Efficient Reconstruction of Depth Three Arithmetic Circuits with Top Fan-In Two

Gaurav Sinha
Adobe Research, Bangalore, India

Abstract

In this paper we develop efficient randomized algorithms to solve the black-box reconstruction problem for polynomials over finite fields, computable by depth three arithmetic circuits with alternating addition/multiplication gates, such that output gate is an addition gate with in-degree two. Such circuits naturally compute polynomials of the form $G \times (T_1 + T_2)$, where G, T_1, T_2 are product of affine forms computed at the first layer in the circuit, and polynomials T_1, T_2 have no common factors. Rank of such a circuit is defined to be the dimension of vector space spanned by all affine factors of T_1 and T_2. For any polynomial f computable by such a circuit, $\text{rank}(f)$ is defined to be the minimum rank of any such circuit computing it. Our work develops randomized reconstruction algorithms which take as input black-box access to a polynomial f (over finite field F), computable by such a circuit. Here are the results.

[Low rank] : When $5 \leq \text{rank}(f) = O(\log^3 d)$, it runs in time $(nd^d \log |F|)^{O(1)}$, and, with high probability, outputs a depth three circuit computing f, with top addition gate having in-degree $\leq d^{\text{rank}(f)}$.

[High rank] : When $\text{rank}(f) = \Omega(\log^3 d)$, it runs in time $(nd \log |F|)^{O(1)}$, and, with high probability, outputs a depth three circuit computing f, with top addition gate having in-degree two.

Prior to our work, black-box reconstruction for this circuit class was addressed in [33, 17, 36]. Reconstruction algorithm in [33] runs in time quasi-polynomial in $n,d,|F|$ and that in [17] is quasi-polynomial in $d,|F|$. Algorithm in [36] works only for polynomials over characteristic zero fields. Thus, ours is the first blackbox reconstruction algorithm for this class of circuits that runs in time polynomial in $\log |F|$. This problem has been mentioned as an open problem in [11] (STOC 2012). In the high rank case, our algorithm runs in $(nd \log |F|)^{O(1)}$ time, thereby significantly improving the existing algorithms in [33, 17].

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Arithmetic Circuits, Circuit Reconstruction

Digital Object Identifier 10.4230/LIPIcs.ITCS.2022.118

Acknowledgements I would like to thank Vineet Nair for helping with organization and presentation of the paper. I would also like to thank Neeraj Kayal and Chandan Saha for helpful comments on an early presentation of this work. Neeraj Kayal shared the simple idea behind proof of Lemma 52 with me. Lastly, I would like to thank Anuja Sharan for proofreading the paper.

1 Introduction

Arithmetic circuits (Definition 1.1 in [34]) are Directed Acyclic Graphs (DAG), describing succinct ways of computing multivariate polynomials. Analogous to the exact learning problem for boolean circuits [2], black-box reconstruction problem (Section 5, [34]) has been asked for arithmetic circuits:

Given oracle (also known as black-box) access to a multivariate polynomial computable by an arithmetic circuit of size s, construct an explicit circuit (ideally poly(s) sized) that computes the same polynomial.
In its most general setting, this problem is believed to be hard, as illustrated in Section 1.4 of [9] via an analogy with the boolean world. This is because the exact learning [2] of boolean circuits from membership queries is closely related to the Minimum Circuit Size Problem (MCSP), which, under certain cryptographic assumptions was shown in [14] to not be in \(\mathbf{P} \). In fact, under the same assumptions [1] showed that even approximating the minimum circuit size was not in \(\mathbf{P} \). Drawing an analogy from this, approximating the minimum circuit size for general arithmetic circuits might not be in \(\mathbf{P} \) as well, implying the hardness of black-box reconstruction. We refer the reader to [9] for more details on the analogy. As a result of this, most of the research on black-box reconstruction has focused on restricted but interesting sub-classes of arithmetic circuits. One such natural restriction is that of depth three circuits which we study in this paper. These are layered circuits with three layers of alternating plus(\(\Sigma \)) gates and product(\(\Pi \)) gates. Reconstruction of \(\Pi \Sigma \Pi \) circuits amounts to black-box polynomial factorization into sparse factors and efficient randomized algorithms that solve this are known [16]. However, no such algorithm is known for \(\Sigma \Pi \Sigma \) circuits (Definition 9).

First non-trivial algorithm for this class which takes exponential time in the fan-in of the multiplication gates was given in [21]. Current state of the art reconstruction algorithms for this class either work in the average case [20] or puts further restrictions such as restricting the circuit class to be (set)-multilinear [33, 17, 4], or restricting the fan-in of the top addition gate (also called top fan-in) [33, 17, 36]. Therefore, even for the class of depth three circuits, reconstruction problem appears to be very challenging. In this paper we are interested in the latter restriction i.e. depth three circuits where fan-in of the top addition gate is assumed to be \(k = O(1) \). When \(k = 1 \), the polynomial computed by the circuit is a product of linear forms and black-box reconstruction can be easily performed using black-box factorization algorithm in [16]. However, the problem seems to become very challenging as soon as we go to circuits with \(k > 1 \). For \(k = 2 \), [33] designed a randomized reconstruction algorithm which was generalized\(^3\) in [17] to circuits with \(k = O(1) \). An important point to note is that while the algorithm in [33] is proper\(^4\), i.e., output also has top fan-in 2, the one in [17] is improper and output might have much larger top fan-in. Both these algorithms use fairly sophisticated techniques and have time complexity quasi-polynomial in \(d, |F|^5 \) (even for \(k = 2 \) in [17]). Note that ideally we would want the time complexity to depend polynomially on \(\log |F| \), since \(O(\log |F|) \) bits can represent any scalar in the circuit. Therefore, even for \(k = 2 \), designing algorithms which run in time polynomial in \(n^6, d \), and \(\log |F| \) are not known. This was asked as an open problem in [11] (STOC 2012). In a recent work, [36] also considered the top fan-in 2 case, but over characteristic zero fields, and rank of input polynomial being \(\Omega(1) \). Their algorithm runs in time polynomial in \(n, d \), but their techniques do not work over finite fields. Based on the above, the following questions seem very natural to ask. (Q1) Does there exist a reconstruction algorithm for depth three circuits with top fan-in 2 (over a finite field \(F \)), whose run-time is polynomial in \(\log |F| \)? (Q2) Can such an algorithm be fully polynomial time (at-least in high rank case) i.e. runs in time \((nd \log |F|)^{O(1)} \)? This will substantially improve results in [33, 17] for \(k = 2 \). In this paper we resolve both of these questions.

1 assuming the existence of cryptographically secure one-way functions
2 from here on wards by depth three circuits we mean \(\Sigma \Pi \Sigma \) circuits only
3 algorithm in [17] is deterministic
4 when rank (Definition 13) of the input polynomial is \(\Omega(\log^2 d) \)
5 \(d \) is degree of \(\Pi \) gates and \(|F| \) is size of the underlying field
6 \(n \) is the number of variables in the circuit
1.1 Our Results

Notation and Preliminaries

Let \(n, d \) denote positive integers and \(\mathbb{F} \) be a finite field. We denote the sets \(\{1, \ldots, n\} \) and \(\{m, m+1, \ldots, n\} \) by \([n] \) and \([m, n] \) respectively. \(\mathcal{X} \) denotes the tuple (or set) of variables \((x_1, \ldots, x_n) \) and \(\mathbb{F}[\mathcal{X}] \) denotes the ring of multivariate polynomials. For a set of linear forms \(\ell_1, \ldots, \ell_k \in \mathbb{F}[\mathcal{X}] \), we use \(\mathcal{V}(\ell_1, \ldots, \ell_k) \) to denote the subspace \(\{a \in \mathbb{F}^n : \ell_1(a) = \ldots = \ell_k(a) = 0\} \). For a subset of variables \(x_{i_1}, \ldots, x_{i_k} \), by \(f_{x_{i_1}=a_{i_1}, \ldots, x_{i_k}=a_{i_k}} \) we denote the polynomial obtained on setting \(x_{i_1} = a_{i_1}, \ldots, x_{i_k} = a_{i_k} \) in \(f \). As given in Lemma 3.5 of [7], every depth three circuit \(C \) of rank \(r \), computing an \(n \)-variate, degree \(d \) polynomial \(f \) can be converted into a homogeneous depth three circuit \(C_{\text{hom}} \) over \(\leq n + 1 \) variables and rank \(\leq r + 1 \), such that its multiplication gates have in-degree \(d \). Section 1.5 of [35] implies that black-box access to \(C_{\text{hom}} \) can be simulated efficiently using black-box access to \(f \) and integers \(n, d \). Also there is a simple and efficient algorithm to obtain \(C \) from \(C_{\text{hom}} \). Hence, from now onwards we only consider homogeneous depth three circuits (\(\Sigma \Pi \Sigma(2, n, d, \mathbb{F}) \), Definition 10). Also, for any polynomial \(f \), \(\text{rank}(f) \) (Definition 14) will be the minimum rank of any \(\Sigma \Pi \Sigma(2, n, d, \mathbb{F}) \) circuit computing it. Here are our results.

- **Theorem 1** (Low rank reconstruction). There exists a randomized algorithm which takes as input integers \(n, d \) and black-box access to a polynomial \(f \) computable by a \(\Sigma \Pi \Sigma(2, n, d, \mathbb{F}) \) circuit \((5 \leq \text{rank}(f) = O(\log^3 d)) \), runs in time \((n^{d+2} d \log |\mathbb{F}|)^{O(1)} \) and with probability \(1 - o(1) \), outputs a \(\Sigma \Pi \Sigma(k, n, d, \mathbb{F}) \) \((k \leq d^{\text{rank}(f)}) \) circuit computing \(f \).

- **Theorem 2** (High rank reconstruction). There exists a randomized algorithm which takes as input integers \(n, d \) and black-box access to a polynomial \(f \) computable by a \(\Sigma \Pi \Sigma(2, n, d, \mathbb{F}) \) circuit \((\text{rank}(f) = \Omega(\log^3 d)) \), runs in time \((n d \log |\mathbb{F}|)^{O(1)} \) and, with probability \(1 - o(1) \), outputs a \(\Sigma \Pi \Sigma(2, n, d, \mathbb{F}) \) circuit computing \(f \).

We allow algorithms to query input polynomial at points in a \((nd)^{O(1)} \) sized extension \(\mathbb{K} \) of \(\mathbb{F} \). Here are some remarks on the above results.

- Theorems 1 and 2 completely resolve \(\textbf{(Q1)} \). Therefore we solve an open problem from [11]. Theorem 2 resolves \(\textbf{(Q2)} \) in the high rank case \((\Omega(\log^3 d)) \) and thus both theorems substantially improve the overall reconstruction time complexity for this circuit class (as compared to [33] and [17]).

- A crucial component of our proofs is a new structural result (Proposition 5), which might be of independent interest. We show that for \(f \) computable by a \(\Sigma \Pi \Sigma(2, n, d, \mathbb{F}) \) circuit \((\text{rank}(f) \geq 5) \), the set of co-dimension 2 subspaces of \(\mathbb{F}^n \) on which the “non-linear” part (Definition 3) of \(f \) vanishes, has size \(d^{O(1)} \), and can be computed efficiently.

- In order to prove Theorem 2, we develop an interesting result related to Sylvester Gallai (SG) type configurations (Definition 17) and present it in Proposition 8. We believe it might be of independent interest. Similar results called Quantitative SG theorems are known (Theorem 5.1.2 and Section 5.3 in [6]). These quantitative versions prove bounds on number of ordinary lines through a point, whereas our theorem considers dimension of the space spanned by the union of ordinary lines through a point.

- When \(\text{rank}(f) = 1 \), \(f \) factors into a product of linear forms and can be reconstructed efficiently using Lemma 23. So only \(\text{rank}(f) = 2, 3, 4 \) are not covered by our algorithms.

- We note that when \(\text{char}(\mathbb{F}) > d \) or 0, Lemma 19 ([5, 18]) gives an algorithm for Theorem 1 i.e. low rank reconstruction. But, this only works for fields with large characteristic, whereas Algorithm 1 in our paper is independent of the characteristic of the field.
We would like to highlight that derandomizing our algorithms seems rather difficult. Theorem 5 in [37] implies that any proper and efficient reconstruction algorithms for (set)-multilinear $\Sigma \Pi \Sigma(2, n, d, F)$ circuits with running time polynomial in $\log |F|$ can be deterministically converted (in time polynomial in $\log |F|$) into a square root oracle over F. This is a well studied problem [25, 10, 32, 8, 27, 18, 38] and till date no deterministic algorithm with running time having polynomial dependence in $\log |F|$ is known.

We conjecture that, for $k = O(1)$, our algorithms can be generalized to proper (at least in the high rank case) reconstruction algorithms (with time complexity polynomial in $\log |F|$) for $\Sigma \Pi \Sigma(k, n, d, F)$ circuits. Some crucial parts to be generalized/ refined are (a) Proposition 5 to higher co-dimension sub-spaces, and (b) The “gluing” algorithm (Algorithm 5 in [33]) used in Algorithm 5, which merges factors of restrictions of the input polynomial and reconstructs one of the product gates. Recall that the known algorithms for this class are either exponential time in in-degree of product gates [21] or are improper and run in quasi-polynomial time in $d, |F|$ [17].

Note that as proved in Corollary 7 of [33], $\Sigma \Pi \Sigma(2, n, d, F)$ circuit for a polynomial f is unique when $\text{rank}(f) = \Omega(\log^2 d)$. In fact, for smaller ranks, it is easy to construct example polynomials computable by multiple $\Sigma \Pi \Sigma(2, n, d, F)$ circuits. Therefore, for low rank polynomials, in the absence of uniqueness, proper reconstruction might be far fetched. Moreover, many of our techniques such as construction of a candidate set of linear forms (Algorithm 3) that help in proper reconstruction only work in the high rank case. As a result we split our results into the low rank and high rank cases.

A $(nd)^{O(1)}$ time algorithm for reconstructing $\Sigma \Pi \Sigma(2, n, d, F)$ was designed in [36, 35] when $\text{rank}(f) = \Omega(1)$. They construct a set of linear forms modulo which the polynomial factorizes completely into linear forms. This is done using Brills equations [12] which construct a system of polynomial equations whose solutions characterize polynomials that decompose into product of linear forms. As derived in Appendix B of [35], computation of Brills equations involve division by multiples of d and therefore they are not likely to directly work over finite fields of general characteristic. To the best of our knowledge, analogous equations for polynomials over finite fields are not well studied. On the other hand, we construct a set of candidate linear forms in a much simpler way by looking at co-dimension 2 subspaces where f vanishes. Another difference between the two techniques is during the “gluing” process of Algorithm 5. In [36, 35] the gluing is done using $\delta - SG_i$ theorems [3] which prove existence of many “ordinary” k-flats. On the other hand we construct a large independent set of linear forms dividing one of the product gates and use it along with the “gluing” technique from [33] which depends on lower bounds for locally decodable codes.

Next, we state our proposition regarding the number of co-dimension 2 spaces on which the non-linear part of f vanishes. In order to do so we first give a few definitions that are used.

Definition 3 (Linear and Non-linear parts). Let $f \in \mathbb{F}[\vec{x}]$. We define $\text{Lin}(f)$, called the linear part of f to be the product (with multiplicity) of all linear polynomials dividing f and $\text{NonLin}(f)$ called the non-linear part of f as $\text{NonLin}(f) = \frac{f}{\text{Lin}(f)}$.

Definition 4. Let $f \in \mathbb{F}[\vec{x}]$. For any co-dimension 2 space $W = \vee(\ell_1, \ell_2) \subset \mathbb{F}^n$, we say that f vanishes on W, if, for isomorphism $\Phi : \mathbb{F}[\vec{x}] \to \mathbb{F}[\vec{x}]$ mapping $\ell_1 \mapsto x_1, \ell_2 \mapsto x_2$, the polynomial $\Phi(f)|_{x_1=0,x_2=0}$ is identically zero. This is well defined, i.e. if we take some

$\text{Lin}(f), \text{NonLin}(f)$ are unique up to scalar factors which are constrained such that $f = \text{Lin}(f) \times \text{NonLin}(f)$.

other linear forms \(\ell_1', \ell_2' \) such that \(W = \mathcal{V}(\ell_1', \ell_2') \) and some other isomorphism \(\Phi' \) mapping \(\ell_1' \mapsto x_1, \ell_2' \mapsto x_2 \), then \(\Phi'(f)|_{x_1=x_2=0} = 0 \) \(\Leftrightarrow \Phi'(f)|_{x_1=x_2=0} = 0 \). For any polynomial \(f \), we define \(S(f) \) to be the set of all co-dimension 2 sub-spaces \(W \subset \mathbb{F}^n \) such that \(f \) vanishes on \(W \).

\begin{prop}
Let \(f \in [\mathbb{F}[\bar{x}]] \) be a polynomial computable by a \(\Sigma \Pi \Sigma(2,n,d,\mathbb{F}) \) circuit with \(\text{rank}(f) \geq 5 \). The following are true.
\begin{enumerate}
\item \(|S(\text{NonLin}(f))| \leq 3d^7 \).
\item \(\exists \) a randomized algorithm that takes as input black-box access to \(f \) along with integers \(n,d \), runs in time \((nd \log |\mathbb{F}|)^{O(1)} \) and, outputs a set \(S \) (of size \(\leq 3d^7 \)) containing tuples of independent linear forms in \(\mathbb{F}[\bar{x}] \) such that with probability \(1 - o(1) \),
\[\{ \mathcal{V}(\ell_1, \ell_2) : (\ell_1, \ell_2) \in S \} = S(\text{NonLin}(f)). \]
\end{enumerate}
\end{prop}

Next we state Proposition 8 about ordinary lines and the space spanned by them, that was mentioned in remarks following the theorems. This requires definitions of proper sets and ordinary lines which we provide below.

\begin{defn} (Proper set, Section 5.3, [6]). We call a set of points \(v_1, \ldots, v_m \in \mathbb{F}^n \) proper if no two points are a constant multiple of each other and the zero point is not in the set (i.e. it is a subset of the projective space).
\end{defn}

\begin{defn} (Ordinary line, Section 5.1, [6]). Let \(S \subset \mathbb{F}^n \) be a proper set. For any \(t \in \mathbb{F}^n \) and \(s \in S \), such that \(t \notin \text{sp}(s) \), the vector space \(\text{sp}(t,s) \) is called an ordinary line from \(t \) into \(S \), iff \(\text{sp}(t,s) \cap S \subseteq \{ t,s \} \). Define \(\text{O}(t,S) \) to be the set of ordinary lines from \(t \) into \(S \).
\end{defn}

\begin{prop} 8. \(S \subset \mathbb{F}^n \) be a proper set (Definition 6) and \(T \subset \mathbb{F}^n \) be any LI set of size \(\geq \log |S| + 2 \). Then \(\exists \) \(t \in T \), such that union of all elements of \(\text{O}(t,S) \) spans a high dimensional space. More precisely,
\[\dim(\sum_{W \in \text{O}(t,S)} W) \geq \frac{\dim(\text{sp}(S))}{\log |S| + 2}. \]
\end{prop}

Next, in Sections 1.2 and 1.3, we provide some definitions and notations and known results respectively, which we use throughout the paper. Following this, in Section 1.4, we describe the key technical ideas used in our main algorithms.

1.2 Notations and definitions

Throughout the paper \([n]\) will denote the set \(\{1, \ldots, n\} \), \([m,n]\) will denote the set \(\{m, m+1, \ldots, n-1, n\} \) and \(\mathbb{F} \) will denote a finite field. We use calligraphic letters like \(\mathcal{B}, \mathcal{P}, \mathcal{Q}, \mathcal{R}, \mathcal{S}, \mathcal{T}, \mathcal{X} \) to denote sets. \(\vec{x}, \vec{y}, \vec{u} \) are used to represent column vectors or tuples of variables. Unless otherwise specified, \(\vec{x} \) will denote the tuple \((x_1, \ldots, x_n)\). Bold capital letters \(\mathbf{A}, \mathbf{B} \) are used to represent matrices. \(\mathbb{F}[\bar{x}] \) denotes the ring of polynomials in variables \(\vec{x} = (x_1, \ldots, x_n) \) with coefficients in field \(\mathbb{F} \). Capital letters like \(\mathcal{G}, \mathcal{H}, T_1, T_2, S_1, S_2, U, U_i \) are used to denote polynomials that are a product of linear forms. Small letters \(f, g, h, u, t \) are also used to denote polynomials and linear forms. Let \(g, f \) be any two polynomials, then, \(g \) divides \(f \) is denoted by \(g \mid f \) and \(g \) does not divide \(f \) is denoted by \(g \nmid f \). We use short-hand \(\mathbf{LD} \) for linearly dependent, \(\mathbf{LI} \) for linearly independent, \(\mathbf{LHS} \) for left hand side, \(\mathbf{RHS} \) for right hand side and iff for if and only if.
Definition 9 (Depth 3 circuit, $\Sigma\Pi\Sigma$). A depth 3 circuit is a layered arithmetic circuit with three layers of nodes labelled by arithmetic operations, defined on a finite number of variables. First and third (Σ) layers have addition nodes and second (Π) layer has multiplication nodes. Top layer has a single addition node.

Definition 10 (Homogeneous Depth 3 circuit, $\Sigma\Pi\Sigma(k,n,d,F)$). A $\Sigma\Pi\Sigma(k,n,d,F)$ circuit is a depth three circuit such that the first (Σ) layer computes linear forms on n variables, there are k multiplication nodes at the second (Π) layer all having in-degree d, and the addition node at third(Σ) layer can only have incoming edges from the k multiplication nodes at second layer. Any circuit belonging to this class naturally computes an n–variate polynomial $f = M_1 + \ldots + M_k$, where $M_i, i \in [k]$ are product of linear forms computed at the multiplication gates and $\deg(M_1) = \ldots = \deg(M_k) = d$.

Definition 11 (Simple $\Sigma\Pi\Sigma(k,n,d,F)$ circuit). Let C be a $\Sigma\Pi\Sigma(k,n,d,F)$ circuit computing polynomial $f = M_1 + \ldots + M_k$ as described in Definition 10. We say that C is simple if $\gcd(M_1, \ldots, M_k) = 1$.

Definition 12 (Minimal $\Sigma\Pi\Sigma(k,n,d,F)$ circuit). Let C be a $\Sigma\Pi\Sigma(k,n,d,F)$ circuit computing the polynomial $f = M_1 + \ldots + M_k$ as described in Definition 10. We say that C is minimal if no proper sub collection of polynomials M_1, \ldots, M_k sums to zero.

Definition 13 (Rank of $\Sigma\Pi\Sigma(2,n,d,F)$ circuit, Section 1.3 in [33]). Let C be a $\Sigma\Pi\Sigma(2,n,d,F)$ circuit computing the polynomial $f = M_1 + M_2$ as described in Definition 10. If $G = \gcd(M_1,M_2)$, then f can be written as $f = G \times T_1 + G \times T_2$ where G,T_1,T_2 are product of linear forms with $\gcd(T_1,T_2) = 1$. Rank of C is then defined as

$$\text{rank}(C) = \dim(\text{sp}\{\text{linear form } \ell \in F[\bar{x}] : \ell | T_1 \times T_2\})$$

Definition 14 (Rank of polynomial). For any polynomial $f \in F[\bar{x}]$ computable by a $\Sigma\Pi\Sigma(2,n,d,F)$ circuit, its rank, called rank(f) is defined as the minimum of rank(C) over all $\Sigma\Pi\Sigma(2,n,d,F)$ circuits computing f.

Definition 15. Let $f \in F[\bar{x}]$. For any co-dimension 1 space $W \subset F^n$, we say that f factorizes into non-zero linear forms on W, if, for linear form ℓ_1 such that $W = V(\ell_1)$, and isomorphism $\Phi : F[\bar{x}] \rightarrow F[\bar{x}]$ mapping $\ell_1 \mapsto x_1$, the polynomial $\Phi(f)_{|_{x_1=0}}$ is a non-zero product of linear forms in $F[x_2, \ldots, x_n]$. It is easy to see that this is well defined, i.e. if we take some other linear form ℓ'_1 such that $W = V(\ell'_1)$ and some other isomorphism Φ' mapping $\ell'_1 \mapsto x_1$ then $\Phi'(f)_{|_{x_1=0}}$ is a non-zero product of linear forms $\Leftrightarrow \Phi(f)_{|_{x_1=0}}$ is a non-zero product of linear forms.

Definition 16 (Candidate linear forms). Let $f \in F[\bar{x}]$. Let ℓ be a linear form and $W = V(\ell)$. Suppose f factorizes into non-zero linear forms on W, and there exist linear forms ℓ_1, ℓ_2 with ℓ, ℓ_1, ℓ_2 being LI, such that f vanishes on co-dimension 2 subspaces $V(\ell, \ell_1), V(\ell, \ell_2)$. Then, ℓ, considered as a point in the projective space, is called a candidate linear form. The set of candidate linear forms is denoted by $L(f)$. It is easy to see that $|L(f)| \leq |S(f)|^2$.

Definition 17 (Sylvester Gallai (SG) configuration, Definition 5.3.1, [6]). A proper set $S = \{s_1, \ldots, s_m\} \subset F^n$ is called an SG configuration if for every $i \neq j \in [n]$, $\exists k \in [n] \setminus \{i, j\}$ with s_i, s_j, s_k LI.

Definition 18 (Number of essential variables, restated from [4]). Let $f(\bar{x}) \in F[\bar{x}]$. We say that $f(\bar{x})$ has m ($\leq n$) essential variables if there exist an invertible matrix $A \in F^{(n \times n)}$ such that $f(A \cdot \bar{x})$ depends only on m variables.
1.3 Known results

- **Lemma 19** ([15, 19]). Let n, d be positive integers and \mathbb{F} be a field with $\text{char}(\mathbb{F}) > d$ or 0. There is a randomized algorithm that takes as input black-box access to an n-variate degree d polynomial $f(\vec{x}) \in \mathbb{F}[\vec{x}]$ having m essential variables and computable by a circuit of size s, that runs in time $(nds)^{O(1)}$ and outputs an invertible matrix $A \in \mathbb{F}^{(n \times n)}$ such that $f(A \cdot \vec{x})$ depends only on the first n-variables.

- **Lemma 20** (Solving polynomial equations, Implied from [13, 24]). There is a randomized algorithm that takes as input integer n and black-box access to a degree d, n-variate polynomial f with coefficients in \mathbb{F}_q, runs in time $(nd\log q)^{O(1)}$ and outputs either ‘yes’ or ‘no’ such that,

$$
\begin{align*}
\text{output is ‘yes’} & \quad \text{if } f \equiv 0 \\
\Pr[\text{output is ‘no’}] & \geq 1 - o(1) \quad \text{if } f \not\equiv 0
\end{align*}
$$

- **Lemma 21** (Schwartz-Zippel Lemma, [31, 39]). Let $p(x_1, \ldots, x_n)$ be a polynomial of total degree d such that it is not identically zero. Let $S \subset \mathbb{F}$ be any finite set. For s_1, \ldots, s_n picked independently and uniformly from S, $\Pr[p(s_1, \ldots, s_n) = 0] \leq \frac{d}{|S|}$.

- **Lemma 22** (Randomized polynomial identity test, Section 1, Lemma 1.2 in [28]). There is a randomized algorithm that takes as input integer n and black-box access to a degree d, n-variate polynomial f with coefficients in \mathbb{F}_q, runs in time $(nd\log q)^{O(1)}$ and outputs either ‘yes’ or ‘no’ such that,

$$
\begin{align*}
\text{output is ‘yes’} & \quad \text{if } f \equiv 0 \\
\Pr[\text{output is ‘no’}] & \geq 1 - o(1) \quad \text{if } f \not\equiv 0
\end{align*}
$$

- **Lemma 23** ($\Sigma \Pi \Sigma(k, n, d, \mathbb{F})$ deterministic polynomial identity test, Theorem 1 in [29]). There is a deterministic algorithm that takes as input black-box access to a degree d, n-variate polynomial f computable by a $\Sigma \Pi \Sigma(k, n, d, \mathbb{F})$ circuit, runs in time $(nd^k \log |\mathbb{F}|)^{O(1)}$ and outputs ‘yes’ if $f \equiv 0$ and ‘no’ if $f \not\equiv 0$.

- **Lemma 24** ($\Sigma \Pi \Sigma(k, n, d, \mathbb{F})$ Rank bound, Theorem 1.7 in [30]). Let C be a $\Sigma \Pi \Sigma(k, n, d, \mathbb{F})$ circuit, over an arbitrary field \mathbb{F}, that is simple, minimal and zero. Then, $\text{rank}(C) < 3k^2 + k^2 \log d$.

- **Lemma 25** (Black-box multivariate polynomial interpolation, Theorem 11 in [22]). Let n, m, d be parameters and \mathbb{F} be a finite field. There is a deterministic algorithm that runs in time $(nm^d \log |\mathbb{F}|)^{O(1)}$, and outputs a set S of points in \mathbb{F}^n, such that given black-box access to any polynomial $f \in \mathbb{F}[x_1, \ldots, x_n]$ with at most m monomials, the coefficients of all monomials can be recovered in $(nm^d \log |\mathbb{F}|)^{O(1)}$ time using evaluations from the set $\{ f(s) : s \in S \}$.

- **Lemma 26** (Effective Hilbert irreducibility / Quantitative Bertini theorem, Corollary 2 [15], Remarks 11.5.33, 11.5.66 [26], Theorem 1.1 [23]). Let \mathbb{F} be a perfect field and $g(\vec{x}) \in \mathbb{F}[\vec{x}]$ be a degree d irreducible polynomial. Pick tuples, $\vec{a} = (a_2, \ldots, a_n)$, $\vec{b} = (b_1, \ldots, b_n)$, $\vec{c} = (c_1, \ldots, c_n)$ such that every a_i, b_j, c_k is chosen uniformly randomly and independently from a set $S \subset \mathbb{F}$. Consider the bi-variate restriction

$$
\hat{g}(X, Y) = g(X + b_1 Y + c_1, a_2 X + b_2 Y + c_2, \ldots, a_n X + b_n Y + c_n)
$$

Then $P[(\vec{a}, \vec{b}, \vec{c}) \in S^{n-1} \times S^n \times S^n : \hat{g}(X, Y) \text{ is not irreducible}] \leq \frac{2d^n}{|S|^3}$.
Lemma 27 (Black-box multivariate polynomial factorization, [16]). There exists a randomized algorithm that takes as input black-box access to a degree d, n-variate polynomial f with coefficients in \mathbb{F}, runs in time $(nd\log|\mathbb{F}|)^{O(1)}$ and outputs black-box access to polynomials f_1, \ldots, f_m (for $m \leq d$) along with integers e_1, \ldots, e_m such that,

$$Pr[f = f_1^{e_1} \cdots f_m^{e_m} \wedge f_1, \ldots, f_m \text{ are irreducible}] \geq 1 - o(1).$$

Corollary 28 (Decomposition into linear and non-linear factors). There exists a randomized algorithm that takes as input black-box access to a degree d, n-variate polynomial f with coefficients in \mathbb{F}, runs in time $(nd\log|\mathbb{F}|)^{O(1)}$ and outputs a list $\{\ell_1, \ldots, \ell_s\} (s \leq d)$ of affine forms along with black-box access to a polynomial $\text{NonLin}(f)$ such that,

$$Pr[f \equiv \ell_1 \cdots \ell_s \text{NonLin}(f) \wedge \text{NonLin}(f) \text{ has no linear factors}] \geq 1 - o(1).$$

Proof. This follows from Lemma 27 in a straightforward way. We simply interpolate the irreducible factors f_i as linear forms ℓ_i and test whether $f_i - \ell_i \equiv 0$ using Lemma 22. The factors which pass the test are the linear factors and the remaining constitute $\text{NonLin}(f)$. ▶

1.4 Key technical ideas

The algorithms mentioned in Theorems 1 and 2 are provided in Algorithms 1 and 2 respectively. In this section we discuss the key technical ideas used. Missing details are supplied in the subsequent sections. Proof of Propositions 5 and 8 are directly provided in Sections 4 and 5 respectively and not discussed here for brevity. As described in Definition 13, we write $f = G \times (T_1 + T_2)$ where G, T_1, T_2 are product of linear forms and $\gcd(T_1, T_2) = 1$. We know that $\text{Lin}(f) \times \text{NonLin}(f) = f = G \times (T_1 + T_2)$.

1.4.1 Theorem 1: Key ideas for Algorithm 1

The algorithm mentioned in Theorem 1 is presented in Algorithm 1 and its correctness/complexity is discussed in Section 2. We describe the main ideas now. Since $\text{NonLin}(f)$ has no linear factors and $\text{Lin}(f), G$ are product of linear forms, $\text{NonLin}(f)$ divides $T_1 + T_2$ implying that $\text{NonLin}(f) = h(y_1, \ldots, y_r)$, for some homogeneous polynomial h over \mathbb{F} and independent linear forms y_1, \ldots, y_r spanning the set of linear factors of $T_1 \times T_2$ (here $r = \text{rank}(f)$). Clearly $\text{NonLin}(f)$ is non-constant, otherwise rank of f would not be ≥ 5. Using Corollary 28, with high probability, we get black-box access to $\text{NonLin}(f)$ and its degree t. If we also had access to (a) the integer $r = \text{rank}(f)$, and (b) a $O^{(1)}$ sized set L of linear forms containing required y_1, \ldots, y_r, then we could simply iterate over all t sized subsets $\{y_1, \ldots, y_r\}$ of L and using deterministic multivariate black-box interpolation (Lemma 25) compute polynomial $h(y_1, \ldots, y_r)$ as a sum of degree t monomials in y_1, \ldots, y_r, which is trivially computed by a $\Sigma\Pi\Sigma(t', n, d, \mathbb{F})$ circuit. We can then multiply all linear factors of $\text{Lin}(f)$, obtained using Corollary 28, to all multiplication gates of this circuit resulting in a $\Sigma\Pi\Sigma(t', n, d, \mathbb{F})$ circuit for f. So we only need to argue about the required access described above. We do not know $\text{rank}(f)$ but we know that $\text{rank}(f) = O(\log^3 d)$. Therefore, we try all values of r in $O(\log^3 d)$. To get access to the set L, we use results in Proposition 5. It guarantees that the set of co-dimension 2 subspaces on which $\text{NonLin}(f)$ vanishes, has size $d^{O(1)}$ and also efficiently constructs a set S that comprises of tuples of linear forms representing such co-dimension 2 spaces. Using S, we define $L = \{\ell_1 : \exists \ell_2 \text{ such that } (\ell_1, \ell_2) \in S \text{ or } (\ell_2, \ell_1) \in S\}$. L is easily constructed from S. Also $|S| = d^{O(1)}$ implies $|L| = d^{O(1)}$. In Lemma 2, we show that L contains an independent set $\{y_1, \ldots, y_r\}$ of linear forms that spans the set of linear
factors of $T_1 \times T_2$. Basically, for any linear form ℓ_1 dividing T_1, we show there is a linear form ℓ_2 dividing T_2 (and vice versa) such that $NonLin(f)$ vanishes on $V(\ell_1, \ell_2)$. This gives rise to a tuple $(\ell_1', \ell_2') \in S$ (i.e. $\ell_1', \ell_2' \in L$) such that $sp\{\ell_1, \ell_2\} = sp\{\ell_1', \ell_2'\}$. Let L' be the collection of all such ℓ_1', ℓ_2'. By construction $L' \subset L$ and $sp\{L'\} = sp(\text{linear form } \ell : \ell | T_1 \times T_2\)$. Now we can take y_1, \ldots, y_r to be any basis of L'. At the end we perform a randomized polynomial identity test to check whether the reconstructed circuit computes the input polynomial or not. This guarantees that with probability $1 - o(1)$, no incorrect reconstruction is returned. At the same time, for correct r and L, by the above technique, with probability $1 - o(1)$, we recover the correct circuit which will pass the test. Our algorithm takes $(nd^{\log^2 d} \log |\mathbb{F}|)^{O(1)}$ time. Full details can be found in Section 2.

Comparison with algorithm in [33]

The broad idea for low rank\(^8\) reconstruction given in Algorithm 3 of [33] is similar to ours. However, their algorithm runs in time quasi-polynomial in n, d and $|\mathbb{F}|$. The main reason is that they search for the required basis $\{y_1, \ldots, y_r\}$ of linear forms (Step 2 of Algorithm 3 in [33]) by iterating over the entire set of linear forms in $O(\log^2 d \cdot \text{many variables})$. This makes their algorithm quasi-polynomial time with respect to $|\mathbb{F}|$, since this set has size $|\mathbb{F}|^{O(\log^2 d)}$. As described above, our algorithm performs a more efficient search by searching within the $d^{O(1)}$ sized set L, that is efficiently constructed. This leads to a polynomial time dependence on $\log |\mathbb{F}|$ which is ideal as $O(\log |\mathbb{F}|)$ bits can represent each scalar in the circuit.

1.4.2 Theorem 2: Key ideas for Algorithm 2

The algorithm mentioned in Theorem 2 is presented in Algorithm 2. Its correctness and time complexity are discussed in Section 3. Our algorithms crucially utilize the set of “candidate linear forms” which are defined in Definition 16. This definition further requires us to define what it means for a polynomial to factorize into non-zero linear forms on a co-dimension 1 subspace which is defined in Definition 15. Next, we present a reconstruction algorithm solving a corner case, where one of T_1, T_2 is power of a linear form (up to scalar multiplication). Then we discuss the general case algorithm which is run if the corner case fails to reconstruct. In this case, linear factors of both T_1, T_2 span at least a two dimensional space.

Corner case - One of T_1, T_2 is power of a linear form

Formal statement is provided in Lemma 36 and corner case reconstruction algorithm is given in Algorithm 4. We sketch the idea here. If one of T_1, T_2 is power of a linear form, then we prove in Claim 37 that $Lin(f) = G$ and $NonLin(f) = T_1 + T_2$. The basic idea is that if $T_1 + T_2$ has a non trivial linear factor ℓ, then span of any any linear factor of T_1 and ℓ will contain some linear factor of T_2. This can be used to show that dimension of $sp(\text{linear form } \ell : \ell | T_1)$ and $sp(\text{linear form } \ell : \ell | T_2)$ can differ by at most 1. Since $rank(f) = \Omega(\log^3 d)$, we arrive at a contradiction to our assumption in this case. Therefore, using Corollary 28 we get black-box access to $T_1 + T_2$, its degree t, and the entire list of linear factors (with multiplicity) of G. Let’s assume that for some $i \in [2]$, T_i is power of some linear form. If we also had access to (a) a linear factor ℓ_t of T_i, and (b) a $d^{O(1)}$ sized set \mathcal{X} of scalars such that $T_i = \delta \ell_t^r$ for some $\delta \in \mathcal{X}$ and try to

\(^8\) their low rank case assumes $rank(f) = O(\log^2 d)$. we assume $rank(f) = O(\log^3 d)$.
factorize black-box of $T_1 + T_2 - \delta \ell^3_1$, using Corollary 28. If factorization gives all linear factors, we would have obtained a $\Sigma \Pi \Sigma (2, n, t, F)$ circuit for $T_1 + T_2$. Combining this with linear factors of G gives a $\Sigma \Pi \Sigma (2, n, d, F)$ circuit for f. So we only need to argue about the required access. In Claim 38, we show that a linear factor ℓ_1 of T_1 belongs to $\mathcal{L}(\text{NonLin}(f))$ that we defined in Definition 16. To see this, notice that since $\text{NonLin}(f) = T_1 + T_{3-i}$, it will factorize into a non-zero product of linear forms on $\mathcal{V}(\ell_1)$ for any linear factor ℓ_1 of T_1. Since rank of $T_1 + T_{3-i} = \Omega(\log^3 d)$, we easily obtain linear factors ℓ_2, ℓ_3 of T_{3-i} such that ℓ_1, ℓ_2, ℓ_3 satisfy conditions required by Definition 16 $\Rightarrow \ell_1 \in \mathcal{L}(\text{NonLin}(f))$. Definition 16 and Proposition 5 imply that $\mathcal{L}(\text{NonLin}(f))$ has size $d^{O(1)}$ and Algorithm 3 efficiently constructs it. So we search for ℓ_1 in this set. To construct set \mathcal{X} containing δ where $T_1 = \delta \ell_1$, we restrict $T_1 + T_{3-i}$ to $\mathcal{V}(\ell_1)$, and obtain two LI factors ℓ_2, ℓ_3 of the restriction of T_{3-i} using Corollary 28. These factors will exists since $\text{rank}(f) = \Omega(\log^3 d)$. For simplicity map $\ell_1 \mapsto x_1, \ell_2 \mapsto x_2, \ell_3 \mapsto x_3$.

Our polynomial has the form $\text{NonLin}(f) = \delta x_1^3 + (x_2 - \beta x_1)(x_3 - \gamma x_1) T_{3-i}'$, for some scalars β, γ and product of linear forms T_{3-i}'. To find δ, we observe that this polynomial depends on x_3 but becomes independent on plugging $x_2 = \beta x_1$. We first set x_4, \ldots, x_n to random values in F and use multivariate interpolation from Lemma 25, to represent this new polynomial as a degree t polynomial in $F[x_1, x_2, x_3]$. Then we solve for a fresh variable β such that setting $x_2 = \beta x_1$, makes this polynomial independent of x_3. This is done by collecting all coefficients ($\in F[\beta]$) of monomials containing x_3 and solving the system of equations they define. This system has $d^{O(1)}$ many solutions, since all polynomials are univariate with degree $d^{O(1)}$. All solutions to this system are computed using algorithm given in Lemma 20. We plug these β back into coefficient of x_1^3 and obtain a $d^{O(1)}$ sized set \mathcal{X} containing δ. At the end, using polynomial identity testing algorithm in Lemma 23, we deterministically check whether the reconstruction is correct or not. Thus, for choices of ℓ_1, \mathcal{X}, where the circuit was not correct, we don’t output anything and for the right values of ℓ_1, \mathcal{X}, by the algorithm described above, we correctly reconstruct the circuit. Our algorithm takes $(nd \log |F|)^{O(1)}$ time.

General case - Both T_1, T_2 have at least 2 independent linear factors

This is the more general case of our algorithm and is tried after the above mentioned corner case fails to provide a reconstruction. Our algorithm tries to find an $\Omega(\log d)$ sized set of linear forms such that all linear forms in this set divide the same T_i. Once such a set is found we use it to reconstruct all linear forms dividing $G \times T_{3-i}$ and using this the entire circuit. We break down our key ideas below.

We first explain, how one can complete the reconstruction given access to such a set. Formal statement is given in Lemma 41 and algorithm is provided in Algorithm 5. The basic idea is as follows. Without loss of generality, we assume the independent set of linear forms is the set of variables x_1, \ldots, x_t where $t = \Omega(\log d)$ and that all of these divide T_1. Therefore, $\text{Lin}(f) \times \text{NonLin}(f) = f = G \times (x_1 \ldots x_t T_1^i + T_2)$, where T_1^i is a product of linear forms and $\text{gcd}(T_1^i, T_2) = 1$. Without loss of generality we also assume that no x_i divides f since we can divide f by largest power of all the x_i. The idea is to construct all linear factors of $G \times T_2$ by first computing all linear factors of $(G \times T_2)_{x_i=0}$ for $i \in [t]$ and then gluing these factorizations together. Linear factors of $(G \times T_2)_{x_i=0}$ can be easily computed by applying Corollary 28 to the black-box computing $f_{x_i=0}$. Clearly for each i the multi-sets of linear factors will have the same (i.e. $\text{deg}(f)$) number of elements. These multi-sets are glued using Algorithm 5 from [33]. The idea behind this algorithm

9 we add them back after reconstruction of this new polynomial is complete
As described above, if we have access to an \(F \) (with multiplicity say \(k \)), and an integer \(2 \leq i \leq t \) such that there are exactly \(k \) linear factors \(\ell_1, \ldots, \ell_t \) (could be multiples of each other) of \((G \times T_2)_{x_1=0} \), such that \(\ell_1_{x_1=0} \) and \(\ell_{i_{x_1=0}} \) are scalar multiples. Once such \(\ell_1, i \) and \(\ell_j, j \in [k] \) are found, \(\ell_1 \) is glued with each \(\ell_i \) by comparing coefficients and \(k \) glued linear forms dividing \(G \times T_2 \) are obtained. Then \(\ell_1 \) (with all its multiplicity) and all \(\ell_i, j \in [k] \) are removed from their respective multi-sets. This process is repeated until the multi-sets are empty. When the multi-sets are non-empty, such \(\ell_1 \) and \(i \) always exist. If not, then in Theorem 33 of [33], they show that a lower bound on length of linear 2-query locally decodable codes gets violated. Details are provided inside proof of Theorem 29 in [33] and for cleaner presentation we do not repeat it here. At the end, all linear factors (with multiplicity) of \(G \times T_2 \) are known. To know \(G \times T_2 \), we need to know the appropriate constant to multiply to the product of these linear factors. For this, we restrict all linear forms in our computed multi-set to \(T_3 \) in the following way. For every \((G \times T_2)_{x_1=0} \), we show that for \(\ell, \ell' \in B, \text{ sp}(\ell, \ell') \) does not contain any other\(^{10}\) linear factor of \(T_1 \times T_2 \), and any linear factor of \(T_1 + T_2 \). Using this, in Part 3 of Lemma 44, we show that for \(\ell \in B, \text{ NonLin}(f) \) vanishes on \(\mathcal{V}(\ell, \ell') \) iff \(\ell, \ell' \) divide different \(T_i \). This is used to split \(B \) into two parts, with linear forms in each part dividing the same \(T_i \). One of these would be \(\Omega(\log d) \) in size giving us the required \(\mathbf{LI} \) set. Full details can be found in Part 3 of Lemma 44. We use the existence of \(\ell, B \) in Algorithm 5 in the following way. For every \(\ell \in \mathcal{L}(\text{NonLin}(f)) \) using the construction of \(B \) in parts 1, 2 of Lemma 44, we construct a \(O(\text{rank}(f)) \) sized collection of sets containing \(B \). For each candidate \(B \) in this collection, we apply the test (from part 3 of Lemma 44) mentioned above to divide it into two parts \(U, V \). The larger set is provided to the previous algorithm (details in Algorithm 5) to reconstruct the circuit. In the end, we use deterministic polynomial identity test to reject incorrect constructions. The existence of \(\ell, B \) and the test above, make sure that for the correct choices, we will output the correct circuit.

Comparison with algorithm in [33]

As described above, if we have access to an \(\Omega(\log d) \) sized set of linear forms such that all of them divide the same \(T_i \), our algorithm exactly matches the one given in Algorithm 5 of [33]. The main difference\(^{11}\) is in the way such a set is created. In Steps 1, 2 of Algorithm 4 in [33], they iterate over all possible \(\Omega(\log d) \) sized sets of linear forms inside an \(\Omega(\log^2 d + \log^2 n) \) sized random subspace of \(\mathbb{F}^n \). Such a brute force search considers \(|\mathbb{F}|^{\Omega(\log d (\log^2 d + \log^2 n))} \) many sets leading to a quasi polynomial time complexity in \(n, d \) and \(|\mathbb{F}| \). Using \(\mathcal{L}(\text{NonLin}(f)) \),

10 apart from \(\ell, \ell' \)

11 also we assume rank to be \(\Omega(\log^3 d) \) whereas [33] assumes it to be \(\Omega(\log^2 d) \) for high rank reconstruction
in Lemma 44 we are able to create a small collection of sets of independent linear forms, such that at least one set in this collection has size $\Omega(\log d)$ and comprises of linear forms all of which divide the same T_1. Construction of this collection has required new structural techniques from Proposition 5 and Proposition 8. Searching through this small collection and rejection of incorrect reconstructions by a deterministic polynomial identity test lead to an overall running time of $(nd \log |\mathbb{F}|)^{O(1)}$ which is a huge improvement compared to [33].

2 Low Rank Reconstruction: Proof of Theorem 1

- **Algorithm 1** Low rank reconstruction.

 Input - Black-box access to f, integers n, d.

 Output - $\Sigma\Pi\Sigma$ circuit C or #.

 1. Using Corollary 28 with inputs as black-box access to f and integers n, d, compute list of linear factors ℓ_1, \ldots, ℓ_s as black-box access to $NonLin(f)$. Compute degree of $NonLin(f)$ as $t = d - s$. Using this black-box and integers n, t as input to Algorithm 6, obtain set S containing tuples of linear forms representing co-dimension 2 subspaces of \mathbb{F}^n on which $NonLin(f)$ vanishes (i.e. $S(NonLin(f))$).

 2. Construct set \mathcal{L} of linear forms ℓ, such that for some ℓ' either (ℓ, ℓ') or (ℓ', ℓ) is in S. For each $r \in [O(\log^3 d)]$, iterate over all r sized LI subsets $\{y_1, \ldots, y_r\} \subset \mathcal{L}$. Construct isomorphism Γ mapping $y_i \mapsto x_i, i \in [r]$. Simulate black-box for $\Gamma(NonLin(f))$ and using Lemma 25 interpolate it as a linear combination of degree t monomials in $\mathbb{F}[x_1, \ldots, x_r]$, obtaining a polynomial $h(x_1, \ldots, x_r)$.

 3. By creating appropriate multiplication/addition gates, construct a $\Sigma\Pi\Sigma(r', n, d, \mathbb{F})$ circuit C that computes polynomial $f' = \ell_1 \times \cdots \times \ell_s \times h(y_1, \ldots, y_r)$. Using randomized polynomial identity test from Lemma 22, check if $f - f' = 0$. If yes, **Return** C. If no, try the next r sized subset in Step 2. If all r sized subsets have been tried, $r = r + 1$.

We present the low rank reconstruction algorithm required by Theorem 1 in Algorithm 1. We analyze its correctness and running-time here. Using correctness of Corollary 28 and Algorithm 6, at the end of step 1, with probability $1 - o(1)$, we have obtained a black-box computing $NonLin(f)$, degree t of $NonLin(f)$, and all linear factors ℓ_1, \ldots, ℓ_s (with multiplicity) of f. Next, we show that, for some $r \leq rank(f)$ and linear forms y_1, \ldots, y_r, Step 2 computes a polynomial $h(x_1, \ldots, x_r)$ such that $NonLin(f) = h(y_1, \ldots, y_r)$. In order to do so we prove the following lemma.

- **Lemma 29.** Let $r = rank(f) \geq 5$, we know that $NonLin(f)$ is a non-constant polynomial. Consider any linear form $\ell | T_i$ for some $i \in [2]$. We will show that there is some $\ell' | T_{3-i}$ such that $NonLin(f)$ vanishes on the co-dimension 2 subspace $\mathcal{V}(\ell, \ell')$. Assuming this is true, we know there is a tuple $(\ell_1, \ell_2) \in S$ such that $\mathcal{V}(\ell, \ell') = \mathcal{V}(\ell_1, \ell_2) \Rightarrow sp(\ell, \ell') = sp(\ell_1, \ell_2)$. By construction of set \mathcal{L}, $\ell_1, \ell_2 \in \mathcal{L}$. By going over different ℓ dividing $T_1 \times T_2$ this process would give a list of $2m$ ($m = \deg(T_1) = \deg(T_2)$) linear forms $\{\ell_1, \ldots, \ell_{2m}\} \subset \mathcal{L}$ such that

$$sp(\text{linear form } \ell : \ell | T_1 \times T_2) \subset sp(\{\ell_1, \ldots, \ell_{2m}\}) \subset sp(\text{linear form } \ell : \ell | T_1 \times T_2)$$

Since $sp(\text{linear form } \ell : \ell | T_1 \times T_2)$ is $rank(f)$ dimensional we get that there are r LI linear forms $y_1, \ldots, y_r \in \{\ell_1, \ldots, \ell_{2m}\} \subset \mathcal{L}$ and the proof would be complete. So we only
need to show that $\exists \ell' \mid T_{3-i}$ such that $\text{NonLin}(f)$ vanishes on the co-dimension 2 subspace $\mathbb{V}(\ell, \ell')$. To see this, let L be the product of all linear factors of $T_1 + T_2$. Let Φ be an isomorphism mapping $\ell \mapsto x_1$. On setting $x_1 = 0$, we get, $\Phi(L)|_{x_1=0} \times \Phi(\text{NonLin}(f))|_{x_1=0} = \Phi(T_{3-i-1})|_{x_1=0} \neq 0$. The non zeroenss comes from the fact that $\gcd(T_1, T_2) = 1$. The above equation implies (using unique factorization in the ring $\mathbb{F}[x_2, \ldots, x_n]$) that there is some linear form $\ell' \mid T_{3-i}$ such that $\Phi(\ell')|_{x_1=0}$ divides $\Phi(\text{NonLin}(f))|_{x_1=0}$. Now, define the isomorphism Δ mapping $x_1 \mapsto x_1, \Phi(\ell') \mapsto x_2$. This can be defined since x_1 and $\Phi(\ell')$ are LI (otherwise ℓ divides ℓ' violating $\gcd(T_1, T_2) = 1$). Applying Δ to the fact that $\Phi(\ell')|_{x_1=0}$ divides $\Phi(\text{NonLin}(f))|_{x_1=0}$, we get that $\Delta(\Phi(\ell')|_{x_1=0}) \mid \Delta(\Phi(\text{NonLin}(f))|_{x_1=0})$. Since Δ fixes x_1, we get $\Delta(\Phi(\ell'))|_{x_1=0} = \Delta(\Phi(\text{NonLin}(f)))|_{x_1=0}$. So there is polynomial g such that $\Delta(\Phi(\text{NonLin}(f)))|_{x_1=0} = \Delta(\Phi(\ell'))|_{x_1=0} \times g$. Now setting $x_2 = 0$ on both sides will send the RHS to 0 since $\Delta \circ \Phi$ maps $\ell \mapsto x_1, \ell' \mapsto x_2$. Therefore $\Delta(\Phi(\text{NonLin}(f)))|_{x_1=0, x_2=0} = 0$, and so using Definition 4 one can see that $\text{NonLin}(f)$ vanishes on the co-dimension 2 subspace $\mathbb{V}(\ell, \ell')$. ▶

$h(y_1, \ldots, y_r)$ naturally exhibits a $\Sigma\Pi\Sigma(t', n, t, \mathbb{F})$ circuit. This can be seen as follows. Addition gates at the bottom layer will compute linear forms y_1, \ldots, y_r. For each monomial, there will be one multiplication gate. If x_j^k is the largest power of x_j dividing some monomial, then there will be k connections from y_j to the multiplication gate corresponding to this monomial. Finally, the top layer is connected to all the multiplication gates and weight on such an edge is equal to the coefficient of the monomial the multiplication gate corresponded to. Step 3 just multiplies this circuit with all the linear factors and therefore computes a candidate $\Sigma\Pi\Sigma(t', n, d, \mathbb{F})$ circuit for f. Randomized polynomial identity test in Step 3 ensures that with high probability we output a correct $\Sigma\Pi\Sigma(t', n, d, \mathbb{F})$ circuit for f. If for some r and linear forms y_1, \ldots, y_r, an incorrect circuit gets constructed, probability that it will be outputted is $o(1)$. There are at most $(d^{\log_2 d} \log^3 d)^{O(1)}$ many such bad settings of r and y_1, \ldots, y_r. Using boosting with independent runs of randomized polynomial identity test, we can make error exponentially small in nd so that overall the probability of error still remains $o(1)$ by union bound \Rightarrow with probability $1 - o(1)$ all these bad settings will be rejected. For $r = \text{rank}(f)$ and the correct LI set $\{y_1, \ldots, y_r\}$ (i.e. one spanning all linear factors of $T_1 \times T_2$), we have seen that with probability $1 - o(1)$, a correct circuit will be constructed which will always pass the randomized polynomial identity test and will be returned. So overall with probability $1 - o(1)$, a correct $\Sigma\Pi\Sigma(t', n, d, \mathbb{F})$ circuit for f will be returned. Next we discuss the time complexity of the above algorithm.

Lemma 30. Algorithm 1 takes $(nd^{\log_3 d} \log |\mathbb{F}|)^{O(1)}$ time.

Proof. Time complexity of Corollary 28 and Algorithm 6 imply that Step 1 takes $(nd \log |\mathbb{F}|)^{O(1)}$ time. \mathcal{L} can be constructed in $(nd \log |\mathbb{F}|)^{O(1)}$ time since it involves iterating over the $d^{O(1)}$ sized set \mathcal{S}. Our search for the correct $r = \text{rank}(f)$ and linear forms y_1, \ldots, y_r takes $(nd^{\log_3 d} \log |\mathbb{F}|)^{O(1)}$ time in the worst case and multivariate interpolation (Lemma 25) also takes the same amount of time in the worst case. Step 3 multiplies linear factors to all the gates in the circuit for $\text{NonLin}(f)$ and therefore takes $(nd^{\log_3 d} \log |\mathbb{F}|)^{O(1)}$ time and therefore overall time complexity is $(nd^{\log_3 d} \log |\mathbb{F}|)^{O(1)}$.

3 High Rank Reconstruction: Proof of Theorem 2

The algorithm in Theorem 2 is presented in Algorithm 2. This algorithm further calls Algorithms 3, 4 and 5. We present and analyze them in Sections 3.1, 3.2 and 3.3 respectively. Correctness of our algorithm heavily relies on Lemma 44, which we prove in Section 3.4.
Efficient Reconstruction of Depth Three Arithmetic Circuits with Top Fan-In Two

Algorithm 2 High rank reconstruction.

Input - Black-box access to \(f \), integers \(n, d \).
Output - \(\Sigma\Pi\Sigma(2, n, d, F) \) circuit \(C \) or \#.

1. Run Algorithm 4 with inputs as black-box access to \(f \) along with integers \(n, d \). If output is a circuit \(C \), **Return** \(C \). If output was \#, go to the next step.
2. Using Corollary 28 with input as black-box access to \(f \) and integers \(n, d \), compute list of linear factors \(\ell_1, \ldots, \ell_s \) and black-box access to \(\text{NonLin}(f) \). Compute the degree of \(\text{NonLin}(f) \) as \(t = d - s \).
3. Using Algorithm 3 with inputs as black-box access to \(f \) and integers \(n, d \), construct the set \(\mathcal{L}(\text{NonLin}(f)) \). For each \(\ell \in \mathcal{L}(\text{NonLin}(f)) \) consider all linear forms \(\ell' \in \mathcal{L}(\text{NonLin}(f)) \setminus \{\ell\} \) such that \(sp\{\ell, \ell'\} \) does not intersect \(\mathcal{L}(\text{NonLin}(f)) \) at any point other than \(\ell, \ell' \). Find a maximal independent set \(X \) of such \(\ell' \)s and continue if \(|X| = \Omega(\log^2 d) \).

Now, we discuss the correctness and time complexity of Algorithm 2. Step 1 tries to solve a corner case where one of \(T_1, T_2 \) is power of a linear form. By correctness of Algorithm 6, we know that, if this corner case is satisfied, then with probability \(1 - o(1) \), the correct \(\Sigma\Pi\Sigma(2, n, d, F) \) circuit is returned. Also Algorithm 6 never returns an incorrect circuit. Therefore with high probability Step 1 will complete the reconstruction if the corner case condition holds. If it does not hold this algorithm will always proceed to Step 2. Also, if it does not return a circuit we can assume that with high probability the corner case does not hold and therefore linear factors of each \(T_i \) span at least a two dimensional space. By correctness of Corollary 28, we know that with probability \(1 - o(1) \), Step 2 correctly obtains a black-box computing \(\text{NonLin}(f) \), its degree \(t \) and correctly identifies all linear factors of \(f \) with multiplicity. Correctness of the next step is proved in the following lemma.

Lemma 31. If outputs of Steps 1 and 2 are correct, then with probability \(1 - o(1) \), Step 3 computes a \(\Sigma\Pi\Sigma(2, n, d, F) \) circuit computing \(f \).

Proof. By correctness of Algorithm 3, we know that the set \(\mathcal{L}(\text{NonLin}(f)) \) is correctly computed. Our algorithm goes through all linear forms \(\ell \in \mathcal{L}(\text{NonLin}(f)) \) and for each such linear form goes through \(\Omega(\log d) \) sized sets which are parts of a partition of the set \(X \) defined using \(\ell \). In Step 3(b), correctness of Algorithm 5 ensures that if a circuit is returned for any choice of \(\ell, \mathcal{B} \), it is always correct. So all we need to show is that for some choice of \(\ell, \mathcal{B} \), Algorithm 5 will return the correct circuit with high probability. We know from correctness of Algorithm 5 that if the linear forms \(y_1, \ldots, y_r \) (that are given as input to it), all divide the same \(T_i \) and are independent, then with high probability a correct circuit will be returned. Therefore, now all we need to show is that there is some choice of \(\ell, \mathcal{B} \), for which the constructed \(y_1, \ldots, y_r \) are independent linear forms dividing the same \(T_i \). Since we
have assumed that output of Step 1 is correct, f does not satisfy the corner case implying that linear factors of each T_i span at least a two dimensional space and therefore Lemma 44 can be applied. Parts 1, 2, 3 of Lemma 44 prove that such t, B exist for which the test in Step 3(a) creates a partition $U \cup V = B$ such that linear forms in U divide T_j and linear forms in V divide T_{3-j} for some $j \in [2]$. Since $|B| = \Omega(\log d)$, one of U, V has size $\Omega(\log d)$. By construction B is LI and thus both U, V are LI. Therefore y_1, \ldots, y_r with $r = \Omega(\log d)$ are independent linear forms dividing the same T_i. This completes the proof. ▶

Now we discuss the time complexity of the above algorithm.

Lemma 32. Algorithm 2 takes $(nd \log |F|)^{O(1)}$ time.

Proof. Time complexity of Algorithm 4 and Corollary 28 imply that Steps 1 and 2 take $O(nd \log |F|)^{O(1)}$ time. By Algorithm 3 we know that the set $\mathcal{L}(\text{NonLin}(f))$ has $d^{O(1)}$ size. We iterate over all $\ell \in \mathcal{L}(\text{NonLin}(f))$ and for each ℓ' check if $\text{sp}\{\ell, \ell'\}$ intersects $\mathcal{L}(\text{NonLin}(f))$ at any other point. This can be done in $(nd \log |F|)^{O(1)}$ time. From these ℓ', we can simply check linear independence of linear forms and create a maximal set in X in $(nd \log |F|)^{O(1)}$ time. Creating a partition of X, iterating over all parts B, and isomorphism can be created in $(nd \log |F|)^{O(1)}$ time. Isomorphism can be efficiently applied to the black-box computing $\text{NonLin}(f)$ by taking every input through Φ before applying the black-box. By time complexity of algorithm in Lemma 22, the check in Step 3(a) takes $(nd \log |F|)^{O(1)}$ time. Time complexity of Algorithm 5 implies that Step 3(b) takes $(nd \log |F|)^{O(1)}$ time. Therefore overall Algorithm 2 takes $(nd \log |F|)^{O(1)}$ time. ▶

In the next subsection, we explain construction of the candidate linear forms (Definition 16).

3.1 Computing Candidate Linear forms

Here is a lemma summarizing the construction of set $\mathcal{L}(\text{NonLin}(f))$ of candidate linear forms (Definition 16).

Lemma 33. There exists a randomized algorithm that takes as input integers n, d and black-box access to f, runs in time $(nd \log |F|)^{O(1)}$, and outputs a set \mathcal{L} of linear forms such that $\Pr[\mathcal{L} =^{12} \mathcal{L}(\text{NonLin}(f))] = 1 - o(1)$.

Algorithm for this lemma is provided in Algorithm 3. We prove its correctness now. By correctness of Corollary 28, we know that Step 1 correctly obtains black-box access to $\text{NonLin}(f)$, its degree t and linear factors (with multiplicity) of f with probability $1 - o(1)$. Similarly by correctness of Algorithm 6, we know that with probability $1 - o(1)$, the set S representing elements of $\mathcal{S}(\text{NonLin}(f))$ is correctly computed. We prove correctness of the next two steps in the following lemma.

Lemma 34. Assuming Step 1 works correctly, with probability $1 - o(1)$, the output \mathcal{L} of Algorithm 3 is the same13 as $\mathcal{L}(\text{NonLin}(f))$.

Proof. Consider any $\ell \in \mathcal{L}(\text{NonLin}(f))$. By definition of the set $\mathcal{L}(\text{NonLin}(f))$, we know that there are linear forms ℓ_1, ℓ_2 with ℓ, ℓ_1, ℓ_2 LI, such that the co-dimension 2 subspaces $\mathcal{V}(\ell, \ell_2), \mathcal{V}(\ell, \ell_2) \in \mathcal{S}(\text{NonLin}(f))$. So some tuples (p_1, q_1) and (p_2, q_2) corresponding to these two subspaces will be present in S and will be encountered in Step 2. Note that $\mathcal{V}(p_1, q_1) =^{12}$ up to scalar multiplication of linear forms in the sets 13the linear forms in this output are correct up to scalar multiplication
Algorithm 3 Candidate linear forms.

Input - Black-box access to polynomial f, integers n, d.
Output - A set of linear forms L.

1. Using Corollary 28 with inputs as black-box access to f and integers n, d, obtain list of linear factors ℓ_1, \ldots, ℓ_t and access to black-box computing $\text{NonLin}(f)$. Compute degree of $\text{NonLin}(f)$ as $t = d - s$. Using Algorithm 6, compute the set S of tuples of linear forms representing co-dimension 2 subspaces on which $\text{NonLin}(f)$ vanishes.

2. Initialize $L \leftarrow \emptyset$. For all pairs of tuples $(p_1, q_1), (p_2, q_2) \in S$, check if $\text{sp}\{p_1, q_1\} \cap \text{sp}\{p_2, q_2\}$ is one dimensional. For this we construct the $n \times 4$ matrix M with its columns containing coefficients of p_1, q_1, p_2, q_2 respectively and then check by gaussian elimination whether rank of M is 3 or not. If yes, the same gaussian elimination can be used to obtain the one dimensional space of solutions to $Mv = 0$ for $v \in \mathbb{F}^4$. Fixing one such non-zero solution $u = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)^T$, then gives us a scalar multiple of ℓ as $\alpha_1 p_1 + \alpha_2 q_1$. If no scalar multiple of $\alpha_1 p_1 + \alpha_2 q_1$ is already present in L, then we add it to L.

3. For each $\ell \in L$, check whether $\text{NonLin}(f)$ restricted to $\mathbb{V}(\ell)$ factorizes into a non-zero product of linear forms (see Definition 15). This can be done by defining an isomorphism Φ mapping $\ell \mapsto x_1$, simulating black-box computing $\Phi(\text{NonLin}(f))|_{x_1=0}$. Using Lemma 22, check if this black-box computes the 0 polynomial. If ‘yes’, remove ℓ from L. Otherwise, using Corollary 28, with inputs as this restricted black-box and integers n, t, d, compute list of linear factors and check whether there are t of them. If not, then remove ℓ from L. Finally, return L.

$\mathbb{V}(\ell, f_1)$ and $\mathbb{V}(p_2, q_2) = \mathbb{V}(\ell, f_2)$ implies that $\text{sp}\{p_1, q_1\} = \text{sp}\{f, f_1\}$ and $\text{sp}\{p_2, q_2\} = \text{sp}\{\ell, f_2\}$ further implying that $\text{sp}\{p_1, q_1\} \cap \text{sp}\{p_2, q_2\} = \text{sp}\{\ell\}$. This implies that there are scalars $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ such that $\alpha_1 p_1 + \alpha_2 q_1 + \alpha_3 p_2 + \alpha_4 q_2 = 0$, giving us the system of equations as described in the algorithm. In order for the intersection to be one dimensional, the matrix M should have rank 3. We check that using gaussian elimination which also gives the one dimensional set of solutions. Any non-zero solution $(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$ will then give a linear form $\alpha_1 p_1 + \alpha_2 q_1$ in the intersection which will be a scalar multiple of ℓ. Thus, Step 2 identifies a scalar multiple of ℓ and adds it to L. Step 3 just checks whether $\text{NonLin}(f)$ factorizes as a product of non-zero linear forms on $\mathbb{V}(\ell)$ (see Definition 15). Correctness of Step 3 is implied by correctness of Lemma 22 and Corollary 28. Since $\ell \in L(\text{NonLin}(f))$, it will pass this test and remain in L. Now consider any $\ell \in L$ that is returned. In Steps 2 and 3 we have checked whether it satisfies the conditions required for it to be in $L(\text{NonLin}(f))$ or not and therefore correctly output $L(\text{NonLin}(f))$ with high probability.

Lemma 35. Algorithm 3 takes $(nd \log |\mathbb{F}|)^{O(1)}$ time.

Proof. Time complexity of Corollary 28 and Algorithm 6 imply that Step 1 takes $(nd \log |\mathbb{F}|)^{O(1)}$ time. By first part of Proposition 5, we know that $|S| \leq 3d^4$ and therefore going over pairs of elements of S takes $O(nd \log |\mathbb{F}|)^{O(1)}$ time. Gaussian elimination on matrix M takes $(n \log |\mathbb{F}|)^{O(1)}$ time for each pair of tuples. After Step 2 we will have at most $|S|^2$ many elements in L leading to a size of $d^{O(1)}$. In Step 3 for every $\ell \in L$, the construction of Φ, simulation of black-box for $\Phi(\text{NonLin}(f))|_{x_1=0}$ are done in $(n \log |\mathbb{F}|)^{O(1)}$ time. Time complexity of algorithm provided in Lemma 22 which tests whether this new polynomial is identically zero or not is $(nd \log |\mathbb{F}|)^{O(1)}$. Finally, time complexity of Corollary 28 implies that in time $(nd \log |\mathbb{F}|)^{O(1)}$ we can check whether it has t linear factors or not. Therefore overall Algorithm 3 takes $(nd \log |\mathbb{F}|)^{O(1)}$ time.
Algorithm 4 Corner case.

Input - Black-box access to polynomial f, integers n, d.

Output - A $\Sigma\Pi\Sigma(2, n, d, \mathbb{F})$ circuit or $\#$.

1. Using Corollary 28 with inputs as black-box access to f and integers n, d compute linear factors ℓ_1, \ldots, ℓ_s and get access to black-box computing $\text{NonLin}(f)$. Compute degree of $\text{NonLin}(f)$ as $t = d - s$. Using Algorithm 3, compute set $\mathcal{L}(\text{NonLin}(f))$.
2. Iterate over $\ell_1 \in \mathcal{L}(\text{NonLin}(f))$. Construct an isomorphism Φ mapping $\ell_1 \mapsto x_1$.
 a. Simulate black-box for $\Phi(\text{NonLin}(f))|_{\ell_1=0}$ and using Corollary 28 identify two LI factors say ℓ_2, ℓ_3. Construct another isomorphism Δ mapping $x_1 \mapsto x_1, \ell_2 \mapsto x_2, \ell_3 \mapsto x_3$. Pick $\alpha_4, \ldots, \alpha_n$ uniformly randomly from \mathbb{F}. Simulate black-box for

 \[g(x_1, x_2, x_3) = \Delta(\Phi(\text{NonLin}(f)))|_{x_4=\alpha_4, \ldots, x_n=\alpha_n} \]
 b. Using Lemma 25, interpolate g in monomial basis of $\mathbb{F}[x_1, x_2, x_3]$. Substitute $x_2 = yx_1$ in all monomials and rearrange to get a representation in $\mathbb{F}[y][x_1, x_3]$. Equate coefficient polynomials of monomials containing x_2 to 0 and solve the resulting system of equations using Lemma 20. If all ℓ_1s have been tried and no solution was obtained, Return $\#$. Otherwise, for each solution, evaluate coefficient polynomial of x_1^i, creating a set of scalars.
 c. Iterate over all δs in the set of scalars obtained above. Simulate black-box for $\text{NonLin}(f) + \delta \ell_1^t$ and using Corollary 28 check if it has t linear factors say $\ell_{s+1}, \ldots, \ell_{s+t}$. If not, then go to the next δ. If all δ have been tried, go to next $\ell_1 \in \mathcal{L}(\text{NonLin}(f))$. If all ℓ_1s have been tried, Return $\#$. Otherwise, simulate black-box for $f - f'$, where

 \[f' = \hat{\ell}_1 \times \ldots \times \hat{\ell}_s \times (\delta \ell_1^t + \ell_{s+1} \times \ldots \times \ell_{s+t}) \]

 and using Lemma 23 for $\Sigma\Pi\Sigma(4, n, d, \mathbb{F})$ circuits, check if $f - f' \equiv 0$. If output is ‘yes’, construct $\Sigma\Pi\Sigma(2, n, d, \mathbb{F})$ circuit C computing f'. Return C. If not, then go to next δ. If all δ have been tried, go to next $\ell_1 \in \mathcal{L}(\text{NonLin}(f))$. If all ℓ_1s have been tried, Return $\#$.

3.2 Reconstruction when T_1 (or T_2) = αy_1^i

This is a corner case of our problem and needs slightly different techniques. Here is a lemma summarizing the reconstruction algorithm in this case.

- **Lemma 36.** If for some $i \in [2]$, $T_i = \alpha y_1^i$ for some linear form y_1 and $\alpha \in \mathbb{F}$, then \exists a randomized algorithm that takes as input integers n, d and black-box access to polynomial f, runs in time $(nd \log |\mathbb{F}|)^{O(1)}$, and with probability $1 - o(1)$ outputs a $\Sigma\Pi\Sigma(2, n, d, \mathbb{F})$ circuit computing f.

Algorithm is provided in Algorithm 4. Now we prove its correctness. By correctness of Corollary 28, with probability $1 - o(1)$, Step 1 correctly obtains the black-box for $\text{NonLin}(f)$, its degree t and the multi-set of all linear factors of f. If we assume that these are correct, then by correctness of Algorithm 3, with probability $1 - o(1)$, Step 1 also correctly computes the set $\mathcal{L}(\text{NonLin}(f))$ of linear forms. In order to prove the correctness of Step 2 we give two claims, both of which are proved in Appendix A. The first claim says that in this corner
118:18 Efficient Reconstruction of Depth Three Arithmetic Circuits with Top Fan-In Two

case, NonLin(f) is actually the same as $T_1 + T_2$ (up to scalar multiplication) and the second claim guarantees that some scalar multiple of y_1 actually belongs to the set $\mathcal{L}(\text{NonLin}(f))$. Here are the formal statements.

\textbf{Claim 37.} Assume $T_i = \alpha y_1^i$, for some $i \in [2]$, $\alpha \in \mathbb{F}$ and linear form y_1. Then $\text{Lin}(f) = G$ (up to scalar factor). This also means that $\text{NonLin}(f)$ and $T_1 + T_2$ are equal up to a scalar factor.

\textbf{Claim 38.} Assume $T_i = \alpha y_1^i$, for some $i \in [2]$, $\alpha \in \mathbb{F}$ and linear form y_1, then some scalar multiple of y_1 belongs to $\mathcal{L}(\text{NonLin}(f))$.

We proceed in our correctness proof assuming that these claims are true. Assuming that Step 1 was correct, we show that Step 2 returns the correct circuit with high probability. Note that in Step 2(c), using Lemma 23, we check whether the reconstructed circuit is correct or not. This ensures that we only return a correct circuit. Our algorithm in Steps 2(b), 2(c) tries all linear forms in $\mathcal{L}(\text{NonLin}(f))$ and for each such linear form it constructs a set of scalars. So basically the algorithm iterates over possibilities of ℓ_1, δ with the hope of finding one such that $T_i = \delta \ell_1$. If we can show that for some value of ℓ_1, δ with high probability a correct $\Sigma \Pi \Sigma(2, n, d, \mathbb{F})$ circuit is reconstructed, we will be done. We show this for ℓ_1 being the scalar multiple of y_1 that belongs to $\mathcal{L}(\text{NonLin}(f))$ (guaranteed by Claim 38) in the following lemma.

\textbf{Lemma 39.} For ℓ_1, the scalar multiple of y_1 in $\mathcal{L}(\text{NonLin}(f))$, the set of scalars constructed in Step 2(b) contains a scalar δ such that $T_i = \alpha y_1^i = \delta \ell_1^i$ and with probability $1 - o(1)$ correctly reconstructs a $\Sigma \Pi \Sigma(2, n, d, \mathbb{F})$ circuit computing f.

\textbf{Proof.} We know that $\text{NonLin}(f)$ restricted to the co-dimension 1 subspace $\mathcal{V}(\ell_1)$ factors into a non-zero product of linear forms. By correctness of Corollary 28, we know that all linear factors of $\Phi(\text{NonLin}(f))|_{\ell_1 = \alpha}$ can be computed. By Claim 37, we know that this is the same as $\Phi(T_{3-i})|_{\ell_1 = \alpha}$ up to scalar multiplication. Since rank$(f) = \Omega(\log^d n)$ and linear factors of T_i span a 1 dimensional space, factors of this polynomial will span an $\Omega(\log^d n)$ dimensional space and therefore we will be able to find at least two LI factors ℓ_2, ℓ_3 in $\mathbb{F}[x_2, \ldots, x_n]$. This means that the polynomial $\Phi(\text{NonLin}(f))$ looks like

$$\Phi(\text{NonLin}(f)) = \delta \ell_1 + (\ell_2 - \beta x_1)(\ell_3 - \gamma x_1) \prod_{i=4}^{t+1} \ell_i,$$

for some scalars β, γ and linear forms $\ell_4, \ldots, \ell_{t+1}$ in $\mathbb{F}[x_1, \ldots, x_n]$. Recall the isomorphism Δ used in the algorithm, mapping $x_1 \mapsto x_1, \ell_2 \mapsto x_2, \ell_3 \mapsto x_3$. Black-box computing the polynomial $\Delta(\Phi(\text{NonLin}(f)))$ can be constructed by taking every input of blackbox through the isomorphisms. The new polynomial now looks like

$$\Delta(\Phi(\text{NonLin}(f))) = \delta x_1 + (x_2 - \beta x_1)(x_3 - \gamma x_1) \prod_{i=4}^{t+1} \Delta(\ell_i),$$

Finally, we plug in uniform random values for the variables x_4, \ldots, x_n. By Lemma 21 we know that with probability $1 - o(1)$ the polynomial $\prod_{i=4}^{t+1} \Delta(\ell_i)$ will not be identically zero and we will be left with a non-zero polynomial $g(x_1, x_2, x_3) = \delta x_1 + (x_2 - \beta x_1)(x_3 - \gamma x_1) \prod_{i=4}^{t+1} u_i$ computable by a $\Sigma \Pi \Sigma(2, 3, d, \mathbb{F})$ circuit, where u_i are affine forms in $\mathbb{F}[x_1, x_2, x_3]$. Using the above black-box, we get access to black-box for g and then using deterministic multivariate interpolation (Lemma 25), interpolate it as a degree t polynomial in the monomial basis.
of $F[x_1, x_2, x_3]$. g depends on variable x_1. So substituting $x_2 = yx_1$ for a fresh variable y, and solving for common zeros of all coefficient (of monomials involving x_3) univariate polynomials in $F[y]$ would give us a set of scalars containing β. Note that, since our system has only univariate polynomials, all of degree $d^{O(1)}$, it can have at most $d^{O(1)}$ solutions. By correctness of algorithm in Lemma 20, with probability $1 - o(1)$, this set would be correctly computed. Now substitution of $x_2 = \beta x_1$ would recover δ as coefficient of x_1^t. By correctness of Corollary 28, with probability $1 - o(1)$, we will be able to completely factorize the black-box $\text{NonLin}(f) - \delta \ell_1$ into a product of t linear factors giving us the correct T_{3-s_i}. By correctness of Step 1, we know all linear factors of f, were correctly computed and therefore for scalar multiple ℓ_1 of y_1 and the computed scalar δ, with probability $1 - o(1)$, we reconstruct a correct $\sum\Pi\sum(2, n, d, F)$ circuit for f.

Now we discuss the time complexity of the above algorithms.

Lemma 40. Algorithm 4 takes $(nd \log |F|)^{O(1)}$ time.

Proof. Time complexity of Corollary 28 and Algorithm 3 imply that Step 1 takes $(nd \log |F|)^{O(1)}$ time. In Step 2, the outer iteration is over all linear forms in $L(\text{NonLin}(f))$ which has size $d^{O(1)}$ (clear from Definition 16 and explanation given in Algorithm 3). Step 2(a) involves simulations of black-boxes post application of isomorphism and setting values for some variables. It also involves using Corollary 28 to compute all linear factors. All these steps take $(nd \log |F|)^{O(1)}$ time. Finding LI pair of linear forms out of all linear factors is also done in $(nd \log |F|)^{O(1)}$ time. Step 3 involves trivariate interpolation (Lemma 25) which takes $(d \log |F|)^{O(1)}$ time and by time complexity of Lemma 20 solutions of the system of univariate polynomials (all have degree $d^{O(1)}$) are also found in $(nd \log |F|)^{O(1)}$ time. The set of solutions is $d^{O(1)}$ sized since a univariate polynomial of degree s has at most s roots over a field. Therefore Step 2(b) takes $(nd \log |F|)^{O(1)}$ time and creates a set of scalars of size $d^{O(1)}$. Step 2(c) iterates over this $d^{O(1)}$ sized set. Simulation of black-box and factorization using Corollary 28 take $(nd \log |F|)^{O(1)}$ time. Blackbox for $f - f'$ is constructed in $(nd \log |F|)^{O(1)}$ time and by time complexity of algorithm in Lemma 23, it can be checked to be 0 or not in $(nd \log |F|)^{O(1)}$ time. Therefore overall Algorithm 4 takes $(nd \log |F|)^{O(1)}$ time.

3.3 Reconstruction with LI set dividing T_i given

Suppose we are given LI linear forms $u_1, \ldots, u_t > 60 \log d + 61$, such that for some $i \in [2]$, all the u_is divide T_i. Then \exists an efficient reconstruction algorithm as described below.

Lemma 41. There exists a randomized algorithm which takes as input integers n, d, black-box access to polynomial f computable by a $\Sigma\Pi\sum(2, n, d, F)$ circuit and LI linear forms $u_1, \ldots, u_t > 60 \log d + 61$ (for some $i \in [2]$, all u_is divide T_i), runs in time $(nd \log |F|)^{O(1)}$ and with probability $1 - o(1)$ outputs a $\Sigma\Pi\sum(2, n, d, F)$ circuit computing f.

We present the algorithm for proving the above lemma in Algorithm 5. We use Algorithm 5 (we call this the merge algorithm) of [33] in Step 2. More details on this merge algorithm can be found in Algorithm 5 and Theorem 29 of [33]. Now we prove correctness of our algorithm. Black-box computing $\Phi(f)$ is simulated by passing every input through Φ first. Correctness of Corollary 28 imply that with probability $1 - o(1)$, all linear factors of $\Phi(f)$ and black-box access to $\Phi(\text{NonLin}(f))$ are correctly computed. From these linear forms, we remove any linear form ℓ that are divisible by some x_i. However we will keep the scalar ℓ/x_i. The black-box obtained by multiplying the black-box of $\Phi(\text{NonLin}(f))$ returned by Corollary 28 with these scalars and black-boxes computing the remaining linear factors
Algorithm 5 LI linear factors of a multiplication gate are known.

Input - Black-box access to f, integers n, d, linear forms u_1, \ldots, u_t, $t > 60 \log d + 1$.
Output - A $\Sigma\Pi\Sigma(2, n, d, F)$ circuit C or $\#$.

1. Construct isomorphism Φ mapping $u_i \mapsto x_i$, $i \in [t]$ and simulate black-box computing $\Phi(f)$. Using Corollary 28 with inputs as black-box computing $\Phi(f)$ and integers n, d, obtain all its linear factors (with multiplicity) along with access to black-box computing $\Phi(NonLin(f))$. By traversing through the factors identify e_i, the largest power of x_i that divides $\Phi(f)$. Using this set of factors and black-box computing $\Phi(f)$, simulate black-box computing $g = \Phi(f) / \prod x_i^{e_i}$.

2. For each $i \in [t]$, simulate black-box computing $g|_{x_i=0}$ and using Corollary 28 with inputs as this black-box, compute its factors. If there are non linear factors, Return $\#$. Otherwise, store factors in multi-set U_i. Using Algorithm 5 in [33] merge the multi-sets U_i together to obtain a multi-set U comprising of all linear factors of one of the product gates in the $\Sigma\Pi\Sigma(2, n, s, F)$ circuit computing g (here s is some integer $\leq d$).

3. Construct the multi-set $U' = \{\ell |_{x_i=0} : \ell \in U\}$. Check if this multi-set U' and U_i contain same linear forms (upto multiplicity). If not, Return $\#$. Otherwise compute scalar $\alpha = \prod_{\ell \in U_i} \ell / \prod_{\ell \in U'} \ell$ by matching linear forms between U', U_i.

4. Simulate black-box computing $g - \alpha \prod_{\ell \in U} \ell$ and factorize this polynomial using Corollary 28. If all factors are not linear, Return $\#$. Otherwise, store factors in multi-set V. Apply Φ^{-1} to all linear forms in U, V. Simulate black-box for $f - f'$, where $f' = \prod_{i=1}^t u_i^{e_i} \times (\alpha \prod_{\ell \in U} \ell + \prod_{\ell \in V} \ell)$. Using Lemma 23 for $\Sigma\Pi\Sigma(4, n, d, F)$ circuits, check if $f = f' \equiv 0$. If output is ‘yes’, construct $\Sigma\Pi\Sigma(2, n, d, F)$ circuit C computing f' and Return C. If not, Return $\#$.

izes black-box access to $g = \Phi(f) / \prod_{i=1}^t x_i^{e_i}$. g is a $\Sigma\Pi\Sigma(2, n, s, F)$ circuit for some integer $s \leq d$. Assuming that Step 1 is correct, simulation of black-boxes $g|_{x_i=0}$, $i \in [t]$ can be done. Correctness of Corollary 28 implies that with probability $1 - o(1)$ all multi-sets U_i are correctly computed. By correctness of Algorithm 5 in [33], we know that these multi-sets are glued together to obtain a multi-set U containing all linear factors of one of the product gates S_2 of g (we are assuming that $g = S_1 + S_2$ where S_1, S_2 are product of linear forms and $x_i | S_i$ for $i \in [t]$). Note that the algorithm only recovers all linear factors of S_2 and therefore it still needs to recover an appropriate scalar α (see algorithm) to completely recover S_2. Note that $g|_{x_i=0} = S_2|_{x_i=0} \neq 0$. Therefore we can compare the multi-set of linear forms in U_i with the multi-set of linear forms $U' = \{s|_{x_i=0} : s \in U\}$. All linear forms will match up to scalar multiplication giving us the scalar α. By correctness of Corollary 28, we know that with probability $1 - o(1)$, we will be able to correctly factor $g = \alpha \prod_{\ell \in U} \ell$ and collect them in multi-set V. Finally at the end, we can apply Φ^{-1} and multiply by $\prod_{i=1}^t u_i^{e_i}$ and correctly recover the $\Sigma\Pi\Sigma(2, n, d, F)$ circuit with probability $1 - o(1)$. Note that in Step 4, by correctness of Lemma 23, we know that we can deterministically check whether the constructed circuit is correct or not and only return a correct circuit. Now we discuss the time complexity of the above algorithm.

Lemma 42. Algorithm 5 runs in time $(nd \log |F|)^{O(1)}$ time.

Proof. Isomorphism Φ is constructed in $(n \log |F|)^{O(1)}$ time. Time complexity of Corollary 28 implies that $(nd \log |F|)^{O(1)}$ time is spent on factorizing $\Phi(f)$. Removing powers of $x_i, i \in [t]$ again requires scanning through the linear factors and takes $(nd \log |F|)^{O(1)}$. Black-box
for $g = \Phi(f)/\prod_{i=1}^{t} x_i^{c_i}$ is then created by multiplying outputs of all the black-boxes for any input and therefore is also simulated in $(nd \log |F|)^{(1)}$ time. Therefore Step 1 takes $(nd \log |F|)^{(1)}$ time. Restrictions of black-box g to $x_i = 0, i \in [t]$ can be simulated by passing inputs through the restriction and therefore takes $(nd \log |F|)^{(1)}$ time. Time complexity of Corollary 28 implies that factorization of $g_{x_i=0}$ can be done in $(nd \log |F|)^{(1)}$ time. Running time of Algorithm 5 in [33] is $(nd \log |F|)^{(1)}$ and therefore the multi-set U is created in $(nd \log |F|)^{(1)}$ time. Therefore Step 2 takes $(nd \log |F|)^{(1)}$ time overall. Step 3 involves iterating through the linear forms in U, restricting them to $x_1 = 0$, giving multi-set U', and then comparing the $d^{(1)}$ sized multi-sets U' and U to obtain the appropriate scalar α. All these steps can be executed in polynomial time leading to a time complexity of $(nd \log |F|)^{(1)}$ for Step 3. Black-box computing polynomial $g - \alpha \prod_{\ell \in U} \ell$ can be simulated in $(nd \log |F|)^{(1)}$ time by going through each of the involved (black-boxes) polynomials and then computing the output after algebraic operations. Time complexity of Corollary 28 implies that the factorization of this black-box can be done in $(nd \log |F|)^{(1)}$ time. Finally computing the black-box for f' and simulating black-box for $f - f'$ can similarly be done in $(nd \log |F|)^{(1)}$ time. By time complexity of algorithm in Lemma 23, we know that in time $(nd \log |F|)^{(1)}$, we can deterministically test whether $f - f'$ is the zero polynomial or not. Therefore Step 4 also takes time $(nd \log |F|)^{(1)}$. So, overall Algorithm 5 runs in time $(nd \log |F|)^{(1)}$. ◀

3.4 Identify LI Set Dividing T_i

In this subsection, our goal is to prove a lemma (Lemma 44) that plays a crucial role in Algorithm 2 (explained in Section 1.4.2) in optimizing the search for a large LI set of linear forms dividing one of T_1, T_2. As we mentioned earlier, [33] compute such an independent set by using a brute force search (Algorithm 4, [33]) on the space of linear forms over many variables, and therefore take quasi-polynomial time even before using this set in Algorithm 5 (of [33]). We significantly improve the search using candidate linear forms $\mathcal{L}(NonLin(f))$ and ordinary lines (see Definition 7) among them. First, in Section 3.4.1 below we give intuition about why set $\mathcal{L}(NonLin(f))$ approximates the set of linear factors of $T_1 \times T_2$ and then in in Lemma 44, Section 3.4.2 use this set to construct the required LI set.

3.4.1 Candidate set approximates set of linear forms dividing T_1, T_2

In order to quantify how close the candidate set $\mathcal{L}(NonLin(f))$ is to the set of linear forms in the input circuit, we define some new sets.

$$\mathcal{L}_{\text{good}} = \{ \ell \in \mathcal{L}(NonLin(f)) : \ell \mid T_1 \times T_2 \}, \quad \mathcal{L}_{\text{bad}} = \mathcal{L}(NonLin(f)) \setminus \mathcal{L}_{\text{good}},$$

$$\mathcal{L}_{\text{others}} = \{ \ell : T_1 \times T_2 : sp(\ell) \cap \mathcal{L}(NonLin(f)) = \phi \} \quad \text{and} \quad \mathcal{L}_{\text{factors}} = \{ \ell : \ell \mid T_1 + T_2 \}$$

For all sets, we only keep linear forms up to scalar multiplication and therefore treat them as proper sets (Definition 6). $\mathcal{L}_{\text{good}}$ contains all candidate linear forms which also divide one of the two gates T_1, T_2. \mathcal{L}_{bad} are candidates which do not divide T_1 or T_2. $\mathcal{L}_{\text{others}}$ are linear forms dividing one of the gates but not captured (even up to scalar multiplication) in the candidate set and $\mathcal{L}_{\text{factors}}$ contain linear forms that divide $T_1 + T_2$. In the following claim, we show that $\mathcal{L}_{\text{good}}$ is high dimensional and $\mathcal{L}_{\text{bad}}, \mathcal{L}_{\text{others}}$ are low dimensional quantifying the closeness of $\mathcal{L}(NonLin(f))$ to the set of linear forms dividing $T_1 \times T_2$. We also show that $\mathcal{L}_{\text{factors}}$ is low dimensional. For better exposition, proof is provided in Appendix A.
Claim 43. The following claim is true about these newly constructed sets.
1. \(\dim(\sp(factors)) \leq \log d + 2 \),
2. \(\dim(\sp(good)) \geq \rank(f) - 2 \),
3. \(\dim(\sp(bad)) \leq \log d + 2 \), and
4. \(\dim(\sp(others)) \leq 2 \).

3.4.2 Proof of Lemma 44

Lemma 44.

\(\dim(\sp(factors)) \leq \log d + 2 \),
\(\dim(\sp(good)) \geq \rank(f) - 2 \),
\(\dim(\sp(bad)) \leq \log d + 2 \), and
\(\dim(\sp(others)) \leq 2 \).

Proof. We prove all parts one by one.

1. Let \(T \subset \mathcal{L}_{good} \) be a \(\Omega \) set of size \(126 \log d + 2 \) (exists by Claim 43). Applying Proposition 5 on \(\langle \mathcal{L}(NonLin(f)) \rangle \) and \(T \) implies that \(\exists \ell \in T \) such that

\[
\dim \left(\sum_{W \in \mathcal{O}(\ell, \mathcal{L}(NonLin(f)))} W \right) \geq \frac{\dim(\sp(\mathcal{L}(NonLin(f))))}{126 \log d + 2} \geq \frac{\dim(\sp(\mathcal{L}_{good}))}{126 \log d + 2} = \Omega(log^2 d)
\]

Thus, the set of linear factors \(\ell' \in \mathcal{L}(NonLin(f)) \setminus \{\ell\} \) for which \(\sp(\ell, \ell') \) intersects \(\mathcal{L}(NonLin(f)) \) only at \(\{\ell, \ell'\} \) is an ordinary line into \(\mathcal{L}(NonLin(f)) \), spans a space of dimension at least \(\Omega(log^2 d) \). Let \(\mathcal{X} \) be some maximal independent subset \(|\mathcal{X}| = \Omega(log^2 d) \).

2. Consider any partition of \(\mathcal{X} \) into \(\Omega(log d) \) parts of size \(\Omega(log d) \) each. We first claim that \(\Omega(log d) \) parts in \(\mathcal{X} \) are inside \(\mathcal{L}_{good} \). If not, then \(\Omega(log d) \) parts intersect \(\mathcal{L}_{bad} \Rightarrow \dim(\sp(\mathcal{L}_{bad})) = \Omega(log d) \), contradicting Claim 43. Now we only deal with these \(\Omega(log d) \) parts inside \(\mathcal{L}_{good} \). Since \(\mathcal{L}_{good}, \mathcal{L}_{bad} \subset \mathcal{L}(NonLin(f)) \), we see that \(\forall \ell' \) in any of these parts, \(\sp(\ell, \ell') \) is an ordinary line in \(\mathcal{L}_{good}, \mathcal{L}_{bad} \) as required. Next we show that out of the \(\Omega(log d) \) parts inside \(\mathcal{L}_{good}, \exists \) a part \(B \) such that \(\forall \ell' \in B, \sp(\ell, \ell') \) is an ordinary line in \(\mathcal{L}_{others}, \mathcal{L}_{factors} \), thereby completing the proof. If not, then \(\Omega(log d) \) many \(\ell' \)'s, each belonging to a different part among the \(\Omega(log d) \) parts, such that \(\sp(\ell, \ell') \) intersects \(\mathcal{L}_{others} \cup \mathcal{L}_{factors} \) at a linear form outside \(\sp(\ell) \cup \sp(\ell') \) say \(\ell'' \). Since all the \(\Omega(log d) \) \(\ell' \)'s are independent, the \(\ell'' \)'s span a space of dimension \(\Omega(log d) \Rightarrow \dim(\sp(\mathcal{L}_{others} \cup \mathcal{L}_{factors})) = \Omega(log d) \), contradicting Claim 43.

3. Since \(\ell | T_i \), we know that \(x_1 | \Phi(T_i) \). Therefore, the following equation holds:

\[
\Phi(L)_{|x_1=0,x_2=0} \Phi(NonLin(f))_{|x_1=0,x_2=0} = \Phi(T_i)_{|x_1=0,x_2=0} + \Phi(T_{i-1})_{|x_1=0,x_2=0} = \Phi(T_{i-1})_{|x_1=0,x_2=0}.
\]

Here \(L \) is the product of all linear factors of \(T_1 + T_2 \) i.e. \(L = Lin(T_1 + T_2) \). First, we assume that \(\Phi(NonLin(f))_{|x_1=0,x_2=0} = 0 \). This implies using the above equation that \(\Phi(T_{i-1})_{|x_1=0,x_2=0} = 0 \). Therefore there is a linear form \(\ell'' | T_{i-1} \) such that \(\ell'' \in \sp(\ell, \ell') \). If \(\ell'' \) is not a scalar multiple of \(\ell \) or \(\ell' \), by construction of \(\ell, \ell' \) in parts 1 and 2 of this
lemma, we know that no scalar multiple of ℓ'' can belong to $\mathcal{L}_{\text{good}}$ or $\mathcal{L}_{\text{others}}$ and therefore it cannot divide $T_1 \times T_2$ which is a contradiction since it divides T_{3-i}. Therefore, ℓ'' has to be a scalar multiple of ℓ or ℓ'. It cannot be scalar multiple of ℓ since $\ell \mid T_i$ and $\gcd(T_i, T_{3-i}) = 1$. Therefore ℓ' and ℓ'' are scalar multiples implying that ℓ' divides T_{3-i} as needed. Next, for the converse, we assume that $\ell' \mid T_{3-i}$. Again, using the equation we gave at the beginning of this part, we get that,

$$\Phi(L)|_{x_1=0, x_2=0} \Phi(\text{NonLin}(f))|_{x_1=0, x_2=0} = \Phi(T_i)|_{x_1=0, x_2=0} + \Phi(T_{3-i})|_{x_1=0, x_2=0} = 0.$$

Therefore, since $\mathbb{F}[x_1, \ldots, x_n]$ is an integral domain, either polynomial $\Phi(L)|_{x_1=0, x_2=0} = 0$ or polynomial $\Phi(\text{NonLin}(f))|_{x_1=0, x_2=0} = 0$. Assume that $\Phi(L)|_{x_1=0, x_2=0} = 0$. This implies that there is some linear factor ℓ'' of $T_1 + T_2$ such that $\ell'' \in \text{sp}\{\ell, \ell'\}$. Since $\gcd(T_1, T_2) = 1$ and $\ell \mid T_i$, $\ell' \mid T_{3-i}$, the linear form ℓ'' cannot be a scalar multiple of ℓ or ℓ'. So we found a linear form on $\text{sp}\{\ell, \ell'\}$ different from scalar multiples of ℓ, ℓ', such that some scalar multiple of ℓ'' belongs to $\mathcal{L}_{\text{factors}}$. By construction of ℓ, ℓ' in parts 1 and 2 of this lemma, we know that this cannot hold. Therefore our assumption is wrong and polynomial $\Phi(\text{NonLin}(f))|_{x_1=0, x_2=0} = 0$ completing the proof.

4 Proof of Proposition 5

In this section we prove Proposition 5. Part 1 is proved in Section 4.1. Algorithm for Part 2 is presented in Algorithm 6 and its correctness/complexity are analyzed in Section 4.2.

4.1 Proof of Part 1

Let $W = \mathbb{V}(\ell, \ell') \subset \mathbb{F}^n$ be a co-dimension 2 subspace on which $\text{NonLin}(f)$ vanishes i.e. $W \in S(\text{NonLin}(f))$. Let Φ be an isomorphism mapping $\ell \mapsto x_1, \ell' \mapsto x_2$. Since $\text{NonLin}(f)$ divides $T_1 + T_2$ we get that $\Phi(T_1)|_{x_1=0, x_2=0} + \Phi(T_2)|_{x_1=0, x_2=0} = 0$. This implies that either $\Phi(T_1)|_{x_1=0, x_2=0} = \Phi(T_2)|_{x_1=0, x_2=0} = 0$, or $\Phi(T_1)|_{x_1=0, x_2=0} = -\Phi(T_2)|_{x_1=0, x_2=0} \neq 0$. We prove the following lemma which implies the bound.

Lemma 45. The following are true.

1. $\#\{W \in S(\text{NonLin}(f)) : \Phi(T_1)|_{x_1=0, x_2=0} = \Phi(T_2)|_{x_1=0, x_2=0} = 0\} \leq d^2$.
2. $\#\{W \in S(\text{NonLin}(f)) : \Phi(T_1)|_{x_1=0, x_2=0} = -\Phi(T_2)|_{x_1=0, x_2=0} \neq 0\} \leq d^6 + d^7$.

Proof. First we prove 1. The statement implies that there are linear forms $\ell_1 \mid T_1$ and $\ell_2 \mid T_2$ such that $\Phi(\ell_1)|_{x_1=0, x_2=0} = \Phi(\ell_2)|_{x_1=0, x_2=0} = 0$. Also, ℓ_1, ℓ_2 are LI since $\gcd(T_1, T_2) = 1$ implying that $\text{sp}\{\Phi(\ell_1), \Phi(\ell_2)\} = \text{sp}\{x_1, x_2\}$. On inverting via Φ this implies that $\text{sp}\{\ell_1, \ell_2\} = \text{sp}\{\ell, \ell'\}$, which further implies that $\mathbb{V}(\ell_1, \ell_2) = \mathbb{V}(\ell, \ell') = W$. There can be at most d^2 such Ws. In order to prove 2, we use Lemma 46 whose proof is presented in Appendix B.

Lemma 46. There exists a set \mathcal{A} of co-dimension 1 subspaces of \mathbb{F}^n with $|\mathcal{A}| \leq d^4 + d^6$ such that for every $W \in S(\text{NonLin}(f))$ satisfying $\Phi(T_1)|_{x_1=0, x_2=0} = -\Phi(T_2)|_{x_1=0, x_2=0} \neq 0$, $\exists V \in \mathcal{A}$ with $W \subset V$.

Assuming Lemma 46, we complete the proof as follows. For every $W \in S(\text{NonLin}(f))$ satisfying $\Phi(T_1)|_{x_1=0, x_2=0} = -\Phi(T_2)|_{x_1=0, x_2=0} \neq 0$, we consider the co-dimension 1 subspace V given by Lemma 46 such that $W \subset V$. Without loss of generality we assume $V = \mathbb{V}(x_1)$. We can now find a linear form ℓ_3 such that $W = \mathbb{V}(x_1, \ell_3)$ and coefficient of x_1 in ℓ_3 is i.e. $\ell_3|_{x_1=0}$. Since $\text{NonLin}(f)$ vanishes on W we know that $\Psi(\text{NonLin}(f))|_{x_1=0, x_2=0}$ for isomorphism Ψ
Algorithm 6 Compute co-dimension 2 subspaces on which NonLin(f) vanishes.

Input - Black-box access to polynomial f, integers n, d.
Output - A set S of tuples of independent linear forms in \(\mathbb{F}[x_1, \ldots, x_n] \).

1. Create \(n \) linear forms \(\ell_1, \ldots, \ell_n \), such that the \(n^2 \) scalars used as coefficients in them are sampled uniformly randomly independently from \(\mathbb{F} \). If these linear forms are LI, define isomorphism \(\Phi \) mapping \(x_i \mapsto \hat{x}_i, i \in [n] \). Simulate black-box for \(g = \Phi(f) \). For any \(g \) over \([5, n]\), simulate black-box access for the polynomials \(g_i = \hat{g}_{ii} = \hat{g}_{i:i-1} = 0, x_{i+1} = 0, \ldots, x_n = 0 \) in \(\mathbb{F}[x_1, x_2, x_3, x_4, x_i] \). Next, for each \(i \in [5, n] \) using Corollary 28 with inputs as black-box access to \(g_i \) with \(g_i \). Along with integers \(5, d \) obtain black-box access to \(NonLin(g) \) and integer \(s \) denoting the number of linear factors of \(g_i \). Define \(t = d - s \). Using multivariate interpolation (Lemma 25), interpolate \(NonLin(g_i) \) as a degree \(t \) polynomial in the monomial basis of \(\mathbb{F}[x_1, x_2, x_3, x_4, x_i] \).

2. Substitute \(x_1 = y_1 x_3 + y_2 x_4 + y_3 x_1 \), and \(x_2 = z_3 x_3 + z_4 x_4 + z_5 x_1 \) in \(NonLin(g_i) \) to obtain a polynomial in \(\mathbb{F}[y_1, y_2, y_3, z_3, z_4, z_5][x_3, x_4] \). Find common solutions to the system of polynomial equations defined by setting all coefficient polynomials in \(\mathbb{F}[y_1, y_2, y_3, z_3, z_4, z_5] \) to zero. Initialize a set \(S \) and for each solution \((y_1, y_2, y_3, z_3, z_4, z_5) \) of the system above add tuple \((x_1 = y_3 x_3 - y_4 x_4 - y_5 x_1, x_2 = z_3 x_3 - z_4 x_4 - z_5 x_1)\) to \(S \).

3. Construct isomorphism \(\Delta \) mapping \(x_1 \mapsto x_1, x_2 \mapsto x_2, x_3 \mapsto x_3, x_4 \mapsto x_4 \) and for \(i \in [5, n] \), \(x_i \mapsto x_i + \alpha_i x_3 + \beta_i x_4 \). The scalars \(\alpha_i, \beta_i, i \in [5, n] \) are sampled uniformly randomly independently from \(\mathbb{F} \). Note that \(\Delta \) can be viewed as an isomorphism on \(\mathbb{F}[x_1, \ldots, x_n] \) as well as on each \(\mathbb{F}[x_1, x_2, x_3, x_4, x_i] \) for \(i \in [5, n] \).

4. Initialize a set \(S \) and for each \(\ell_1, \ell_2 \) in \(S \). Iterate over all tuples \((x_1 = \ell_1 - \ell_2, x_2 = \ell_2) \) in \(S \). Initialize \(\ell_1 \), \(\ell_2 \). Search for tuple \((x_1 = \ell_1, x_2 = \ell_2) \) in \(S \) such that tuples \((x_1 = \Delta(\ell_1)|_{x_3=0}, x_2 = \Delta(\ell_2)|_{x_3=0}) = (x_1 = \Delta(\ell_1)|_{x_4=0}, x_2 = \Delta(\ell_2)|_{x_4=0}) \). If multiple or none such tuples are found in \(S \), break out of this loop and go to the next tuple in the outer iteration. If only one such tuple is found then update \(\ell_1 \leftarrow \ell_1 - \alpha x_3 \) and \(\ell_2 \leftarrow \ell_2 - \beta x_4 \) where \(\alpha, \beta \) are coefficients of \(x_i \) in \(x_1 = \ell_1, x_2 = \ell_2 \) respectively. At the end of iteration on \(i \), update \(S \leftarrow S \cup \{(x_1 \in [5, n], x_2 = \ell_2)\} \).

5. For each \((\ell_1, \ell_2) \in S \), construct isomorphism \(\Psi \) mapping \(\ell_1 \mapsto x_1, \ell_2 \mapsto x_2 \). Simulate black-box access to polynomial \(\Psi(NonLin(g))|_{x_1=0, x_2=0} \). Using randomized polynomial identity test given in Lemma 22 with input as the above black-box and integer \(n \), check if it is identically zero polynomial. If 'no', remove the tuple from \(S \), else replace it with \((\Phi^{-1}(\ell_1), \Phi^{-1}(\ell_2)) \). Return \(S \).

mapping \(x_1 \mapsto x_1, \ell_3 \mapsto x_2 \). This also implies that \(x_2 \) divides \(\Psi(NonLin(f))|_{x_1=0} \). Since \(\Psi \) keeps \(x_1 \) fixed this polynomial is same as \(\Psi(NonLin(f))|_{x_1=0} \). Inverting \(\Psi \) we get that \(\ell_3 \) divides \(NonLin(f)|_{x_1=0} \). There are at most \(d \) linear factors (upto scalar multiplication) of any degree \(d \) polynomial, thus there are \(\leq d) \) such possible \(\ell_3 \). By going over all choices of \(V \) we get that there are at most \((d^4 + d^6) \times d \) many such \(W \), completing our proof.

4.2 Analysis of Algorithm 6

Before going to the correctness of Algorithm 6, we state a few useful lemmas. These are repeatedly used in our correctness and time complexity proofs.

- **Lemma 47.** With probability \(1 - o(1) \) over random choices in Step 1, the following hold.
 1. \(\ell_1, \ldots, \ell_n \) constructed in Step 1 are LI.
 2. \(NonLin(f) \) vanishes on \(V(\ell_1, \ell_2) \) iff \(NonLin(g) \) vanishes on \(V(\Phi(\ell_1), \Phi(\ell_2)) \).
3. Polynomial g_i has a $\Sigma\Pi\Omega(2, 5, d, F)$ circuit and rank(g_i) = 5.
4. $NonLin(g_i) = NonLin(g_i)_{|x_2=0 \ldots r_{i-1}=0, r_i=1=\ldots=x_n=0}$.
5. $\forall (\ell_1, \ell_2) \in S(NonLin(g_i)) \exists$ linear forms $\ell'_1, \ell'_2 \in F[x_3, \ldots, x_n]$ such that $\forall (\ell_1, \ell_2) = (x_1 - \ell'_1, x_2 - \ell'_2)$.
6. Let $\forall (x_1 - \ell_1, x_2 - \ell_2) \in S(NonLin(g_i))$ with $\ell_1, \ell_2 \in F[x_3, \ldots, x_n]$. Then, $NonLin(g_i)$ vanishes on the co-dimension 2 subspace $\forall (x_1 - \ell'_1, x_2 - \ell'_2)$. Here $\ell'_j = \ell_j|_{x_1=0, \ldots, r_{j-1}=0, r_j=1=\ldots=x_n=0}$.

Lemma 48. With probability $1 - o(1)$ over the random choices in Step 3, the following holds. $\forall i \in [5, n]$ and \forall pairs of distinct tuples $(x_1 - \ell_1, x_2 - \ell_2), (x_1 - \ell'_1, x_2 - \ell'_2)$ in S_i, $(x_1 - \Delta(\ell_1)|_{x_i=0}, x_2 - \Delta(\ell_2)|_{x_i=0}) \neq (x_1 - \Delta(\ell'_1)|_{x_i=0}, x_2 - \Delta(\ell'_2)|_{x_i=0})$.

For better presentation we prove these lemmas in Appendix C. Now, we prove correctness of Algorithm 6. By Part 1 of Lemma 47, the linear forms constructed in Step 1 are LI and therefore isomorphism Φ can be correctly constructed using them. Using this isomorphism, simulation of black-box for g (by passing every input through the isomorphism) is straightforward. Further simulation of black-boxes computing the g_is is also straight forward (by setting $x_5 = 0, \ldots, x_{i-1} = 0, x_{i+1} = 0, \ldots, x_n = 0$ in the input to black-box). From Parts 4, 5 of Lemma 47, we know that g_i exhibits $\Sigma\Pi\Omega(2, 5, d, F)$ circuit of rank 5 and $NonLin(g_i) = NonLin(g_i)_{|x_2=0 \ldots r_{i-1}=0, r_i=1=\ldots=x_n=0}$ implying that all g_i and g have the same number of linear factors s and degree of all polynomials $NonLin(g_i)$ are equal ($= t$) which is also the same as degree of $NonLin(g)$. By correctness of Algorithm 1, with probability $1 - o(1)$, Step 1 correctly obtains black-box computing $NonLin(g_i)$ and its degree t. Since all g_i are 5- variate using deterministic multivariate interpolation (Lemma 25), we can interpolate their black-boxes as degree t polynomials in the monomial basis of $F[x_1, x_2, x_3, x_4, x_5]$. Therefore, at the end of Step 1, we would have correct monomial representations of all the g_i. Next, using Part 5 of Lemma 47, we know that any co-dimension 2 subspace on which $NonLin(g)$ vanishes has the form $\forall (x_1 - \ell_1, x_2 - \ell_2)$ with $\ell_1, \ell_2 \in F[x_3, \ldots, x_n]$. In Part 6 of Lemma 47, we show that $NonLin(g_i)$ vanishes on the co-dimension 2 space $\forall (x_1 - \ell'_1, x_2 - \ell'_2)$, where for $j \in [2]$ and $i \in [5, n]$, ℓ'_j are restrictions of ℓ_j to $x_0 = 0, \ldots, x_{i-1} = 0, x_{i+1} = 0, \ldots, x_n = 0$. Since these co-dimension 2 subspaces have the particular form $\forall (x_1 - \ell'_1, x_2 - \ell'_2)$, substituting $x_1 = \ell'_1, x_2 = \ell'_2$ in $NonLin(g_i)$ should give 0. Step 2 uses this observation and computes all possible ℓ'_1, ℓ'_2 by solving the system of polynomial equations we get on substitution. By correctness of Lemma 20, we can compute all such solutions. Therefore, the set S_i contains tuples corresponding to all co-dimension 2 spaces of the form $\forall (x_1 - u_1, x_2 - u_2)$ (with linear forms $u_1, u_2 \in F[x_3, x_4, x_5]$) on which $NonLin(g_i)$ vanishes. In the next lemma, we show that these S_i are then glued in Steps 3 and 4 to create set S which contains tuples corresponding to elements of $S(NonLin(f))$.

Lemma 49. Step 4 outputs a set S, such that with probability $1 - o(1)$, it contains tuples of linear forms representing all co-dimension 2 subspaces on which $NonLin(g)$ vanishes.

Proof. Let $\forall (x_1 - \ell_1, x_2 - \ell_2) \in L(NonLin(g))$. By Part 6 of Lemma 47 we know that $NonLin(g_i)$ vanishes on the co-dimension 2 subspace $\forall (x_1 - \ell'_1, x_2 - \ell'_2)$ where for $j \in [2]$, $\ell'_j = \ell_j|_{x_1=0, \ldots, r_{j-1}=0, r_j=1=\ldots=x_n=0}$. Therefore the tuples $(x_1 - \ell'_1, x_2 - \ell'_2)$ belong to S_i computed at Step 2. Observe that, for $i \in [6, n]$ we glue tuple $(x_1 - \ell'_1, x_2 - \ell'_2)$ with tuple $(x_1 - \ell'_1, x_2 - \ell'_2)$ only if the latter is the only tuple in S_i satisfying, $(x_1 - \Delta(\ell'_1)|_{x_i=0}, x_2 - \Delta(\ell'_2)|_{x_i=0}) = (x_1 - \Delta(\ell'_1)|_{x_i=0}, x_2 - \Delta(\ell'_2)|_{x_i=0})$. Here Δ is the isomorphism constructed in Step 3. So all we need to show is that, there is no other tuple $(x_1 - \ell'_1, x_2 - \ell'_2) \in S_i$ with ℓ'_1', ℓ'_2' being linear forms in $F[x_3, x_4, x_5]$ such that, $x_1 - \Delta(\ell'_1)|_{x_i=0} = x_1 - \Delta(\ell'_1)|_{x_i=0}$ and $x_2 -
\[\Delta(t_1^2)_{i=0} = x_2 - \Delta(t_2^1)_{i=0}. \]

If there was such a tuple, comparing the equations above gives
\[(x_1 - \Delta(t_1^1)_{i=0}, x_2 - \Delta(t_2^1)_{i=0}) = (x_1 - \Delta(t_1^1)_{i=0}, x_2 - \Delta(t_2^1)_{i=0}), \]
which contradicts Lemma 48. Therefore tuple \((x_1 - \ell_1^1, x_2 - \ell_2^2)\) gets correctly glued with each such tuple \((x_1 - \ell_1^1, x_2 - \ell_2^2)\) for \(i \in [6, n]\) leading to construction of tuple \((x_1 - \ell_1^1, x_2 - \ell_2^2)\) which is added to \(S\).

Assuming we correctly glued the \(S_i\) into set \(S\), Step 5, only retains tuples for which \(NonLin(g)\) actually vanishes on the corresponding co-dimension 2 subspace. By correctness of Lemma 22, this is done correctly and only the right tuples are retained. By Part 1 of Lemma 47, in order to get set \(S(NonLin(f))\) from \(S(NonLin(g))\), we only need to invert all linear forms present in the elements (tuples) of \(S\). Therefore, with probability \(1 - o(1)\), the set of tuples representing co-dimension 2 subspaces on which \(NonLin(f)\) vanishes is correctly computed.

Lemma 50. Algorithm 6 runs in \((nd \log |F|)^{O(1)}\) time.

Proof. Assuming that sampling of a uniformly random scalar from \(F\) takes \(O(1)\) time, the \(n\) linear forms are created in \((n \log |F|)^{O(1)}\) time. Checking whether the linear are independent can be done in \((n \log |F|)^{O(1)}\) time by gaussian elimination on the matrix defined by the \(n^2\) coefficients of these linear forms. Black-boxes for \(g\) and \(g_i\) are simulated in \((n \log |F|)^{O(1)}\) time by passing each input through \(\Phi\) and then restricting to \(x_5 = 0, \ldots, x_{i-1} = 0, x_{i+1} = 0, \ldots, x_n = 0\). Time complexity of Corollary 28 implies that black-box access to all \(NonLin(g_i)\) along with their degrees \(t = d - s\) can be obtained in \((nd \log |F|)^{O(1)}\) time. Multivariate interpolation (Lemma 25) on the 5 variate polynomials of degree \(t\) each is done in \((nd \log |F|)^{O(1)}\) time. Therefore Step 1 takes \((nd \log |F|)^{O(1)}\) time. Each \(g_i\) has \(d^{O(1)}\) non-zero coefficients in the monomial representation. Substitutions lead to \(d^{O(1)}\) many coefficient polynomials in \(F[y_3, y_4, y_i, z_3, z_4, z_i]\) with every polynomial having degree \(d^{O(1)}\). By Part 2 of Lemma 47, every \(g_i\) has a \(\Sigma\Pi\Sigma(2, 5, d, |F|)\) circuit and has rank 5, therefore, by Part 1 of Proposition 5, number of co-dimension 2 subspaces on which they vanish are \(d^{O(1)}\). Therefore our system of equations has at most \(d^{O(1)}\) solutions since they characterize such co-dimension 2 subspaces of a certain form. By time complexity of Lemma 20, for each \(g_i\) all solutions to such a system can be computed in \((d \log |F|)^{O(1)}\) time leading to \(S_i\). Therefore in time \((nd \log |F|)^{O(1)}\) time all \(S_i\) are computed in Step 2. Step 3 involves sampling \(O(n)\) many uniformly random scalars and construction of the isomorphism \(\Delta\) can be done in \((n \log |F|)^{O(1)}\) time. In Step 4, we iterate over all tuples in \(S_5\) and then iterate over \(i \in [6, n]\) trying to match our tuple with tuples in the \(S_i\). Since each tuple in \(S_5\) is matched to at most one tuple in each \(S_i\), for each tuple in \(S_5\), we go over all the set \(S_i, i \in [6, n]\) just once. Therefore, overall we take \((nd \log |F|)^{O(1)}\) time in this step. Also, since each tuple in \(S_5\), creates at most one tuple \((x_1 - \ell_1, x_2 - \ell_2)\) to be added to \(S\), we create at most \(d^{O(1)}\) such tuples leading to \(|S| = d^{O(1)}\). In Step 5, for each tuple in \(S\), construction of isomorphism \(\Psi\) and black-box access to \(\Psi(NonLin(g_i))_{i_1=0, i_2=0}\) can be created in \((nd \log |F|)^{O(1)}\) time. By time complexity of algorithm in Lemma 22, in time \((nd \log |F|)^{O(1)}\) we can check whether this black-box computes the 0 polynomial or not. Finally application of \(\Phi^{-1}\) to tuples in \(S\) can be done in \((nd \log |F|)^{O(1)}\) time. Our final set returned has size \(d^{O(1)}\) as it is a subset of the set we created in Step 4. Therefore, overall Algorithm 6 takes \((nd \log |F|)^{O(1)}\) time.

5 Proof of Proposition 8

Proof of Proposition 8 follows from Lemma 51 which in turn is proved using Lemma 52. Recall definition of set of ordinary lines (Definition 7).
Lemma 51. Let \(S \subset \mathbb{F}^n \) be a proper set (Definition 6) and \(T \subset \mathbb{F}^n \) be any LI set of size \(\log |S| + 2 \). Then, \(\text{sp}(S) \subset \sum_{t \in T} \sum_{w \in O(t,S)} W \).

Lemma 52. Let \(S(\neq \phi) \subset \mathbb{F}^n \) be a proper set and \(T \subset \mathbb{F}^n \) be LI such that for every \(t \in T \), there is no ordinary line (Definition 7) from \(t \) into \(S \). Then \(|T| \leq \log |S| + 1 \).

By taking dimension of both sides in the containment \(\text{sp}(S) \subset \sum_{t \in T} \sum_{w \in O(t,S)} W \), applying union bound on the RHS and assuming \(t \in T \) maximizes \(\dim(\sum_{w \in O(t,S)} W) \), we get \(\dim(\sum_{w \in O(t,S)} W) \geq \frac{\dim(\text{sp}(S))}{\log |S| + 2} \), which proves Proposition 8. Therefore, we prove Lemma 51 next.

Proof of Lemma 51. Let \(V \) be the vector space \(\sum_{t \in T} \sum_{w \in O(t,S)} W \). We define set \(S' = S \setminus V \). \(S' \) is a proper set. We will show that \(S' = \phi \Rightarrow \text{sp}(S) \subset V \). If not, we show that there cannot be any ordinary line from \(T \) into \(S' \). Supposing there is some line \(\text{sp}(t,s) \) where \(t \in T \) and \(s \in S' \) are not scalar multiples. Since it is an ordinary line into \(S' \), we get that \(\text{sp}(s,t) \cap S' \subset \text{sp}(s) \cup \text{sp}(t) \). Now, if \(\text{sp}(s,t) \cap V \subset \text{sp}(s) \cup \text{sp}(t) \), then \(S = S' \cup (S \cap V) \Rightarrow \text{sp}(s,t) \subset S \subset \text{sp}(s) \cup \text{sp}(t) \). Therefore it is an ordinary line into \(S \). But all such lines are subsets of \(V \Rightarrow s \in V \) which is a contradiction since \(s \in S' \) which is disjoint from \(V \). In the other case (i.e. \(\text{sp}(s,t) \cap V \nsubset \text{sp}(s) \cup \text{sp}(t) \)), there is some \(v \in \text{sp}(s,t) \cap V \) such that \(v \notin \text{sp}(s) \cup \text{sp}(t) \). Therefore, \(t,s,v \) are LI but \(t,s,v \) are not \(s \in \text{sp}(t,v) \). Both \(t,v \) are in \(V \) by construction and thus \(s \in V \) which is again a contradiction since \(s \in S' \) which is disjoint from \(V \). Therefore if \(S' \) is non-empty, there are no ordinary lines from \(T \) into \(S \). Using Lemma 52 with \(S' \) and \(T \), we get that \(\log |S| + 2 = |T| \leq \log |S'| + 1 \) which is a contradiction since \(S' \subset S \). Therefore, the only conclusion left is \(S' = \phi \), which completes the proof of our lemma as explained earlier.

Proof of Lemma 52. Let \(|T| = d \) and \(|S| = m \). We present a counting argument by building a one-to-one function mapping subsets of \([d-1]\) into \(S \). Such a function implies that \(m \geq 2^{d-1} \) and we’ll be done. To construct such a function, fix \(s \in S \) and let \(T = \{ t_1, \ldots, t_d \} \). Without loss of generality assume that \(s,t_1,\ldots,t_{d-1} \) are LI. For LI vectors \(u_1,\ldots,u_m \in \mathbb{F}^n \), we say that \(u \in \mathbb{F}^n \) is in the interior of \(\text{sp}(u_1,\ldots,u_m) \), if there exist non zero \(\alpha_i \in \mathbb{F}, i \in [m] \), such that \(u = \alpha_1 u_1 + \ldots + \alpha_m u_m \). We use the following claim.

Claim 53. For any \(\mathcal{P} \subset [d-1] \), \(\exists \ s_{\mathcal{P}} \in S \), in the interior of \(\text{sp}\{ t_i : i \in \mathcal{P} \} \cup \{ s \} \).

We can see that the function mapping \(\mathcal{P} \subset [d-1] \) to \(s_{\mathcal{P}} \in S \), is one-to-one since for sets \(\mathcal{P}, \mathcal{Q} \subset [d-1] \), which differ at some \(j \in [d-1] \), exactly one of \(s_{\mathcal{P}}, s_{\mathcal{Q}} \) has a non-zero coefficient of \(t_j \), implying they are different. This completes the proof.

Proof of Claim 53. We prove by induction on \(|\mathcal{P}|\). For \(|\mathcal{P}| = 0\), define \(s_{\mathcal{P}} = s \) and we are done. Let \(s \in S \) and assume the claim is true for \(|\mathcal{P}| = k-1 \). We prove it for \(|\mathcal{P}| = k \). Consider any element \(p \in \mathcal{P} \) and let \(\mathcal{R} = \mathcal{P} \setminus \{ p \} \). By induction, we know \(\exists s_{\mathcal{R}} \) in the interior of \(\text{sp}\{ t_i : i \in \mathcal{R} \} \cup \{ s \} \). Since there is no ordinary line from any \(t \in T \) into \(S \), the line \(\text{sp}(t_p,s_{\mathcal{R}}) \) contains \(s_{\mathcal{P}} \in S \) such that \(s \notin \text{sp}(t_p) \cup \text{sp}(s_{\mathcal{R}}) \Rightarrow s_{\mathcal{P}} = \alpha t_p + \beta s_{\mathcal{R}} \) with \(\alpha, \beta \in \mathbb{F} \) being non-zero scalars \(\Rightarrow s_{\mathcal{P}} \) is in the interior of \(\text{sp}\{ t_i : i \in \mathcal{P} \} \cup \{ s \} \).

References

Efficient Reconstruction of Depth Three Arithmetic Circuits with Top Fan-In Two

118:28

A Proof of Claims 37, 38 and 43

A.1 Proofs of Claims 37 and 38

In these claims we are given that $T_i = \alpha y_i^1$ for some $i \in [2], \alpha \in \mathbb{F}$ and linear form y_1.

1. To see the proof of Claim 37, consider any linear factor ℓ of $T_1 + T_2$. $\ell \mid T_1, T_2$ since $gcd(T_1, T_2) = 1$. Let Φ be an isomorphism mapping $\ell \mapsto x_1$. Setting $x_1 = 0$, we get that $\Phi(T_1)^{x_1=0} = -\Phi(T_2)^{x_1=0} \neq 0$. Both sides are non-zero products of linear forms in $F[x_2, \ldots, x_n]$. Therefore, by unique factorization we can match factors (upto scalar multiplication). This implies that $\dim(\{\text{linear form } \ell : \ell \mid T_1\})$ and $\dim(\{\text{linear form } \ell : \ell \mid T_2\})$ cannot differ from each other by more than 1. But since $\text{rank}(f) = \Omega(\log^3 d)$, this cannot happen since one of the T_is spans a one dimensional space. Therefore $T_1 + T_2$ has no linear factors and we are done.

2. To see proof of Claim 38, without loss of generality assume $y_1 \mid T_1$. Define isomorphism Φ mapping $y_1 \mapsto x_1$. Using Claim 37 we know that $0 \neq \Phi(T_2)|_{x_1=0} = (\Phi(T_1) + \Phi(T_2))|_{x_1=0} = \Phi(\text{NonLin}(f))|_{x_1=0}$. So first condition of Definition 16 is satisfied. As argued in Claim 37, $\text{rank}(f) \geq \Omega(\log^3 d) \Rightarrow$ linear forms dividing T_2, span a $\Omega(\log^3 d)$ dimensional space. Since $\Phi(T_2)|_{x_1=0}$ is non-zero, its factors also span $\Omega(\log^3 d)$ dimensional space and so there exist two LI factors $y_2, y_3 \text{ of } T_2 \text{ such that } \text{NonLin}(f) \text{ vanishes on both } \forall(y_1, y_2) \text{ and } \forall(y_1, y_3)$. This implies that second condition of Definition 16 is also satisfied. Therefore, some scalar multiple of $y_1 \in \mathcal{L}(\text{NonLin}(f))$.

A.2 Proof of Claim 43

1. $\dim(\text{sp(Lfactors)}) \leq \log d + 2$: By definition $\mathcal{L}_{\text{factors}}$ is the set of all factors of $T_1 + T_2$. Consider any LI subset $Z \subset \mathcal{L}_{\text{factors}}$ and let $\ell \in Z$. Define isomorphism Φ mapping $\ell \mapsto x_1$. Setting $x_1 = 0$ in $\Phi(T_1) + \Phi(T_2)$ gives $\Phi(T_1)^{x_1=0} = -\Phi(T_2)^{x_1=0} \neq 0$. By unique factorization in ring $F[x_2, \ldots, x_n]$, for every linear form $\ell_1 \mid T_1 \exists \ell_2 \mid T_2$ such that $\ell_2 \in \text{sp}\{\ell, \ell_1\}$. Since $\ell_2 \notin \text{sp}\{\ell\} \cup \text{sp}\{\ell_1\}$, this means that $\text{sp}\{\ell, \ell_1\}$ is not an ordinary line from ℓ into the proper set \mathcal{L} containing linear factors of T_1, T_2. This set has size $\leq 2d$. Since ℓ was arbitrary in Z, there are no ordinary lines from Z into \mathcal{L}. So using Lemma 52 we get that $|Z| \leq \log |\mathcal{L}| + 1 = \log d + 2$, completing the proof.

2. $\dim(\text{sp(L_good)}) \geq \text{rank}(f) - 2$ and $\mathcal{L}_{\text{others}} \leq 2$: Define $V_i = \{\text{linear form } \ell : \ell \mid T_i\}$. We break the proof into two cases. Note that linear forms dividing T_1, T_2 satisfy first condition of Definition 16. So whenever we are trying to show that they belong to $\mathcal{L}(\text{NonLin}(f))$, we only prove that they satisfy second condition of Definition 16.

a. First we discuss the case $\dim(V_i) \geq \log d + 5 \forall i \in [2]$. Let H be such that $T_1 + T_2 = H \times \text{NonLin}(f)$. Let $\ell_1 \mid T_1$ and Φ be isomorphism mapping $\ell_1 \mapsto x_1$, then, we see that $\Phi(T_2)^{x_1=0} = \Phi(H)^{x_1=0} \times \Phi(\text{NonLin}(f))^{x_1=0} \neq 0$. Dimension of span of linear factors of $\Phi(T_2)^{x_1=0}$ is at least $\log d + 4$ by assumption in this case. By previous part, $\dim(\text{sp(Lfactors)}) \leq \log d + 2 \Rightarrow \Phi(\text{NonLin}(f))^{x_1=0}$ has two independent linear factors. Using these we can satisfy second condition of Definition 16 for $\ell_1 \Rightarrow \text{some scalar multiple of } \ell_1 \in \mathcal{L}(\text{NonLin}(f))$. The same argument can be repeated for a linear factor $\ell_2 \mid T_2$. Thus all linear factors of $T_1 \times T_2$ are in $\mathcal{L}(\text{NonLin}(f))$ (upto scalar multiplication) $\Rightarrow \dim(\text{L_good}) = \text{rank}(f)$. This also implies that $\dim(\mathcal{L}_{\text{others}}) = 0$.
b. In the case, $\exists i \in [2]$ such that $\dim(V_i) \leq \log d + 4 \Rightarrow \dim(V_{3-i}) = \Omega(\log^3 d)$. Using an argument similar to the one in proof of Claim 37, $\text{NonLin}(f) = T_1 + T_2$. Consider any basis $\{\ell_1, \ldots, \ell_r\}$ of $V_1 + V_2$. If $\dim(V_i) \geq 3 \forall i \in [2]$, then using a similar argument as before, we can show that all ℓ_i satisfy second condition in Definition 16 $\Rightarrow \dim(\mathcal{L}_{\text{good}}) = \text{rank}(f) \Rightarrow \dim(\mathcal{L}_{\text{others}}) = 0$. In case for some $i \in [2]$, $\dim(V_i) = 2$ (recall we have assumed $\dim(V_i) \geq 2$ in the statement of Claim 43), then all linear forms dividing T_{3-i} are not contained in V_i and hence satisfy second condition of Definition 16. Thus $\dim(\mathcal{L}_{\text{good}}) \geq \text{rank}(f) - 2$ and $\dim(\mathcal{L}_{\text{others}}) \leq 2$.

3. $\dim(\text{sp}(\mathcal{L}_{\text{bad}})) \leq \log d + 2$: Assume $\dim(\mathcal{L}_{\text{bad}}) \geq \log d + 3$. Consider the proper set \mathcal{L} containing all linear factors of $T_1, T_2 \Rightarrow |\mathcal{L}| \leq 2d \Rightarrow |\mathcal{L}_{\text{bad}}| \geq \log |\mathcal{L}| + 2$. Let $T \subset \mathcal{L}_{\text{bad}}$ be a LI set of size $\log |\mathcal{L}| + 2$. Then by Proposition 5, $\exists t \in T$ such that ordinary lines from t into \mathcal{L} span a space of dimension $\geq \frac{\dim(\text{sp}(T))}{\log d + 3} \geq \frac{\text{rank}(T)}{\log d + 3} = \Omega(\log^2 d)$. Since $t \in \mathcal{L}_{\text{bad}}$, restricting $T_1 + T_2$ to $\mathcal{V}(t)$ (see Definition 15) gives some non-zero product of linear factors, say H. Let Φ be an isomorphism mapping $t \mapsto x_1$. Then $\Phi(T_1)|_{x_1=0} + \Phi(T_2)|_{x_1=0} - H = 0$. This gives an identically zero $\Sigma \Pi \Sigma(3, n, d, F)$ circuit. Since $t \in \mathcal{L}_{\text{bad}}$, it does not divide $T_1, T_2 \Rightarrow$ the above circuit is minimal (Definition 12). After cancelling common linear forms from the three gates $\Phi(T_1)|_{x_1=0}, \Phi(T_2)|_{x_2=0}, H$, we have a simple (Definition 11) and minimal, identically zero $\Sigma \Pi \Sigma(3, n, d, F)$ circuit. The $\Omega(\log^2 d)$ ordinary lines from t into \mathcal{L} imply that after cancelling the common linear forms, the simple minimal circuit has rank $\Omega(\log^2 d)$ which is a contradiction to Lemma 24. Thus we conclude that $\dim(\text{sp}(\mathcal{L}_{\text{bad}})) \leq \log d + 2$.

B Proof of Lemma 46

Let $T_i = \prod_{j=0}^{m} \ell_{i,j}$ where $\ell_{i,j}$ are linear forms. We know that $\prod_{j=0}^{m} \Phi(\ell_{i,j})|_{x_1=0, x_2=0} = -\prod_{j=0}^{m} \Phi(\ell_{2,j})|_{x_1=0, x_2=0} \neq 0$. Note that $\Phi(\ell_{i,j})$ can be thought of as linear forms over F in $n-2$ variables, and by using unique factorization of polynomials over F, without loss of generality we can assume $\Phi(\ell_{i,j})|_{x_1=0, x_2=0} = \beta_{i,j} \Phi(\ell_{2,j})|_{x_1=0, x_2=0}$ for some $\beta_{i,j} \in F$. Since Φ is an isomorphism, we get that $U_j = \text{sp}(\ell_{i,j}, \ell_{2,j})$ intersects $U = \text{sp}(\ell_1, \ell_2)$ non-trivially. Since $\Phi(\ell_{i,j})|_{x_1=0, x_2=0} \neq 0$ and both U_i, U_j are 2 dimensional, we get that $U \neq U_j \Rightarrow U \cap U_j = 1$ dimensional. We split the proof into two cases:

- **There exist two distinct spaces, say U_i, U_j such that $U \cap U_i = U \cap U_j$**: This implies $U \cap U_i \subset U_i \cap U_j$. The space $U_i \cap U_j$ is 1 dimensional since U_i, U_j are distinct, say $U_i \cap U_j = \text{sp}(\ell)$. Both sides of the containment $U \cap U_i \subset U \cap U_j$ are 1 dimensional implying $U_i \cap U_j = U \cap U_i \subset U = \text{sp}(\ell_1, \ell_2)$. This further implies that $\ell \in U \Rightarrow W \subset \mathcal{V}(\ell) = V$. There are $\leq d^4$ choices for such U_i, U_j and therefore d^4 possibilities for such V.

- **\forall distinct U_i, U_j, $U \cap U_i \neq U \cap U_j$**: Vector space $U \cap U_i + U \cap U_j$ is 2 dimensional, since it is a sum of disjoint 1 dimensional spaces. U is also 2 dimensional $\Rightarrow U = U \cap U_i + U \cap U_j \subset U_i + U_j$. Using statement of Proposition 5, we know that, $5 \leq \text{rank}(f) = \dim(\text{sp}(\ell_{i,j})) = \dim(\bigoplus_{j=1}^{m} U_j) \leq \sum_{j=1}^{m} \dim(U_j)$. Since $\dim(U_i + U_j) \leq 4$, $\exists U_k$ such that $U_k \cap (U_i + U_j)$. Note that this would imply $U_k \cap (U_i + U_j)$ has dimension ≤ 1. Since $U \subset U_i + U_j$, we get that $U_k \cap U \subset U_k \cap (U_i + U_j)$. Both sides are 1 dimensional. Writing $U_k \cap (U_i + U_j) = \text{sp}(\ell) \Rightarrow \ell \in U \Rightarrow W \subset \mathcal{V}(\ell) = V$. There are $\leq d^4$ choices for U_i, U_j, U_k and so $\leq d^6$ possibilities for such V.

\mathcal{A} is collection of all Vs obtained above. $|\mathcal{A}| \leq d^4 + d^6$ and \mathcal{A} satisfies the required conditions.
118:32 Efficient Reconstruction of Depth Three Arithmetic Circuits with Top Fan-In Two

C Proofs of Lemmas in Algorithm 6

C.1 Proof of Lemma 47

We prove each part one by one below. Let \(\hat{\ell}_i = \sum_{j=1}^{n} \alpha_{i,j} x_j, i \in [n] \) be the \(n \) linear forms that were constructed using the uniformly randomly independently samples \(\alpha_{i,j}, i \in [n], j \in [n] \). Recall that \(\Phi \) maps \(x_i \mapsto \hat{\ell}_i \). Let \(\Gamma \) be a homomorphism from \(F[x_1, \ldots, x_n] \to F[x_1, x_2, x_3, x_4, x_i] \) that sets \(x_5 = 0, \ldots, x_{i-1} = 0, x_{i+1} = 0, \ldots, x_n = 0 \).

1. This is equivalent to showing that with probability \(1 - o(1) \), matrix \((\alpha_{ij})_{(i,j)\in [n] \times [n]} \) is invertible. This is further equivalent to showing that the determinant of this polynomial is non-zero which follows from Lemma 21.

2. Consider any isomorphism \(\Psi \) mapping \(\ell_1 \mapsto x_1, \ell_2 \mapsto x_2 \), then \(\Psi \circ \Phi^{-1} \) is an isomorphism mapping \(\Phi(\ell_1) \mapsto x_1, \Phi(\ell_2) \mapsto x_2 \). Further, \(\Psi(\text{NonLin}(f)) = \Psi \circ \Phi^{-1}(\Phi(\text{NonLin}(f))) \).

Setting \(x_1 = 0, x_2 = 0 \Rightarrow \Psi(\text{NonLin}(f))_{x_1=0, x_2=0} = \Psi \circ \Phi^{-1}(\Phi(\text{NonLin}(f)))_{x_1=0, x_2=0} \Rightarrow \text{NonLin}(f) \) vanishes on \(\Psi(\ell_1, \ell_2) \) iff \(\Phi(\text{NonLin}(f)) \) vanishes on subspace \(\Psi(\ell_1, \ell_2) \).

Since \(\Phi \) is an isomorphism, irreducible factors of \(f \) remain irreducible on applying \(\Phi \), thereby implying that \(\Phi(\text{NonLin}(f)) = \text{NonLin}(\Phi(f)) = \text{NonLin}(g) \).

3. Recall \(f = G \times (T_1 + T_2) \), with \(G, T_1, T_2 \) being product of linear forms and \(\text{gcd}(T_1, T_2) = 1 \).

If \(\ell, \ell' \) are not scalar multiples, this determinant is not an identically zero polynomial in the \(\alpha_{j,k}, j \in [n], k \in [2] \) and therefore probability (over the random choices of \(\alpha_{j,k} \)) that the determinant is non-zero is \(1 - o(1) \).

Therefore with probability \(1 - o(1), (\Gamma(\Phi(\ell))) \) and \(\Gamma(\Phi(\ell')) \) are not scalar multiples.

Since \(\ell, \ell' \) are arbitrary linear factors of \(T_1, T_2 \) respectively, by union bound with probability \(1 - o(1) \), \(\text{gcd}(\Gamma(\Phi(T_1)), \Gamma(\Phi(T_2))) = 1 \) implying that all \(g_i \) exhibit \(\Sigma \Pi \Sigma(2, 5, d, F) \) circuit. Since \(\text{rank}(f) = \Omega(\log^2 d) \), we know that \(\dim(\text{sp[linear form } \ell : \ell | T_1 + T_2] \geq 5 \), therefore, by a similar argument (using Lemma 21), we get that \(\Gamma(\Phi(\ell)) : \text{linear form } \ell | T_1 + T_2 \) spans a 5 dimensional space. This set is same as \(\{\text{linear form } \ell : \ell | \Gamma(\Phi(T_1)) \times \Gamma(\Phi(T_2)) \} \Rightarrow \text{rank}(g_i) \geq 5 \forall i \in [5, n] \).

4. By effective Hilberts irreducibility theorem (Lemma 26), with probability \(1 - o(1) \) over the \(\alpha_{i,j}, i \in [n], j \in [n] \), the irreducible factors of \(\Phi(f)(x_1, \ldots, x_n) = f(\Phi(x_1), \ldots, \Phi(x_n)) \) remain irreducible on setting \(x_5 = 0, \ldots, x_{i-1} = 0, x_{i+1} = 0, \ldots, x_n = 0 \) i.e. on applying \(\Gamma \). This implies that \(\text{NonLin}(\Gamma(\Phi(f))) = \Gamma(\text{NonLin}(\Phi(f))) \).

The LHS is \(\text{NonLin}(g_i) \) and RHS is \(\text{NonLin}(g_i)_{x_5=0, \ldots, x_{i-1}=0, x_{i+1}=0, \ldots, x_n=0} \).

5. Let \(\forall(\hat{\ell}_1, \hat{\ell}_2) \) belong to \(S(\text{NonLin}(f)) \). Assume \(\hat{\ell}_1 = \sum_{j=1}^{n} a_j x_j \) and \(\hat{\ell}_2 = \sum_{j=1}^{n} b_j x_j \), then we get that \(\Phi(\hat{\ell}_1) = \sum_{k=1}^{n} (\sum_{j=1}^{n} a_j \alpha_{j,k}) x_k \) and \(\Phi(\hat{\ell}_2) = \sum_{k=1}^{n} (\sum_{j=1}^{n} b_j \alpha_{j,k}) x_k \).

We define \(c_k = \sum_{j=1}^{n} a_j \alpha_{j,k} \) and \(d_k = \sum_{j=1}^{n} b_j \alpha_{j,k} \) for \(k \in [n] \). Therefore \(\Phi(\hat{\ell}_1) = \sum_{k=1}^{n} c_k x_k \) and \(\Phi(\hat{\ell}_2) = \sum_{k=1}^{n} d_k x_k \).

Now we define linear forms \(\ell_4 = d_2 \Phi(\hat{\ell}_1) - c_2 \Phi(\hat{\ell}_2) \) and \(\ell_4 = -d_2 \Phi(\hat{\ell}_1) + c_2 \Phi(\hat{\ell}_2) \). Note that \(d_2 \Phi(\hat{\ell}_1) - c_2 \Phi(\hat{\ell}_2) \) is a polynomial in \(\alpha_{j,k}, j \in [n], k \in [2] \). Like in the previous part, unless \(\hat{\ell}_1, \hat{\ell}_2 \) are LD this polynomial is not
identically 0. Therefore with probability \(1-o(1)\) over the uniformly randomly chosen linear forms in Step 1, \(d_2c_1-c_2d_1 \neq 0\). This also means that \(\ell_3, \ell_4\) are LI and \(\mathcal{V}(\ell_3, \ell_4) = \mathcal{V}(\Phi(\ell_1), \Phi(\ell_2))\). Analyzing \(\ell_3, \ell_4\) we see that \(\ell_3 = (d_2c_1-c_2d_1)x_1 + \sum_{k=3}^{n-1} (d_2c_k-c_2d_k)x_k\) and \(\ell_4 = (d_2c_1-c_2d_1)x_2 + \sum_{k=3}^{n} (d_2c_k-c_2d_k)x_k\). Define \(\ell'_1 = -\sum_{k=1}^{n} d_2c_k-c_2d_k x_k\), and \(\ell'_2 = -\sum_{k=3}^{n} d_2c_k-c_2d_k x_k\), further implying that \(\mathcal{V}(\ell_1, \ell_2) = \mathcal{V}(x_1, \ell'_1, x_2, \ell'_2)\) with \(\ell'_1, \ell'_2 \in \mathbb{F}[x_3, \ldots, x_n]\). Now since \(\mathcal{S}(\text{NonLin}(f))\) has size \(d^{O(1)}\), by union bound, with probability \(1-o(1)\), we can prove all of this for every \(\mathcal{V}(\ell_1, \ell_2) \in \mathcal{S}(\text{NonLin}(f))\).

Now, given any \(\mathcal{V}(\ell_1, \ell_2) \in \mathcal{S}(\text{NonLin}(g))\), by Part 2 of this Lemma, we know that \(\mathcal{V}(\ell_1, \ell_2) \in \mathcal{S}(\text{NonLin}(g))\) if \(\Phi(\ell_1), \Phi^{-1}(\ell_2) \in \mathcal{S}(\text{NonLin}(g))\). So we can use our argument for \(\ell_1 = \Phi^{-1}(\ell_1)\), and \(\ell_2 = \Phi^{-1}(\ell_2)\), thereby completing the proof.

6. Let \(\mathcal{V}(\ell_1, \ell_2) \in \mathcal{S}(\text{NonLin}(g))\) and \(\ell'_i = \ell_i |_{x_1=0, \ldots, x_{i-1}=0, x_{i+1}=0, \ldots, x_n=0}\). By previous part we know that \(\exists \ell'_1, \ell'_2 \in \mathbb{F}[x_3, \ldots, x_n]\) such that \(\mathcal{V}(\ell_1, \ell_2) = \mathcal{V}(x_1, \ell'_1, x_2 - \ell'_2)\). Let \(\Theta\) be an isomorphism mapping \(x_1 - \ell'_1 \mapsto x_1, x_2 - \ell'_2 \mapsto x_2\) and for \(j \in \{3, 4, i\}\), \(x_j \mapsto x_j\). Similarly let \(\Theta'\) be isomorphism on \(\mathbb{F}[x_1, x_2, x_3, x_4, x_i]\) mapping \(x_1 - \ell'_1 \mapsto x_1, x_2 - \ell'_2 \mapsto x_2\) and for \(j \in \{3, 4, i\}\), \(x_j \mapsto x_j\). Finally let \(\Gamma\) be the homomorphism from \(\mathbb{F}[x_1, \ldots, x_n]\) to \(\mathbb{F}[x_1, x_2, x_3, x_4, x_i]\) mapping \(x_j \mapsto 0 \forall j \in \{5, i-1\} \cup \{i+1, n\}\). It is easy to see that \(\Gamma \circ \Theta = \Theta' \circ \Gamma\). We know that \(\text{NonLin}(g)\) vanishes on \(\mathcal{V}(x_1 - \ell'_1, x_2 - \ell'_2)\), therefore \(\Theta(\text{NonLin}(g))|_{x_1=0, x_2=0} = 0\), implying that \(\Gamma(\Theta(\text{NonLin}(g))|_{x_1=0, x_2=0}) = 0\). We know that \(\Gamma\) fixes \(x_1, x_2\) therefore we can set \(x_1 = 0, x_2 = 0\) after applying \(\Gamma\), thereby giving \(\Gamma(\Theta(\text{NonLin}(g))|_{x_1=0, x_2=0}) = 0\). \(\Gamma \circ \Theta = \Theta' \circ \Gamma\). Now, Part 4 of this lemma gives \(\text{NonLin}(g) = \Gamma(\text{NonLin}(g))\). Using this we get, \(\Theta'(\text{NonLin}(g))|_{x_1=0, x_2=0} = 0\). Therefore \(\text{NonLin}(g)\) vanishes on \(\mathcal{V}(x_1 - \ell''_1, x_2 - \ell''_2)\).

C.2 Proof of Lemma 48

Fix \(i \in \{6, n\}\). Consider a pair of distinct tuples \((x_1 - \ell_1, x_2 - \ell_2)\), \((x_1 - \ell'_1, x_2 - \ell'_2)\) in \(S_i\). By construction, \(\ell_1, \ell_2, \ell'_1, \ell'_2 \in \mathbb{F}[x_3, x_4, x_i]\). So we assume that, \(\ell_1 = a_3x_3 + a_4x_4 + a_ix_i, \ell_2 = b_3x_3 + b_4x_4 + b_ix_i, \ell'_1 = a'_3x_3 + a'_4x_4 + a'_ix_i\) and \(\ell'_2 = b'_3x_3 + b'_4x_4 + b'_ix_i\). Therefore,

\[
\Delta(\ell_1) = (a_3 + a_3a_3a_3)x_3 + (a_4 + a_4a_4a_4)x_4 + a_ix_i, \quad \Delta(\ell_2) = (b_3 + b_3b_3b_3)x_3 + (b_4 + b_4b_4b_4)x_4 + b_ix_i, \\
\Delta(\ell'_1) = (a'_3 + a'_3a'_3a'_3)x_3 + (a'_4 + a'_4a'_4a'_4)x_4 + a'_ix_i, \quad \Delta(\ell'_2) = (b'_3 + b'_3b'_3b'_3)x_3 + (b'_4 + b'_4b'_4b'_4)x_4 + b'_ix_i
\]

If \((\Delta(\ell_1)|_{x_1=0, x_i=0}, \Delta(\ell_2)|_{x_1=0, x_i=0}) = (\Delta(\ell'_1)|_{x_1=0, x_i=0}, \Delta(\ell'_2)|_{x_1=0, x_i=0})\), then we get a system of linear equations in \(a_3, a_4, a'_3, a'_4, b_3, b_4, b'_3, b'_4\) which can be simplified to get \(a_3 = a'_3, a_4 = a'_4, a_3 = a'_3, a_4 = a'_4\). Since tuples \((\ell_1, \ell_2)\) and \((\ell'_1, \ell'_2)\) are distinct, at least one of \((a'_3 - a_3), (a'_4 - a_4), (b'_3 - b_3), (b'_4 - b_4)\) is non-zero implying that at least one linear equation is not identically zero. By Lemma 21, we then know that with probability \(1-o(1)\) over the uniformly random choices of \(a_3, a_4, a'_3, a'_4\) the equation cannot be zero. Therefore with probability \(1-o(1), (\Delta(\ell_1)|_{x_1=0, x_i=0}, \Delta(\ell_2)|_{x_1=0, x_i=0}) \neq (\Delta(\ell'_1)|_{x_1=0, x_i=0}, \Delta(\ell'_2)|_{x_1=0, x_i=0})\).

Using Part 3 of Lemma 47, we know that \(\text{rank}(\text{NonLin}(g_i)) = 5\) implying that \(|S_i| = d^{O(1)}\). So we can take a union bound over all pairs of tuples in \(S_i\). Finally, we take a union bound over all \(i\) and guarantee that with probability \(1-o(1)\), the statement in this lemma holds.