
PACE Solver Description: PACA-JAVA∗

Jona Dirks #

University of Bremen, Germany

Mario Grobler #

University of Bremen, Germany

Roman Rabinovich #

Technische Universität Berlin, Germany

Yannik Schnaubelt #

University of Bremen, Germany

Sebastian Siebertz #

University of Bremen, Germany

Maximilian Sonneborn #

University of Bremen, Germany

Abstract
We describe PACA-JAVA, an algorithm for solving the cluster editing problem submitted for the exact
track of the Parameterized Algorithms and Computational Experiments challenge (PACE) in 2021.
The algorithm solves the cluster editing problem by applying data-reduction rules, performing a
layout heuristic, local search, iterative ILP verification, and branch-and-bound. We implemented
the algorithm in the scope of a student project at the University of Bremen.

2012 ACM Subject Classification Theory of computation → Fixed parameter tractability

Keywords and phrases Cluster editing, parameterized complexity, PACE 2021

Digital Object Identifier 10.4230/LIPIcs.IPEC.2021.30

Supplementary Material Software: https://doi.org/10.5281/zenodo.4884681
Software (Gitlab Repository): https://gitlab.informatik.uni-bremen.de/parametrisierte-
algorithmen/java/pace-2021-paca-java

1 Introduction

An undirected and simple graph G is a cluster graph if its components are cliques (complete
graphs). In the cluster editing problem we are given an undirected graph G and the problem is
to find the minimum set of edge edits (additions or deletions) that turn G into a cluster graph.
The Parameterized Algorithms and Computational Experiments 2021 -Challenge (PACE 2021)
is devoted to the cluster editing problem [1]. As a student group at the University of Bremen
(under the supervision of Mario Grobler, Roman Rabinovich and Sebastian Siebertz) we
participated in the PACE challenge in the scope of a Bachelor project. We implemented an
exact algorithm for the cluster editing problem in Java. In the following we describe our
approach.

∗ This is a brief description of one of the highest ranked solvers of PACE Challenge 2021. It has been
made public for the benefit of the community and was selected based on the ranking. PACE encourages
publication of work building on the ideas presented in this description in peer-reviewed venues.

© Jona Dirks, Mario Grobler, Roman Rabinovich, Yannik Schnaubelt, Sebastian Siebertz, and
Maximilian Sonneborn;
licensed under Creative Commons License CC-BY 4.0

16th International Symposium on Parameterized and Exact Computation (IPEC 2021).
Editors: Petr A. Golovach and Meirav Zehavi; Article No. 30; pp. 30:1–30:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dirks2@uni-bremen.de
mailto:grobler@uni-bremen.de
mailto:roman.rabinovich@tu-berlin.de
mailto:schnauby@informatik.uni-bremen.de
mailto:siebertz@uni-bremen.de
mailto:maxsonne@uni-bremen.de
https://doi.org/10.4230/LIPIcs.IPEC.2021.30
https://doi.org/10.5281/zenodo.4884681
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/java/pace-2021-paca-java
https://gitlab.informatik.uni-bremen.de/parametrisierte-algorithmen/java/pace-2021-paca-java
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 PACE Solver Description: PACA-JAVA

2 Notation

All graphs in this work are undirected, unweighted and have no self-loops. We use standard
graph notation. A leaf is a vertex of degree one. For a vertex v we write N(v) for the
neighborhood of v in G. A path on three vertices is denoted by P3. We write P3(G) for the
set of induced P3s of G. If an edge shall not be removed by any following procedure or has
been added, we call it permanent. Analogously, if it shall not be added or has been removed,
we call it forbidden. We call two P3s uvw and xyz almost disjoint if |{u, v, w} ∩ {x, y, z}| = 1.
A clique is a subgraph whose vertices are pairwise adjacent. A cluster graph is a graph in
which every connected component forms a clique. Equivalently, a cluster graph is a graph
that contains no induced P3s. In the cluster editing problem we are given an undirected
graph G and the task is to compute a set of edge modifications (addition or deletion) of
minimum size that transforms G into a cluster graph.

3 Basic Solver Layout

For an input graph G we perform the following steps:
We delete isolated vertices.
We apply some data reduction rules to reduce the size of the instance. See Section 4.
We solve each component individually and combine the solutions afterwards. To solve an
individual component C, we first calculate |P3(C)|. Based on graph statistics we either
use an ILP or a branch-and-bound-algorithm (see Sections 5–7).

4 Data Reduction Rules

If N(v) \ {w} = N(w) \ {v} and vw ∈ E(G) for v, w ∈ V (G), then the edge vw is made
permanent. The vertices u and v are twins and are guaranteed to lie in one cluster of the
solution by the result of [2].
The Single-Path-Reduction-Rule starts by finding a leaf. Then the outgoing path p gets
followed until a vertex v with degree(v) > 2 is reached. Afterwards every second edge on
this path gets removed. This happens only if |p| > 1. It is easy to see that this is a valid
data reduction rule.

5 Finding P3s

We compute the set of P3s by using the approach described in Spinner’ thesis [8]. For every
v ∈ V (G) and all u, w ∈ N(u) with u < w we check whether uw ∈ E(G). The triple uvw is
a P3 if and only if uw /∈ E(G). To speed up the calculation we used the matrix datastructure
from the Jeigen wrapper [6]. To check if a triple is a P3 instead of checking the graph, we can
retrieve the information out of the matrix, which in the end accelerates the P3 calculation
significantly. If the ratio between the number of induced P3s and edges is at most 0.005 or
the graph has at most 8000 edges, we continue to process the instance via an ILP based
approach. Otherwise, we go into a branch-and-bound approach.

6 ILP

We compute an ILP instance where we add for every pair i, j ∈ V (G) in the graph a
variable xij to the ILP. The intended meaning of xij = 0 is that i and j belong to the same
cluster (have distance 0). The objective is to minimize

∑
ij∈E(G) xij +

∑
ij /∈E(G)(1 − xij).

J. Dirks, M. Grobler, R. Rabinovich, Y. Schnaubelt, S. Siebertz, and M. Sonneborn 30:3

Additionally, if an edge is permanent or forbidden, we restrict the variable accordingly (by
setting it to 1 or 0, respectively). For every P3 uvw in our graph we add the constraint
xuv + xvw − xuw ≥ 0. We solve the ILP with the open source ILP solver SCIP ([4], [5], [7]).
We verify whether the returned solution is a valid solution for cluster editing (observe that
our ILP only ensures that all initially present P3s are edited). If this is not the case, we
add a constraint for each newly generated P3 and iterate this process until we found a valid
solution. This iterative approach turned out to be much faster than adding constraints for
all triples u, v, w ∈ V (G)3.

7 Branching

In our branch-and-bound approach we first compute an upper u and lower bound ℓ as follows.

7.1 Upper Bound
For the upper bound we start by calculating a two-dimensional layout based on the algorithm
proposed by Fruchterman and Reingold [3]. We then calculate the clusters based on a
distance parameter σ: we add an arbitrary vertex v that is not yet part of a clique into a
clique and then add all vertices w with the property that no edge on the path from v to
w is longer (in the layout) than σ to the same clique. We repeat this until all vertices are
grouped into a clique. We iterate over multiple possible distances. After each iteration we
do post-processing. The post-processing is a local-search that consists of merging cliques
and shifting one vertex into another clique if that decreases the cost of the solution. We do
this exhaustively. For the shift vertex operation we also add one empty clique, to allow for
the creation of a new clique.

7.2 Lower Bound
We calculate lower bounds in two different ways. If the graph is big or we have little time
left, the lower bound is the number of disjoint and almost disjoint induced P3s that we
approximate with a greedy heuristic. Our second lower bound is the LP relaxation of our
ILP. If by chance the LP solution is integral we verify if this is a valid solution for cluster
editing and return it if this is the case.

7.3 Branching
After having calculated the upper bound k0 = u and lower bound ℓ (if u = ℓ, then we already
found a solution) we try to find a solution for k1 = u − 1, k2 = u − 2, . . . until no solution is
found for some ki. We then return the solution for ki−1.

We branch based on the edges. For each vertex pair uv contained in a P3 we do the
following: If uv ∈ E(G), we set the status to forbidden, and try to solve the resulting
graph recursively. If this does not succeed, we set the status to permanent and recurse
again. If uv /∈ E(G) we proceed by first setting the edge to permanent and try solving the
resulting graph recursively. If this does not succeed, we set the edge to forbidden and recurse
again. We start with the edge contained in the most P3. This leads to the needed edge
modifications. If we change the status for an edge we use the so called transitive closure to
resolve depending P3s. Given u, v, w ∈ V (G), if uv and vw are marked as permanent edges,
we also mark uw as a permanent edge, as there needs to be a edge or else we get a P3. In
each recursive step, we call the ILP if the graph is simple enough, otherwise we continue
based on the procedure branch-and-bound as mentioned before. Furthermore, we use the
lower bound to cut branches.

IPEC 2021

30:4 PACE Solver Description: PACA-JAVA

References
1 Parameterized Algorithms and Computational Experiments. PACE 2021 - cluster editing,

2021. URL: https://pacechallenge.org/2021/cluster-editing/.
2 Gunnar Böcker, Sebastian W.Klau and Sebastian Briesemeister. Exact algorithms for cluster

editing: Evaluation and experiments. Algorithmica, 60(2):316–334, 2009. doi:10.1007/
s00453-009-9339-7.

3 Thomas M. J. Fruchterman and Edward M. Reingold. Graph drawing by force-directed
placement. Software: Practice and Experience, 21(11):1129–1164, 1991. doi:10.1002/spe.
4380211102.

4 Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. Technical report, Optimization
Online, March 2020. URL: http://www.optimization-online.org/DB_HTML/2020/03/7705.
html.

5 Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, Gregor Hendel,
Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher, Frederic Matter,
Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc E. Pfetsch, Franziska Schlösser,
Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider, Dieter
Weninger, and Jakob Witzig. The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Insti-
tute Berlin, March 2020. URL: http://nbn-resolving.de/urn:nbn:de:0297-zib-78023.

6 Hugh Perkins. Java wrapper for eigen c++ fast matrix library, 2016. URL: https://github.
com/hughperkins/jeigen.

7 Laurent Perron and Vincent Furnon. Or-tools. URL: https://developers.google.com/
optimization/.

8 Jonas Spinner. Weighted F-free edge editing, 2019. URL: https://i11www.iti.kit.edu/
_media/teaching/theses/ba-spinner-19.pdf.

https://pacechallenge.org/2021/cluster-editing/
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://www.optimization-online.org/DB_HTML/2020/03/7705.html
http://nbn-resolving.de/urn:nbn:de:0297-zib-78023
https://github.com/hughperkins/jeigen
https://github.com/hughperkins/jeigen
https://developers.google.com/optimization/
https://developers.google.com/optimization/
https://i11www.iti.kit.edu/_media/teaching/theses/ba-spinner-19.pdf
https://i11www.iti.kit.edu/_media/teaching/theses/ba-spinner-19.pdf

	1 Introduction
	2 Notation
	3 Basic Solver Layout
	4 Data Reduction Rules
	5 Finding P_3s
	6 ILP
	7 Branching
	7.1 Upper Bound
	7.2 Lower Bound
	7.3 Branching

