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Abstract
Decision trees are a popular classification model in machine learning due to their interpretability and
performance. Traditionally, decision-tree classifiers are constructed using greedy heuristic algorithms,
however these algorithms do not provide guarantees on the quality of the resultant trees. Instead, a
recent line of work has studied the use of exact optimization approaches for constructing optimal
decision trees. Most of the recent approaches that employ exact optimization are designed for
datasets with binary features. While numeric and categorical features can be transformed to binary
features, this transformation can introduce a large number of binary features and may not be
efficient in practice. In this work, we present a novel SAT-based encoding for decision trees that
supports non-binary features and demonstrate how it can be used to solve two well-studied variants
of the optimal decision tree problem. We perform an extensive empirical analysis that shows our
approach obtains superior performance and is often an order of magnitude faster than the current
state-of-the-art exact techniques on non-binary datasets.
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1 Introduction

Classification models assign class labels to data observations. Learning classification models
from a set of training examples is a key task in supervised machine learning. Decision
trees are among the most popular classification models in machine learning as they provide
interpretable models and tend to have good performance.

Traditionally, decision-tree classifiers are constructed using greedy heuristic algorithms,
such as CART [9], ID3 [21], and C4.5 [22]. However, these algorithms do not provide
guarantees on the quality of the resultant trees, which can therefore be unnecessarily large
or potentially inaccurate [4]. Alternatively, learning a globally optimal decision-tree classifier
was shown to be NP-complete for several optimization criteria [17, 14]. Still, in recent years a
variety of exact techniques have been proposed to solve the problem of optimal decision-tree
classifiers. One class of techniques focuses on optimizing decision tree size (either the depth
of the tree or the number of nodes in the tree) such that all training examples are correctly
classified [3, 7, 18]. Another class of techniques, instead, focuses on maximizing the number
of correctly classified training examples, while constraining the maximal depth of the decision
tree [24, 23, 2, 15, 6]. Recent works found that optimal decision-tree classifiers tend to have
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higher out-of-sample accuracy than heuristic approaches [16, 3, 13, 6]. Furthermore, many
of the recent approaches for optimal decision trees can be extended to support additional
constraints that the resulting trees must satisfy, such as fairness constraints [1].

Many of the recent state-of-the-art approaches are designed for datasets with binary
features [3, 24, 18, 15, 23], and some are further limited to binary class labels (i.e., classification
with only two classes) [18, 15]. However, in practice, most real-world datasets contain
categorical and numeric features. In order to perform classification in datasets with categorical
and numeric features, these approaches convert any non-binary feature into a set of binary
features using standard techniques (see discussions in [3, 24]). This conversion often introduces
a large number of binary features and may lead to poor performance.

In this work, we present and empirically evaluate a novel approach for learning optimal
decision-tree classifiers that can directly handle non-binary features without converting them
into binary features. Specifically, we make the following contributions:
1. We present a novel SAT encoding of decision trees that directly supports numeric features

and use this encoding to solve two well-known optimization problems in classification
tasks: (1) finding a minimum-depth decision tree that correctly classifies all training
examples; and (2) finding a decision tree of a given depth that maximizes the number of
correctly classified training examples.

2. We present an extension of our SAT encoding that directly supports categorical features
based on power set branching and show, theoretically and empirically, that the new
encoding is more expressive and can lead to decision trees with better solution quality
w.r.t. the two studied optimization problems.

3. We perform extensive experimental analysis and show that our encoding significantly
outperforms recent state-of-the-art techniques on datasets with non-binary features for
each of the studied optimization problems.

2 Technical Background

2.1 Problem Definition
In Section 2.1.1 we formally define the decision trees considered in this work and in Sec-
tion 2.1.2 we define the two optimization problems we consider for learning optimal decision
trees.

2.1.1 Decision Trees
We start by defining the tree structure of a decision tree. Then, we define the depth of the
tree based on the deepest leaf node and the special case of complete tree.

▶ Definition 1 (Tree Structure). A tree structure T is a tuple (TB , TL, δ, p, l, r) where TB

and TL are finite sets respectively representing the branching and leaf nodes, δ ∈ TB is the
root node, p : (TB ∪ TL − {δ}) → TB is the parent function, and l, r : TB → (TB ∪ TL) are
respectively the left and right child functions. A well-formed tree structure is one with the
property ∀x, y : p(y) = x ↔ (l(x) = y ∨ r(x) = y).1

▶ Definition 2 (Tree Depth). Given a tree structure T = (TB , TL, δ, p, l, r), we recursively
define the depth of each node t ∈ TB ∪ TL as depth(t) = depth(p(t)) + 1 with depth(δ) = 0.
The depth of the tree structure is defined to be the maximum depth among its leaf nodes,
depth(T ) = maxt∈TL

depth(t).

1 Note that well-formedness guarantees the absence of loops in parental relations.
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▶ Definition 3 (Complete Tree). A tree structure T = (TB , TL, δ, p, l, r) is considered complete
if all the leaf nodes have the same depth, i.e., ∀t1, t2 ∈ TL : depth(t1) = depth(t2).

Next, we formally define decision trees and describe how to perform prediction using such
decision trees.

▶ Definition 4 (Decision Tree). Given a set of features F and integer labels C, a decision
tree is a tuple D = (T , β, α, θ) where T = (TB , TL, δ, p, l, r) is a tree structure, β : TB → F

is the feature selection function, α : TB → dom(F ) is the threshold selection function, and
θ : TL → C is the leaf labelling function. A well-formed decision tree satisfies ∀t ∈ TB :
α(t) ∈ dom(β(t)). Note that dom(j) represents the set of possible values for feature j ∈ F

and dom(F ) =
⋃

j∈F dom(j).

An evaluation of a set of features F is called a data point x. For each j ∈ F , x[j] ∈ dom(j)
represents the value of feature j at point x. A dataset usually referred to as X, contains a
finite set of data points xi ∈ X for training or testing purposes.

A decision tree D = (T , β, α, θ) predicts the label of a given point xi by starting from
the root and recursively delivering the point to the left or right child until a leaf node is
reached. The label of the leaf node is the output. The recursive predict function Θ(t, xi) on
node t ∈ TB ∪ TL and point xi ∈ X is defined as follows:

Θ(t, xi) =


θ(t) if t ∈ TL

Θ(l(t), xi) elseif xi[β(t)] ≤ α(t)
Θ(r(t), xi) else

The prediction of decision tree D for data point x′ ∈ X can be obtained by Θ(δ, x′) where δ

is the root node of the decision tree. We use the simplified notation Θ(x′) to denote Θ(δ, x′).
Given a labelled dataset, i.e., a dataset in which the correct class label for each data

point is provided, we can measure the accuracy of a decision tree on the dataset with respect
to the provided labels.

▶ Definition 5 (Decision Tree Accuracy). Given a set of features F and integer labels C, a
set of training examples xi ∈ X, and a labelling γ : X → C, the accuracy of decision tree
D = (T , β, α, θ) on X is the fraction of data points in X that are correctly classified with
respect to the labelling γ,∑

xi∈X 1[Θ(xi) = γ(xi)]
|X|

,

where 1 is the indicator function.

2.1.2 Learning Optimal Decision Trees
We consider two problems representing two different optimization criteria for optimal decision
tree. Problem 1 consists of finding a decision tree with minimum depth such that all the
training examples are correctly classified. This problem is consistent with Avellaneda [3].

▶ Problem 1 (Min-Depth Optimal Decision Tree). Given set of features F and integer labels
C, a set of training examples xi ∈ X, and a labelling γ : X → C, output a decision tree
D = (T , β, α, θ) such that T is a minimum depth complete tree and D correctly classifies all
training examples, i.e., Θ(xi) = γ(xi) ∀xi ∈ X.

CP 2021
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Problem 2 consists of finding a decision tree that maximizes the number of training
examples that are correctly classified subject to a constraint on the tree depth. This problem
is consistent with the problems considered in a variety of recent works, e.g., in [15, 23, 2].

▶ Problem 2 (Max-Accuracy Optimal Decision Tree). Given a set of features F and integer
labels C, a set of training examples xi ∈ X, a labelling γ : X → C, and a chosen depth d,
output a decision tree D = (T , β, α, θ) such that T is a complete tree of the chosen depth,
depth(T ) = d, and D maximizes the number of training examples that are correctly classified,
i.e.,

∑
xi∈X 1[Θ(xi) = γ(xi)] where 1 is the indicator function.2

2.2 SAT and MaxSAT
SAT formulae are represented in Conjunctive Normal Form (CNF) and are defined over a set
of Boolean variables. A SAT formula is a conjunction of clauses, each clause is a disjunction
of literals, and each literal is either a Boolean variable or its negation. An assignment of the
Boolean variables satisfies a clause if at least one of its literals is true. The SAT problem
consists of finding an assignment of the variables that satisfies all clauses in a formula [8].

The MaxSAT problem is the optimization variant of the SAT problem and consists of
finding an assignment of the variables that maximizes the number of satisfied clauses. Partial
MaxSAT [12] is a generalization of the MaxSAT problem where the set of clauses consists of
hard clauses that must be satisfied and soft clauses that can be violated.

3 SAT-based Encoding for Learning Optimal Decision Trees

In this section, we present our SAT-based approach for optimal decision trees. In Section 3.1,
we present the core encoding for decision trees that can be used to solve the two optimization
problems considered in this work. In Section 3.2, we present a SAT-based approach for
solving the min-depth problem (Problem 1) by searching for increasingly deeper decision
trees that can correctly classify all training examples. In Section 3.3, we present a partial
MaxSAT encoding of the max-accuracy problem (Problem 2).

3.1 Encoding Decision Trees
We propose a SAT encoding of a decision tree, D = (T , β, α, θ). Similar to previous works
(e.g., [3, 23]), our encoding assumes a tree structure T (typically a complete tree of some
depth d), and decides on the values of β, α, and θ. When the depth of the tree is unknown
in advance (e.g., in the min-depth optimal decision tree problem) we can solve a sequence of
problems for trees of increasing depth as described in Section 3.2.

3.1.1 Variables
The following binary variables are used to represent the different aspects of a decision tree:

[at,j ]: Represents whether feature j is chosen for the split at branching node t.
[si,t]: Represents whether point i is directed towards the left child, if it passes through
branching node t.
[zi,t]: Represents whether point i ends up at leaf node t.
[gt,c]: Represents whether label c is assigned to leaf node t.

2 Note that since |X| is fixed, maximizing the number of correctly classified training examples is identical
to maximizing the accuracy in Definition (5).



P. Shati, E. Cohen, and S. McIlraith 50:5

3.1.2 Clauses
The following set of hard clauses in conjunctive normal form guarantee the validity of the
recursion in the modelled decision tree, and can consequently be used as the core encoding
for both of the optimization problems we consider.

The clauses in Eq. (1) and Eq. (2) guarantee that exactly one feature is chosen at each
branching node t ∈ TB .

(¬at,j , ¬at,j′) t ∈ TB , j ̸= j′ ∈ F (1)

(
∨

j∈F

at,j) t ∈ TB (2)

For each branching node t ∈ TB , we need to make sure that all the data points for which
the feature value is less than or equal to the feature threshold are directed left and all the
data points for which the feature value is greater than the threshold are directed right. We
use #i

j to denote the index of the i’th data point in X when sorted by feature j in ascending
order, assuming ties are broken arbitrarily, and define Oj to be the set of all consecutive
pairs in this ordering, i.e., Oj = {(#i

j , #i+1
j ) | 1 ≤ i ≤ |X|−1}. Then, the clauses in Eq. (3)

guarantee that there are no two points with different feature values where the one with the
higher value is directed left while the one with the lower value is directed right. The clauses
in Eq. (4), together with the clauses in Eq. (3), guarantee that points with equal values are
directed in a similar manner.

(¬at,j , si,t, ¬si′,t) t ∈ TB , j ∈ F, (i, i′) ∈ Oj(X) (3)
(¬at,j , ¬si,t, si′,t) t ∈ TB , j ∈ F, (i, i′) ∈ Oj(X), xi[j] = xi′ [j] (4)

For each data point xi, we need to guarantee the validity of its path in the decision tree.
We use Al(t) (resp. Ar(t)) to denote all the ancestors of a leaf node t ∈ TL such that t is a
descendant of their left (resp. right) branch. The clauses in Eq. (5) and Eq. (6) guarantee
that each data point that ends up at a leaf node follows the corresponding path. In contrast,
the clauses in Eq. (7) guarantee that each data point that does not end up in leaf node
t ∈ TL has at least one deviation from the corresponding path

(¬zi,t, si,t′) t ∈ TL, xi ∈ X, t′ ∈ Al(t) (5)
(¬zi,t, ¬si,t′) t ∈ TL, xi ∈ X, t′ ∈ Ar(t) (6)

(zi,t,
∨

t′∈Al(t)

¬si,t′ ,
∨

t′∈Ar(t)

si,t′) t ∈ TL, xi ∈ X (7)

The clauses in Eq. (8) guarantee that each leaf node is assigned at most one label. Note
that we do not include constraints that prevent leaves with no label. The optimization
criteria discussed in Sections 3.2 and 3.3 guarantee that in optimal solutions, all leaves that
have corresponding training examples will be assigned a label. Leaf nodes that do not have
any corresponding training examples will be assigned an arbitrary label post-optimization in
order to maintain a valid decision tree.

(¬gt,c, ¬gt,c′) t ∈ TL, c ̸= c′ ∈ C (8)

Finally, we add redundant constraints that help prune the search space. For each
branching node, the clauses in Eq. (9) guarantee that the data point with the lowest feature
value is directed left and the clauses in Eq. (10) guarantee that the data point with the
highest feature value is directed right.

(¬at,j , s#1
j
,t) t ∈ TB , j ∈ F (9)

(¬at,j , ¬s#|X|
j

,t
) t ∈ TB , j ∈ F (10)
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3.1.3 Decoding Decision Trees from Solutions
Assuming a solution to the SAT encoding above, i.e., an assignment of the variables at,j ,
si,t, zi,t, and gt,c that satisfy the clauses in Section 3.1.2, we now describe how to extract
the decision tree D = (T , β, α, θ). Decoding β is done by setting β(t) = j if the variable at,j

is true. Similarly, decoding θ is done by setting θ(t) = c if the variable gt,c is true. Note
that these procedures are valid since we are guaranteed that at,j and gt,c are unique for each
node, i.e., ∀t ∈ TB :

∑
j∈F at,j = 1 and ∀t ∈ TL :

∑
c∈C gt,c = 1.

Since our SAT encoding does not explicitly compute the threshold for each node, to
decode α we have to choose a threshold based on the direction of the data points in each
branching node. For a branching node t ∈ TB with β(t) = j, we set α(t) = xi[j] where
(i, i′) ∈ Oj(X) are consecutive data points according to the ordering of feature j such that
si,t is true and si′,t is false. Intuitively, this rule uses the largest value directed left as the
feature threshold for the node t.

3.2 Encoding the Min-Depth Optimal Decision Tree Problem
To find a minimum depth decision tree such that all training examples are correctly classified,
we add the following clauses to the core decision tree encoding described above:

(¬zi,t, gt,γ(xi)) t ∈ TL, xi ∈ X (11)

The clauses in Eq. (11) guarantee that the class labels assigned to leaf nodes are consistent
with the training set labels of the corresponding data points. If a data point xi ends in leaf
node t ∈ TL then the assigned label of t must match the training label γ(xi).

In order to guarantee that we find the minimum depth decision tree, we follow the
technique in [3]. We start by solving the SAT formula for a tree structure T of depth 1 and
in each iteration increase the depth by 1 until a solution is found. This guarantees that when
the SAT solver finds a solution, the obtained decision tree has a minimum depth subject to
the constraint that all training examples must be classified correctly.

3.3 Encoding the Max-Accuracy Optimal Decision Tree Problem
To find a decision tree of a given depth that maximizes the number of correctly classified
training examples, we introduce the following variables to keep track of training examples
that are correctly classified:

[pi]: Represents whether point xi is correctly classified, i.e., xi ends up in a leaf node
with the label γ(xi).

We use a partial MaxSAT model that includes both hard and soft clauses. We use all the
clauses from our core decision tree encoding in Section 3.1 as hard clauses. We also add the
hard clauses in Eq. (12) that guarantee pi is set to true only when xi ends up in a leaf node
whose label is consistent with the training label.

(¬pi, ¬zi,t, gt,γ(xi)) t ∈ TL, xi ∈ X (12)

In order to maximize the number of correctly classified training examples, we add a soft
clause for each data point, that is satisfied whenever the point is correctly classified.

(pi) xi ∈ X (13)

Therefore, the optimal solution for this partial MaxSAT model is a decision tree that
maximizes the number of correctly classified training examples.
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4 Extending Optimal Decision Trees for Categorical Features

Categorical features are features that take their value from a set of values representing
different categories that do not induce a natural ordering.3 For example, in a dataset of
financial transactions we can have a feature that describes the type of transaction from a set
of known transaction types. In order to deal with a categorical feature with K categories,
one can convert the feature to K binary features representing a one-hot encoding of the
original categorical feature. However, this can lead to unnecessarily deep decision trees as
splits may be required for many categories.

In this section, we show that we can easily extend our approach to generate decision
trees that support branching on categorical features directly. We employ power set branching
in which a selected subset of the categories is assigned to the left branch while the subset
that contains the rest of the categories is assigned to the right branch. For the min-depth
optimal decision tree problem, such extension can lead to decision trees of smaller depth that
can potentially be found earlier. For the max-accuracy optimal decision tree problem, such
extension can allow more flexible trees that achieve higher accuracy for the same depth.

▶ Example 1. To demonstrate the potential benefit of power set branching, consider a
simplified dataset of transactions that can either be approved or denied. Each transaction has
one categorical feature describing the transaction type with the categories {A, B, C, D, E, F}.
Transaction with types A, D, and F are approved, while transactions with types B, C, and
E are denied. Figure 1 (left) shows a standard decision tree where the categorical feature
was converted to six binary features representing a one-hot encoding of the original feature.
Figure 1 (right) shows the extended variant of decision trees where we can branch directly
on categorical features by assigning a subset of the categories to each branch. The standard
decision tree requires branching, in sequence, on multiple different categories leading to a tree
with a minimum depth of 3. In contrast, the extended decision tree that supports branching
on categorical features has a depth of 1.

Figure 1 Left: a standard decision tree for the example dataset. Right: a decision tree with
power set branching for categorical features.

4.1 Decision Trees with Power Set Branching for Categorical Features
We assume a set of features F that includes categorical features FC and numeric features
FN such that F = FC ∪ FN . In order to support power set branching, we augment the
decision tree with a category subset selector αC , DC = (T , β, α, αC , θ). We denote the set of
branching nodes associated with numeric features ΠN = {t ∈ TB | β(t) ∈ FN } and similarly
define ΠC the set of branching nodes associated with categorical features. We use α as a

3 Some categorical features induce a natural ordering and can therefore be represented as numeric features.
For example a categorical feature with the categories {Low, Medium, High} can be transformed to a
numeric feature with the values {1, 2, 3}.
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threshold selector for branching nodes with numeric features, α : ΠN → dom(FN ), and αC

that selects a subset of categories for branching nodes with categorical feature from the
corresponding power set αC : ΠC → 2dom(FC).4

Intuitively, αC provides the subset of categories for which data points should be directed
left. To predict the label of a given point xi we use the recursive ΘC as follows:

ΘC(t, xi) =


θ(t) if t ∈ TL

ΘC(l(t), xi) elseif (t ∈ ΠN ∧ xi[β(t)] ≤ α(t)) ∨ (t ∈ ΠC ∧ xi[β(t)] ∈ αC(t))
ΘC(r(t), xi) else

Decision trees with power set branching are more expressive than decision trees that use
a binarized encoding of these categorical features. Specificially, each decision tree that uses
binary branching for categorical features can be transformed into a decision tree with power
set branching with identical predictions.

▶ Proposition 1. Given a decision tree D = (T , β, α, θ) operating on a set of features
bin(F ), there exists a decision tree with power set branching on the same structure D′

C =
(T , β′, α, α′

C , θ) operating on the set of features F such that

∀xi : ΘC(xi) = Θ(bin(xi))

where bin(F ) is F with its categorical features encoded using binary features in one-hot style
and bin(xi) is xi with its values encoded according to the binarized features set bin(F ).

The above proposition is correct since each branching node in the decision tree D
associated with a binary feature that correspond to one category c in the categorical feature
j ∈ FC can be replaced in D′ with a node that branches directly on the feature j and directs
the subset of categories {c} to the right and the subset that contains the rest of the categories
to the left. Proposition 1 implies the following corollaries on the solution-quality guarantees
of power set branching w.r.t each of the optimization problems.

▶ Corollary 6. Given an instance of Problem 1, the minimum depth found for a decision tree
with power set branching is always equal to or less than that of a decision tree with branching
based on binarized encoding of categorical features.

▶ Corollary 7. Given an instance of Problem 2, the maximum accuracy found for a decision
tree with power set branching is always equal to or more than that of a decision tree with
branching based on binarized encoding of categorical features.

4.2 SAT-based Encoding of Decision Trees with Power Set Branching
Interestingly, the proposed extension involves only minor changes to the decision tree encoding
in Section 3.1. Eq. (14)–(24) show the modified encoding with the changes highlighted in
blue. The clauses in Eq. (16) guarantee that data points where the feature value is less or
equal to the feature threshold are directed left and vice versa. As this does not apply to
categorical features, we restrict Eq. (16) to numeric features. Instead, we add Eq. (18) that,
together with the existing Eq. (17), guarantees that data points with the same category are
directed in the same direction. Finally, for numeric features we used redundant constraints

4 Similar to α, a well-formedness condition on αC would dictate that ∀t ∈ ΠC : αC(t) ⊆ dom(β(t)).
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that guarantee the lowest feature value is directed left and the highest feature value is directed
right. For categorical features we do not have such ordering over categories and instead we
simply use the clauses in Eq. (23) to make sure that some arbitrary category is chosen to be
directed left (in categorical features, #j represents an arbitrary ordering over the category
values of feature j) and we modify Eq. (24) such that no specific category is forced to go
right.5 Note that unlike previous work that focused on categorical features [13], our approach
directly encodes optimal decision trees with both numeric and categorical features.

(¬at,j , ¬at,j′) t ∈ TB , j ̸= j′ ∈ F (14)

(
∨

j∈F

at,j) t ∈ TB (15)

(¬at,j , si,t, ¬si′,t) t ∈ TB , j ∈ FN , (i, i′) ∈ Oj(X) (16)
(¬at,j , ¬si,t, si′,t) t ∈ TB , j ∈ F, (i, i′) ∈ Oj(X), xi[j] = xi′ [j] (17)
(¬at,j , si,t, ¬si′,t) t ∈ TB , j ∈ FC , (i, i′) ∈ Oj(X), xi[j] = xi′ [j] (18)
(¬zi,t, si,t′) t ∈ TL, xi ∈ X, t′ ∈ Al(t) (19)
(¬zi,t, ¬si,t′) t ∈ TL, xi ∈ X, t′ ∈ Ar(t) (20)

(zi,t,
∨

t′∈Al(t)

¬si,t′ ,
∨

t′∈Ar(t)

si,t′) t ∈ TL, xi ∈ X (21)

(¬gt,c, ¬gt,c′) t ∈ TL, c ̸= c′ ∈ C (22)
(¬at,j , s#1

j
,t) t ∈ TB , j ∈ F (23)

(¬at,j , ¬s#|X|
j

,t
) t ∈ TB , j ∈ FN (24)

Note that in our encoding, it is possible to have degenerate nodes for which all categories
are directed left with none of the categories directed right. An optimal solution may have
degenerate nodes, however we can easily convert such solutions to optimal solutions without
degenerated nodes. As a post-optimization step, we arbitrarily select a subset of categories
from the left branch and move them to the right branch. Then, we copy all the subtree of
the left branch to the right branch, leading to identical predictions on the training examples
and maintaining the optimality of the original solution.

4.2.1 Decoding Decision Trees with Power Set Branching

Decoding a decision tree from a solution to the SAT encoding above follows the same
procedure as described in Section 3.1.3, with one key difference. For nodes that are associated
with categorical branching, we need to decode αC , the category subset selector that indicates
the subset of categories associated with the left branch. For a categorical branching node
t ∈ ΠC that is associated with feature j, i.e., β(t) = j, j ∈ FC , we define αC(t) to be the set
of categories in feature j for which there are data points in X that are directed left,

αC(t) = {c | ∃xi ∈ X : xi[β(t)] = c ∧ si,t = 1}.

5 Note that we could add clauses that guarantee that at least one category will go to the right, however it
does not provide significant pruning and we therefore opted not to add them.
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5 Experiments

In this section, we perform an extensive experimental evaluation of our SAT-based approach
for optimal decision trees. For each of the two optimization criteria, we compare our approach
to state-of-the-art exact approaches for optimal decision trees that optimize the same criterion
based on the runtime and objective value. Previous work on each of the two criteria has
already evaluated the quality of decision trees that are optimal with respect to a set of training
examples on external validation datasets [15, 3, 2, 24] and also discussed the differences
between the two criteria [15, 3]. In this work, we focus on the optimization performance with
respect to each of the optimization criteria.

Our algorithm for the min-depth optimal decision tree problem is implemented in C++
based on SAT solver MiniSAT [11]. Our encoding for the max-accuracy optimal decision
tree problem is solved using the MaxSAT solver Loandra [5]. The experiments were run on
two 12-core Intel E5-2697v2 CPUs and 128G of ram.

5.1 Baselines
We compare our approach to recent state-of-the-art baselines for each optimization problem.
For min-depth optimal decision trees, we compare our approach to Avellaneda’s SAT-based
approach [3] that uses the MiniSAT solver [11]. For max-accuracy optimal decision trees, we
compare our approach to Hu et al.’s MaxSAT encoding [15] solved by Loandra [5], and to
Verhaeghe et al.’s constraint programming (CP) model [23] solved by Oscar [20]. Note that
other approaches, such as OCT [6], BinOCT [24], DL8 [19], DL8.5 [2], have been previously
compared to one or more of the baselines we consider in their original publications [15, 3, 23].

Binary Encoding of Non-Binary Features

Most recent state-of-the-art approaches, including the selected baselines, support datasets
that contain only binary features. Therefore, these approaches convert any non-binary feature
into a set of binary features in a pre-processing step prior to optimization. To binarize the
datasets, we follow the procedure in Avellaneda [3] in which each non-binary feature that
can have v possible different values is represented by v binary features, one for each possible
value. Furthermore, if the feature is ordered, e.g., numeric features, then each binary feature
represents the operator ≤ as described in the following example from Avellaneda [3]:

▶ Example 2. Consider a set of training examples where each example has a single integer
feature f , {(1), (3), (4), (5)}. Then, we can transform f into three binary features f̃0, f̃1, f̃2.
If the feature f̃0 is true it means that the value of f in the example is greater than 1. If the
feature f̃1 is true it means that the value of f in the example is greater than 3, etc. Therefore,
the transformed dataset will be {(0,0,0), (1,0,0), (1,1,0), (1,1,1)}.

Note that the above binary feature encoding supports the decision trees described in Definition
4 since selecting a binary feature for a branching node implies a threshold that values smaller
or equal to the threshold are directed into one branch, while values greater than the threshold
are directed into the other branch.

5.2 Datasets
To evaluate the performance of our approach,we run experiments on 15 datasets with different
characteristics, obtained from the UCI repository [10]. Table 1 reports the size of each dataset
|X|, the number of class labels |C|, the number of numeric features |FN |, the number of
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Table 1 Description of the datasets used in our experiments.

Type Name |X| |FN | |FB | |FC | f̃ |C|

N

Banknote 1372 4 0 0 5016 2
Breast Cancer 116 9 0 0 891 2
Cryotherapy 90 5 1 0 93 2

Immunotherapy 91 6 1 0 166 2
Ionosphere 351 32 2 0 8114 2

Iris 150 4 0 0 119 3
User Knowledge 258 5 0 0 431 4

Vertebral Column 310 6 0 0 1741 2
Wine 178 13 0 0 1263 3

C

Credit Approval† 653 6 4 5 1130 2
Promoter 106 0 0 57 228 2

Soybean Large† 266 5 16 14 76 15
Protease Cleavage 746 0 0 8 160 2

Protease Cleavage(/4) 186 0 0 8 156 2

B Car‡ 1728 6 0 0 15 2
Monk2 169 4 2 0 11 2

† Records with missing values were removed.
‡ Classes were merged following Avellaneda [3].

binary features6 |FB |, and the number of categorical features |FC |. It also reports the number
of binary features after the transformation of all the numeric and categorical features into
binary features which is required for the baseline methods.

Consistent with our focus on non-binary features, we selected datasets with mostly
numeric features (type N) or categorical features (type C). We also included the datasets
Monk2 and Car that we consider binary (type B) since they have either binary features or
numeric features that can be convert to binary with a small number of additional variables.

The datasets Credit Approval, Promoter, Soybean Large, and Protease Cleavage include
a significant number of categorical features and will be used to evaluate our extension for
optimal decision trees with categorical features. We also created a smaller version of Protease
Cleavage that includes only 25% of the records (by selecting each fourth row).

5.3 Results

We start by evaluating our SAT-based formulation in Section 3 on numerical and binary
datasets. In Section 5.4, we present the results for the min-depth optimal decision tree
problem and in Section 5.5, we present the results for the max-accuracy optimal decision
tree problem. In Section 5.6, we present results for the categorical branching extension in
Section 4. Finally, in Section 5.7 we analyze the memory consumption.

6 In our encoding binary features are numeric features that take one of two possible values, however we
list them separately in Table 1 as they are supported by the baseline methods without transformation.
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Table 2 Experimental results for min-depth optimal decision tree problem.

Dataset Min Depth Time (s)
Ours SAT [3]

Banknote 4 5.82 T/O [4]
Breast Cancer 4 6.59 T/O [4]
Cryotherapy 4 0.08 0.24

Immunotherapy 4 0.18 1.3
Ionosphere ? T/O [4] T/O [3]

Iris 4 0.04 0.17
User Knowledge 5 1.31 59.44

Vertebral Column 5 87.35 T/O [5]
Wine 3 0.11 14.75

Car 8 T/O [8] 89.1
Monk2 6 2.73 0.28

5.4 Results for the Min-Depth Optimal Decision Tree Problem
We compare our encoding for min-depth optimal decision trees to Avellaneda’s SAT encod-
ing [3] on the binary and numeric datasets. Following Avellaneda’s analysis, we set the time
limit to 30 minutes. Table 2 shows the time to optimal solution for each of the approaches,
as well as the tree depth of the optimal solution. As both approaches follow the procedure of
solving SAT formulae for increasingly deeper trees until a solution is found, the first solution
found is guaranteed to be optimal, i.e., of minimum depth. In case an approach does not find
an optimal solution in the time limit, we report “T/O [d]” where d indicates the tree depth
of the SAT formula being solved at the moment of time out. We highlight in bold results for
which the alternative approach required at least twice as much run time or timed out.

The results in Table 2 show that our approach performs at least as well, and in most
cases significantly better on datasets with numeric features. In particular, it finds optimal
solutions for Banknote, Breast Cancer and Vertebral Column, for which the baseline timed
out. In Ionosphere we find that both methods timed out, however our approach has managed
to prove that a solution does not exist for a depth of 3, while the baseline only proved that a
solution does not exist for a depth of 2. As expected, in the two binary datasets (Car and
Monk2), we find that the baseline outperforms our method. In particular, it manages to find
an optimal solution to Car, while our approach timed out.

5.5 Results for the Max-Accuracy Optimal Decision Tree Problem
Next, we compare our encoding for max-accuracy optimal decision trees to Hu et al.’s MaxSAT
encoding [15] and Verhaeghe et al.’s CP encoding [23] on the binary and numeric datasets.
Following Hu et al., we set the time limit to 15 minutes and run experiments for three
different depth values, {2, 3, 4}. Table 3 shows the time required to find an optimal solution
for each approach or “T/O” if an optimal solution was not found in the time limit. It also
reports the cost of the solutions, i.e., the number of training examples that are not correctly
classified, for each approach. If an optimal solution was found and proved, then the cost
indicates the optimal cost. Otherwise, we report the cost of the best found solution by each
approach. Note that the datasets Iris, User Knowledge, and Wine could only be solved by
our approach as the two baselines only support classification problems with two class labels.
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Table 3 Experimental results for max-accuracy optimal decision tree problem.

Dataset Depth Solution Cost Time (s)
Ours MaxSAT [15] CP [23] Ours MaxSAT [15] CP [23]

Banknote
2 100 176 100 16.83 T/O 512.21
3 23 550 100 105.79 T/O T/O
4 0 88 100 18.98 T/O T/O

Breast Cancer
2 19 24 19 5.07 T/O 22.19
3 9 25 12 242.16 T/O T/O
4 0 18 11 20.79 T/O T/O

Cryotherapy
2 5 5 5 0.57 3.68 4.21
3 1 1 1 0.73 17.57 27.39
4 0 0 0 0.75 24.14 7.61

Immunotherapy
2 8 8 8 0.99 10.53 5.22
3 4 4 4 3.81 T/O 146.45
4 0 1 0 1.27 T/O 18.53

Ionosphere
2 29 41 29 155.06 T/O T/O
3 21 186 29 T/O T/O T/O
4 10 76 28 T/O T/O T/O

Iris
2 6 – – 0.6 – –
3 1 – – 0.77 – –
4 0 – – 0.82 – –

User Knowledge
2 35 – – 1.94 – –
3 10 – – 3.29 – –
4 1 – – 3.86 – –

Vertebral Column
2 45 46 45 15.79 T/O 67.91
3 32 44 42 T/O T/O T/O
4 15 39 42 T/O T/O T/O

Wine 2 6 – – 1.25 – –
3 0 – – 1.62 – –

Car
2 250 250 250 12.67 9.2 2.16
3 182 182 182 T/O T/O 5.99
4 122 122 122 T/O T/O 14.09

Monk2
2 57 57 57 2.74 4.38 1.38
3 42 42 42 T/O 826.31 3.6
4 32 31 31 T/O T/O 8.12

The results in Table 3 show that for all numeric datasets our approach either finds
solutions faster than the baselines or that all approaches time out. Furthermore, for all
numeric datasets, our approach finds solutions that are at least equal, and in many cases
significantly better than the baselines. As expected, for binary datasets (Car and Monk2),
our approach underperforms relative to the baselines and timed out for depths 3 and 4. Still,
it finds the optimal solution for all depths in Car and for depth 2 and 3 in Monk2. For
the three datasets that could not be solved by the baselines, our approach found optimal
solutions in seconds. In Wine, a tree of depth 3 correctly classifies all training examples.
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Table 4 Results for min-depth decision trees on datasets with categorical features.

Dataset Min Depth Time (s)
Ours-PS Ours SAT [3] Ours-PS Ours SAT [3]

Credit Approval ? ? ? T/O [6] T/O [5] T/O [5]
Protease Cleavage ? ? ? T/O [5] T/O [7] T/O [6]

Protease Cleavage(/4) 4 ? ? 0.69 T/O [7] T/O [6]
Promoter 4 4 4 224.22 498.3 87.69

Soybean Large ? ? ? T/O [6] T/O [6] T/O [6]

5.6 Results on Categorical Datasets
In this section, we present results on datasets with categorical features. We compare our
power set branching for categorical features (Ours-PS) against our encoding without power
set branching (Ours) and the baselines. As the optimal solution for the different approaches
may be different, we do not highlight in bold the lowest run time. For example, our power
set branching can fail to find an optimal solution in the time limit, while still obtaining a
lower-cost solution compared to an optimal solution of a binary branching approach.

Table 4 reports the results for the min-depth optimal decision tree problem. Note that we
report the min depth for each of the approaches as the power set approach can have a lower
optimal solution. We find that most categorical datasets could not be solved by any of the
methods in the time limit. However, in Protease Cleavage(/4), our encoding that is based
on power set branching (Ours-PS) is able to find a solution decision tree of depth 4, while
binary branching fails to find a solution after proving that no solution exists for a depth of 6.
This demonstrates the expressiveness of our power set branching for categorical features.

Table 5 shows the results for the max-accuracy optimal decision tree problem. We find
that in all of the cases, our power set approach obtains the lowest cost solution and that in
almost all cases, these solutions are strictly lower compared to all other approaches. Note
that we encountered an error when running the code for the CP approach [23] on the Credit
Approval dataset with a depth of 4.

5.7 Results on Memory Consumption
To compare the memory consumption of the different approaches, we recorded the peak
memory consumption of each approach for each of the datasets. Due to limited space, we only
report aggregated results. Table 6 reports the mean and maximum values for the different
approaches for each optimization problem and dataset type. In all cases, our approach has the
lowest mean and maximum values. In categorical datasets, our power set encoding obtains
the second lowest values. In the worst case, our approach required approximately 1GB of
memory for the standard encoding and 1.9GB for the power set encoding. In comparison,
Avellaneda [3] and Hu et al. [15] required more than 10GB in the worst case. For Verhaeghe
et al. [23], we find that the maximum values are approximately within a factor of two from
ours, however the mean values are still significantly higher than ours.

6 Conclusion

We present a novel SAT-based encoding for optimal decision trees that can directly encode
non-binary features, namely numeric and categorical features. We study two variants of
optimal decision trees based on different optimization criteria and present extensive empirical
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Table 5 Results for max-accuracy decision trees on datasets with categorical features.

Dataset Depth Cost Time (s)
Ours-PS Ours [15] [23] Ours-PS Ours [15] [23]

Credit
Approval

2 84 84 84 84 106.26 151.45 T/O 33.06
3 76 76 82 81 T/O T/O T/O T/O
4 60 65 74 [E] T/O T/O T/O [E]

Protease
Cleavage

2 98 186 186 186 T/O 325.35 56.11 4.82
3 101 133 149 133 T/O T/O T/O 29.68
4 39 98 136 100 T/O T/O T/O T/O

Protease
Cleavage(/4)

2 13 49 49 49 18.91 28.58 16.5 4.36
3 1 29 29 29 7.37 575.93 T/O 22.7
4 0 37 40 17 1.27 T/O T/O T/O

Promoter
2 12 13 13 13 316.71 44.53 316.02 4.35
3 3 3 4 3 T/O 324.77 T/O 63.22
4 0 0 0 0 7.83 57.72 81.08 129.15

Soybean
Large

2 152 159 – – 16.22 99.93 – –
3 104 112 – – T/O T/O – –
4 35 45 – – T/O T/O – –

Table 6 Analysis of peak memory consumption (MB) for the different approaches.

Min-Depth Max-Accuracy
Ours-PS Ours [3] Ours-PS Ours [15] [23]

N Mean N/A 142.02 4,527.80 N/A 236.34 1,646.73 1,176.36
Max N/A 1,003.86 16,684.36 N/A 1,299.09 10,994.48 2,381.50

C Mean 904.73 489.42 3,086.98 412.67 222.61 728.83 1,332.50
Max 1,865.21 984.20 10,075.11 1,451.05 705.93 3,838.78 2,180.96

analysis that shows our approach outperforms recent state-of-the-art methods on datasets
with non-binary features in terms of optimization quality. Furthermore, we show that our
extension for categorical features can lead to higher quality solutions.

We believe our work can be extended in a number of ways. Extending our formulations
with additional constraints, such as minimum-support constraints or pruning constraints, or
alternative optimization criteria is an interesting direction for future work. Investigating the
impact of different tree structures and the use of our approach as part of an ensemble method
are also interesting research directions. Finally, our approach for dealing with non-binary
features can be extended to other classification models such as decision sets [25].
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