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Abstract
We develop a theory for the commutative combination of quantitative effects, their tensor, given as a
combination of quantitative equational theories that imposes mutual commutation of the operations
from each theory. As such, it extends the sum of two theories, which is just their unrestrained
combination. Tensors of theories arise in several contexts; in particular, in the semantics of
programming languages, the monad transformer for global state is given by a tensor.

We show that under certain assumptions on the quantitative theories the free monad that arises
from the tensor of two theories is the categorical tensor of the free monads on the theories. As an
application, we provide the first algebraic axiomatizations of labelled Markov processes and Markov
decision processes. Apart from the intrinsic interest in the axiomatizations, it is pleasing they are
obtained compositionally by means of the sum and tensor of simpler quantitative equational theories.
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1 Introduction

The theory of computational effects began with the work of Moggi [24, 25] seeking a unified
category-theoretic account of the semantics of higher-order programming languages. He
modelled computational effects (which he called notions of computation) by means of strong
monads on a base category with cartesian closed structure. With Cenciarelli [5], he later
extended the theory by allowing a compositional treatment of various semantic phenomena
such as state, IO, exceptions, resumptions, etc, via the use of monad transformers. This work
was followed up by the program of Plotkin and Power [26, 27] on an axiomatic understanding
of computational effects as arising from operations and equations via the use of Lawvere
theories (see also [14]). In a fundamental contribution [12] together with Hyland they
developed a unified modular theory for algebraic effects that supports their combination by
taking the sum and tensor of their Lawvere theories. This allowed them to recover in a more
pleasing algebraic structural way many of the monad transformers considered by Moggi.

Quantitative equational theories, introduced by Mardare et al. [21], are a logical framework
generalising the standard concept of equational logic to account for a concept of approximate
equality. They are used to describe quantitative effects as monads on categories of metric
spaces. Following the work of Hyland et al. [12], in [1] we developed a theory for the sum of
quantitative equational theories, and proved that it corresponds to the categorical sum of
quantitative effects as monads. As a major example, we axiomatised Markov processes with
discounted probabilistic bisimilarity distance [7] as the sum of two theories: interpolative
barycentric algebras (which axiomatises probability distributions with the Kantorovich
metric [21]) and contractive operators (used to express the transition to the next state).
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7:2 Tensor of Quantitative Equational Theories

Whereas the sum of two monads is the simplest combination supporting both given effects
with no interactions between them, the tensor additionally requires commutation of these
effects over each other. Some of the most important monad transformers have an elegant
abstract description using tensor. Specifically, Moggi’s transformers for state, reader, and
writer are examples of tensors [12].

In the present paper we extend the work initiated in [1], and develop the theory for the
tensor of quantitative equational theories. The main contributions are:
1. we prove that the tensor of quantitative theories corresponds to the categorical tensor of

their induced quantitative effects as strong monads;
2. we give quantitative axiomatisations to the quantitative reader and writer monads, from

which we obtain analogues of Moggi’s transformers at the level of theories using tensor;
3. we provide the first axiomatization of labelled Markov processes and Markov decision

processes with their discounted bisimilarity metrics.

For the proof of (1) we introduce the concept of pre-operation of a strong functor, which
we use to conveniently characterise the commutative bialgebras for the monads (which
correspond to the Eilenberg-Moore algebras for their tensor). Crucially, this allows us to
carry out the technical development directly at the level of quantitative equational theories
without passing via a correspondence with metric-enriched Lawvere theories.

The axiomatisations in (3) are two major examples for our compositional theory quantit-
ative effects. Specifically, we obtain the discounted bisimilarity metrics for labelled Markov
processes and Markov decision processes with rewards by complementing the axiomatization
for Markov processes presented in [1]. We model reactions to action labels by tensoring with
the theory of quantitative reading computations (corresponding to Moggi’s reader monad
transformer); while rewards are recovered by tensoring with the theory of quantitative writ-
ing computations (corresponding to Moggi’s writer monad transformer). We will illustrate
our compositional approach by decomposing the proposed axiomatisations into their basic
components and showing how to combine them step-by-step to get the desired result.

Further Related Work. In [12, 11] the tensor of (enriched) Lawvere theories is character-
ized as the colimit of certain commutative cocones, and the correspondence with the tensor
of monads is obtained via the equivalence between Lawvere theories and monads. Since it
is not hard to show that (basic) quantitative equational theories can be characterised as
metric-enriched Lawvere theories, one may think to recover the correspondence with the
tensor of monads via the equivalence with Lawvere theories. Alas, quantitative equational
theories and Lawvere theories are not equivalent, as the latter allows generic operations with
metric spaces as arities, while the framework of Mardare et al. [21] does not. An equivalence
with discrete Lawvere theories [13] (where arities are just countable ordinals) does not
hold either, because quantitative equations implicitly impose the existence operations with
non-discrete arities which cannot be expressed in the framework of discrete Lawvere theories.

The above arguments required us to follow a different path, which led us to the intro-
duction of pre-operations for a strong functor F . Pre-operations are related to Plokin and
Power’s algebraic operations [28, 29] in the sense that their assignment to F -algebras are the
appropriate version of algebraic operations for functors. Moreover, when considered over
a strong monad T they correspond to generic effects of type I → Tv (i.e., Kleisli maps of
type I → v, where I is the identity for the monoidal product). The reason why we consider
pre-operations over functors, and not just monads, is to relate the operations of an algebraic
monad with those of its signature. This was crucial in the technical development of Section 5.

Finally, we remark that quantitative equational theories are a natural kind of enriched
equational theory expressive enough to recover many examples of interest in computer science
(see [21, 1, 23]), but not corresponding to metric-enriched Lawvere theories. In this respect,
it is nice that also this simpler subclass of enriched theories are closed under sum and tensor.
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2 Preliminaries and Notation

An extended metric space is a pair (X, d) consisting of a set X equipped with a distance
function d : X × X → [0,∞] allowed to have infinite values, satisfying: (i) d(x, y) = 0 iff
x = y, (ii) d(x, y) = d(y, x) and (iii) d(x, z) ≤ d(x, y) + d(y, z).

A sequence (xi) in X is Cauchy if ∀ϵ > 0,∃N, ∀i, j ≥ N, d(xi, xj) ≤ ϵ. If every Cauchy
sequence converges, the extended metric space (X, d) is said to be complete. If a space is not
complete it can be completed by a well-known construction called Cauchy completion. We
write (X, d), or just X, for the completion of (X, d).

We denote by Met the category of extended metric spaces with morphisms the non-
expansive maps, i.e. the f : (X, dX) → (Y, dY ) such that dX(x, y) ≥ dY (f(x), f(y)). This
category is both complete (i.e., have all limits) and cocomplete (i.e., have all colimits). We
will consider also the full subcategory CMet of complete extended metric spaces.

The categorical properties of extended metric spaces are much nicer than usual metric
spaces. In particular, we note that Met is a symmetric monoidal category, with monoidal
product (X, dX) □ (Y, dY ) being the extended metric space with underlying set X × Y and
extended metric dX□Y ((x, y)(x′, y′)) = dX(x, x′) + dY (y, y′) (cf. [19]). Note that this is not
the cartesian product in Met (for which + above would be replaced by max).

The monoidal product □ introduced above defines a closed monoidal structure on Met,
with internal hom [(X, dX), (Y, dY )] given by the set of non-expansive maps from X to Y
with point-wise supremum extended metric d[X,Y ](f, g) = supx∈X d(f(x), g(x)).

Finally, we recall the basic definitions of strong functor (and monad), strong natural
transformations, and fix the notation (for more details see e.g. [17, 18]). Let V be a symmetric
monoidal closed category with monoidal product1 □ : V × V → V, unit object I ∈ V, and
internal hom-functor [−,−] : V × V → V. We will denote the counit (or evaluation map) of
the adjunction (V □ −) ⊣ [V,−] by evV : V □ [V,−] ⇒ Id and the unit (or co-evaluatation
map) by evV : Id → [V, V □ −].

A functor F : V → V is strong with monoidal strength tV,W : V □ F (W ) → F (V □
W ), if t is a natural transformation satisfying the coherence conditions Fλ ◦ t = λ and
t ◦ (id□ t) ◦ α = Fα ◦ t, w.r.t. the associator α and left unitor λ of V. The dual strength
t̂V,W : F (W ) □ V → F (W □ V ) is given by t̂ = F (s) ◦ t ◦ s, where s : V □W → W □ V is
the natural isomorphism of the symmetric monoidal category V. A natural transformation
θ : F ⇒ G is said strong if F,G are strong functors with strengths t, σ, respectively, and
σ ◦ (id□ θ) = θ ◦ t, meaning that θ interacts well with the strengths.

A monad (T, η, µ) with unit η : Id ⇒ T and multiplication µ : TT ⇒ T , is strong if T is a
strong functor with strength t such that t ◦ (id□ η) = η and µ ◦ tt = t ◦ (id□ µ).

Note that strong functors (resp. monads) on a symmetric monoidal closed category V
are equivalent to V-enriched functors (resp. monads) on the self-enriched category V [17].

3 Quantitative Equational Theories

Quantitative equations were introduced in [21]. In this framework equalities t ≡ε s are
indexed by a positive rational number, to capture the idea that t is “within ε” of s. This
informal notion is formalised in a manner analogous to traditional equational logic. In this
section we review this formalism.

1 We denote the monoidal product by □ to avoid confusion with other tensorial operations we will deal
with in this paper, e.g., the tensor of monads.
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Let Σ be a signature of function symbols f : n ∈ Σ of arity n ∈ N. Let X be a countable
set of variables, ranged over by x, y, z, . . . . We write T(Σ, X) for the set of Σ-terms freely
generated over X, ranged over by t, s, u, . . ..

A substitution of type Σ is a function σ : X → T(Σ, X), canonically extended to terms as
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)); we write S(Σ) for the set of substitutions of type Σ.

A quantitative equation of type Σ over X is an expression of the form t ≡ε s, for
t, s ∈ T(Σ, X) and ε ∈ Q≥0. We use V(Σ, X) to denote the set of quantitative equations of
type Σ over X, and its subsets will be ranged over by Γ,Θ, . . .. Let E(Σ, X) be the set of
conditional quantitative equations on T(Σ, X), which are expressions of the form

{t1 ≡ε1 s1, . . . , tn ≡εn
sn} ⊢ t ≡ε s ,

for arbitrary si, ti, s, t ∈ T(Σ, X) and εi, ε ∈ Q≥0.
A quantitative equational theory of type Σ over X is a set U of conditional quantitative

equations on T(Σ, X) containing the axioms and closed under the rules of inference below, for
arbitrary x, y, z, xi, yi ∈ X, terms s, t ∈ T(Σ, X), rationals ε, ε′ ∈ Q≥0, and Γ,Θ ⊆ V(Σ, X),

(Refl) ⊢ x ≡0 x ,

(Symm) {x ≡ε y} ⊢ y ≡ε x ,

(Triang) {x ≡ε z, z ≡ε′ y} ⊢ x ≡ε+ε′ y ,

(Max) {x ≡ε y} ⊢ x ≡ε+ε′ y , for all ε′ > 0 ,
(Cont) {x ≡ε′ y | ε′ > ε} ⊢ x ≡ε y ,

(f -NE) {xi ≡ε yi | i=1..n} ⊢ f(x1, . . . , xn) ≡ε f(y1, . . . , yn) , for f : n ∈ Σ ,

(Subst) If Γ ⊢ t ≡ε s, then {σ(t) ≡ε σ(s) | t ≡ε s ∈ Γ} ⊢ σ(t) ≡ε σ(s) , for σ ∈ S(Σ) ,
(Ass) If t ≡ε s ∈ Γ, then Γ ⊢ t ≡ε s ,

(Cut) If Γ ⊢ Θ and Θ ⊢ t ≡ε s, then Γ ⊢ t ≡ε s ,

where we write Γ ⊢ Θ to mean that Γ ⊢ t ≡ε s holds for all t ≡ε s ∈ Θ.
The rules (Subst), (Cut), (Ass) are the usual rules of equational logic. The axioms

(Refl), (Symm), (Triang) correspond, respectively, to reflexivity, symmetry, and the triangle
inequality; (Max) represents inclusion of neighborhoods of increasing diameter; (Cont) is the
limiting property of a decreasing chain of neighborhoods with converging diameters; and
(f -NE) expresses non-expansivness of f ∈ Σ.

A set A of conditional quantitative equations axiomatises a quantitative equational theory
U , if U is the smallest quantitative equational theory containing A.

The models of these theories, called quantitative Σ-algebras, are Σ-algebras in Met.

▶ Definition 1 (Quantitative Algebra). A quantitative Σ-algebra is a tuple A = (A,ΣA), where
A is an extended metric space and ΣA = {fA : An → A | f : n ∈ Σ} is a set of non-expansive
interpretations (i.e., satisfying maxi dA(ai, bi) ≥ dA(fA(a1, . . . , an), fA(b1, . . . , bn))).

The morphisms between quantitative Σ-algebras are non-expansive Σ-homomorphisms.
Quantitative Σ-algebras and their morphism form a category, denoted by QA(Σ).

A = (A,ΣA) satisfies the conditional quantitative equation Γ ⊢ t ≡ε s in E(Σ, X), written
Γ |=A t ≡ε s, if for any assignment ι : X → A, the following implication holds(

∀t′ ≡ε′ s′ ∈ Γ , dA(ι(t′), ι(s′)) ≤ ε′) ⇒ dA(ι(t), ι(s)) ≤ ε ,

where ι(t) is the homomorphic interpretation of t in A.
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A quantitative algebra A is said to satisfy (or be a model for) the quantitative theory U ,
if Γ |=A t ≡ε s whenever Γ ⊢ t ≡ε s ∈ U . We write K(Σ,U ) for the collection of models of a
theory U of type Σ.

Sometimes it is convenient to consider the quantitative Σ-algebras whose carrier is a
complete extended metric space. This class of algebras forms a full subcategory of QA(Σ),
written CQA(Σ). Similarly, we write CK(Σ,U ) for the full subcategory of quantitative
Σ-algebras in CQA(Σ) which are models of U .

The following lifts the Cauchy completion of metric spaces to quantitative algebras.

▶ Definition 2. (Algebra Completion) The Cauchy completion of a quantitative Σ-algebra
A = (A,ΣA), is the quantitative Σ-algebra A = (A,ΣA), where A is the Cauchy completion
of A and ΣA = {fA : An → A | f : n∈ Σ} is such that for Cauchy sequences (bij)j converging
to bi ∈ A, for 1 ≤ i ≤ n, fA(b1, . . . , bn) = limj f

A(b1
j , . . . , b

n
j ).

The above extends to a functor C : QA(Σ) → CQA(Σ) which is the left adjoint to the
functor embedding CQA(Σ) into QA(Σ).

The completion of quantitative Σ-algebras extends also to a functor from K(Σ,U ) to
CK(Σ,U ), whenever U can be axiomatised by a collection of continuous schemata, which are
conditional quantitative equations of the form

{xi ≡εi yi | i = 1..n} ⊢ t ≡ε s , for all ε ≥ f(ε1, . . . , εn),

where f : Rn≥0 → R≥0 is a continuous real-valued function, ε, εi ∈ Q≥0, and xi, yi ∈ X. We
call such a theory continuous.

Free Monads on Quantitative Equational Theories

To every signature Σ, one can associate a signature endofunctor (also called Σ) on Met by:

Σ =
∐
f :n∈Σ

Idn .

It is easy to see that, by couniversality of the coproduct, quantitative Σ-algebras correspond
to Σ-algebras for the functor Σ in Met, and the morphisms between them to non-expansive
homomorphisms of Σ-algebras. Below we pass between the two points of view as convenient.

▶ Theorem 3 (Free Algebra [21]). The forgetful functor K(Σ,U ) → Met has a left adjoint.

The left adjoint assigns to any X ∈ Met a free quantitative Σ-algebra (TX , ψU
X) satisfying U ,

from which one canonically obtains the monad (TU , η
U , µU ), with functor TU : Met → Met

mapping X ∈ Met to the carrier TX of the free algebra.
A similar free construction also holds for quantitative algebras in CQA(Σ) for continuous

quantitative equational theories, implying that the forgetful functor from CK(Σ,U ) to CMet
has a left adjoint. In particular, CTU is the free monad on U in CMet, provided that the
quantitative equational theory is continuous.

Finally, let T -Alg denote the category of Eilenberg-Moore (EM) algebras for a monad T .
In [1], it is shown that, whenever the quantitative theory U is basic, i.e., it can be axiomatised
by a set of conditional equations of the form

{x1 ≡ε1 y1, . . . , xn ≡εn
yn} ⊢ t ≡ε s ,

where xi, yi ∈ X (cf. [22]), then EM TU -algebras are in 1-1 correspondence with the quantit-
ative algebras satisfying U :

▶ Theorem 4. For any basic quantitative equational theory U of type Σ, TU -Alg ∼= K(Σ,U ).

CALCO 2021



7:6 Tensor of Quantitative Equational Theories

4 Tensor of Strong Monads

In this section we provide the definition of tensor of strong monads on a generic symmetric
monoidal closed category V. The presentation follows and generalises that of Manes [20],
which considers only the case of monads on Set.

Let v be an object in V. As V is self-enriched, it has all v-fold powers (or v-powers)
Xv, of any object X ∈ V, defined as Xv = [v,X] [16]. Moreover, (−)v : V → V is a strong
functor with strength ξX,Y : X □ Y v → (X □ Y )v obtained by currying

v □ (X □ Y v)
∼=−→ X □ (v □ Y v) X□ev−−−−→ X □ Y .

Let F : V → V be a strong functor with strength t. The v-power functor (−)v can be
lifted to F -algebras by mapping (A, a) to (A, a)v = (Av, av ◦σA), where σA : FAv ⇒ (FA)v is
the strong natural transformation obtained from t by currying F evvA◦tv,Av . Hence F -algebras
are closed under powers of V-objects.

▶ Definition 5 (Pre-operation of a strong functor). Let F : V → V be a strong functor and
v ∈ V. A v-ary pre-operation of F is a strong natural transformation of type (−)v ⇒ F .

We denote by OF (v) the set of v-ary pre-operations of F . An application of g ∈ OF (v)
to an F -algebra (A, a) is the composite ag = a ◦ gA. We call ag an operation of (A, a).

▶ Proposition 6. Let (A, a), (B, b) be F -algebras of a strong endofunctor F on V and
f : A → B a morphism in V. Then, the following are equivalent:
1. f is an F -homomorphisms from (A, a) to (B, b);
2. For every v ∈ V and g ∈ OF (v), f ◦ ag = bg ◦ fv.

The above proposition indicates that F -algebras are precisely characterised by their
operations. In some situations, depending on the functor F , one gets the same characterisation
with much fewer operations. We identify this property with the following definition.

▶ Definition 7 (Density). A set D of pre-operations of a strong functor F : V → V is dense,
if for any F -algebras (A, a), (B, b) and f : A → B in V, the following are equivalent:
1. f is an F -homomorphisms from (A, a) to (B, b);
2. For every v-ary pre-operation g ∈ D, f ◦ ag = bg ◦ fv.

Let F,G be two strong endofunctors on V. A ⟨F,G⟩-bialgebra is a triple (A, a, b) consisting
of an object A ∈ V with both an F -algebra structure a : FA → A and a G-algebra structure
b : GA → A. A morphism of ⟨F,G⟩-bialgebras is an arrow that is simultaneously an F - and
G-homomorphism. Denote by ⟨F,G⟩-biAlg the category of ⟨F,G⟩-bialgebras.

▶ Proposition 8. Let (A, a, b) be an ⟨F,G⟩-bialgebra. The following statements are equivalent:
1. For all v ∈ V and g ∈ OF (v), ag is a G-homomorphism;
2. For all w∈ V and h ∈ OG(w), bh is an F -homomorphism.
Diagrammatically:

GAv Av

GA A

b̄

G(ag) (1) ag

b

iff
FAw Aw

FA A

ā

F (bh) (2) bh

a

where (A, a)w = (Aw, ā) and (A, b)v = (Av, b̄).
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▶ Definition 9 (Commutative bialgebra). A ⟨F,G⟩-bialgebra (A, a, b) is commutative if it
satisfies either of the equivalent conditions of Proposition 8.

In the case the functors F and G admit dense sets of pre-operations, commutativity for
their bialgebras can be more conveniently expressed in the following way.

▶ Proposition 10. Let D and E be dense sets of pre-operations for F and G, respectively. A
⟨F,G⟩-bialgebra (A, a, b) is commutative iff it satisfies either of the equivalent conditions:
1. For all g ∈ D, ag is a G-homomorphism;
2. For all h ∈ E, bh is an F -homomorphism.

Let (T, η, µ) be a strong monad on V. Note that, as T is a strong functor and the
EM-algebras for T are closed under powers of V-objects, all the results and definitions given
in this section extends to EM-algebras for T .

Let (T, η, µ), (T ′, η′, µ′) be two strong monads on V. A EM ⟨T, T ′⟩-bialgebra is a triple
(A, a, a′) consisting of an object A ∈ V with both an EM T -algebra structure a : TA → A

and an EM T ′-algebra structure a′ : T ′A → A. We say that an EM ⟨T, T ′⟩-bialgebra
(A, a, a′) is commutative if it is so as a ⟨T, T ′⟩-bialgebra for the functors T, T ′. We denote
by ⟨T, T ′⟩-biAlg the category of EM ⟨T, T ′⟩-bialgebras and by (T ⊗ T ′)-biAlg, the full
subcategory of the commutative EM ⟨T, T ′⟩-bialgebras.

▶ Definition 11 (Tensor of monads). If the forgetful functor (T ⊗ T ′)-biAlg → V has a left
adjoint, then the monad induced by the adjunction is the tensor of T, T ′, denoted T ⊗ T ′.

Note that the tensor of monads does not necessarily exist (see [4] for counterexamples).
However, when it does T ⊗ T ′ ∼= T ′ ⊗ T , as the categories of commutative biagebras
(T ⊗ T ′)-biAlg and (T ′ ⊗ T )-biAlg are isomorphic.

5 Tensor of Quantitative Theories

In this section, we develop the theory for the tensor of quantitative equational theories. The
main result is that the free monad on the tensor of two theories is the tensor of the monads
on the theories. In the proof given, we use the fact that the quantitative theories are basic,
as this allows us to exploit the correspondence between the algebras of a theory U and the
EM-algebras of the monad TU (Theorem 4).

Let Σ, Σ′ be two disjoint signatures. Following Freyd [8] (and [12]), we define the tensor
of two quantitative equational theories U , U ′ of respective types Σ and Σ′, written U ⊗ U ′,
as the smallest quantitative theory containing U , U ′ and the quantitative equations

⊢ f(g(x1
1, . . . , x

1
m), . . . , g(xn1 , . . . , xnm)) ≡0 g(f(x1

1, . . . , x
n
1 ), . . . , f(x1

m, . . . , x
n
m)) , (1)

for all f : n ∈ Σ and g : m ∈ Σ′, expressing that the operations of one theory commute with
the operations of the other.

5.1 Density of Symbolic Pre-operations
Towards our main result, we identify a dense set of pre-operations for the free monads on
quantitative equational theories which, in turn, will gives us a simpler characterization for
commutative bialgebras for these monads (cf. Proposition 10).

First notice that any signature functor Σ =
∐
f :n∈Σ Id

n in Met is strong, as it is the
coproduct of the strong functors Idn ∼= (−)n, where n ∈ Met denotes the set {1, . . . , n}

CALCO 2021



7:8 Tensor of Quantitative Equational Theories

equipped with the discrete extended metric assigning infinite distance to distinct elements.
Moreover, the injections inf : (−)n ⇒ Σ are strong natural transformations, hence they are
n-ary pre-operations of Σ (cf. Definition 5).

▶ Proposition 12. SΣ = {inf | f : n ∈ Σ} is a dense set of pre-operations of Σ.

In the following, the pre-operations in SΣ will be called symbolic, and to simplify the notation,
for any f : n ∈ Σ and Σ-algebra (A, a), we write af instead of ainf .

Let U be a quantitative equational theory of type Σ. Then, also the monad TU is strong,
with strength ζX,Y : X □ TUY → TU (X □ Y ) obtained by uncurrying the unique map hX,Y
that, by Theorem 3, makes the following diagram commute

Y TUY ΣTUY

(TU (X □ Y ))X Σ(TU (X □ Y ))X
βX,Y

ηU
Y

hX,Y

ψU
Y

ΣhX,Y

ψU
(T (X□Y ))X

where βX,Y is the currying of ηU
X□Y : X □ Y → TU (X □ Y ).

Since a monad is strong iff both its unit and multiplication are strong natural transform-
ations, both ηU , µU are strong. Moreover, also ψU : ΣTU ⇒ TU is strong.

Thus any pre-operation g ∈ OΣ(v) can be tuned into an pre-operation of TU as the
composite

(−)v g−→ Σ ΣηU

−−−→ ΣTU
ψU

−−→ TU .

In particular, when the theory U is basic, by exploiting Theorem 4, the above transforma-
tion allows us to turn any dense set of pre-operations of Σ into a dense set of pre-operations
of TU .

▶ Proposition 13. Let U be a basic quantitative theory of type Σ and D a dense set of
pre-operations of Σ. Then {ψU ◦ ΣηU ◦ g | g ∈ D} is a dense set of pre-operations of TU .

By combining Propositions 12 and 13, we have that STU = {ψU ◦ ΣηU ◦ inf | f : n ∈ Σ} is
a dense set of pre-operations of TU . We call also these pre-operations symbolic and we simplify
the notation by writing a⟨f⟩ instead of a(ψU ◦ΣηU ◦inf ), for f : n ∈ Σ and (A, a) ∈ TU -Alg.

Thus, as an immediate consequence of Propositions 10 and 13, we obtain the following
simpler characterization for commutative ⟨TU , TU ′⟩-bialgebras.

▶ Corollary 14. Let U , U ′ be basic quantitative theories respectively of type Σ, Σ′. A
⟨TU , TU ′⟩-bialgebra (A, a, b) is commutative iff it satisfies either of the equivalent conditions
1. For all f : n ∈ Σ, a⟨f⟩ is a TU ′-homomorphism;
2. For all g : n ∈ Σ′, b⟨g⟩ is a TU -homomorphism.

5.2 Tensor of Free Monads on Quantitative Theories
Let U ,U ′ be basic quantitative theories respectively of type Σ,Σ′. We show that any model
for U ⊗ U ′ is a ⟨U ⊗ U ′⟩-bialgebra: an extended metric space A with both a Σ-algebra
structure a : ΣA → A satisfying U and a Σ′-algebra structure b : Σ′A → A satisfying U ′ and
respecting the diagrammatic condition below, for all f : n ∈ Σ and g : m ∈ Σ′

An A Am

(Am)n (An)m

af bg

χ

∼=

(bg)n (af )m (2)
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Formally, we denote by (U ⊗U ′)-biAlg the category of ⟨U ⊗U ′⟩-bialgebras, with morphisms
the non-expansive homomorphisms preserving both algebraic structures. Then, the following
isomorphism of categories holds.

▶ Proposition 15. K(Σ+Σ′,U ⊗U ′) ∼= (U ⊗U ′)-biAlg, for U ,U ′ basic quantitative theories.

Moreover, by adapting the isomorphism of Theorem 4 and exploiting the density of
symbolic pre-operations (cf. Corollary 14) the following is also true.

▶ Proposition 16. (U ⊗U ′)-biAlg ∼= (TU ⊗TU ′)-biAlg, for U ,U ′ basic quantitative theories.

By combining the above two propositions we get the main theorem of this section.

▶ Theorem 17. Let U ,U ′ be basic quantitative theories. Then, the monad TU ⊗U ′ in Met is
the tensor of monads TU ⊗ TU ′ .

Proof. By Propositions 15 and 16 the forgetful functor from (TU ⊗ TU ′)-biAlg to Met has
a left adjoint and the monad generated by this adjunction is isomorphic to TU ⊗U ′ . Thus, by
definition of tensor of monads, TU ⊗U ′ ∼= TU ⊗ TU ′ . ◀

The above results do not require any specific property of Met, apart that its morphisms
are non-expansive maps. Thus, when the quantitative equational theories are continuous, we
can reformulate an alternative version of Theorem 17 which is valid in CMet.

▶ Theorem 18. Let U ,U ′ be continuous quantitative theories. Then, CTU ⊗U ′ in CMet is
the tensor of monads CTU ⊗ CTU ′ .

6 Quantitative Reader Algebras

Let E be a finite set of input values and fix an enumeration E = {e1, . . . , en} for it. The
quantitative reader algebras of type E are the algebras for the signature

ΣRE
= {r : |E|}

having only one operator r of arity equal to the number of the input values in E, and
satisfying the following axioms

(Idem) ⊢ x ≡0 r(x, . . . , x) ,
(Diag) ⊢ r(x1,1, . . . , xn,n) ≡0 r(r(x1,1, . . . , x1,n), . . . , r(xn,1, . . . , xn,n)) .

The quantitative theory induced by the axioms above, written RE , is called quantitative
theory of reading computations.

Intuitively, the term r(t1, . . . , tn) can be interpreted as the computation that proceeds as
ti after reading the value ei from its input. The axiom (Idem) says that if we ignore the value
of the input the reading of it is not observable; (Diag) says that the resulting computation
after reading the input is the same no matter how many times we read it.

▶ Remark 19. For the binary case (|E| = 2) we can think of r as an if-then-else statement
b?(S, T ) checking for the value of a fixed global Boolean variable b and proceeding as S when
b = true, and as T otherwise. In this case, (Idem) and (Diag) express the standard program
equivalences S ≡ b?(S, S) and b?(S, T ) ≡ b?(b?(S, T ′), b?(S′, T )).

In the following, when the set E is clear from the context, we use R in place of RE .
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On Metric Spaces

Let E be a finite set. We denote by E the extended metric space on E equipped with the
indiscrete metric that assigns infinite distance to any pair of distinct elements.

Consider the E-power functor (−)E : Met → Met, assigning to each X ∈ Met the
metric space [E,X] of (necessarily non-expansive) maps from E to X.

This functor has a monad structure, with unit κ : Id ⇒ (−)E and multiplication
∆: ((−)E)E ⇒ (−)E , respectively given as follows, for x ∈ X, e ∈ E, and f ∈ E → XE

κX(x)(e) = x , ∆X(f)(e) = f(e)(e) .

This is also known as reader monad (also called environment monad or function monad).
▶ Remark 20. The reader monad is always well defined in a cartesian closed category. Fix
an object E. The reader monad (−)E has unit and multiplication respectively given by

X ∼= X1 X!

−−→ XE and (XE)E ∼= XE×E Xδ

−−→ XE ,

where ! : E → 1 is the unique map to the terminal object and δ : E → E × E the diagonal
map δ = ⟨id, id⟩. However, this definition does not generalise to arbitrary monoidal closed
categories, and Met is such a counterexample. The specific problem with Met is that
δ : E → E □ E is not well-defined for arbitrary E ∈ Met, as non-expansivness requires that

dE(e, e′) ≥ dE□E(δ(e), δ(e′)) = dE(e, e′) + dE(e, e′) ,

which holds only when E has the discrete metric. This is the reason why in our treatment
we restrict the set of input values to have discrete metric.

The reader monad (−)E is isomorphic to the free monad TR . In other words, the
quantitative theory R of reading computations axiomatises the reader monad.

▶ Theorem 21. The monads TR and (−)E in Met are isomorphic.

Let T be a strong monad with strength t. The natural transformation λX : TXE ⇒ (TX)E
obtained from the strength t by currying T evEX ◦ tE,XE , is a distributive law of monads.
Distributive laws induce a notion of monad composition [2], so Moggi’s reader monad
transformer T 7→ (T−)E is also available in Met. The following says that we can recover
this monad transformer as the operation of tensoring with the reader monad.

▶ Theorem 22 (Tensoring with Reader Monad). Let T be a strong monad. Then, T ⊗ (−)E
exists and is given as the monad composition (T−)E.

By using the above result in combination with Theorem 17, we obtain an analogous
transformer at the level of quantitative equational theories as follows.

▶ Corollary 23. Let U be a basic quantitative equational theory. Then, (TU −)E is the free
monad on the theory U ⊗ R in Met.

On Complete Metric Spaces

The category CMet has finite products. Since, we assumed the set of input values E to be
finite, the functor (−)E is isomorphic to the finite product (−)n, for n = |E|. Therefore the
power functor (−)E , preserves Cauchy completeness and can be restricted to an endofunctor
on CMet. Thus also the reader monad restricts to CMet.

Because R is a continuous quantitative theory, the free monad on R in CMet is CTR .
Thus, by restricting Theorem 21 to quantitative algebras over CMet, we obtain:
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▶ Theorem 24. The monads CTR and (−)E in CMet are isomorphic.

In virtue of the above characterisation, by instantiating Theorem 22 in the category of
complete extended metric spaces, in combination with Theorems 17 we obtain the following
variant of the quantitative reader theory transformer on continuous quantitative theories.

▶ Corollary 25. Let U be a continuous quantitative theory. Then, (CTU −)E is the free
monad on the theory U ⊗ R in CMet.

7 Quantitative Writer Algebras

Fix an extended metric space Λ ∈ Met of output values having monoid structure (Λ, ∗, 0)
with non-expansive multiplication operation ∗ : Λ × Λ → Λ.

The quantitative writer algebras of type Λ are the algebras for the signature

ΣWΛ = {wα : 1 | α ∈ Λ}

having a unary operator wα, for each output value α ∈ Λ, and satisfying the following axioms

(Zero) ⊢ x ≡0 w0(x) ,
(Mult) ⊢ wα(wα′(x)) ≡0 wα∗α′(x) ,
(Diff) {x ≡ε x

′} ⊢ wα(x) ≡δ wα′(x′) , for δ ≥ dΛ(α, α′) + ε .

The quantitative theory induced by the axioms above, written WΛ, is called quantitative
theory of writing computations.

The term wα(t) represents the computation that proceeds as t after writing α on the
output tape. The axiom (Zero) says that writing the identity element 0 is not observable on
the tape; (Mult) says that consecutive writing operations are stored in the tape in the order
of execution; (Diff) compares two computations w.r.t. the distance of their output values.

In the following, when the metric space Λ of output values is clear from the context, we
use W in place of WΛ.

On Metric Spaces

Let (Λ □ −) : Met → Met be the functor assigning to each extended metric space X the
space (Λ □X). By exploiting the monoid structure of Λ, the functor (Λ □ −) can be given a
monad structure with unit τ : Id ⇒ (Λ □ −) and multiplication ς : (Λ □ (Λ □ −)) ⇒ (Λ □ −),
respectively given as follows, for arbitrary x ∈ X and α, α′ ∈ Λ

τX(x) = (0, x) , ςX((α, (α′, x))) = (α ∗ α′, x) .

This monad is also known as writer monad (also called complexity monad). Note that,
the non-expansiveness of the maps above crucially depends on the assumption that the
multiplication ∗ in Λ is non-expansive.

The next theorem says that the writer monad (Λ □ −) has a quantitative equational
presentation in terms of the theory W of writing computations.

▶ Theorem 26. The monads TW and (Λ □ −) in Met are isomorphic.
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Let T be a strong monad with strength t. There is a canonical distributive law of the
monad (Λ □ −) over T , obtained using the strength tΛ,− : (Λ □ T−) ⇒ T (Λ □ −) of T . So
T (Λ □ −) acquires a canonical monad structure [2], and we obtain Moggi’s writer monad
transformer T 7→ T (Λ □ −) in Met.

In [12], Hyland et al. observed that Moggi’s writer monad transformer can be equivalently
recovered as the operation of tensoring with the writer monad.

▶ Theorem 27 (Tensoring with Writer Monad [12]). Let T be a strong monad. Then, the
monad composition T (Λ □ −) is given as T ⊗ (Λ □ −).

By combining the above with Theorems 17 and 26, we get an analogous transformer at
the level of quantitative equational theories as follows:

▶ Corollary 28. Let U be a basic quantitative theory. Then, TU (Λ□−) is the free monad on
the theory U ⊗ W in Met.

On Complete Metric Spaces

If we assume the monoid (Λ, ∗, 0) to be over a complete extended metric space Λ, the writer
monad (Λ □ −) is well defined also in CMet.

Since W is axiomatised by a continuous schema of quantitative conditional equations the
free monad on W in CMet is given by CTW . Thus, by restricting the use of Theorem 26 to
quantitative algebras over complete extended metric spaces, we obtain:

▶ Theorem 29. The monads CTW and (Λ □ −) in CMet are isomorphic.

Thus, by similar arguments as before, we obtain the following variant of Corollary 28.

▶ Corollary 30. Let U be a continuous quantitative theory. Then, CTU (Λ □ −) is the free
monad on the theory U ⊗ W in CMet.

8 The Algebras of Labeled Markov Processes

In this section we show how to obtain a quantitative equational axiomatization of labelled
Markov processes with discounted bisimilarity metric as the combination, via sum and tensor,
of the following simpler quantitative equational theories:

(a) The quantitative theory of interpolative barycentric algebras B from [21] over the signature
ΣB = {+e : 2 | e ∈ [0, 1]} extends M. H. Stone’s theory of barycentric algebras [31] (a.k.a.
abstract convex algebras) with the following axiom

(IB) {x≡ε y, x
′ ≡ε′ y′} ⊢x+e x

′ ≡δ y +e y
′, for δ ≥ eε+ (1 − e)ε′

expressing that the distance between convex combinations is obtained as the convex
interpolation of the distance of their sub-terms. This theory will be used to axiomatise
probability distributions with Kantorovich metric [15].

(b) The pointed quantitative theory, defined as the free quantitative theory U 0 (i.e., the
one imposing no additional axioms) for a signature Σ0 = {0 : 0} consisting of a single
constant 0 symbol. This will be used to axiomatise termination.

(c) The quantitative theory RA of reading computations (cf. Section 6) will be used to
axiomatise the reaction to the choice of a label from a set A of action labels.
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(d) The quantitative theory of contractive operators discussed in [1], is the theory obtained
by imposing a Lipschitz contractive axiom for each operator in the signature. In our case,
we consider a signature Σ⋄ = {⋄ : 1} with only one unary operator and the contractive
theory U ⋄ generated from the axiom

(⋄-Lip) {x =ε y} ⊢ ⋄(x) ≡δ ⋄(y) , for δ ≥ cε ,

where c ∈ (0, 1) is a fixed contractive factor for the operator ⋄. This theory will be used
to axiomatise the transition to a next state with discount factor c.

Formally, we define the quantitative theory U LMP of labelled Markov processes as the
following combination of quantitative theories, with signature ΣLMP given by the disjoint
union of those from its component theories:

ΣLMP = ΣB + Σ0 + ΣRA
+ Σ⋄ , U LMP = ((B + U 0) ⊗ RA) + U ⋄ .

Following [32, Section 6], we regard A-labelled Markov processes over extended metric
spaces as (∆(1 + −))A -coalgebras in Met, where ∆ is the Kantorovich functor assigning to
each X ∈ Met the space of Radon probability measures with finite moment over X equipped
with Kantorovich metric. In [32] it is shown that the probabilistic bisimilarity distance on a
labelled Markov processes (X, τ) is equal to the (pseudo)metric

d(X,τ)(x, x′) = dZ(h(x), h(x′)) ,

where h : X → Z is the unique homomorphism to the final coalgebra (Z, ω).
Similarly to [1], we slightly extend the type of the coalgebras to encompass the case when

the probabilistic bisimilarity distance is discounted by a factor 0 < c < 1. Explicitly, we
consider coalgebras for the functor (∆(1 + c · −))A, where (c · −) is the rescaling functor,
mapping a metric space (X, dX) to (X, c · dX). This will not change the essence of the results
from [32] that are used in this section to characterise the probabilistic bisimilarity metric.

In the reminder of the section we prove that the theory U LMP axiomatizes (the monad
of) A-labelled Markov processes with c-discounted bisimilarity metric.

On Metric Spaces

We characterise the monad TU LMP in steps. First, note that TU 0
∼= 1∗ = (1 + −) is the

maybe monad, i.e., freely generated monad on the constant terminal object functor 1. As the
monad (1 + −) is isomorphic to (1F )∗, for any functor F , by [1, Theorems 4.4 and 5.2], and
[12, Theorem 4], we obtain the following isomorphism of monads in Met:

TB+U 0
∼= TB + TU 0

∼= Π(1 + −) ,

where Π(1 + −) is the finite sub-distribution monad with functor assigning to X ∈ Met the
space of finitely supported Borel sub-probability measures with Kantorovich metric. Thus,
B + U 0 axiomatizes finitely supported sub-probability distributions with Kantorovich metric.

From the above, Theorem 17 and Corollary 23, we further get the monad isomorphism

T(B+U 0)⊗RA
∼= Π(1 + −) ⊗ (−)A ∼= (Π(1 + −))A ,

saying that tensoring with the theory RA of reading computations corresponds to axiomatic-
ally adding the capability of reacting to the choice of an action label.
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By [1, Theorem 6.3], TU ⋄ is isomorphic to the free monad over the rescaling functor (c ·−).
Hence, by [1, Theorem 4.4] and [12, Corollary 2] we get the following last isomorphism

TU LMP = T((B+U 0)⊗RA)+U ⋄
∼= µy.(Π(1 + c · y + −))A .

Explicitly, this means that, the free monad on U LMP assigns to an arbitrary metric space
X ∈ Met the initial solution of the following functorial equation in Met

LMPX ∼= (Π(1 + c · LMPX +X))A .

In particular, when X = 0 is the empty metric space (i.e., the initial object in Met) the
above corresponds to the isomorphism on the initial (Π(1+c ·−))A -algebra. The isomorphism
gives us also a (Π(1 + c · −))A -coalgebra structure on LMP0, which can be converted into a
labeled Markov process (LMP0, τ0) via a post-composition with the inclusion Π(−) ↪→ ∆(−).

The key aspect is that the metric of LMP0 is exactly the bisimilarity metric.

▶ Lemma 31. dLMP0 is the c-discounted probabilistic bisimilarity metric on (LMP0, τ0).

▶ Remark 32. For a less abstract description of (LMP0, τ0), notice that the elements of LMP0
are (equivalence classes of) ground terms over the signature ΣLMP, which one can interpret
as pointed (or rooted) acyclic labelled Markov processes quotiented by bisimilarity.

On Complete Metric Spaces

Since all the quantitative theories considered are continuous, we can replicate the same steps
also while interpreting the theory U LMP over complete metric spaces, obtaining the monad

CTU LMP
∼= µy.∆(1 + c · y + −)A .

By following similar arguments to [1, Section 8.3], one can prove that the functorial
equation LMPX ∼= ∆(1 + c · LMPX + X)A has a unique solution. Thus by applying the
monad above on X = 0 we recover the carrier of the final (∆(1 + c ·−))A -coalgebra, equipped
with c-discounted probabilistic bisimilarity metric.
▶ Remark 33. While by interpreting the theory U LMP over Met we can only characterise
Markov processes that are acyclic, by doing it over CMet we obtain an algebraic representa-
tion of all bisimilarity classes as the elements of the final coalgebra. Thus, among others, we
also recover Markov processes with cyclic structures as the limit of all their finite unfoldings.

9 The Algebras of Markov Decision Processes with Rewards

As a last example, we provide a quantitative axiomatization of Markov decision processes
with rewards equipped with discounted bisimilarity metric. As the construction is similar to
Section 8, we avoid repeating the details of each step of the monad characterization.

Let (R,+, 0) be the standard monoid structure on the reals. We define the quantitative
theory U MDP of Markov decision processes with real-valued rewards as follows

ΣMDP = ΣB + ΣWR + ΣRA
+ Σ⋄ , U MDP = ((B ⊗ U WR) ⊗ RA) + U ⋄ ,

where WR is the theory of writing computations and the other theories are as in Section 8.
For convenience, we regard Markov decision processes over metric spaces as the coalgebras

for the functor (∆(R□ c · −))A on Met, where the endofunctor (R□ −) is used to encode
the metric differences at each decision step for the real-valued reward available for two states.
Via this coalgebraic representation, the c-discounted probabilistic bisimilarity distance on
this structures can be defined as in [32] (following the same definition of Section 8).
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▶ Remark 34. In [30] a Markov decision process is defined as a tuple (S, p(·|s, a), r(s, a))
with a Markov kernel p : S ×A → ∆(S) and randomised reward function r : S ×A → ∆(R).
Our coalgebraic representation is the natural generalisation over metric spaces, where the
randomness of the Markov kernel and reward function is combined as a probability measure
on (R□ c · S), by regarding R and S as extended metric spaces (for each a ∈ A).

On Metric Spaces and Complete Metric Spaces

Similarly to what we have done in Section 8 for labelled Markov processes, we relate Markov
decision processes and their c-discounted probabilistic bisimilarity pseudometric with the
free monads on the theory U MDP in Met and CMet.

The only step that changes in the characterisation of TU MDP , regards the combination of
theories B ⊗ U WR , which is dealt using Corollary 28. Thus, similarly to Section 8 we get

TU MDP = T((B+⊗U WR )⊗RA)+U ⋄
∼= µy.Π((R□ y) + −)A .

The metric on the initial solution for the functorial fixed point definition corresponds to the
c-discounted probabilistic bisimilarity (pseudo)metric on its coalgebra structure.

Similar considerations apply also when interpreting the theories in the category CMet of
complete metric spaces, as the argument follows without issues because R a complete metric
space. Thus we obtain the following characterisation for the monad:

CTU LMP
∼= µy.∆((R□ y) + −)A .

Again, the metric on the solution for the above functorial fixed point definition corresponds
to the c-discounted probabilistic bisimilarity metric. Moreover, as the fixed point solution is
unique, CTU LMP0 is an algebraic characterization of the final (∆(R□ c · −))A -coalgebra.

10 Conclusions

We studied the commutative combination of quantitative effects as the tensor of their
quantitative equational theories. The key result in this regard is Theorem 17, asserting
that the tensor of two quantitative theories corresponds to the categorical tensor of their
free monads. In addition to this general result, we show how to extend to the quantitative
algebraic setting Moggi’s notions of reader and writer monad transformers.

We illustrate the applicability of our theoretical development with two examples: labeled
Markov processes and Markov decision processes. Apart from the intrinsic interest in their
quantitative equational axiomatisations, what is particularly pleasant is the systematic
compositional way with which one can obtain quantitative axiomatisations of different
variants of Markov processes by just combining theories as new basic ingredients.

An example that escapes our compositional treatment via sum and tensor is the com-
bination of probabilities and non-determinism as illustrated in [23]. A possible future work
in this direction is to extend the combination of theories with another operator: the dis-
tributive tensor (see [13, Section 6]). Following a similar intuition by Cheng [6], we claim
that these correspond in a suitable way to Garner’s weak distributive law [9]. Our claim
seems promising in the light of the work [10, 3] which consider equational axiomatisations
combining probabilities and non-determinism.
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