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—— Abstract

Constraint acquisition can assist non-expert users to model their problems as constraint networks.
In active constraint acquisition, this is achieved through an interaction between the learner, who
posts examples, and the user who classifies them as solutions or not. Although there has been
recent progress in active constraint acquisition, the focus has only been on learning satisfaction
problems with hard constraints. In this paper, we deal with the problem of learning soft constraints
in optimization problems via active constraint acquisition, specifically in the context of the Max-CSP.
Towards this, we first introduce a new type of queries in the context of constraint acquisition, namely
partial preference queries, and then we present a novel algorithm for learning soft constraints in
Max-CSPs, using such queries. We also give some experimental results.
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1 Introduction

Constraint programming (CP) is a powerful paradigm for solving combinatorial problems,
with successful applications in various domains. The basic assumption in CP is that the
user models the problem and a solver is then used to solve it. One of the major challenges
that CP has to deal with is that of efficiently obtaining a good model of a real problem
without relying on experts [21, 33, 23, 22]. As a result, automated modeling and constraint
learning technologies attract a lot of attention nowadays, and a number of approaches based
on Machine Learning have been developed [31, 18, 17].

An area of research in CP towards this direction is that of constraint acquisition where
the model of a constraint problem is acquired (i.e. learned) using examples of solutions
and non-solutions [8, 7, 2, 32]. Constraint Acquisition can be passive or active. In passive
acquisition, examples of solutions and non-solutions are provided by the user and based on
these examples, the goal is to learn a set of constraints that correctly classifies the given
examples [3, 5, 29, 2, 8]. In active or interactive acquisition the system interacts with an oracle,
e.g. a human user, while acquiring the constraint network [24, 6, 37, 8]. State-of-the-art
active constraint acquisition systems like QuAcq [4], MQuAcq [42] and MQuAcqg-2 [41] use
the version space learning paradigm [30], extended for learning constraint networks. They
learn the target constraint network by proposing examples to the user to classify them as
solutions or not [6, 8, 37]. These questions are called membership queries [1].

Although constraint learning has focused on satisfaction problems, soft constraints,
within constraint optimization frameworks such as (weighted) Max-CSP, have also been
considered [15, 43, 18, 12] as part of the wider literature on learning preferences [19, 36].
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In [34, 9] ML techniques are exploited in order to infer constraint preferences from given
solution ratings. Rossi and Sperduti [35] extend these methods so that the scoring function is
estimated via an interactive process where high-scoring assignments are posted as queries to
the user, who then ranks them according to her preferences. Campigotto et al. [14] consider
combinatorial utility functions expressed as weighted combinations of terms.

Techniques for computing minimax optimal decisions have also been developed [10, 11, 44].
[27] uses weighted first-order logical theories to represent constrained optimization problems.
Dragone et al. [20] exploits comparison queries in a context where preferences are modeled
by individual variables. In [28] MAX-SAT models that can be probably approximately
correct (PAC) are learned for combinatorial optimization. Preference elicitation methods for
Incomplete Soft Constraint Problems (ISCPs) [25] and Distributed Constraint Optimization
Problems (DCOPs) [39, 38] have also been studied.

More closely related to the framework of constraint acquisition are the works of Vu and
O’Sullivan [45, 46, 47]. However, all these works concern passive constraint acquisition. In
this paper, we deal with the problem of learning Max-CSPs via active constraint acquisition.
To the best of our knowledge, there is no study on learning soft constraints in this context.
We first introduce a new type of queries in this context, namely (partial) preference queries,
inspired by works on preference elicitation [16]. Such a query posts two examples to the user
and asks her to specify if either of them is preferable or if she is indifferent between the two.
We then describe an algorithm that, driven by the user’s replies to preference queries, is
able to learn all the soft constraints appearing in a Max-CSP. We highlight the differences
between learning soft constraints within our proposed framework and standard constraint
acquisition of hard constraints and give preliminary experimental results.

2 Background

The vocabulary (X, D) is the common knowledge shared by the user and the system. It is a
finite set of n variables X = {z1, ..., z,,} and a set of domains D = {D(x1), ..., D(zy,)}, where
D(x;) C Z is the set of values for z;.

A constraint c is a pair (rel(c), var(c)), where var(c) C X is the scope of the constraint,
while rel(c) is a relation between the variables in var(c) that specifies which of their assignments
satisfy ¢. |var(c)| is called the arity of the constraint. A constraint network is a set C
of constraints on the vocabulary (X, D). A constraint network that contains at most one
constraint on each subset of variables (i.e. for each scope) is called normalized. Following
the literature on constraint acquisition, we will assume that the target constraint network is
normalized.

An example ey is an assignment on a set of variables Y C X and it belongs to DY =
[I.,cy D(xi). f Y = X, the example e is called a complete example. Otherwise, it is called
a partial example. An example ey is rejected (or accepted) by a constraint c¢ iff var(c) CY
and the projection e, (¢) of ey is not in (or is in) rel(c). A complete assignment that is
accepted by all the constraints in C' is a solution of C. sol(C) denotes the set of solutions
of C. An assignment ey is a partial solution of C' iff it is not rejected by any constraint
in C. Note that such a partial assignment is not necessarily part of a complete solution.
kc(ey) denotes the set of constraints in C' that reject ey, while Ac(ey) denotes the set of
constraints in C' that satisfy ey.

Besides the vocabulary, the learner is given a language I' consisting of bounded arity
constraints. The constraint bias B is a set of constraints on the vocabulary (X, D), built
using the constraint language I'. The bias is the set of all candidate constraints from which
the system can learn the target constraint network.
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In ML, the classification question asking the user to determine if an example ex is a
solution to the problem or not, is called a membership query ASK (e). The answer to such
a query is positive if e is a solution and negative otherwise. A partial membership query

ASK (ey), with Y C X, asks the user to determine if ey € DY is a partial solution or not.

Following the literature on constraint acquisition, we assume that all queries are answered
correctly by the user.

In active constraint acquisition, the system iteratively generates a set E of complete or
partial examples, which are labelled by the user as positive or negative. A constraint network
C agrees with E if C' accepts all examples in F labelled as positive and rejects those labelled
as negative. The acquisition process has converged on the learned network of constraints
Cy, C B iff ('L, agrees with F and for every other network C' C B that agrees with F, we
have sol(C) = sol(C).

2.1 Max-CSP

A Max-CSP is a quadruple P = (X, D,Ch,Cs), with X being the set of variables, D the
set of domains , C'h being the set of hard constraints that have to be satisfied mandatorily,
and C's being the set of soft constraints whose satisfaction should be maximized, called
soft constraints. The optimal solution to a Max-CSP maximizes the number of satisfied
soft constraints, while satisfying all the hard constraints. In a weighted Max-CSP each soft
constraint ¢; € C's is associated with a positive real value (a weight) w; and the optimal
solution maximizes the total sum of the satisfied constraints’ weights.

As in learning a standard CSP, it is important to be able to determine whether the version
space has converged, or not. If this is indeed the case, the learning system will stop posting
queries as the user has an exact characterization of her target problem. But convergence
must be defined in a different way compared to the standard case. We now define the target
constraint network and the convergence problem in the context of constraint acquisition of
soft constraints in Max-CSPs.

» Definition 1. The target soft constraint network Csp is the constraint network that
correctly states the preferences of the user in the problem she has in mind.

» Definition 2. Given a bias B being able to represent the target soft constraint network
C'sT, the system has converged to Csr iff Ve € B, Chr, EcVv3d € Cst, | d Ecwrt. Chy,
with Chy, and Csy, being the learned networks of hard and soft constraints respectively.

Hence, the system converges to the target network C'sy when all the constraints that are

still in the bias B are implied by Chy, or by a constraint we have already learned w.r.t. Chyr.

3 Partial Preference Queries

In active constraint acquisition, the interaction between the learner and the user is established
via membership queries. This process can be used while learning Max-CSPs to acquire any
hard constraints that may be present in the problem, but membership queries cannot be used
to acquire soft constraints, as such constraints are allowed to be violated in both solutions
and non-solutions.

As a result, several other types of queries have been considered in preference learning.

For example, the user can be asked to associate a precise desired value to each presented
solution [35]. As another example, a comparison query posts two examples to the user and
asks her to state which of them she prefers [16, 26]. To be precise, a comparison query
posts two complete assignments ex and e’y to the user, and the possible answers to such a
query are:
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1. ex = €'y: the user prefers ex to €'y,
2. ex < €'y: the user prefers €'y to ex,
3. ex ~ €'y: the user is indifferent between ex and €'y.

Such queries are easier for the user to answer compared to other types used in preference
elicitation. We now introduce partial preference queries as a variant of comparison queries.
Specifically, in a partial preference query, denoted as PrefAsk(), we can have the following
cases regarding the two examples included in the query:

1. Both examples are (partial) assignments ey, €}, over the same set of variables Y C X. In
this case, the query is similar to a comparison query, generalized so that the assignments
can be partial.

2. One of the examples is ey, with Y C X, and the other one is ey, with Y’ C Y. That
is, the second example is a projection of the first one on some of its variables, which
means that both examples share the same assignment in the variables in Y’, while the
first example includes additional variable assignments (the variables in Y\ Y’). Hence,
the answer of the user in this case can either be ey ~ ey’ or ey = ey-.

Let us now demonstrate the use of preference queries through a typical scenario from the
literature [14]. Consider a house sales system suggesting candidate houses according to their
characteristics. Assume that we have several variables, including the price of the house, its
total area, whether it has a garden, whether it has a parking spot, the construction year,
etc. Now assume that the preferences of the user are: 1. to have a parking spot, 2. the total
area of the house to be > 100m?2. Now consider a partial preference query consisting of the
following examples:

House #1: Construction year = 2000, parking spot = “yes”, garden = “no”

House #2: Construction year = 2004, parking spot = “no”, garden = “no”

In this case the examples in the query are both partial assignments on the same variables,
and the user would prefer the first one (i.e. House #1), because it satisfies the requirement
to have a parking spot. Now consider the following partial preference query:

House #1: Construction year = 2000, parking spot = “yes”, garden = “no”

House #2: Construction year = 2000, garden = “no”

This is a case where the second example is a projection on the assignment of the first one.
Again, the user would prefer House #1, because it satisfies the requirement to have a parking
spot. Hence, it “offers greater satisfaction” of the preferences compared to House #2.

Now assume we have:

House #3: Construction year = 2000, parking spot = “no”, garden = “no”

If the system asks the user to compare House #2 and House #3 the user would answer
that she is indifferent, as no additional requirement is satisfied by House #3. This is due
to the fact that this type of preference queries is asking the user to state if the additional
information offered by House #3 helps satisfy the preferences to a greater degree, and is not
a comparison between 2 different examples (i.e. Houses).

A query posted to the user must give the system more information that it already has.
So now we define the notion of informative queries.

» Definition 3. A (partial) preference query q is called irredundant (or informative) iff the
answer of the user to q is not predictable. Otherwise, it is called redundant. The answer of
the user to a query is predictable when the satisfied constraints from C'sp and B by the two
examples imply that Acs,(€) D Acsy(€') or Acsy(€) = Aosy (€7).
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4 Learning Soft Constraints

In this section, we present our proposed approach for learning Max-CSPs. We first detail the
differences between the acquisition of soft constraints within our framework and standard
active constraint acquisition, and then present our algorithm. We then present our proposed
algorithm, PrefAcq, in detail.

4.1 Differences with Constraint Acquisition of hard constraints

In our proposed method the entire network is learned in two separate steps:

1. The hard constraints (if any) are learned via a standard constraint acquisition algorithm.

Only membership queries are used in this step, while the soft constraints do not affect
the answers of the user.

2. The soft constraints representing the preferences of the user are learned via our proposed
algorithm. Only preference queries are used in this step, but as we explain, the examples
generated must satisfy the already learned hard constraints.

Although in the context of standard constraint acquisition, learning hard constraints is
well defined, some things differ when acquiring soft constraints. Let us first recall how active
constraint acquisition algorithms operate. They typically comply with the following generic
procedure:

1. Generate an example ey in DY and post it as a query to the user.

a. If the answer is positive, update the version space, removing from the bias B the

constraints rejecting the example.

b. If the answer is negative, search for one or more constraints of Cr that reject the

example ey, via partial membership queries.
2. If not converged, return to step 1.

In more detail, once a generated example ey is classified as negative, the system discovers
the scope of one of the violated constraints, as follows. It successively decomposes ey to
a simpler problem by removing entire blocks of variables from the example while posting
partial queries to the user. If after the removal of some variables the answer of the user to the
partial query posted is “yes”, then it has discovered that the removed block contains at least
one variable from the scope of a violated constraint. Then the acquisition system focuses
on this block. When, after repeatedly removing variables, the size of the considered block
is 1, then this variable surely belongs to the scope of a violated constraint. A logarithmic
complexity in terms of the number of queries posted to the user is achieved by splitting. In
each decomposition step the set of variables is approximately split in half.

Our proposed approach uses a similar technique. We exploit the 2nd type of partial
preference queries described above to locate the scope of satisfied soft constraints in a
generated example. That is, we repeatedly post a query comparing an example ey with its
projection on a subset of variables Y/ C Y. The 1st type of partial preference queries is used
to find the specific relation of the constraint, after the scope has been located.

Let us now detail the differences between standard learning of hard constraints and
learning of soft constraints.

4.1.1 Violation vs. satisfaction of constraints

A main difference is that in standard constraint acquisition, when trying to find a hard

constraint via membership queries, it is the violation of constraints that drives the search.

This is because the violation of a constraint results in a negative answer by the user, which
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forces the system to continue searching. On the other hand, in a preference query, it is the
satisfaction of constraints that drives the search process. This is because the preference of
one example over another means that more constraints are satisfied in the former compared
to the latter, which will force the system to continue searching for these constraints.

4.1.2 Information derived from user answers

In standard constraint acquisition, the procedure to find the scope of one or more violated
constraints exploits the fact that the information that is derived from the answer to a
membership query ASK (ey) concerns the variables in Y, and only them. That is, the answer
will inform us about the existence or not of a violated constraint ¢ with var(c) CY. In a
preference query, when comparing an example ey to its projection on a subset of variables
Y’ C Y, the answer of the user gives information about the variables in Y \ Y’. That is,
the answer will inform us about the existence or not of a satisfied soft constraint ¢ with
var(c) CY Adzx € var(c) | x € Y \'Y'. Hence, if the answer is that the user is indifferent
between the examples, any constraint ¢’ with var(¢’) CY A3z € var(d’) | x € Y \ Y’ has to
be removed from B because it certainly does not belong to C'sy (if it did belong then the
user would have preferred ey ).

4.1.3 Top-down vs. bottom-up

Because of the above, another important difference lies in the algorithmic approach. Standard
constraint acquisition algorithms follow a top-down procedure when searching for constraints
to learn. They post membership queries to the user while successively decomposing the
initial example. As we will explain in the next section, our algorithm for Max-CSPs also
performs a top-down decomposition of the initial query, but crucially, no queries are posted
while this decomposition takes place. Once this process is finished, having decomposed the
query as much as possible, the algorithm continues in a bottom-up fashion, with preference
queries being posted to guide the search for satisfied soft constraints.

Example 1 shows the series of queries posted by our method to locate the scope of a
constraint.

» Example 1. Assume that the vocabulary (X, D) given to the system is X = {x1,...,zs}
and D = {D(z1), ..., D(xg)} with D(x;) = {1,...,8}, the target network of soft constraints
Csr is the set {c37,css} and B = {¢;; | 1 <i < j < 8}, with |B| = 28. Also, assume that
we have a complete example which satisfies all the constraints in B. Table 1 shows the
preference queries posted to the user until the scope of one of the two constraints in C'sp
has been found.

In a process explained below, our method recursively creates sub-examples by splitting
the example, approximately in half, until it creates a sub-example with only one variable
assignment. Assuming that this sub-example is ey, }, we will now search for a constraint
that is satisfied by ef,,1. As no constraint ¢ exists in B with var(c) = {x1}, we will go back
to search in eg,, 5,3, by posting the query PrefAsk(e;;,},€¢z,,2,}) to the user. As the user
will answer that she is indifferent between the two examples (because none of the target
constraints is satisfied by them), we will first remove c¢;5 from B, as it is definitely not in
C'sr, and then will continue adding variables to the examples and posting queries. The user’s
answer to the third query will be that the second example is preferable to the first (because
both target constraints are satisfied by e, . z¢1). Hence, we find that at least one variable
of the scope of a satisfied constraint from Csp is in Y \ Y’, i.e. in {zs,..., x5}
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Table 1 Searching for a soft constraint via preference queries, in Example 1.

# Preference query answer | information we get

1. €fz,} VS €{z 0} ~ no satisfied constraints, c¢1o removed from B

2 €fz1,22) VS €lay,. a4} ~ no satisfied constraints, ci3,c14,C23,C24 Te-
moved from B

3o | €lar, i za} VS €{ay,.. ws) =< at least one satisfied constraint with var(c) C
{1, ..., 28} A Jx € var(c) | x € {zs,...,x8}

4. €fz1,ywa} VS Clar,... w5} ~ no satisfied constraints here, c¢i5, cos, ¢35, Ca5
removed from B

5. €fw1, a5} VS €{zy,. .. z6} ~ no satisfied constraints, ¢ig, ¢2g, €36, C46, C56 T€-
moved from B

6. €{z1,..w6} VS €{zy,....zs} =< at least one satisfied constraint with var(c) C
{z1,...,z8} AJz € var(c) | z € {x7, x5}

7. | €farzs) VS €lay,zr} =< x7 € var(c)

8. €{xr} VS €{z, 27} ~ no satisfied constraints, ¢i7 removed from B

9. | €far,zr} VS €fay,. sz} < at least one satisfied constraint with var(c) C
{z1,...yx3, 27} A Jx € var(c) | x € {xa,23}

10. €{x1,27VS€ a1 z0,27) ~ no satisfied constraints, co7 removed from B

11. | €f2) 20,2,V5€ 0, .. 25,27} =< x3 € var(c)

Then, trying to discover the complete scope, again we will decompose the projection
of the example on this discovered set of variables {zs, ..., zg} until we reach a sub-example
with the fewest variables possible. However, in each query posted now, both examples will
include the variables that have already been searched, because one (or more) variable(s) of
the sought scope may be among them. For instance, in the 4th query both the examples
include the assignments of variables {x1,...,24} in which we have already searched. But
although we know that there is no satisfied constraint ¢ € C'sp with var(c) € {z1,...,x4}, it
is possible that one or more variables among {z1, ..., z4} participate in the sought scope (as
is actually the case with both c¢37 and csg).

In query #6 the set of variables to search in is narrowed to {x7,zs}. As we will explain,
this query (and query #11) will not be actually posted because it is redundant. We only
include it here to make the example easier to understand. With query #7, we will find
that z7 is in the scope of a constraint. Then we will start searching again, with the same
reasoning as before, in order to find the remaining variables of the scope, knowing that they
are in {x1,...,z¢}.

During this process, each query includes, in both examples, the assignment of the variable
in the sought scope that we have already found (i.e. the assignment of x7). Including the
assignment of 7 means that the answer of the user to the query posted will now depend only
on the presence or absence of the other variable of the scope in the two examples. Hence, if
x3 is present in one of the examples and absent from the other, the former example will be
preferred. After a few queries we will find scope {3, 27} and then we will continue searching
for more constraints.

4.2 Description of PrefAcq

PrefAcq (Algorithm 1) is a novel active learning algorithm for soft constraints. It starts
by setting the learned network Csy equal to the empty set (line 1). Then, it iteratively
generates examples (line 3) in which it will search for satisfied soft constraints via the function
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SearchSC (line 5) until it detects convergence at line 4. Each example generated must be a
solution to the problem, i.e. to satisfy all the hard constraints. Also, it must satisfy at least
one of the candidate soft constraints in the version space, i.e. at least one constraint from B,
so that the version space is reduced with each generated example.

Algorithm 1 The PrefAcq Algorithm.

Input: Ch, B, X, D (Ch: The set of the hard constraints, B: the bias, X: the set of
variables, D: the set of domains)

Output: Csy: a constraint network
1: Csp + 0;
2: while true do
3: Generate e in DY, with Y C X, accepted by Ch s.t. Ag(ey) # 0;
4: if e = nil then return “Csjy, converged”;
5

SearchSC(e, 0, Y, 0, true);

Function SearchSC (Algorithm 2) is used to search for satisfied soft constraints in the
example generated. It finds all the constraints from Csp that are satisfied in the example
given. It recursively decomposes the example as much as possible, until a sub-example with
the minimum number of variables (typically just one) is reached, as in Example 1.

Then SearchSC starts the bottom-up search for satisfied constraints that rewinds the
recursive decomposition of the initial example, with more variables taken into account step
by step. In this way, it exploits the information that can be derived via the preference
queries, i.e. for a preference query PrefAsk(ey, ey/), with Y’ C Y, the answer of the user will
reveal if 3¢ € Csp | var(c) € Y \Y'. SearchSC starts posting queries when the example with
minimum number of variables is reached and then goes bottom-up so that in any subsequent
query we will already have derived all the information we can in ey before we search in
Y \Y’. For example, in Example 1, when query 3 is posted to the user, we already know
that there are no satisfied constraints from Csp in {z1, z2, z3,24}.

In more detail, SearchSC takes as input an example e, three sets of variables R, Y, S and
a Boolean variable ask_ query. In each call, S contains variables which we have found to be
in the scope of a satisfied constraint, for which we seek the rest of the variables. The set
Y is the one in which we will search for satisfied constraints. R contains the variables that
SearchSC has already searched in previous calls. The Boolean variable ask_ query is set to
true if a query is needed to be posted and to false if the query may be redundant. True is
returned if a constraint has been found and false otherwise. In the first call to SearchSC
in PrefAcq, we have R = S = (). Also, Y is set to the assigned variables in the example
generated and ask__query = true.

First, SearchSC initializes the boolean variable found_ flag to false and the set @ to
RUS (lines 2-3), i.e. the variables in which we have already searched in previous recursive
calls (R) and the variables we have found to be in the scope we seek (S). The set @ stores
the variables that will be present in both the partial examples posted to be compared by
the user. It is empty in the first call. If the projection of the example e on QUY (i.e. the
variables in which we have already searched and the ones we are searching in the current
recursive call) does not satisfy more constraints from B than its projection on @, then there
is no point searching for a satisfied constraint with at least one variable of its scope in Y.
Hence, false is returned in this case (line 4). Otherwise, at line 5 the set Y is split in two
balanced parts, with |Y1| = ||Y|/2] and then the function recursively calls itself with Y = Y7,
reducing the set of variables to be searched. Notice that when splitting Y at line 5 we ensure
that if |Y'| is not even, Y5 will contain one more variable than Y7. This is important because
otherwise the algorithm would never terminate because of the recursive call at line 6.
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Algorithm 2 SearchSC: Searching for soft constraints.

Input: e, R, Y, S, ask_query (e: the example, R, Y, S: sets of variables, ask_query: a
boolean variable)
Output: found_ flag: returns true if a constraint is found, false otherwise
1: function SearchSC(e, R, Y, S, ask_query)
2: found__flag < false;
3 Q<+ RUS;
4 if Ag(eg) = Ap(equy) then return false;
5: split Y into < Y7,Y2 > such that [Yi| = ||Y]/2] and Y2 =Y \ Y7;
6 if |Y1| >0 then found_ flag <+ SearchSC(e, R, Y1, S, true);
7 if 3c € Acsp(equy) | Fvar(c) MYz # 0 then
8 ¢ + pick random ¢ € Acy, (equy) S-t-var(c) NYe # 0 ;
9 for each z; € var(c) do

10: found_flag < SearchSC(e, R, Y \ {z;}, found_flag V ask_query )
V found__flag;
11: return found_ flag;

12: if Ap(eguy,) = A(eguy) then return found flag;

13: ask__query < (ask__query V found_ flag);
14: if askiquery N PrefAsk(eQuy, eQUyl) = (eQUy ~ eQUyl) then

15: B (—B\)\B(eQuy);

16: return found_ flag;

17: if |Y3| > 1 then SearchSC(e, RUY7, Y3, S, false);

18: else

19: if SearchSC(e, 0, RUY7, SUYj3, true) = false then
20: Csp + CspU FindSC(e, S U Yg);

21: return true;

In case the example eguy satisfies constraints that are already in C'sy,, with at least one
variable in Y5, we call SearchSC recursively for each subset of Y created by removing one of
the variables of the scope of such a constraint (lines 7-11). This is done to ensure soundness,
as we now explain.

Ensuring Soundness. Before continuing with the description of the algorithm, let us clarify
an important issue. It is possible that when SearchSC has focused on a partial example in a
set of variables Y and posts a preference query including this example, there may already
exist satisfied constraints from C'sy (i.e. constraints we have already learned) with scopes
having at least one variable in Y3, i.e. in the set of variables in which we search. Consider the
running example. After the system finds the constraint cg7 from example e, it will continue
searching. After finding that xg is in the scope of a constraint we seek, it will now search in
Y2 = {z1,...,z7} for the rest of the variables in the same scope. However, the already learned
constraint cs7 is satisfied in the projection of e on {x1, ..., z7}. This will affect the answers
of the user in the subsequent queries and will mislead the algorithm. As a result, instead
of learning scope {3, zs}, it will also include z7 in the learned scope, which is incorrect,
making the algorithm unsound.

To resolve this problem, SearchSC does the following: For each satisfied constraint in
Csy, with var(c) C Y Awvar(c) NYs # 0, it recursively searches in partial examples created
by removing one of the variables in var(c). This guarantees that any constraint ¢’, with
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var(c) CY Awvar(c') NYs # 0 that will be learned is indeed in C'sp. As our assumption is
that the constraint network is normalized, at least one variable appears in var(c) but not in
var(c’), meaning that by removing this variable, the algorithm will be able to search in an
example where c is not satisfied while ¢’ is. Therefore, it will be able to learn ¢, without ¢
affecting the answers of the user to the preference queries posted.

With this method, the system exploits the fact that for any satisfied constraint ¢’ € Csp
which we have not already learned, we have var(c) \ var(c¢’) # 0 for every ¢ € Csy. This
is true because of the assumption that the target constraint network is normalized. In our
example, SearchSC will search in the two sets of variables created by removing one of the
variables in the scope of the learned constraint cgy, i.e. {x1,z2,24,...,27} and {x1,...,26}.
Constraint c37 is not satisfied in the projection of e in either of these sets of variables, so
eventually the algorithm will discover that x3 is the other variable it seeks, and learn css.

We now continue with the description of the algorithm. A preference query is posted
to the user at line 14, when the example cannot be simplified any more. The examples
compared are eguy and eguy;, meaning that the information we get from the answer of the
user regards the variables in Y3, which is the set of variables that belong to Y but not to
Y;. As Y] is previously given as Y to the recursive call at line 6, we definitely have already
searched in there. So, searching now in Y5, we finish searching in Y. The preference query is
posted only if it is not redundant (checks at lines 12,13), e.g. query 6 in the running example
will not be actually posted because the answers to previous queries (queries 3-5) imply the
user’s answer. From query 3 we know that there is at least one satisfied constraint with a
variable of its scope in {5, ..., x5}, and from queries 4-5 we know that this variable is not in
{xs5,x6}, so it is certain that it is in {z7,xs}, and the relevant query can be avoided. This is
what the check in line 13 does, with the Boolean variable ask_ query (given as a parameter)
denoting whether we know that at least one satisfied constraint exists in Y and found_ flag
specifying whether a constraint has been already found in any recursive call until now or not
(i.e. if a satisfied constraint was found in Y7).

If the answer to the query is that the user does not prefer any example, then the satisfied
constraints in B[Q UY] are removed from B and false is returned (lines 15,16). Otherwise,
if we have reached line 17, we know that Y5 contains at least one variable from a satisfied
constraint from C's7 that we have not learned yet, because the preference query of type 2 can
only have two answers: Either the user is indifferent, or she prefers the example containing
more variables. If |Y3| > 1, then SearchSC is recursively called with R= RUY; and Y = Y3,
to continue searching in Y5 (line 17). Notice that ask_query is set to false, because we now
know that a constraint certainly exists in Y2. So, in the next recursive call (where Y5 will be
given as Y') we know that if no constraint is found in any sub-call, then the query does not
have to be posted. With ask_ query set to false in a recursive call, we know that Y contains
at least one variable of the scope. So, if the variable is not found in Y7, we know it is in
Ys. found__ flag will show us if it is found in Y7 or not in the check of line 13, as in query
6 of the running example where we know that there is a variable of the scope we seek in
Y = {{=s5,...,zs}} (so in this recursive call we have ask query = false) and no constraint
has been found in Y; because of queries 4-5. In case |Y2| = 1, we know that it is in the scope
of the constraint we seek because the user answered that she prefers the example having Y5
instantiated. Thus, SearchSC is recursively called with R=0,Y = RUY; and S = SU Y5,
to search for more variables of the scope in RUY] (line 19).

If no more variables are discovered at a recursive call, then SUY5 is the scope we seek, so
FindSC'is called to find the specific constraint, which is then added to C'sy, (line 20). Finally,
having reached this point means that a constraint has been found either by this call or by a
recursive call, so true is returned.
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4.2.1 Finding the specific relation

In order to find the specific relation of the constraint sought, in the scope found by SearchSC,
two functions are used, FindSC and FindSC-2. FindSC is the main function used to find
the specific constraint, after a scope has been located, while FindSC-2 is used under certain
circumstances, in case there is any constraint ¢ in C'sy,, with var(c) C S, that is satisfied by
the examples posted to the user, affecting her answers and preventing FindSC from learning
the specific relation. If this is the case, the constraint may not be learned via the main loop
of FindSC, so another technique is used in FindSC-2.

FindSC (Algorithm 3) takes as parameters e and S, where e is the example in which
SearchSC located the scope of a satisfied constraint from Csp, and S is that scope. It posts
partial preference queries of the 1st type to find the specific relation. It returns the soft
constraint found to be in C'sy. The main idea is to compare example e to an example e’ that

satisfies at least one candidate constraint that e also satisfies, but not all such constraints.

In this way, we can shrink the set with the candidate constraints after each query.

Algorithm 3 FindSC:

Input: e, S (e: the example, S: the scope of the soft constraint we seek)
Output: c: the constraint found

1: function FindSC(e, S)

2: A<+ {ce B|var(c) =5}

3: B+ B\ A;

4: A )\A(GS);

5 while true do

6: Generate ¢’ in D accepted by Ch, s.t. Acs, (¢') = Aos, (€) Ada(e') # Aa(e) A
Aa(e) # 0;

7: if ¢ #nil then
8 answer < PrefAsk(e,e);
if answer = (e > ¢/) then A < ka(€');
10: else
11: found < false;
12: if Jce Ap(€') | var(c) C S then
13: for each z; € S do
14: found < SearchSC(e, 0, S\ {x;}, true ) Vfound__flag;
15: if found = false then
16: A+ a(e);
17: else break;
18: if Jce Csy |var(c) CSA|A]>1 then A < FindSC-2(S, A);
19: pick random ¢ € A; return c;

FindSC first initializes the set A to the candidate constraints, i.e. the constraints from B
with scope S that are satisfied by e, and removes them from B (lines 2-4) because after the
constraint is found no other constraint with scope S can exist in C's, given our normalization
assumption. In line 5, FindSC enters its main loop in which it posts preference queries to
the user. In line 6, a partial example €’ is generated, to be compared to eg, that is accepted
by Ch and satisfies fewer constraints from A than eg, but at least one. On the way example
e's is generated, if there is no satisfied constraint ¢ € C'sp with var(c) C S that will affect
the answer of the user, then whatever the answer of the user is, at least one candidate
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constraint will be eliminated. This is because if the user is indifferent between the examples,
the satisfied constraints from eg that are not satisfied by €'y are removed (line 16), while if
the user prefers eg, the satisfied constraints by ey cannot contain the one we seek, so they
are removed (line 9).

In order to make sure that there is no satisfied constraint ¢ € C'sp with var(c) C S in the
examples eg and ey that will affect the answer of the user on which example is preferable,
the system tries to generate an example that satisfies the same constraints in Csy as eg.
However, there are two cases that this may not be possible and special handling is required.

First, when the generated example e’y may satisfy a not yet learned constraint in C'sp.
To handle this, if there are candidate constraints from B, with a scope subset of S, that
are satisfied by €’ (line 12), FindSC checks if any of them is in the target network, in lines
13,14. This is done, by calling SearchSC in all the examples eg\,,, Vz; € S, in a technique
similar to the one used in lines 6-10 of SearchSC. If at least one constraint is found to be in
the target network, the system returns on generating a new example in line 6, as no useful
information can be derived from the answers of the user with the current example.

The second case is when there exists an already learned constraint ¢ (i.e. in C'sg), with
var(c) C S. This may affect the answers of the user, preventing FindSC from generating
an example ey with the necessary properties, and thus making it not possible to learn the
specific relation. Specifically, the reason that such an example may not be generated in
line 6, although all the constraints in A are not yet equivalent w.r.t Ch, is the existence
of constraint(s) ¢ € C'sy, with a scope var(c) C S, that may not allow the generation of an
example ¢’ accepted by Ch, with Acs, (€') = Acs, (€) A Aa(e') # Aale) A da(e') # 0.

Let us give an example: Assume that A = {cl, ¢2}, and thus e € sol(cl)Nsol(c2). Also, we
have constraints ¢3, ¢4 € C'sy, with var(c3), var(c4) C S and we have sol(¢3) = sol(cl)\sol(c2)
and sol(c4) = sol(c2) \ sol(cl)

In this case, if we want to generate an example e’ with Aa(€e) # Aa(e) A Aa(e’) # 0,
e’ will satisfy either cl or ¢2, and this will affect the user preferences in the query in line
8, which makes it not possible to use the answer to find which of ¢1,¢2 is in Csp. So, in
order to have an informative query in line 8, we must be able to generate an example ¢’ s.t.
Acs, (') = Acs, (e) along with the rest of the properties, which we cannot in this case.

Also, another case is where there may be a constraint ¢ € C'sy, accepted by e that cannot
by accepted by any example ¢’ with the desired properties.

To deal with such cases, function FindSC-2 is called in line 18, to find the constraint we
seek, or to prove that all constraints in A are equivalent w.r.t the hard constraints.

FindSC-2 (Algorithm 4) has two main loops, to cover all different cases where a constraint
with a scope subset of S exists in C'sy,. The first loop is in lines 2-16 and the second loop is
in lines 17-31. Each one deals with different cases. They both remove constraints from A
that provably cannot be in Csy. FindSC-2 returns the final A with all constraints being
equivalent w.r.t. the hard constraints of the problem.
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Algorithm 4 FindSC-2:

Input: S, A (S: the scope of the soft constraint we seek, A: the set containing the constraints
that may belong to Cs)
Output: A: the set containing the constraints that may belong to Csr
1: function FindSC-2(S, A)
2: while true do
3: Generate e, e’ in D® accepted by Ch, s.t. Acs, (€/) = Acs, (€) AAa(€') # Aa(e) A
AA(el)v )‘A(e) 7é 07

4: if ¢ =nilVe=nil then break;

5: found < false;

6: if Je e Ag(e) |var(c) C S then

7 for each z; € S do

8: found < SearchSC(e, @, S\ {z;}, true ) Vfound__flag;

9: if Jece Ap(e)) |var(c) C S then

10: for each z; € S do

11: found < SearchSC(¢e’, 0, S\ {z;}, true ) V found_ flag;

12: if found = false then

13: answer < PrefAsk(e,e);

14: if answer = (e ~¢’) then A<+ A\ ((Aa(e) UAa(e))\ (Aal(e) N Aa(e));
15: else if answer = (e = ¢/) then A < Aa(e) \ Aa(e');

16: else A« Aa(e)\ Aale);

17: while true do

18: Generate e in D accepted by Ch, s.t. § C Aa(e) C A A Ags, (€) # 0;
19: if e # nil then
20: answer < PrefAsk(eg, evar(AcsL(e)))§
21: if answer = (eg ~ e’uar(/\csL(e))) then A «+ ka(es);
22: else
23: found < false;
24: if 3¢ € Ag(e) | var(c) € S Avar(c") D var(c) then
25: for each z; € S do
26: found + SearchSC(e, 0, S\ {z;}, true ) Vfound__ flag;
27: if found = false then
28: A« Aale);
29: else break;

return A;

In more details, in the first loop, a partial example eg is generated (line 3), that is
accepted by Ch and satisfies fewer constraints from A than eg, but at least one.

The main idea is the following. The system generates two new examples e, ¢’ s.t. each
one satisfies a different subset of A and the same subset of C'sy,. Next, these examples are
compared, eliminating parts from A from the candidate constraints in a repetitive process,
depending on the answer of the user on which example is preferable. If one is preferable
then only the constraints satisfied only by that example stay in A. If the user is indifferent
between the two, then the examples satisfied by one example and not by the other are
removed from A.

If the system cannot generate such a pair of examples, because e.g. all examples satisfying
a (different) subset of A also satisfy a (different) subset of C's,, then it tries to generate a new
example eg, satisfying at least one constraint from A but not all, satisfying also a constraint
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¢ € Csy, with var(c) C S, if one exists. Then it posts a preference query comparing the
example eg with its projection in var(c), in order to find out if the constraint(s) in A that are
satisfied are in the target network. If the user is indifferent between the examples, it means
that the constraints in A satisfied by eg are not in the target network and are removed.
Otherwise, only these constraints remain in A.

If no example can be generated, then the system can return randomly a constraint from
A in line 19 of FindSC, because they are all equivalent w.r.t. Ch.

5 Experimental Evaluation

We first detail the experimental setting.
Experiments were run on an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz with 16 GB of
RAM
The mazp heuristic [42] was used for query generation, altered to fit the context of soft
constraints. mazpg normally focuses on examples violating as many constraints from B
as possible. But it now focuses on examples satisfying as many constraints from B as
possible. The best such example (according to mazg) found within 1 second is returned,
even if not proved optimal. Also, bdeg was used for variable ordering. The variable
appearing in the most constraints in B is chosen [40]. Random value ordering was used.
We evaluated our algorithm in the extreme case where C's, is initially empty, meaning that
we have no background knowledge. This results in a large number of queries. However,
in real applications it is common to have background knowledge and use it e.g. by giving
a frame of basic constraints.
We evaluate our algorithm on learning the soft constraints, while hard constraints are
given by the user. If the hard constraints are unknown too, a constraint acquisition
algorithm like QuAcq [4], MQuAcq [42] or MQuAcg-2 [41] can be used to learn them
before using PrefAcq to learn the soft constraints.
We measure the size of the learned network C'sy,, the total number of queries #queries,
the average time per query T and the total cpu time of the acquisition process T. The
time measured is in seconds. PrefAcq was run 5 times on each benchmark. The means
are presented along with the standard deviation .

We used the following benchmarks:

Random. We generated two classes of random Max-CSPs with 50 variables and domains
of size 10. The first instance consists of 12 hard and 100 soft constraints, while the second
consists of 122 hard and 30 soft constraints. All the hard ones are # constraints, while the
soft are among {#, >, <}. The bias was initialized with 7,350 constraints, using the language
I'={=4#><>7<}

Radio Link Frequency Assignment Problem. The RLFAP is the problem of providing
communication channels from limited spectral resources [13]. We used a simplified version of
the RLFAP [13], with 50 variables having domains of size 15. The target network contains
100 hard and 25 soft constraints. B contains 12,250 constraints from the language of 2
distance constraints ({|z; — x;| > y, |z; — =;| = y}) with 5 different possible values for y.

Exam Timetabling Problem. We used a simplified version of the exam timetabling problem
from the Elect. Eng. Dept. of UOWM, Greece. We considered 24 courses, and 2 weeks of
exams, meaning that there are 10 possible days for each course to be assigned. We assumed
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that there are 3 timeslots in each day. This resulted in a model with 24 variables and
domains of size 30. There are hard # constraints between any two courses, assuming that
only one course is examined during each time slot. Also, hard constraints prohibit courses of
the same semester being examined on the same day. 30 soft constraints from the language
I'={#>,<,|z;—xj| >y, |z;—x;| <y}, capture the lecturers’ and the students’ preferences
about the examination of specific courses. We built a bias with 5,796 constraints from the
language(I’ = {#,=,>,<,>, <, |z; — ;| > v, |x; — ;| <y, |lzi/3] — |2;/3]| > y}) with 5
different possible values for y. This resulted in a bias containing 5,796 constraints in total.

Note that although all the benchmarks we used are binary (i.e. their constraint network
consists of binary constraints only), our proposed method works of constraints of any
arity, as long as it is bounded, as mentioned in Section 2. However, it does not work on
global constraints, but neither does any active constraint acquisition algorithm, as they are
unbounded, which means the bias should have an exponential size on the number of variables
of the problem.

Table 2 Results of PrefAcq.

Benchmark [ |CsL| [ #q [ T [ Thotal
Random122-30 [ 30+ 0 [ 859 £ 25 [ 0.03 £+ 0.001 [ 27.29 £ 0.78
Random12-100 [ 100 £ 0 [ 2234 + 65 [ 0.02 4+ 0.001 [ 39.43 £+ 1.06
RLFAP [ 25+ 0 [ 621 + 26 [ 0.33 + 0.02 [ 209.26 4+ 12.56
Exam TT [ 30£0 [ 751 + 13 [ 0.19 4+ 0.02 [ 146.54 £+ 16.30

Table 2 presents the results of PrefAcq. We see that the number of queries is proportional
to the number of constraints learned. Also, comparing the two random problems, we see that
although the number of queries increases when learning more soft constraints, the average
time between two queries is about the same. This is because the number of queries depends
only on the number of soft constraints we have to learn and on the size of B, while the
waiting time depends on the time taken for query generation. As both random problems
are easy to solve, queries are generated very fast. In contrast, in the RLFAP and the Exam
Timetabling problem (denoted as Exam TT), which are harder to solve, the system takes
more time to generate examples that do not violate any hard constraints and satisfy at least
one ¢ € B, at line 3 of PrefAcq. But still, the average waiting time for the user is under 1
second.

6 Conclusion

We have extended the framework of active constraint acquisition to the learning of soft
constraints in Max-CSPs. Based on a type of query used in preference elicitation, we
introduced partial preference queries. Then we presented PrefAcq, a novel algorithm for
learning soft constraints in Max-CSPs using such queries. Finally, we give some preliminary
experimental results. Our method can be extended to weighted Max-CSP if PrefAcq is used
to learn the constraints and a method such as the one in [35] is then used the learn their
weights. The existence of weights in constraints does not affect the procedure followed by
our method.
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