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Abstract
An edge coloring of a graph G is called interval edge coloring if for each v ∈ V (G) the set of colors on
edges incident to v forms an interval of integers. A graph G is interval colorable if there is an interval
coloring of G. For an interval colorable graph G, by the interval chromatic index of G, denoted by
χ′

i(G), we mean the smallest number k such that G is interval colorable with k colors. A bipartite
graph G is called (α, β)-biregular if each vertex in one part has degree α and each vertex in the other
part has degree β. A graph G is called (α∗, β∗)-bipartite if G is a subgraph of an (α, β)-biregular
graph and the maximum degree in one part is α and the maximum degree in the other part is β.

In the paper we study the problem of interval edge colorings of (k∗, 2∗)-bipartite graphs, for
k ∈ {3, 4, 5}, and of (5∗, 3∗)-bipartite graphs. We prove that every (5∗, 2∗)-bipartite graph admits
an interval edge coloring using at most 6 colors, which can be found in O(n3/2) time, and we prove
that an interval edge 5-coloring of a (5∗, 2∗)-bipartite graph can be found in O(n3/2) time, if it
exists. We show that every (4∗, 2∗)-bipartite graph admits an interval edge 4-coloring, which can
be found in O(n) time. The two following problems of interval edge coloring are known to be
N P-complete: 6-coloring of (6, 3)-biregular graphs (Asratian and Casselgren (2006)) and 5-coloring
of (5∗, 5∗)-bipartite graphs (Giaro (1997)). In the paper we prove N P-completeness of 5-coloring of
(5∗, 3∗)-bipartite graphs.
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1 Introduction

We use standard definitions and notations of graph theory. In the following, by a graph we
mean a nonempty simple graph (i.e., without multiple edges or loops), and by a multigraph
we mean a multigraph with possible multiple edges, but without loops.

Let G be a multigraph with vertex set V (G) and edge set E(G). For some technical
reasons, we assume that V (G) ∩ N = ∅. For each vertex v ∈ V (G), by NG(v) we mean the
set of neighbours of v in G, and by EG(v) we mean the set of edges incident with v. The
degree of vertex v in G, denoted by degG(v), is the number |EG(v)|. By n(G), m(G), ∆(G)
and δ(G) we denote the number of vertices of G, the number of edges of G, the maximum
and the minimum degree of a vertex of G, respectively. By isolated vertex we mean a vertex
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of degree 0, and by pendant vertex a vertex of degree 1. The set of all pendant vertices of
G we denote by P (G). By G[A], where A ⊂ V (G), we denote a subgraph of G induced by
set A, and by G \ A we mean the graph G[V \ A]. We write H ⊂ G if and only if H is a
subgraph of G, and H < G if and only if H is an induced subgraph of G, i.e., H = G[V (H)].

A set of integers [a, b] = {a, a + 1, . . . , b − 1, b}, where a, b ∈ N and a ≤ b, is said to be an
interval of integers. Let X×Y = {{r, s} : r ∈ X ∧ s ∈ Y }.

A bipartite graph G is called (α, β)-biregular if all vertices in one part of G have degree α

and all vertices in the other part have degree β. If G is a subgraph of an (α, β)-biregular graph
with the maximum degree in one part α and the maximum degree in the other part β, it is
called an (α∗, β∗)-bipartite graph. If all vertices in the first part of an (α∗, β∗)-bipartite graph
have the same degree α, then it is called an (α, β∗)-bipartite graph. Analogously, we define
(α∗, β)-bipartite graphs. If we take the partition (A, B) of V (G) of an (α∗, β∗)-bipartite
graph G, we mean that the vertices from set A are of degree α or less, and the vertices from
set B are of degree β or less.

1.1 Interval coloring and interval χ′
i-coloring problems

Let G be a graph. Let c : E(G) → N be an edge coloring, i.e., a function assigning different
colors to adjacent edges. By an interval edge coloring we mean an edge coloring c such that
for each v ∈ V (G), the set c(EG(v)) is an interval of integers. An interval edge coloring
c such that c(E(G)) = {1, 2, . . . , k} is called interval k-coloring. We say that graph G is
interval colorable (k-colorable) if there is an interval coloring (k-coloring) of G. If G is
interval l-colorable for some l ≤ k, then we say that G is interval k∗-colorable or there is
an interval k∗-coloring of G. The problem of interval coloring of graphs is the problem of
veryfing if an arbitrary graph G is interval colorable. If G is interval colorable, then by
interval chromatic index of G, denoted by χ′

i(G), we mean the smallest number k such that
G is interval k-colorable. The problem of interval χ′

i-coloring in the class of interval colorable
graphs is to find an interval χ′

i(G)-coloring for an arbitrary interval colorable graph G. Let
A be an interval edge coloring algorithm for some class C of interval colorable graphs. We
say that A is k∗-algorithm for class C if for every graph G ∈ C it gives an interval k∗-coloring
of G, and we say that A is (χ′

i + k)∗-algorithm for class C if for each graph G ∈ C it gives an
interval (χ′

i(G) + k)∗-coloring of G (i.e., A is an additive k-approximation algorithm for the
interval χ′

i-coloring problem).
The problem of finding school timetables without idle times for both teachers and classes,

which may be modelled by edge colorings of bipartite graphs, probably motivated Asratian
and Kamalian to introduce in [2, 3] the concept of interval edge coloring of graphs. The
open shop scheduling models with unit time operations, no wait&idle criterion, and some
special bipartite scheduling graphs were considered in [10, 9], where the authors studied
schedules with the minimum makespan which corresponds to the interval χ′

i-coloring problem
of bipartite scheduling graphs.

In general, not every graph has an interval coloring, since interval colorable graphs are
∆-colorable [2]. Moreover, the problem of determining whether a bipartite graph has an
interval coloring turned out to be N P-complete [19], and the smallest known maximum
degree of a bipartite graph without an interval coloring is 11 [16].

Interval colorable graphs, which are known to be interval χ′
i-colored in a polynomial time,

are regular bipartite graphs (by König theorem) (in O(n∆ log ∆) time with χ′
i(G) = ∆(G)

colors, for a regular graph G) [5], trees [14, 15, 11, 3] (in O(n) time with χ′
i(T ) = ∆(T ) colors,

for a tree T ) and complete bipartite graphs (in O(m) time with χ′
i(Ka,b) = a + b − gcd(a, b)

colors, for a complete bipartite graph Ka,b) [14, 15, 11, 12]. In [8] the authors constructed
an O(n) time algorithm for interval χ′

i-coloring of a grid G with χ′
i(G) = ∆(G) colors.
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In [9] the authors proposed the linear time algorithm for interval coloring of any outerplanar
bipartite graph, but the complexity of the interval χ′

i-coloring problem of outerplanar bipartite
graphs seems to be open. In [10] the authors proposed the linear time algorithm giving
an interval coloring of bipartite cacti graph G with ∆(G) + 1 colors, which is an (χ′

i + 1)∗-
algorithm.

In [11] the author proved that any (3∗, 3∗)-bipartite graph has an interval 4-coloring,
which can be constructed in O(n) time. In [7] the author proved that an interval α-coloring
of (α∗, α∗)-bipartite graph can be found in O(n3/2) time (if it exists), for α ∈ {3, 4}.

In [12] the authors proved that if an (α, β)-biregular graph has an interval k-coloring,
then k ≥ α + β − gcd(α, β). In [11] the author proved that every (2α, 2)-biregular graph
admits an interval 2α-coloring (i.e., χ′

i-coloring), for each α ≥ 1, and this construction can
be done in O(n∆ log ∆) time. In [13] the authors proved that every (2α + 1, 2)-biregular
graph admits an interval (2α + 2)-coloring (i.e., χ′

i-coloring), for every α ≥ 1, and to the best
of our knowledge this construction can be done in O(n3/2∆2) time.

The following problems of interval χ′
i-coloring are N P-complete: 6-coloring of (6, 3)-

biregular graphs [1] and 5-coloring of (5∗, 5∗)-bipartite graphs [7].
In [4] the authors proved that every (6, 3)-biregular graph admits an interval 7-coloring.

The problems of interval coloring of (4, 3)-biregular and (5, 3)-biregular graphs are still open.
In the paper we solve the interval χ′

i-coloring problem for (α∗, 2∗)-bipartite graphs, for
α ∈ {3, 4, 5}. We show that if G is a (5∗, 2∗)-bipartite graph, then χ′

i(G) ≤ 6, and the
interval χ′

i-coloring problem for (5∗, 2∗)-bipartite graphs can be solved in O(n3/2) time. If
G is a (4∗, 2∗)-bipartite graph, then χ′

i(G) ≤ 4, and the interval χ′
i-coloring problem for

(4∗, 2∗)-bipartite graphs can be solved in O(n) time. In section 3 we prove N P-completeness
of the interval 5-coloring of (5∗, 3∗)-bipartite graphs.

1.2 General and interval factor problem
We introduce the general factor problem [17, 6] as follows: let G be a graph and let F : V (G) →
2N \ {∅}, where F(v) ⊂ {0, . . . , degG(v)}. Does G admit an F-factor, i.e., a set F ⊂ E(G)
such that for each vertex v ∈ V (G), |{e : v ∈ e ∧ e ∈ F}| ∈ F(v)? Lóvasz [17] proved that the
general factor problem is N P-complete for general graphs and mappings taking values {0, 3}
for some vertices. In [6] Cornuéjols showed that the general factor problem is N P-complete
for planar bipartite graphs and mappings taking values {0, 3} for some vertices. A finite set
A ⊂ N is said to have a gap of length k ≥ 1 if a, a + k + 1 ∈ A and a + 1, . . . , a + k /∈ A, for
some a. A finite set A ⊂ N has no gaps if and only if it is an interval. Thus, the general
factor problem is N P-complete for planar bipartite graphs and mappings taking values,
i.e., sets, having gaps of length of at least two. In [6] the author proved the conjecture of
Lóvasz [17]: there is a polynomial time algorithm for deciding whether a graph G has an
F-factor, where the sets F(v) have no gap of length of two or more. The complexity of the
proposed algorithm is O(n4) [6].

If for each v ∈ V (G), set F(v) is an interval, then F-factor is called an interval factor.
A special case of interval factors is F-factor, where F ≡ {k}, k ∈ N, which we denote by
k-factor, e.g., perfect matching is 1-factor.

Let us assume that there is an O(ϕ(m, n)) time algorithm (ϕ(m, n) = Ω(m + n) and
ϕ(m, n) = O(mn1/2) [18]) solving perfect matching problem in the class of connected bipartite
graphs with at most m edges and n vertices. Combining the idea of replacing an edge with
a complete bipartite graph [6] and the idea of doubling a graph [7] we prove the following
theorem.

ISAAC 2021
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▶ Theorem 1. There is an O(ϕ(m∆, m)) time algorithm solving the interval factor problem
in the class of connected bipartite graphs with at most m edges and the degree bounded by ∆.

Proof. Let G be a connected bipartite graph and let F : V (G) → 2N \ {∅}, such that F(v) =
[av, bv], 0 ≤ av ≤ bv ≤ degG(v). We construct a bipartite graph H with ∆(H) ≤ ∆(G) + 1,
n(H) ≤ 8m(G) and m(H) ≤ 4m(G)(∆(G) + 1) + n(G)∆(G) such that there is 1-factor in H

if and only if there is F-factor in G.
For each vertex v ∈ V (G), we denote dv = degG(v), pv = bv − av and qv = dv − av.

Obviously, bv ≤ dv and pv ≤ qv. In the first step we construct graph H1 from graph G,
by replacing each vertex v ∈ V (G) with the complete bipartite graph isomorphic to Kdv,qv

with parts A1
v = {v1

u : u ∈ NG(v)} and B1
v = {v1

1 , . . . , v1
qv

}, and by replacing each edge
{u, v} ∈ E(G) with an edge {u1

v, v1
u}. In the second step, we take the resultant graph H1 and

its isomorphic copy H2, where v1
∗ and v2

∗ are corresponding vertices (under isomorphism),
and, for each v ∈ V (G), we add edges {v1

1 , v2
1}, . . . , {v1

pv
, v2

pv
}.

Let V (H) = V (H1) ∪ V (H2) and E(H) = E(H1) ∪ E(H2) ∪ E∗ , where V (Hi) =⋃
v∈V (G) Ai

v ∪ Bi
v, E(Hi) =

⋃
v∈V (G) Ai

v×Bi
v ∪ F i, and F i =

⋃
{u,v}∈E(G) {{ui

v, vi
u}}, for

i ∈ {1, 2}, and E∗ =
⋃

v∈V (G)
⋃

j∈{1,...,pv} {{v1
j , v2

j }}.
We prove that there is an F-factor in G iff there is a 1-factor in H.
(⇒) Let F be F-factor in G.
Let us define Fv = {u ∈ NG(v) : {v, u} ∈ F}, F̂v = NG(v) \ Fv and fv = |Fv|, for

each v ∈ V (G). Since F is F-factor, then for each v ∈ V (G), av ≤ fv ≤ bv. Hence,
dv − fv ≤ qv and 0 ≤ fv − av ≤ pv. Let v ∈ V (G). Let F i

v = {vi
u ∈ V (Hi) : u ∈ Fv}

and F̂ i
v = Ai

v \ F i
v, for i ∈ {1, 2}. Observe that |F̂ i

v| = dv − fv, and vi
u ∈ F i

v ⇐⇒ ui
v ∈

F i
u. Since Hi[Ai

v ∪ Bi
v] ≃ Kdv,qv , there is a 1-factor in Hi[F̂ i

v ∪ {vi
fv−av+1, . . . , vi

dv−av
}],

denote it by Êi
v. Thus, Q =

⋃
{v,u}∈F {{v1

u, u1
v}, {v2

u, u2
v}} ∪

⋃
v∈V (G) Ê1

v ∪ Ê2
v ∪ E12

v , where
E12

v = {{v1
1 , v2

1}, . . . , {v1
fv−av

, v2
fv−av

}}, is a 1-factor in H. This construction can be done in
O(m(H)) time.

From definition of H, ∆(H) ≤ ∆(G) + 1, n(H) = 2n(H1) ≤ 2
∑

v∈V (G) 2dv = 8m(G),
and m(H) ≤ 4m(G) +

∑
v∈V (G) (2dv(dv − av) + bv − av) ≤ 4m(G) +

∑
v∈V (G) (2d2

v + dv) ≤
4m(G) + ∆(G)

∑
v∈V (G) (2dv + 1) ≤ 4m(G)(∆(G) + 1) + n(G)∆(G). Since G is bipartite,

H1 and H2 are bipartite, and hence H is bipartite. Since there is an O(ϕ(m(H), n(H))) time
algorithm finding 1-factor in H, we get the thesis.

(⇐) Let Q be a 1-factor in H.
Let v ∈ V (G) and i ∈ {1, 2}. Since |{{v1

1 , v2
1}, . . . , {v1

pv
, v2

pv
}} ∩ Q| ≤ pv, qv − pv ≤

|(Ai
v×Bi

v) ∩ Q| ≤ qv. Hence, av ≤ |{u ∈ NG(v) : {vi
u, ui

v} ∈ Q}| ≤ bv. Thus, F = {{v, u} ∈
E(G) : {v1

u, u1
v} ∈ Q} is an F-factor in G. This construction can be done in O(m(H))

time. ◀

In Fig. 1 there is a graph G with an interval factor and in Fig. 2 the constructed graph
H with a 1-factor corresponding to the interval factor of G. White and black vertices form
the partition of a bipartite graph.

Since the problem of 1-factor in the class of bipartite graphs with bounded degrees can
be solved in O(n3/2) time [18], we have the following corollary.

▶ Corollary 2. There is an O(n3/2) time algorithm solving the interval factor problem in the
class of bipartite graphs with bounded degree.



A. Małafiejska, M. Małafiejski, K. M. Ocetkiewicz, and K. Pastuszak 26:5

Figure 1 A bipartite graph G with
an interval factor (bold edges).

Figure 2 A bipartite graph H with a 1-factor (bold edges)
corresponding to the interval factor of G.

2 Interval χ′
i-coloring problem of (α∗, 2∗)-bipartite graphs

In this section we construct polynomial time algorithms for the interval χ′
i-coloring problem

for (α∗, 2∗)-bipartite graphs, for α ∈ {3, 4, 5}, and give some other minor results.

2.1 Introductory properties
▶ Observation 3. Let G be an interval colorable graph, and let H be an induced subgraph of
G such that for each v ∈ V (H), degH(v) = degG(v) or degH(v) = 1. Then, for any interval
edge coloring c of G, the coloring c′ = c|E(H) is an interval edge coloring of H.

Let G be an (α∗, 2∗)-bipartite graph with partition (X, Y ) of V (G) and let P2(G) =
P (G) ∩ Y . Let G′ be the graph obtained from G by adding and joining the unique vertex
xv to each pendant vertex v ∈ Y . Formally, V (G′) = V (G) ∪ {xv : v ∈ P2(G)} and
E(G′) = E(G) ∪ {{xv, v} : v ∈ P2(G)}. In the following, this operation (transformation)
we denote by G →p G′. Since the extension of an interval k-coloring of G to an interval
k-coloring of G′ is trivial, by Observation 3 we get the properties.

▶ Proposition 4. Let α ∈ N, α ≥ 1. Let G be an interval colorable (α∗, 2∗)-bipartite graph
and let G′ be the graph obtained by the operation G →p G′. Then, G′ is an interval colorable
(α∗, 2)-bipartite graph and χ′

i(G) = χ′
i(G′).

Observe that for each (α∗, 2∗)-bipartite graph G we have m(G) ≤ 2n(G).

▶ Proposition 5. Let k, α ∈ N, α ≥ 1. If there is an O(ϕ(n)) time k∗-algorithm for (α∗, 2)-
bipartite graphs with at most n vertices, then there is an O(ϕ(n)) time k∗-algorithm for
(α∗, 2∗)-bipartite graphs with at most n vertices.

Let G be an (α, 2∗)-bipartite graph with the partition (X, Y ) and let G′ be an isomorphic
copy of G. Let us denote by v′ the image of v under isomorphism. Let P2(G) = P (G) ∩ Y ,
q = |P2(G)|, and for each v ∈ P2(G), let pG(v) be the only one neighbour of v in G.
Let W = {wv : v ∈ P2(G)}, such that W ∩ (V (G) ∪ V (G′)) = ∅ and |W | = q. Let H

be a graph defined as follows: V (H) = (V (G) ∪ V (G′)) \ (P2(G) ∪ P2(G′)) ∪ W , and
E(H) = E(G \ P2(G)) ∪ E(G′ \ P2(G′)) ∪

⋃
v∈P2(G) {{wv, pG(v)}, {wv, pG′(v′)}}. In the

following, this operation (transformation) is denoted by G →d H. Note that G ≃ GW =
H[(V (G) \ P2(G)) ∪ W ], hence GW ≃ G′

W = H[(V (G′) \ P2(G′)) ∪ W ]. Thus, if GW is

ISAAC 2021
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an interval colorable graph, then for any interval k-coloring c of GW , we can extend the
coloring c to the coloring of the whole graph H by defining a coloring c′ of G′

W as follows:
c′(e′) = c(e) + 1, where e and e′ are isomorphic edges. Thus, by Observation 3 we get the
following properties.

▶ Proposition 6. Let α ∈ N, α ≥ 1. Let G be an interval colorable (α, 2∗)-bipartite graph
and let H be the graph obtained by the operation G →d H. Thus, H is an interval colorable
(α, 2)-biregular graph and χ′

i(G) ≤ χ′
i(H) ≤ χ′

i(G) + 1.

▶ Proposition 7. Let k, α ∈ N, α ≥ 1. If there is an O(ϕ(n)) time k∗-algorithm for (α, 2)-
biregular graphs with at most n vertices, then there is an O(ϕ(n)) time k∗-algorithm for
(α, 2∗)-bipartite graphs with at most n vertices.

Let us recall that χ′
i(G) = 2α if G is an (2α, 2)-biregular graph [11], and χ′

i(G) = 2α + 2
if G is an (2α + 1, 2)-biregular graph [13].

▶ Corollary 8. Let α ∈ N, α ≥ 1. If there is an O(ϕ(n)) time χ′
i-algorithm for (2α, 2)-

biregular graphs with at most n vertices, then there is an O(ϕ(n)) time χ′
i-algorithm for

(2α, 2∗)-bipartite graphs with at most n vertices, and for every (2α, 2∗)-bipartite graph G,
χ′

i(G) = 2α.

▶ Corollary 9. Let α ∈ N. If there is an O(ϕ(n)) time χ′
i-algorithm for (2α + 1, 2)-biregular

graphs with at most n vertices, then there is an O(ϕ(n)) time (χ′
i + 1)∗-algorithm for

(2α + 1, 2∗)-bipartite graphs with at most n vertices, and for every (2α + 1, 2∗)-bipartite graph
G, χ′

i(G) ≤ 2α + 2.

2.2 Operations on multigraphs and pom-graphs
Let H be a multigraph. Since H may have multiple edges incident with the same two
vertices, we introduce the notation ei(x, y) or e(x, y, i), where i is an identifier, to distinguish
two or more edges incident with x and y, e.g., e1(x, y) and e2(x, y). Let u, v ∈ V (H) such
that there is no edge in E(H) incident with u and v. We say that a multigraph H ′ is
obtained from H by contracting vertices v and u if vertices v, u are replaced by a new
vertex w(u, v) and each edge ei(x, t) ∈ E(H), where x ∈ {u, v}, t ∈ V (H), is replaced
with ei(w(u, v), t) (we say further that ei(x, t) and ei(w(u, v), t) are corresponding edges).
Formally, H ′ = ((V (H) \ {v, u}) ∪ {w(u, v)}, E(H \ {u, v}) ∪ {ei(w(u, v), t) : x ∈ {u, v} ∧ t ∈
V (H) ∧ ei(x, t) ∈ E(H)}.

In the following by a multidigraph we mean a multidigraph without loops. Let D be
a multidigraph. If a = (x, y) is an arc, then y is said to be the head and x the tail of the
arc a. Since D may have multiple arcs with the same head and the same tail, we introduce
the notation ai(x, y) or a(x, y, i), to distinguish two or more arcs with the same head and
tail, e.g., a1(x, y) and a2(x, y). By indegD(v) we mean the number of arcs with the head
at v, and by outdegD(v) we mean the number of arcs with the tail at v in D. We say that
v ∈ V (D) is a pendant vertex in D if and only if indegD(v) + outdegD(v) = 1.

Let G be an (α∗, 2)-bipartite graph with partition (X, Y ) of V (G), α ∈ N, α ≥ 1. Let H

be the multigraph obtained from G by replacing each two edges {u, v} and {w, v}, where
v ∈ Y , with one new edge ev(u, w) joining u and w (we allow multiple edges between u and
w). Formally, V (H) = X, and E(H) = {ev(u, w) : v ∈ Y }. In the following, the multigraph
H is said to be the contraction multigraph of G, which we denote by G →cn H. Let c be
an interval k-coloring of G. We replace each edge ev(u, w) ∈ E(H) with the arc ac

v, where
ac

v has the tail at u, if c({u, v}) is an odd number, otherwise ac
v has the tail at w. Since
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c is an interval edge coloring and degG(v) = 2, then only one of c({u, v}) and c({w, v}) is
an odd number. Formally, Dc(G) is the directed multigraph (multidigraph) with vertex set
V (Dc(G)) = V (H) and arc set A(Dc(G)) = {ac

v : v ∈ Y }.
By a partially oriented multigraph or a pom-graph P = (V, E ∪ A) we mean the union

of a multigraph G = (V, E) and a directed multigraph D = (V, A) on the same vertex set
V , which we denote by P = G ∪ D. In the following, by Gr(P ) we mean the multigraph
G, by Di(P ) we mean the multidigraph D, by E(P ) we mean E(G), and by A(P ) we mean
A(D). The underlying multigraph of a pom-graph P , denoted by Un(P ), is the multigraph
obtained from P by replacing each arc ai(x, y) ∈ A(P ) with a new edge ei(x, y). Formally,
Un(P ) = (V (P ), E(P ) ∪ EA(P )), where EA(P ) = {ei(x, y) : ai(x, y) ∈ A(P )}. For each
e ∈ E(Un(P )), by o(e) we mean e, if e ∈ E(P ), or ai(x, y), if e ∈ EA(P ) and e = ei(x, y).
Let H = Un(P ) and let v ∈ V (P ). By EAP (v) we mean {o(e) : e ∈ EH(v)}. By degP (v) we
mean degH(v), and hence ∆(P ) = ∆(H). Let B ⊂ V (P ), by P [B] we denote a pom-graph
G[B] ∪ D[B], and by P \ B we mean the pom-graph P [V \ B]. We say that two vertices
u, v ∈ V (P ) are neighbours in P if and only if E(Un(P [{u, v}])) is a non-empty set.

Let P be a pom-graph and let a ≤ b ≤ ∆(P ), a, b ∈ N. By Va,b(P ) we denote the set
{v ∈ V (P ) : degP (v) ∈ [a, b]} and by Ga,b(P ) we mean Gr(P [Va,b(P )]). If a = b, then we
write Ga(P ) instead of Ga,a(P ).

Let P ′ be the multigraph obtained from pom-graph P by adding new vertices on each
edge and each arc. If we add vertex we on an edge e = ei(x, y), then we add two new edges
ei(we, x) and ei(we, y). If we add vertex wa on an arc a = ai(x, y), then we add an edge
ei(x, wa) and an arc ai(wa, y). Formally, V (P ′) = V (P ) ∪{we : e ∈ E(P )}∪{wa : a ∈ A(P )},
E(P ′) = {ei(we, x), ei(we, y) : e ∈ E(P )∧e = ei(x, y)}∪{ei(x, wa) : a ∈ A(P )∧a = ai(x, y)},
A(P ′) = {ai(wa, y) : a ∈ A(P ) ∧ a = ai(x, y)}. In the following, the pom-graph P ′ is said to
be the subdivision pom-graph of pom-graph P , which we denote by P →sd P ′.

2.3 Interval χ′
i-coloring problem of (α∗, 2∗)-bipartite graphs for

α ∈ {3, 4}
▶ Theorem 10. Let G be a (3∗, 2∗)-bipartite graph. Then, χ′

i(G) = 3 if and only if each
connected component of G contains at most one cycle. The construction of interval 3-coloring
can be done in linear time.

Proof. Let G be a (3∗, 2∗)-bipartite graph with partition (X, Y ) of V (G), and let P2(G) =
P (G) ∩ Y . By definition ∆(G) = 3.

(⇒) Let us assume that χ′
i(G) = 3, and let G contain at least one cycle.

Let G′ be the graph obtained from G by the operation G →p G′. By Proposition 4, G′ is
(3∗, 2)-bipartite graph and G′ is interval 3-colorable if and only if G is interval 3-colorable.

Let c be an interval 3-coloring of G′, and let D = Dc(G′). Obviously, indegD(v) ≤ 1, for
each v ∈ V (D). Let D′ be a digraph obtained from D by successively removing pendant
vertices. Hence, for each v ∈ V (D′), 2 ≤ indegD′(v) + outdegD′ ≤ 3, and indegD′(v) ≤
1. Thus, outdegD′(v) ≥ 1. Since

∑
v∈V (D′) indegD′(v) =

∑
v∈V (D′) outdegD′(v), each

component of D′ is a directed cycle. Thus, each component of G contains at most one cycle.
(⇐) Let us assume that each connected component of G has at most one cycle. First, we

color each cycle with colors 1 and 2, alternately. Next, for each vertex v of degree 3 that
belongs to a colored cycle, color edge {v, u} with 3, where u does not belong to the colored
cycle. In the last step, color the remaining trees in a greedy way using 3 colors, preserving
intervals at vertices. Thus, we get an interval 3-coloring of G in linear time. ◀
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▶ Theorem 11. Let G be a (4∗, 2)-bipartite graph. Then, χ′
i(G) = 4. The construction of an

interval 4-coloring of G can be done in linear time.

Proof. Let G be a (4∗, 2)-bipartite graph. The construction proceeds in two crucial stages:
first, we construct a pom-graph P from graph G, then we use the structure of P to build the
interval 4-coloring of graph G. In the first stage we apply to G the sequence of transformations
G →cn P0 99K1 P1 99K2 P2 →sd P , where P0 is the contraction multigraph of G, P1 and
P2 are some pom-graphs, and P is the subdivision pom-graph of P2. In the second stage
we start from an edge&arc 4-coloring of P , preserve this coloring on the underlying graph
G∗ = Un(P ), and in the final step we transform the edge colored graph G∗ to an interval
edge colored initial graph G, by contracting vertices that come from vertices splitted in the
transformations 99K1 or 99K2.

(P0 99K1 P1) Initially, let H ′ = P0, D′ = (V (P0), ∅), and let P ′ = H ′ ∪D′ be a pom-graph.
We proceed with the following successive steps in a loop until there is no cycle in G3,4(P ′).
1. (find a cycle) Let C be a subgraph of G3,4(P ′), which is a cycle. Let V (C) = {v1, . . . , vk}

and let E(C) = {e(v1, v2, i1), . . . , e(vk−1, vk, ik−1), e(vk, v1, ik)}. Note that C may have
two vertices.

2. (orient the cycle) Remove E(C) from E(P ′) and add k arcs a(v1, v2, i1), . . .,
a(vk−1, vk, ik−1), a(vk, v1, ik) to A(P ′).

3. (split vertices of the cycle) For each v ∈ V (C) such that degP ′(v) = 3, or degP ′(v) = 4
and indegD′(v) = 2, split v into vertices vi and vo as shown in Fig. 3 and 4. Note that in
this case each dashed line is an arc with the tail at v or vo. Formally, add new vertices vi

and vo to V (P ′), for each arc ad(u, v) add new arc ad(u, vi), for each arc ad(v, x) add
new arc ad(vo, x), and for each edge ed(v, x) add new edge ed(vo, x), and remove v from
V (P ′).

Knowing that there is no cycle in G3,4(P ′), let P1 = P ′.

▷ Claim 12. For each v ∈ V (P1),
if degP1(v) = 1, then v is incident with an edge or an arc with the head at v,
if degP1(v) = 2, then v is incident with two edges or an edge and an arc with the tail at
v, or two arcs with tails at v, or two arcs with heads at v,
if degP1(v) = 3, then v is incident with three edges,
if degP1(v) = 4, then v is incident with four edges or two edges and two arcs, one with
the tail at v and one with the head at v.

Figure 3 Splitting vertex v of degP ′ (v) = 3. Figure 4 Splitting vertex v of degP ′ (v) = 4.

(P1 99K2 P2) Let P1 = H1 ∪ D1, where H1 is a multigraph and D1 is a multidigraph.
Initially, let P ′ = P1, H ′ = H1 and D′ = D1. We proceed with the following successive
steps in a loop until there is no path in G3,4(P ′). Note that if V (G3,4(P ′)) ̸= ∅, then there
is a path in G3,4(P ′) with at least one vertex, and by Claim 12, degH′(v) ≥ 2, for each
v ∈ V (G3,4(P ′)).
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1. (find a maximal path) Let T be a subgraph of G3,4(P ′), which is a maximal path. Let
V (T ) = {v1, . . . , vk} and let E(T ) = {e(v1, v2, i1), . . . , e(vk−1, vk, ik−1)}. Note that T

may have one vertex.
2. (orient the path) Since T is a maximal path in G3,4(P ′) and degH′(v) ≥ 2, for each

v ∈ V (G3,4(P ′)), where H ′ = Gr(P ′), there is a vertex v ∈ V (P ′) with degP ′(v) ≤ 2
such that ed(v, v1) ∈ E(P ′). Remove E(T ) ∪ {ed(v, v1)} from E(P ′) and add k arcs
a(v, v1, i1), . . . , a(vk−1, vk, ik−1) to A(P ′).

3. (split vertices of the path) For each v ∈ V (T ) such that degP ′(v) = 3, or degP ′(v) = 4
and indegD′(v) = 2, split v into vertices vi and vo as shown in Fig. 3 and 4. Note that in
this case each dashed line may be an edge or an arc with the tail at v or vo. Formally,
add new vertices vi and vo to V (P ′), for each arc ad(u, v) add new arc ad(u, vi), for each
arc ad(v, x) add new arc ad(vo, x), and for each edge ed(v, x) add new edge ed(vo, x), and
remove v from V (P ′).

Knowing that there is no path in G3,4(P ′), let P2 = P ′ and let P2 = H2 ∪ D2, where H2 is a
multigraph and D2 is a multidigraph.

▷ Claim 13. For each v ∈ V (P2), degP2(v) ≤ 2. If degP2(v) = 2 and there is an arc with
the head at v, then v is incident with two arcs with heads at v.

Proof. If v ∈ V (P2) is a vertex such that v = wo or v = wi, for some w ∈ V (P0), then
degP2(v) ≤ 2. Let v ∈ V (P1) and degP1(v) > 2. Then, v ∈ V (G3,4(P1)), and by Claim
12, there is u ∈ V (P1) such that ed(u, v) ∈ E(P1). Thus, v ∈ V (T ) for some path T while
applying step (1) in the transformation P1 99K2 P2. After orienting the path T in step (2),
vertex v is splitted in the next step (3) or its degree is 4 and there are two edges incident
with v. In the latter case, v ∈ V (T ′) for some other path T ′ while applying step (1). Thus,
after orienting the path T ′ in step (2), v is splitted in the successive step (3).

Let degP2(v) = 2, for some v ∈ V (P2), and let us assume that there is an arc with the
head at v. If v ∈ V (P0), then there is no arc with the head at v in pom-graph P2. Thus,
v = wi for some splitted vertex w, and v is incident with two arcs with heads at v. ◁

Let P be the pom-graph obtained by the transformation P2 →sd P , and let H = Gr(P )
and G∗ = Un(P ). Obviously, H and G∗ are simple graphs, and by Claim 13, ∆(P ) ≤ 2.

▷ Claim 14. Let T < H be a maximal path. Let v, u ∈ V (T ) such that degH(v) =
degH(u) = 1. If there are arcs (v, x), (u, y) ∈ A(P ), then |E(T )| is even.

▷ Claim 15. The graph G∗ is bipartite and each component of G∗ is a path of length of at
least 2 or a cycle of length at least 4.

We define c′ : E(P ) ∪ A(P ) → {1, 2, 3, 4} separately for each P ′ ⊂ P such that P ∗ is a
connected component of G∗, where P ∗ = Un(P ′). By Claim 15, P ∗ is a path or a cycle. Let
V (P ′) = {v1, . . . , vl} and let k = |E(P ′) ∪ A(P ′)|. If P ∗ is a cycle, let us denote vk+1 = v1
and vk+2 = v2. Let us assume that for each i ∈ {1, . . . , k}, vi and vi+1 are neighbours in P ′.
For each i ∈ {1, . . . , k}, let oi = o({vi, vi+1}), where {vi, vi+1} ∈ E(P ∗).

First, color arcs in A(P ′). For each i ∈ {1, . . . , k}, if oi is an arc with the head at vi,
then let c′(oi) = 1, and if oi is an arc with head at vi+1, then let c′(oi) = 4. Next, we color
edges in E(P ′). If o1 is an edge, then let c′(o1) = 3. For each i ∈ {1, . . . , k − 1} (if P ∗ is a
cycle, also for i = k), if oi is an arc and oi+1 is an edge, then by Claim 13, oi has the head at
vi. Since c′(oi) = 1, let c′(oi+1) = 2. We extend c′ to the rest of uncolored edges of E(P ′),
coloring them with colors 2 and 3 such that no two adjacent edges have the same color.
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Observe that if for some i ∈ {1, . . . , k}, oi is an edge and oi+1 is an arc with the tail at
vi+1, then c′(oi+1) = 4, and by Claim 14, c′(oi) = 3. If oi and oi+1 are arcs, then by Claim
13, oi and oi+1 have heads at vi+1, hence c′(oi) = 4 and c′(oi+1) = 1.

Let us define c∗ : E(G∗) → {1, 2, 3, 4} as follows: c∗(e) = c′(o(e)), where o(e) ∈ E(P ) ∪
A(P ). By the above construction of c′, c∗ is an edge 4-coloring.

Now, we define c : E(G) → {1, 2, 3, 4}. We contract all the pairs of vertices from V (G∗)
that come from vertices splitted in the transformations 99K1 or 99K2 and we preserve the colors
on the corresponding edges, and thus we get the initial graph G that is edge colored. Formally,
for each vi, vo ∈ V (G∗), where v ∈ V (P0) (see Fig. 3 and 4), we contract vertices vi, vo and we
preserve the colors on the corresponding edges {v∗, x} and {v, x}, i.e., c({v, x}) = c∗({v∗, x}),
where v∗ is vi or vo. Since c∗(EG∗(vi)) is equal to {1}, {4} or {1, 4} and c∗(EG∗(vo)) = {2, 3},
we get c(EG(v)) = {1, 2, 3} or c(EG(v)) = {2, 3, 4}, or c(EG(v)) = {1, 2, 3, 4}. Thus, c is an
interval 4-coloring of G.

Since the transformation of G into P2 can be done in linear time, and the coloring of P

can be done in linear time, the final construction of the coloring of G can be done in linear
time. ◀

By Theorem 11, and Propositions 4 and 5 we get the following theorem.

▶ Theorem 16. Let G be a (4∗, 2∗)-bipartite graph. Then, χ′
i(G) = 4. The construction of

an interval 4-coloring of G can be done in linear time.

2.4 Interval χ′
i-coloring problem of (5∗, 2∗)-bipartite graphs

Let G be a (5∗, 2∗)-bipartite graph. Let F5 : V (G) → 2N \ {∅} be defined as follows: if
degG(v) = 2i + 1, for i ∈ {0, 1}, then let F5(v) = {i, i + 1}, if degG(v) = 2i, for i ∈ {1, 2},
then let F5(v) = {i}, and if degG(v) = 5, then let F5(v) = {2}.

Let G be a (5∗, 2∗)-bipartite graph. If c is an interval 5-coloring of G, then F = {e ∈
E(G) : c(e) ∈ {2, 4}} is an F5-factor of G.

▶ Theorem 17. Let G be a (5∗, 2∗)-bipartite graph with n vertices. Then, χ′
i(G) = 5 if and

only if G admits an F5-factor. The construction of an interval 5-coloring can be done in
O(n3/2) time.

▶ Theorem 18. Let G be a (5∗, 2)-bipartite graph. Then, 5 ≤ χ′
i(G) ≤ 6 and the construction

of an interval 6∗-coloring of G can be done in O(n3/2) time.

By Theorems 17 and 18, and by Propositions 4 and 5 we get

▶ Theorem 19. Let G be a (5∗, 2∗)-bipartite graph. Then, χ′
i(G) ≤ 6 and the construction

of an interval χ′
i-coloring of G can be done in O(n3/2) time.

3 N P-completeness results

▶ Theorem 20. The problem of interval 5-coloring of (5∗, 3∗)-bipartite graphs is N P-complete.

The Table 1 contains the state-of-art and our results presented in this paper, and some
open problems for further research.



A. Małafiejska, M. Małafiejski, K. M. Ocetkiewicz, and K. Pastuszak 26:11

Table 1 The complexity of the algorithms for the interval χ′
i-coloring problem.

Interval edge χ′
i-coloring problem for (α∗, β∗)-bipartite or (α, β)-biregular graphs

Graphs χ′
i Complexity Comments

(α∗, 1∗) k O(n) stars
(2∗, 2∗) 2 O(n) paths and cycles
(3∗, 2∗) 3 or 4 O(n) Thm. 10 (χ′

i = 3), [11] (χ′
i ≤ 4)

(4∗, 2∗) 4 O(n) Thm. 16
(5∗, 2∗) 5 or 6 O(n3/2) Thm. 17 (χ′

i = 5), Thm. 19 (χ′
i ≤ 6)

(6∗, 2∗) ? ? interval coloring problem is open
(3∗, 3∗) 3 or 4 O(n3/2) or O(n) [7] (χ′

i = 3) [11] (χ′
i ≤ 4)

(4, 3) ? ? interval coloring problem is open
(5, 3) ? ? interval coloring problem is open
(6, 3) ≤ 7 O(n) [4] ((χ′

i + 1)∗-algorithm)
(5∗, 3∗) 5 N P-complete Thm. 20
(6, 3) 6 N P-complete [1]

(2α, 2) 2α O(n∆ log ∆) [11]
(2α + 1, 2) 2α + 2 O(n3/2∆2) [13] (compl. of 2-factor by Thm. 1)

(2α, 2∗) 2α O(n∆ log ∆) [11] and Cor. 8
(2α + 1, 2∗) ≤ 2α + 2 O(n3/2∆2) [13] and Cor. 9 ((χ′

i + 1)∗-algorithm)

References
1 A.S. Asratian and C.J. Casselgren. On interval edge colorings of (α, β)-biregular bipartite

graphs. Discret. Math., 307:1951–1956, 2006. doi:10.1016/j.disc.2006.11.001.
2 A.S. Asratian and R.R. Kamalian. Interval coloring of the edges of a multigraph (in Russian).

Appl. Math., 5:25–34, 1987.
3 A.S. Asratian and R.R. Kamalian. Investigation of interval edge-colorings of graphs. J. Combin.

Theory Ser. B, 62:34–43, 1994. doi:10.1006/jctb.1994.1053.
4 C.J. Casselgren and B. Toft. On Interval Edge Colorings of Biregular Bipartite Graphs with

Small Vertex Degrees. J. Graph Theory, 80:83–97, 2015. doi:10.1002/jgt.21841.
5 R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in O(E log D) time.

Combinatorica, 21:5–12, 2001. doi:10.1007/s004930170002.
6 G.Cornuéjols. General factors of graphs. J. Combin. Theory Ser. B, 45:185–198, 1988.

doi:10.1016/0095-8956(88)90068-8.
7 K. Giaro. The complexity of consecutive ∆-coloring of bipartite graphs: 4 is easy, 5 is hard.

Ars Combin., 47:287–298, 1997.
8 K. Giaro and M. Kubale. Consecutive edge-colorings of complete and incomplete Cartesian

products of graphs. Congr. Numer., 128:143–149, 1997.
9 K. Giaro and M. Kubale. Compact scheduling of zero–one time operations in multi-stage

systems. Discret. Appl. Math., 145:95–103, 2004. doi:10.1016/j.dam.2003.09.010.
10 K. Giaro, M. Kubale, and M. Malafiejski. Compact Scheduling In Open Shop with Zero-One

Time Operations. INFOR: Information Systems and Operational Research, 37:37–47, 1999.
11 H.M. Hansen. Skemalægning med henblik på minimering af ventetid (in Danish). M.Sc. Thesis,

University of Odense, 1992.
12 D. Hanson and C.O.M. Loten. A lower bound for Interval colouring bi-regular bipartite graphs.

Bull. ICA, 18:69–74, 1996.
13 D. Hanson, C.O.M. Loten, and B. Toft. On interval coloring of biregular bipartite graphs. Ars

Combin., 50:23–32, 1998.
14 R.R. Kamalian. Interval colorings of complete bipartite graphs and trees (in Russian). Comp.

Cen. of Acad. Sci. of Armenian SSR (Preprint), 1989.

ISAAC 2021

https://doi.org/10.1016/j.disc.2006.11.001
https://doi.org/10.1006/jctb.1994.1053
https://doi.org/10.1002/jgt.21841
https://doi.org/10.1007/s004930170002
https://doi.org/10.1016/0095-8956(88)90068-8
https://doi.org/10.1016/j.dam.2003.09.010


26:12 Interval Edge Coloring of Bipartite Graphs with Small Vertex Degrees

15 R.R. Kamalian. Interval edge-colorings of graphs. Ph.D. Thesis, Novosibirsk State University,
1990.

16 H.H. Khachatrian and P. Petrosyan. Interval Non-edge-Colorable Bipartite Graphs and
Multigraphs. J. Graph Theory, 76:200–216, 2014. doi:10.1002/jgt.21759.

17 L. Lovász. The factorization of graphs. II. Acta Math. Acad. Sci. Hungar., 23:223–246, 1972.
doi:10.1007/BF01889919.

18 S. Micali and V.V. Vazirani. An O(
√

|V | · |E|) algorithm for finding maximum matching in
general graphs. Proc. of 21st FOCS, pages 17–27, 1980. doi:10.1109/SFCS.1980.12.

19 S.V. Sevastjanov. Interval colorability of the edges of a bipartite graph (in Russian). Metody
Diskretnogo Analiza, 50:61–72, 1990.

https://doi.org/10.1002/jgt.21759
https://doi.org/10.1007/BF01889919
https://doi.org/10.1109/SFCS.1980.12

	1 Introduction
	1.1 Interval coloring and interval chi'_i-coloring problems
	1.2 General and interval factor problem

	2 Interval chi'_i-coloring problem of (alpha*,2*)-bipartite graphs
	2.1 Introductory properties
	2.2 Operations on multigraphs and pom-graphs
	2.3 Interval chi'_i-coloring problem of (alpha*,2*)-bipartite graphs for alphain{3,4}
	2.4 Interval chi'_i-coloring problem of (5*,2*)-bipartite graphs

	3 NP-completeness results

