cores, because the absence of any of these
components makes a significant number of instances out of reach of MaxCDCL. Without
this configuration, MaxCDCL\LA solves 229 instances less than MaxCDCL in MES19∪20
and 839 instances less than MaxCDCL in MC. Note that although the hardening of a soft
literal requires a distinct learnt clause, it does not increase the total memory usage, because
it allows to avoid many learnt clauses by reducing search space.

Recall that the most fundamental feature of MaxCDCL is the clause learning from soft
conflicts. We computed the average length of a clause learnt from a soft (hard) conflict for
each solved instance by MaxCDCL in MSE19∪20, and found that the median average length

C.-M. Li, Z. Xu, J. Coll, F. Manyà, D. Habet, and K. He 38:13

Table 2 Results for MSE19∪20 (left) and MC (right) with top 5 solvers.

#solv avg #uniq #win
MaxHS 769 177s 11 36
EvalMaxSAT 759 129s 1 43
UWrMaxSAT 745 128s 3 42
RC2-B 728 164s 0 62
Open-WBO 695 157s 3 71
MaxCDCL 734 256s 16 –

#solv avg #uniq #win
3037 85.5s 26 116
3002 69.7s 4 147
2969 51.6s 7 141
2948 70.1s 1 173
2906 89.7s 4 190
3022 156s 67 –

of a clause learnt from a soft (hard) conflict is 23.67 (19.2) among the 734 instances solved in
the set. Note that the learnt clause length averaged across the 734 instances does not make
sense because it is biased by few instances with very long learnt clause length.

In addition, the comparison of MaxCDCL with MaxCDCL\VSIDSbyLA suggests that the
VSIDS heuristic might be improved by lookahead, indicating a promising research direction.

To complete the subsection, we mention the impact of two other components of MaxCDCL:
(1) the local search by SatLike in preprocessing to compute a feasible UB allows MaxCDCL
to solve 8 more instances in MSE19∪20; (2) the sequential cardinality constraint encoding is
applied to about the 20% of the instances in MSE19∪20 for at least one UB, helping solve
39 extra instances in MSE from highly symmetric problems such as drmx-at-most-k.

5.2 Comparison with the top 5 Solvers in MSE2020
A total of 15 solvers competed in the complete unweighted track of MSE2020 [9]. We consider
the top 5 solvers: MaxHS (mhs in short), which is MHS-guided; EvalMaxSAT (eval in short),
RC2-B (rc2 in short) and open-wbo-res-mergesat-v2 (Open-WBO or owbo in short), which
are core-guided; and UWrMaxSAT (uwr in short), which combines both core-guided and
model-guided solving. We executed the versions used in MSE2020 in all the experiments.

Table 2 shows the results for MSE19∪20 and MC, respectively. Column “#uniq” has the
number of instances that were only solved by the solver in the row. Column “#win” has the
number of instances solved by MaxCDCL but not by the solver in the row.

We observe that MaxCDCL solves more instances than two top 5 solvers in MSE19∪20
and four top 5 solvers in MC. More importantly, MaxCDCL solves a significant number of
instances that other solvers cannot solve. For example, MaxCDCL solves 116 instances in MC
that MaxHS does not solve. If we consider all the solvers together, there is also a significant
number of instances solved by MaxCDCL that no other solver is able to solve: 16 instances
in MSE19∪20 and 67 instances in MC that mainly come from the subfamilies MaxClique,
MaxCut and UAQ. These results show that the existing MaxSAT solvers, especially the
model-guided and core-guided ones, are able to solve similar kinds of instances. Nevertheless,
MaxCDCL has the potential to solve new kinds of instances that are not solvable with the
current MaxSAT techniques. It is important to note that MaxCDCL is far from being as
optimized as the other solvers, which are the result of a process of continuous improvements
since more than ten years.

5.3 Combining MaxCDCL with existing solvers
Given two deterministic solvers X and Y and a time limit T to solve an NP-hard problem
such as MaxSAT, the simplest way to try to solve more instances than X and Y alone within
the time limit T is to combine X and Y by running X within the time limit T/2, and then
Y from scratch within the remaining time T/2 if the instance is not solved by X.

CP 2021

38:14 Combining Clause Learning and Branch and Bound for MaxSAT

Table 3 Results for MSE19∪20 (left) and MC (right). The entry in cell (X, Y) for X ̸= Y is the
number of instances solved by running solver X for 1800 seconds, and then solver Y from scratch
for 1800 seconds if the instance is not solved by X. The entry in cell (X, X) (in the diagonal in
grey) is the number of instances solved by running solver X for 1800 seconds. Column X in the last
row recalls the results of solver X with 3600 seconds. The best results are in bold.

m
hs

ev
al

uw
r

rc
2

ow
bo

m
cd

cl

mhs 747 777 777 770 763 785
eval 777 745 760 751 760 786
uwr 777 760 730 745 746 774
rc2 770 751 745 713 745 778
owbo 763 760 746 745 675 746
mcdcl 785 786 774 778 746 711
3600s 769 759 745 728 695 734

m
hs

ev
al

uw
r

rc
2

ow
bo

m
cd

cl

3009 3068 3073 3056 3049 3130
3068 2972 3019 2986 3013 3126
3073 3019 2951 3000 2998 3098
3056 2986 3000 2921 2981 3105
3049 3013 2998 2981 2865 3076

3130 3126 3098 3105 3076 2992
3037 3002 2969 2948 2906 3022

Table 3 shows the results of all possible pairwise combinations of the top 5 solvers and
MaxCDCL (mcdcl) in MSE2020 for T = 3600s. Each cell (X, Y) for X ̸= Y contains the
number of instances solved by running solver X for 1800s and then solver Y from scratch
for 1800s in MSE19∪20 (left) and MC (right). Each cell (X, X) (in the diagonal in grey)
contains the number of instances solved by X in 1800s. Column X in the last row recalls the
results of X with 3600 seconds. Combining any of the top 5 solvers with MaxCDCL solves
more instances than this solver and MaxCDCL alone within 3600s, while this is not always
true when combining two top 5 solvers. For example, combining MaxHS and Open-WBO
solves 763 instances in MSE19∪20 within 3600s, while MaxHS alone solves 769 instances
within 3600s. This shows that MaxCDCL is more complementary with the top 5 solvers
than other solvers.

More importantly, MaxCDCL combined with the top 2 solvers, MaxHS and EvalMaxSAT,
solves the highest numbers (785 and 786) of instances in MSE19∪20. This result is significantly
better than that of MaxHS or EvalMaxSAT alone, and the best combination without
MaxCDCL solves only 777 instances. The results are even more striking in MC, where the
worst combination of MaxCDCL with a top 5 solver is better than any other combination not
including MaxCDCL, and combining MaxHS and MaxCDCL gives the best results, solving
93 instances more than the previous best result achieved by MaxHS alone, and 57 instances
more than the best combination without MaxCDCL.

Figure 3 shows cactus plots comparing the best two combinations of solvers with Max-
CDCL, the best two combinations without MaxCDCL, as well as the best two mono-solvers,
for MSE19∪20 (left) and MC (right). Other solvers and combinations are excluded for
readability reasons. For any time T (0 < T ≤ 3600s), a curve gives the number of instances
solved by a mono-solver or a combination of two solvers within T , where the number of
instances solved by a combination X-Y of solvers X and Y within T is the number of instances
solved by running X for T/2, and then Y for T/2. The solving time of a combination X-Y of
solvers X and Y for an instance is twice the minimum solving time among X and Y . This
simulates a parallel execution of X and Y by alternating them in small time periods. The
plots clearly show the advantage of combining an existing solver with MaxCDCL, allowing
to solve the highest number of instances within 3600s, and the advantage becomes greater as
the running time is increased.

C.-M. Li, Z. Xu, J. Coll, F. Manyà, D. Habet, and K. He 38:15

 0

 600

 1200

 1800

 2400

 3000

 3600

 700 720 740 760 780 800

T
im

e
 i
n
 s

e
c
o
n
d
s

Number of instances solved

eval
mhs

mhs-uwr
mhs-eval

mhs-mcdcl
eval-mcdcl

 2800 2850 2900 2950 3000 3050 3100

Number of instances solved

mcdcl
mhs

mhs-eval
mhs-uwr

eval-mcdcl
mhs-mcdcl

Figure 3 Cactus plots of the best two combinations with MaxCDCL (mcdcl in short), the best
two without MaxCDCL, and the best two mono-solvers for MSE19∪20 (left) and MC (right). For
each point (N, T) in a curve for a mono-solver X, N is the number of instances solved by X in
T seconds; and for each point (N, T) in a curve for a combination X-Y of solvers X and Y , N

is the number of instances solved by running X for T/2 seconds followed by running Y for T/2
seconds. The names of the solvers and combinations are listed in the order of the highest points of
the corresponding curves from left to right for readability.

Table 4 Results for MSE16 and MSE19∪20.

ahmaxsat MaxCDCL
#ins #solv avg #solv avg #win

M
SE

16

ms_ran 454 259 744s 27 1535s 0
ms_craf 402 230 33.0s 47 324s 0
ms_in 55 0 - 37 413s 37
pms_ran 210 209 148s 141 772s 0
pms_craf 678 369 242s 645 126s 276
pms_in 601 183 515s 512 178s 330

MSE19∪20 1000 270 422s 734 256s 481

5.4 Comparison with a BnB Solver
We compare MaxCDCL with ahmaxsat, which was the best BnB solver in the last MaxSAT
evaluation (MSE2016) in which BnB solvers competed. We use the MSE2016 instances of
the categories MaxSAT (ms) and partial MaxSAT (pms). Each category has random (ran),
crafted (craf), and industrial (in) instances. Thus, we consider a total of 6 families.

The results are shown in Table 4, where the number of instances for each family is given
in column “#ins”. We observe that ahmaxsat solves more random and non-partial crafted
instances. A learnt clause for these instances with randomness and limited size usually
contains most of the variables of the instances and is hardly useful. So, the higher use of
lower bounding methods and the lack of clause learning in ahmaxsat are adequate for them,
and the higher use of lower bounding methods (like in MaxCDCLalwaysLA) does not improve
MaxCDCL for them because of clause learning. However, ahmaxsat has poor performance
on other instances. Instead, MaxCDCL solves a much higher number of such instances.

6 Conclusion

We described MaxCDCL, a MaxSAT solver that combines, for the first time to the best of
our knowledge, branch and bound and clause learning. The main differences of MaxCDCL
with existing SAT-based MaxSAT solvers are the following:

CP 2021

38:16 Combining Clause Learning and Branch and Bound for MaxSAT

SAT-based MaxSAT solvers use a CDCL SAT solver as a black box and do not interfere
in the internal operations of the SAT solver when solving an instance, while MaxCDCL
itself can be considered a SAT solver extended to handle soft conflicts.
Both MaxCDCL and model-guided MaxSAT solvers have an upper bound UB−1 of
the number of soft clauses that can be falsified. The difference lies in how to exploit
this UB. Let falseS denote the set of already falsified soft clauses. On the one hand,
model-guided MaxSAT solvers call a SAT solver after encoding UB into CNF. If no hard
clause is falsified, the SAT solver backtracks only after |falseS| ≥ UB, because no clause
encoding UB is falsified if |falseS| < UB. On the other hand, MaxCDCL computes a
lower bound LB of the number of soft clauses that will be falsified (but not yet falsified),
and backtracks as soon as LB+|falseS| ≥ UB. Thus, MaxCDCL is able to backtrack
much earlier than model-guided MaxSAT solvers.
MaxCDCL, core-guided or MHS-guided MaxSAT solvers all identify cores. However, a
core-guided or MHS-guided MaxSAT solver only identifies global cores (i.e., the cores
that do not depend on any partial assignment) in order to relax them, while MaxCDCL
detects local cores by using UP under a partial assignment to derive a soft conflict for
learning a clause and backtracking early. Note that identifying a global core is NP-hard,
while detecting a local core by applying UP is polynomial.

The extensive experimentation conducted shows that MaxCDCL is ranked among the top
5 exact MaxSAT solvers in the 2020 MaxSAT evaluation. Furthermore, it solves a significant
number of instances that other solvers cannot solve, suggesting that combining branch and
bound and clause learning has the potential to solve new kinds of instances that are not
solvable with current MaxSAT techniques. More importantly, combining MaxCDCL with
the existing solvers allows to solve the highest number of MaxSAT instances.

Detailed analyses indicate that the performance of MaxCDCL comes from a careful
configuration combining clause learning and BnB, including hardening based on local core
detection and clause learning, the selective and adaptive application of lookahead, and the
ordering to propagate the soft literals when detecting local cores.

We believe that the proposed approach opens new and promising research directions,
including for example: (1) improving the quality of the clauses learnt from soft conflicts by
designing new soft literal orderings in lookahead; (2) exploiting the relationship of SAT and
MaxSAT for improving SAT and MaxSAT solving; (3) adapting the approach of MaxCDCL to
other problems such as pseudo-Boolean optimization and Max-CSP; (4) extending MaxCDCL
to weighted MaxSAT, in which each soft clause is weighted. In the extension of MaxCDCL
to weighted MaxSAT, each soft clause is represented by a weighted soft literal. A local core
detected by lookahead is weighted by the minimum soft literal weight it contains, and other
weights are split to be used in other core detections. When the total weight of all detected
local cores reaches UB, a soft conflict is discovered. The challenge here is that there can
be more local cores to detect than in the unweighted case. Thus, the clause learnt from a
soft conflict can be longer. Special strategies in clause and soft literal ordering should be
designed to learn shorter clauses from soft conflicts.

References
1 André Abramé and Djamal Habet. Ahmaxsat: Description and evaluation of a branch and

bound Max-SAT solver. J. Satisf. Boolean Model. Comput., 9:89–128, 2014.
2 André Abramé and Djamal Habet. Learning nobetter clauses in Max-SAT branch and bound

solvers. In Proceedings of ICTAI 2016, pages 452–459, 2016.

C.-M. Li, Z. Xu, J. Coll, F. Manyà, D. Habet, and K. He 38:17

3 Carlos Ansótegui, María Luisa Bonet, and Jordi Levy. Solving (Weighted) Partial MaxSAT
through satisfiability testing. In Proceedings of SAT 2009, pages 427–440. Springer LNCS
5584, 2009.

4 Carlos Ansótegui, María Luisa Bonet, and Jordi Levy. A new algorithm for weighted partial
MaxSAT. In Proceedings AAAI 2010, pages 3–8, 2010.

5 Carlos Ansótegui, Maria Luisa Bonet, and Jordi Levy. SAT-based MaxSAT algorithms.
Artificial Intelligence, 196:77–105, 2013.

6 Carlos Ansótegui and Joel Gabàs. WPM3: An (in)complete algorithm for Weighted Partial
MaxSAT. Artificial Intelligence, 250:37–57, 2017.

7 Gilles Audemard and Laurent Simon. Predicting learnt clauses quality in modern SAT solvers.
In Proceedings IJCAI 2009, pages 399–404, 2009.

8 Fahiem Bacchus. MaxHS in the 2020 MaxSAT Evaluation. In MaxSAT Evaluation 2020:
Solver and Benchmark Descriptions, pages 19–20, 2020.

9 Fahiem Bacchus, Jeremias Berg, Matti Järvisalo, and Ruben Martins. MaxSAT Evaluation
2020: Solver and benchmark descriptions, 2020.

10 Fahiem Bacchus, Antti Hyttinen, Matti Järvisalo, and Paul Saikko. Reduced cost fixing in
MaxSAT. In Proceedings of CP 2017, Springer LNCS, pages 641–651, 2017.

11 Fahiem Bacchus, Matti Järvisalo, and Martins Ruben. Maximum satisfiability. In Handbook
of satisfiability, second edition, pages 929–991. IOS Press, 2021.

12 Daniel Le Berre and Anne Parrain. The Sat4j library, release 2.2. J. Satisf. Boolean Model.
Comput., 7(2-3):59–6, 2010.

13 Armin Biere, Katalin Fazekas, Mathias Fleury, and Maximilian Heisinger. CaDiCaL, Kissat,
Paracooba, Plingeling and Treengeling entering the SAT Competition 2020. In Proceedings of
SAT Competition 2020: Solver and Benchmark Descriptions, page 50, 2020.

14 Mohamed Sami Cherif, Djamal Habet, and André Abramé. Understanding the power of
Max-SAT resolution through UP-resilience. Artificial Intelligence, 289:103397, 2020.

15 Jessica Davies and Fahiem Bacchus. Solving MAXSAT by solving a sequence of simpler SAT
instances. In Proceedings of CP 2011, page 225–239. Springer, 2011.

16 Jessica Davies and Fahiem Bacchus. Exploiting the power of MIP solvers in MAXSAT. In
Proceedings of SAT 2013, pages 166–181. Springer, 2013.

17 Jo Devriendt, Ambros Gleixner, and Jakob Nordström. Learn to relax: Integrating 0-1 integer
linear programming with pseudo-boolean conflict-driven search. Constraints, pages 1–30, 2021.

18 Nick Feng and Fahiem Bacchus. Clause size reduction with all-uip learning. In Proceedings of
SAT 2020, Springer LNCS 12178, pages 28–45, 2020.

19 Graeme Gange, Jeremias Berg, Emir Demirović, and Peter J Stuckey. Core-guided and
core-boosted search for CP. In Proceedings of CPAIOR 2020, pages 205–221, 2020.

20 Federico Heras, Javier Larrosa, and Albert Oliveras. MiniMaxSAT: An efficient Weighted
Max-SAT solver. Journal of Artificial Intelligence Research, 31:1–32, 2008.

21 Alexey Ignatiev, António Morgado, and João Marques-Silva. RC2: an efficient maxsat solver.
J. Satisf. Boolean Model. Comput., 11(1):53–64, 2019.

22 Stepan Kochemazov. Improving implementation of SAT competitions 2017–2019 winners. In
Proceedings of SAT 2020, LNCS 12178, pages 139–148, 2020.

23 Miyuki Koshimura, Tong Zhang, Hiroshi Fujita, and Ryuzo Hasegawa. QMaxSAT: A Partial
Max-SAT solver. J. Satisf. Boolean Model. Comput., 8(1/2):95–100, 2012.

24 Adrian Kuegel. Improved exact solver for the Weighted MAX-SAT problem. In Proceedings of
Workshop Pragmatics of SAT, POS-10, Edinburgh, UK, pages 15–27, 2010.

25 Zhendong Lei and Shaowei Cai. Solving (Weighted) Partial MaxSAT by dynamic local search
for SAT. In Proceedings of IJCAI 2018, pages 1346–1352, 2018.

26 Chu Min Li and Felip Manyà. MaxSAT, hard and soft constraints. In Handbook of satisfiability,
second edition, pages 903–927. IOS Press, 2021.

27 Chu Min Li, Felip Manya, Nouredine Ould Mohamedou, and Jordi Planes. Resolution-based
lower bounds in MaxSAT. Constraints, 15(4):456–484, 2010.

CP 2021

38:18 Combining Clause Learning and Branch and Bound for MaxSAT

28 Chu Min Li, Felip Manya, and Jordi Planes. Exploiting unit propagation to compute lower
bounds in branch and bound Max-SAT solvers. In Proceedings of CP 2005, pages 403–414.
Springer, 2005.

29 Chu Min Li, Felip Manya, and Jordi Planes. Detecting disjoint inconsistent subformulas for
computing lower bounds for Max-SAT. In Proceedings of AAAI 2006, pages 86–91, 2006.

30 Chu Min Li, Felip Manyà, and Jordi Planes. New inference rules for Max-SAT. Journal of
Artificial Intelligence Research, 30:321–359, 2007.

31 Chu-Min Li, Fan Xiao, Mao Luo, Felip Manyà, Zhipeng Lü, and Yu Li. Clause vivification by
unit propagation in CDCL SAT solvers. Artificial Intelligence, 279, 2020.

32 Jia Hui Liang, Chanseok Oh, Vijay Ganesh, Krzysztof Czarnecki, and Pascal Poupart. Maple-
COMSPS, MapleCOMSPS LRB, MapleCOMSPS CHB. In Proceedings of SAT Competition
2016: Solver and Benchmark Descriptions, pages 52–53, 2016.

33 Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of Las Vegas
algorithms. Information Processing Letters, 47(4):173–180, 1993.

34 Mao Luo, Chu-Min Li, Fan Xiao, Felip Manyà, and Zhipeng Lü. An effective learnt clause
minimization approach for CDCL SAT solvers. In Proceedings of IJCAI 2017, pages 703–711,
2017.

35 Vasco M. Manquinho, Joao Marques-Silva, and Jordi Planes. Algorithms for weighted Boolean
optimization. In Proceedings of SAT 2009, pages 495–508. Springer LNCS 5584, 2009.

36 Joao Marques-Silva and Vasco M. Manquinho. Towards more effective unsatisfiability-based
maximum satisfiability algorithms. In Proceedings of SAT 2008, pages 225–230. Springer
LNCS 4996, 2008.

37 Ruben Martins, Vasco M. Manquinho, and Inês Lynce. Open-WBO: A modular MaxSAT
solver. In Proceedings of SAT 2014, volume 8561 of LNCS, pages 438–445. Springer, 2014.

38 Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.
Chaff: Engineering an efficient SAT solver. In Proceedings of DAC 2001, pages 530–535. ACM,
2001.

39 Nina Narodytska and Fahiem Bacchus. Maximum satisfiability using core-guided MaxSAT
resolution. In Proceedings of AAAI 2014, pages 2717–2723, 2014.

40 Tobias Paxian and Bernd Becker. Pacose: An iterative SAT-based MaxSAT solver. In MaxSAT
Evaluation 2020: Solver and Benchmark Descriptions, page 12, 2020.

41 Paul Saikko, Jeremias Berg, and Matti Järvisalo. LMHS: A SAT-IP hybrid MaxSAT solver.
In Proceedings of SAT 2016, volume 9710 of LNCS, pages 539–546, 2016.

42 Carsten Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In
Proceedings of CP 2005, pages 827–831. Springer LNCS 3709, 2005.

43 Fulya Trösser, Simon De Givry, and George Katsirelos. Relaxation-aware heuristics for exact
optimization in graphical models. In Prodeedings of CPAIOR 2020, pages 475–491. Springer,
2020.

44 Aolong Zha. QMaxSAT in MaxSAT Evaluation 2018. In Proceedings of the MaxSAT Evaluation
2020, page 16, 2020.

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 MaxCDCL: A BnB Algorithm Using CDCL for MaxSAT
	4.1 General Structure of MaxCDCL
	4.2 Combining Lookahead and Clause Learning
	4.3 A Probing Strategy for Lookahead
	4.4 Soft literal ordering in lookahead
	4.5 Improving the VSIDS heuristic by lookahead
	4.6 Implementation of MaxCDCL

	5 Experimental Evaluation
	5.1 MaxCDCL Components
	5.2 Comparison with the top 5 Solvers in MSE2020
	5.3 Combining MaxCDCL with existing solvers
	5.4 Comparison with a BnB Solver

	6 Conclusion

