Abstract

This paper discusses the formalization of synthetic cohomology theory in a cubical extension of Agda which natively supports univalence and higher inductive types. This enables significant simplifications of many proofs from Homotopy Type Theory and Univalent Foundations as steps that used to require long calculations now hold simply by computation. To this end, we give a new definition of the group structure for cohomology with \mathbb{Z}-coefficients, optimized for efficient computations. We also invent an optimized definition of the cup product which allows us to give the first complete formalization of the axioms needed to turn the integral cohomology groups into a graded commutative ring. Using this, we characterize the cohomology groups of the spheres, torus, Klein bottle and real/complex projective planes. As all proofs are constructive we can then use Cubical Agda to distinguish between spaces by computation.

1 Introduction

Homotopy Type Theory and Univalent Foundations (HoTT/UF) [38] extends Martin-Löf type theory [30] with Voevodsky’s univalence axiom [41] and higher inductive types (HITs). This is based on a close correspondence between types and topological spaces represented as Kan simplicial sets [24]. With this interpretation, points in spaces correspond to elements of types, while paths and homotopies correspond to identity types between these elements [3]. This enables homotopy theory to be developed synthetically using type theory. Many classical results from homotopy theory have been formalized in HoTT/UF this way: the definition of the Hopf fibration [38], the Blakers-Massey theorem [22], the Seifert-van Kampen theorem [23] and the Serre spectral sequence [39], among others. Using these results, many homotopy groups of spaces – represented as types – have been characterized. However, just like in classical algebraic topology, these groups tend to be complicated to work with. Because of this, other topological invariants like cohomology have been invented.
Informally, the integral cohomology groups $H^n(X)$ of a space X describe its n-dimensional holes. For instance, the n-dimensional hole in the n-sphere S^n corresponds to $H^n(S^n) \cong \mathbb{Z}$. These holes constitute a topological invariant, making cohomology a powerful technique for establishing which spaces cannot be homotopy equivalent. The usual formulation of singular cohomology using cochain complexes relies on taking the underlying set of topological spaces when defining the singular cochains [19]. This operation is not invariant under homotopy equivalence, which makes it impossible to use when formalizing cohomology synthetically. Luckily, there is an alternative definition of cohomology using Eilenberg-MacLane spaces which is homotopy invariant [26]. This was initially studied at the IAS special year on HoTT/UF in 2012–2013 [33] and has since been used to develop the Eilenberg-Steenrod axioms [11] and cellular cohomology [8]. This paper builds on this prior work, but uses Cubical Agda—a recent cubical extension of the dependently typed programming language Agda [35].

The Cubical Agda system is based on a variation of cubical type theory formulated by Coquand et al. [14]. These type theories can be seen as refinements of Book HoTT [38] where the homotopical intuitions are taken very literally and made part of the theory. Instead of relying on the inductively defined identity type [29] to define paths and homotopies, a primitive interval type I is added. Paths and homotopies are then represented as functions out of I, just like in traditional topology. This has some benefits compared to Book HoTT. First, many proofs become simpler. For instance, function extensionality becomes trivial to prove, as opposed to in Book HoTT where it either has to be postulated or derived from the univalence axiom [42]. Second, it gives computational meaning to HoTT/UF, which makes it possible to use the system to do computations using univalence and HITs. Finally, it makes it possible to formulate a general schema for HITs where the eliminators compute definitionally for higher constructors [12, 15]. This is still an open problem for Book HoTT, and HITs have to be added axiomatically, which leads to bureaucratic transports that complicate proofs.

Mörtberg and Pujet explored practical implications of formalizing synthetic homotopy theory in Cubical Agda in [31]. This work provided empirical evidence that formalizing synthetic homotopy theory in cubical type theory can lead to significant simplifications of the corresponding formal Book HoTT proofs. For instance, the proof of the 3×3 lemma for pushouts was shortened from 3000 lines of code (LOC) in HoTT-Agda [7] to only 200 in Cubical Agda. Another proof that becomes substantially shorter is the proof that the torus is equivalent to the product of two circles. This elementary result in topology turned out to have a surprisingly non-trivial proof in Book HoTT because of the lack of definitional computation rules for higher constructors [25, 34]. With the additional computation rules of Cubical Agda, this proof is now trivial [40, Sect. 2.4.1].

The present paper is a natural continuation of this prior work and the two main goals are to characterize \mathbb{Z}-cohomology groups of types and to compute using these groups. In classical algebraic topology, characterize and compute are often used interchangeably when discussing cohomology. We are careful to distinguish these two notions. When characterizing a cohomology group of some type, we prove that it is isomorphic to another group. As all of our proofs are constructive, we can then use Cubical Agda to actually compute with this isomorphism. Having the possibility of doing proofs simply by computation is one of the most appealing aspects of developing synthetic homotopy theory cubically. As this is not possible with pen and paper proofs, or even with many formalized proofs in Book HoTT, one often has to resort to doing long calculations by hand. If proofs instead can be carried out using a computer, many of these long calculations become obsolete. This is a reason why many proofs from synthetic homotopy theory are substantially shorter in Cubical Agda. However, not everything has successfully been possible to reduce to computations. A famous
example is the Brunerie number. This is a synthetic definition of a number \(n : \mathbb{Z} \) such that \(\pi_4(S^4) = \mathbb{Z}/n\mathbb{Z} \). Brunerie proved in his PhD thesis [5] that \(n = \pm2 \), but even though this is a constructive definition, it has thus far proved infeasible to compute using Cubical Agda, despite considerable efforts. In this paper, we construct a similar number, also inspired by [5], using the multiplicative structure on \(H^n(CP^2) \). This number was proved to be \(\pm1 \) using sophisticated techniques in [5, Chapter 6], but we have thus far been unable to verify this purely by computation. However, as this number is substantially simpler than the Brunerie number, it provides a new computational challenge which should be more feasible.

Contributions. The main novel result of the paper is the first computer formalization of the graded commutative ring axioms for \(\mathbb{Z} \)-cohomology in HoTT/UF (Section 4). To this end, we first develop \(\mathbb{Z} \)-cohomology groups (Section 3). The definitions are inspired by [5], but the additive structure is new and optimized for efficient computations. The definition of the cup product is also new and provides significant simplifications compared to related proofs in HoTT-Agda [4]. We also characterize the cohomology groups of various types (Section 5); for instance, we give the first synthetic characterizations of the cohomology groups of the Klein bottle and real projective plane. In order to characterize \(H^n(CP^2) \), we have verified that our definition of cohomology satisfies the Eilenberg-Steenrod axioms for cohomology theories and constructed the Mayer-Vietoris sequence. We finally reap the fruits of our constructive definitions in Section 6 where we prove that \(S^2 \lor S^1 \lor S^1 \) and the torus are not equivalent by computing with Cubical Agda.

All results in the paper have been formalized in Cubical Agda. Much of the code in the paper is literal Cubical Agda code, but we have taken some liberties when typesetting, to closer resemble standard mathematical notations. In order to clarify the connections between the paper and formalization, we provide a summary file: https://github.com/agda/cubical/blob/master/Cubical/Papers/ZCohomology.agda. This file typechecks with the --safe flag, which ensures that there are no postulates or unfinished goals.

2 Homotopy Type Theory in Cubical Agda

The Agda system [35] is a dependently typed programming language in which both programs and proofs can be written using the same syntax. Dependent function types (Π-types) are written \((x : A) \to B\) while non-dependent function types are written \(A \to B\). Implicit arguments to functions are written using curly braces \(\{x : A\} \to B\) and function application is written using juxtaposition, so \(fx\) instead of \(f(x)\). Universes are written \(\text{Type}_\ell\), where \(\ell\) is a universe level. In order to ease notation, we omit universe levels in this paper. Readers familiar with Agda will also notice that we rename \text{Set} to \text{Type}. Agda supports many features of modern proof assistants and has recently been extended with an experimental cubical mode. The goal of this section is to introduce notions from HoTT/UF (including their formalizations in Cubical Agda) which the rest of the paper relies on. Due to space constraints, we omit many technical details and refer curious readers to the paper of Vezzosi et al. [40] for a comprehensive technical treatment of the features of Cubical Agda.

2.1 Important notions in Cubical Agda

The Agda system [35] is a dependently typed programming language in which both programs and proofs can be written using the same syntax. Dependent function types (Π-types) are written \((x : A) \to B\) while non-dependent function types are written \(A \to B\). Implicit arguments to functions are written using curly braces \(\{x : A\} \to B\) and function application is written using juxtaposition, so \(fx\) instead of \(f(x)\). Universes are written \(\text{Type}_\ell\), where \(\ell\) is a universe level. In order to ease notation, we omit universe levels in this paper. Readers familiar with Agda will also notice that we rename \text{Set} to \text{Type}. Agda supports many features of modern proof assistants and has recently been extended with an experimental cubical mode. The goal of this section is to introduce notions from HoTT/UF (including their formalizations in Cubical Agda) which the rest of the paper relies on. Due to space constraints, we omit many technical details and refer curious readers to the paper of Vezzosi et al. [40] for a comprehensive technical treatment of the features of Cubical Agda.

The first addition to make Agda cubical is an interval type \(I\) with endpoints \(i0\) and \(i1\). This corresponds to the real interval \([0, 1] \subseteq \mathbb{R}\). However, in Cubical Agda, this is a purely formal object. A variable \(i : I\) represents a point varying continuously between the endpoints. There are three primitive operations on \(I\): minimum/maximum \((_\wedge_, _\lor_, _\min_, _\max_, _\min_, _\max_ : I \to I \to I)\) and reversal.
11.4 Synthetic Integral Cohomology in Cubical Agda

A function $\lambda i \rightarrow \mathsf{Type}$ represents a line between two types. By iterating this, we obtain squares, cubes and hypercubes of types making Agda inherently cubical. In order to specify the endpoints of a line, we use path types:

$$\text{PathP} : (A : \mathsf{I} \rightarrow \mathsf{Type}) \rightarrow A \mathsf{i0} \rightarrow A \mathsf{i1} \rightarrow \mathsf{Type}$$

As paths are functions, they are introduced as $\lambda i \rightarrow t : \text{PathP} A t[\mathsf{i0} / i] t[\mathsf{i1} / i]$. Given $p : \text{PathP} A a_0 a_1$, we can apply it to $r : \mathsf{I}$ and obtain $p r : A r$. Also, we always have that $p \mathsf{i0}$ reduces to a_0 and $p \mathsf{i1}$ reduces to a_1. The PathP types should be thought of as representing heterogeneous equalities since the two endpoints are in different types; this is similar to dependent paths in Book HoTT [38, Section 6.2]. Given $A : \mathsf{Type}$, we define the type of non-dependent paths in A using PathP as follows:

$$_\equiv__ : A \rightarrow A \rightarrow \mathsf{Type}$$

$$_\equiv__ x y = \text{PathP} (\lambda _ \rightarrow A) x y$$

Representing equalities as paths allows us to directly reason about equality. For instance, the constant path $\lambda i \rightarrow x$ represents a proof of reflexivity $\text{refl} : \{x : A\} \rightarrow x \equiv x$. We can also directly apply a function to a path in order to prove that dependent functions respect path-equality, as shown in the definition of cong below:

$$\text{cong} : \{B : A \rightarrow \mathsf{Type}\} \{x y : A\} \{f : (x : A) \rightarrow B x\} \{p : x \equiv y\} \rightarrow \text{PathP} (\lambda i \rightarrow B (p i)) (f x) (f y)$$

$$\text{cong} f p = \lambda i \rightarrow f (p i)$$

We write cong₂ for the binary version of cong; its proof is equally direct. These functions satisfy the standard property that refl gets mapped to refl. They are also definitionally functorial. The latter is an important difference to the corresponding operations defined using path induction which only satisfy the functoriality equations up to a path. Path types also let us prove new things that are not provable in standard Agda, e.g. function extensionality:

$$\text{funExt} : \{B : A \rightarrow \mathsf{Type}\} \{f g : (x : A) \rightarrow B x\} \rightarrow ((x : A) \rightarrow f x \equiv g x) \rightarrow f \equiv g$$

$$\text{funExt} p i x = p x i$$

One of the key operations of type theoretic equality is transport: given a path between types, we get a function between these types. In Cubical Agda, this is defined using another primitive called transp. However, for this paper, the cubical transport function suffices:

$$\text{transport} : \{A B : \mathsf{Type}\} \rightarrow A \equiv B \rightarrow A \rightarrow B$$

$$\text{transport} p a = \text{transp} (\lambda i \rightarrow p i) \mathsf{i0} a$$

The substitution principle, called “transport” in [38], is an instance of cubical transport:

$$\text{subst} : (B : A \rightarrow \mathsf{Type}) \{x y : A\} \rightarrow x \equiv y \rightarrow B x \rightarrow B y$$

$$\text{subst} B p b = \text{transport} (\lambda i \rightarrow B (p i)) b$$

This function invokes transport with a proof that the family B respects the equality p. By combining transport and $_\equiv__$, we can define the induction principle for paths. However, an important difference between path types in Cubical Agda and Book HoTT is that $_\equiv__$ does not behave like an inductive type. In particular, the cubical path induction principle does not definitionally satisfy the computation rule when applied to refl, Nevertheless, we can still prove that this rule holds up to a path. This is a subtle, but important, difference between cubical type theory and Book HoTT. Readers familiar with Book HoTT might be worried
that the failure of this equality to hold definitionally complicates many proofs. However, in
our experience, this is rarely the case, as many proofs that require path induction in Book
HoTT can be proved more directly using cubical primitives.

Cubical Agda also has a primitive operation \texttt{hcomp} for composing paths and, more
generally, for composing higher dimensional cubes. An important special case is binary
composition of paths \(\texttt{hcomp} : x \equiv y \to y \equiv z \to x \equiv z\). By composing paths and higher cubes
using \texttt{hcomp}, we can reason about paths in a very direct way, avoiding path induction.

2.2 Important concepts from HoTT/UF in Cubical Agda

Pointed types and functions will play an important role in this paper. Formally, a pointed
type is a pair \((A, *_A)\) where \(A\) is a type with \(*_A : A\). We write \texttt{Type}, for the universe of
pointed types. Given \(A, B : \texttt{Type}\), a pointed function is a pair \((f, p) : A \to_s B\), where
\(f : A \to B\) and \(p : f *_A \equiv *_B\). We often leave \(*_A\) and \(p\) implicit and write simply \(A : \texttt{Type}\,
and \(f : A \to_s B\). We also sometimes just write \(A\) for the underlying type of \(A : \texttt{Type}\).

Most HITs in [38] can be defined directly using the general schema of Cubical Agda. For
elementary example, the circle and suspension HITs can be written as:

\[
\begin{array}{l}
data S^1 : \texttt{Type} \
\text{where} \\
basis : S^1 \\
loop : \texttt{base} \equiv \texttt{base} \
\end{array}
\]

\[
\begin{array}{l}
data \texttt{Susp} (A : \texttt{Type}) : \texttt{Type} \
\text{where} \\
\texttt{base} : \texttt{Susp} A \\
\texttt{north} : \texttt{Susp} A \\
\texttt{merid} : (a : A) \to \texttt{north} \equiv \texttt{south} \\
\end{array}
\]

Functions out of HITs are written using pattern-matching equations, just like regular
Agda functions. When typechecking the cases for path constructors, Cubical Agda checks
that the endpoints of what the user writes match up. We could directly define specific
higher spheres as HITs with a \texttt{base} point and a constructor for iterated paths. However, the
following definition is often easier to work with, as one can reason inductively about it:

\textbf{Definition 1 (\(S^n\))}. The \(n\)-spheres are pointed types defined by recursion:

\[
S^n = \begin{cases}
\texttt{Bool, true} & \text{if } n = 0 \\
(S^1, \texttt{base}) & \text{if } n = 1 \\
(\texttt{Susp} S^{n-1}, \texttt{north}) & \text{if } n \geq 2
\end{cases}
\]

We could equivalently have defined \(S^1 = (\texttt{Susp Bool, north})\), but in our experience, the
\texttt{base/loop}-construction is often easier to work with and gives faster computations.

Consistent with the intuition that types correspond to topological spaces (up to homotopy
equivalence), we may consider loop spaces of pointed types.

\textbf{Definition 2 (Loop spaces)}. Given a pointed type \(A : \texttt{Type}\), we define its loop space as the
pointed type \(\Omega A = (*_A \equiv *_A, \texttt{refl})\). For \(n : \mathbb{N}\), we let \(\Omega^{n+1} A = \Omega (\Omega^n A)\).

As an example of a non-trivial result which is proved using path induction in Book HoTT,
but which can be proved very concisely in Cubical Agda, consider the Eckmann-Hilton
argument. It says that path composition in higher loop spaces is commutative and can be
proved using a single \texttt{transport} with the unit laws for \(\texttt{-,-}\) and some interval operations.

\[
\begin{align*}
\texttt{EH} : \{ n : \mathbb{N} \} & \quad (p : \Omega^n (2 + n) A) \to p \cdot q \equiv q \cdot p \\
\texttt{EH } p q & \equiv \texttt{transport} (\lambda i \to (\lambda j \to \texttt{rUnit} (p j i)) \cdot (\lambda j \to \texttt{lUnit} (q j i)) \\
& \equiv (\lambda j \to \texttt{lUnit} (q j i)) \cdot (\lambda j \to \texttt{rUnit} (p j i)) \\
& \equiv (\lambda i \to q (j \land i)) \cdot (\lambda j \to p (~ i \lor j)) \cdot (\lambda i \to p (~ i \lor j))
\end{align*}
\]
A type A is not uniquely determined by its points – also (higher) paths in A have to be taken into account. However, for some types, these paths become trivial at some point. We define what this means formally as follows.

Definition 3 (n-types). Given $n \geq -2$, a type A is:

- a (-2)-type if A is contractible (i.e. A is pointed by a unique point).
- an $(n+1)$-type if for all $x, y : A$, $x \equiv y$ is an n-type.

We write n-**Type** for the universe of n-types (at some level ℓ).

Equivalently, we could have said that, for $n \geq -1$, A is an n-type if $\Omega^{n+1} A$ is contractible for any choice of base point $a : A$. We follow HoTT/UF terminology and refer to (-1)-types as propositions and 0-types as sets. A type is a proposition iff all of its elements are path-equal.

Sometimes we are only interested in the structure of a type A and its paths up to a certain level n. That is, we want to turn A into an n-type while preserving the structure of A for levels less than or equal to n. This can be achieved using the n-truncation HITs $\| A \|_n$.

Just like for S^n, these are easily defined in Cubical Agda for fixed n, but for general $n \geq -2$ we rely on the “hub and spoke” construction [38, Section 7.3]. This construction introduces a point constructor $_|_ : A \rightarrow \| A \|_n$ and constructors *hub* and *spoke* ensuring that any map $S^{n+1} \rightarrow \| A \|_n$ is constant (thus contracting $\Omega^{n+1} \| A \|_n$). Using pattern-matching, we can define the usual elimination principle which says: given $B : \| A \|_n \rightarrow n$-**Type**, in order to construct an element of type $B x$, we may assume that x is of the form $| a |$ for some $a : A$. This extends to paths $p : | x | \equiv | y |$ in $\| A \|_{n+1}$. Suppose we have $B : | x | \equiv | y | \rightarrow n$-**Type** and want to construct $B p$. The elimination principle tells us that it suffices to do so when $p = \text{cong} | _ | q$ for $q : x \equiv y$ in A. This is motivated by [38, Theorem 7.3.12].

Truncations allow us to talk about how connected a type is.

Definition 4 (Connectedness). A type A is n-connected if $\| A \|_n$ is contractible.

Connectedness expresses in particular that $| x | \equiv | y |$ holds in $\| A \|_n$ for all $x, y : A$ of an n-connected type A. This enables applications of the induction principle for truncated path spaces discussed above. Most types in this paper are 0-connected. For such types, we can assume that $x \equiv y$ holds for $x, y : A$ whenever we are proving a family of propositions.

Another important class of HITs are pushouts. These correspond to homotopy pushouts in topology. Given $f : A \rightarrow B$ and $g : A \rightarrow C$, the pushout of the span $B \leftarrow A \rightarrow C$ is:

```agda
data Pushout (f : A → B) (g : A → C) : Type where
  inl : B → Pushout f g
  inr : C → Pushout f g
  push : (a : A) → inl (f a) ≡ inr (g a)
```

Many types that we have seen so far can be defined as pushouts. For instance, $\text{Susp} A$ is equivalent to the pushout of the span $\mathbb{1} \leftarrow A \rightarrow \mathbb{1}$. Another example is wedge sums:

Definition 5 (Wedge sums). Given pointed types A and B, the wedge sum $A \lor B$ is the pushout of the span $A \leftarrow \mathbb{1} \rightarrow B$. This is pointed by $\text{inl} \ast_A$.

1 For $n = -2$ this construction fails. In this case, simply let $\| A \|_{-2} = \mathbb{1}$ where $\mathbb{1}$ is the unit type.
2.3 Univalence

One of the most important notions in HoTT/UF is Voevodsky’s univalence axiom [41]. Informally, this postulates that for all types \(A \) and \(B \), there is a term

\[
\text{univalence} : (A \simeq B) \simeq (A \equiv B)
\]

Here, \(A \simeq B \) is the type of functions \(e : A \to B \) equipped with a proof that the fiber/preimage of \(e \) is contractible at every \(x : B \) [38, Chapter 4.4]. This axiom is a provable theorem in Cubical Agda using the Glue types of [14, Section 6]. This gives a function \(\text{ua} : A \simeq B \to A \equiv B \) which converts equivalences to paths. Transporting along a path constructed using \(\text{ua} \) applies the function \(e \) of the underlying equivalence.

Equivalences \(A \simeq B \) are often constructed by exhibiting functions \(f : A \to B \) and \(g : B \to A \) together with proofs that they cancel. Such a quadruple is referred to as a quasi-equivalence in [38]. It is a corollary of [38, Theorem 4.4.5] that all quasi-equivalences can be promoted to equivalences. This fact is used throughout the formalization and paper.

An important consequence of univalence is that it also applies to structured types. A structure on types is simply a function \(S : \text{Type} \to \text{Type} \). By taking the dependent sum of this, one obtains types with \(S \)-structures as pairs \((A, s) : \Sigma_{A : \text{Type}} (S A) \). One example is the type of groups. This is defined as \((G, \text{isGroup} G) \), where \(\text{isGroup} G \) is a structure which consists of proofs that \(G \) is a set, is pointed by some \(0_G : G \), admits a binary operation \(+_G \), and satisfies the usual group laws. In [2], a notion of univalent structure and structure preserving isomorphisms \(\simeq \), for which it is direct to prove that \(\text{ua} \) induces a function \(\text{sip} : A \simeq B \to A \equiv B \), are introduced in Cubical Agda. This is one way to formalize the informal Structure Identity Principle (SIP) [38, Section 9.8]. One can show that \(\text{isGroup} \) (with group isomorphism) is a univalent structure and that equivalences \(e : G \simeq H \) sending \(+_G \) to \(+_H \) preserve this structure. In other words: \(\text{sip} \) implies that isomorphic groups are path-equal.

3 Integral cohomology in Cubical Agda

In classical mathematics, the \(n \)th cohomology group with coefficients in an abelian group \(G \) of a CW-complex \(X \) may be characterized as the group of homotopy classes of functions \(X \to K(G, n) \). Here, \(K(G, n) \) denotes the \(n \)th Eilenberg-MacLane space of \(G \). That is, \(K(G, n) \) is the unique space with a single non-trivial homotopy group isomorphic to \(G \), i.e. \(\pi_n(K(G, n)) \cong G \) and \(\pi_m(K(G, n)) \cong 1 \) for \(m \neq n \). While this is a theorem in classical mathematics, we take it as our definition of the \(n \)th cohomology group of a type \(A \):

\[
H^n(A; G) = \| A \to K(G, n) \|_0
\]

This type will inherit the group structure\(^2\) from \(K(G, n) \) and the goal of this section is to define this explicitly when \(G = \mathbb{Z} \). The group structure which we will define here differs (intensionally) from previous variations in that it is optimized for efficient computations.

3.1 Eilenberg-MacLane spaces

The family of spaces \(K(G, n) \) was constructed as a HIT and proved to be an \(n \)-truncated and \((n-1) \)-connected pointed type by Licata and Finster [26]. In this paper, we focus on the case \(G = \mathbb{Z} \) and define this special case following Brunerie [5, Def. 5.1.1]:

\(^2\) Technically, \(K(G, n) \) is a higher group – it is not a set, but satisfies all other group axioms.
Definition 6. The nth Eilenberg-MacLane space of \mathbb{Z}, written K_n, is a pointed type:
\[
K_n = \begin{cases}
(\mathbb{Z}, 0) & \text{if } n = 0 \\
(\|S^n\|_n \mid *_{S^n}) & \text{if } n \geq 1
\end{cases}
\]

We write $H^n(A)$ for $H^n(A; \mathbb{Z})$ with K_n for $K(\mathbb{Z}, n)$. The type K_n is clearly n-truncated and the fact that it is $(n-1)$-connected follows from the following proposition.

Proposition 7. S^n is $(n-1)$-connected for $n : \mathbb{N}$.

Proof. By the definition of $(n-1)$-truncation, the map $|_| : S^n \to \|S^n\|_{n-1}$ is constant. Hence, $\|S^n\|_{n-1}$ has a trivial constructor and must be contractible. \blacklozenge

Note that, in particular, K_n is 0-connected for $n > 0$; it is an easy lemma that any m-connected type is also k-connected for $k < m$. Alternatively, one may prove 0-connectedness of K_n directly by truncation elimination and sphere elimination.

The above proof is much more direct than the one in [5, Prop. 2.4.2] which relies on general results about connectedness of pushouts. The reason we prefer this more direct, but less general proof, is that it computes much faster. The problem seems to be that the general theory of connectedness heavily uses univalence. In particular, it relies on repeated use of [38, Thm. 7.3.12] which says that the type of paths $|x| \equiv |y|$ over $\|A\|_{n+1}$ is equivalent to the type of truncated paths $\|x \equiv y\|_n$.

A more substantial deviation from [5] is in the definition of the group structure on K_n. This is defined in [5, Prop. 5.1.4] using $K_n \simeq \Omega K_{n+1}$ which itself is proved using the Hopf fibration [38, Section 8.5] when $n = 1$ and the Freudenthal suspension theorem [38, Section 8.6] when $n \geq 2$. This gives rather indirect definitions of addition and negation on K_n by going through ΩK_{n+1}. It turns out that these indirect definitions lead to slow computations [28]. To circumvent this, we give a direct definition of the group structure on K_n which in turn gives a direct proof that $K_n \simeq \Omega K_{n+1}$ inspired by the proof that $\Omega S^1 \simeq \mathbb{Z}$ of Licata and Shulman [27]. The strategy of first defining the group structure on K_n to then prove that $\Omega K_{n+1} = K_n$ is similar to the one for proving the corresponding statements for general $K(G, n)$ in [26]. However, we deviate in that we avoid the Freudenthal suspension theorem and theory about connectedness.

The neutral element of K_n is $*_{K_n}$ and we denote it by 0_n. In order to prove that K_n is a (higher) group, we first define addition $+_k : K_n \to K_n \to K_n$. The following lemma is the key for doing this. It is a special case of [38, Lemma 8.6.2], but the proof does not rely on general theory about connected types.

Lemma 8. Let $n, m \geq 1$ and suppose we have a fibration $P : S^n \times S^m \to (n+m-2)$-Type together with functions
\[
f_l : (x : S^n) \to P(x, *_{S^m}) \quad f_r : (y : S^m) \to P(*_{S^n}, y)
\]
and a path $p : f_l \equiv f_r \equiv f_l \equiv f_r$. There is a function $f : (z : S^n \times S^m) \to Pz$ with paths
\[
left : (x : S^n) \to f_l x \equiv f(x, *_{S^m}) \quad right : (y : S^m) \to f_r y \equiv f(*_{S^n}, y)
\]
such that $p \equiv left *_{S^m} \cdot (right *_{S^n})$. Furthermore, either left or right holds definitionally (modulo pattern matching on n and m).

Proof. By sphere induction on both S^n and S^m. For details, see the formalization. \blacklozenge
The general version of Lemma 8 is used for $K(G, n)$ in [26]. The advantage of the above form is the definitional reductions which follow from use of sphere addition in its proof. Consequently, we may define $+_k$ so that e.g. $0_k +_k |x| \equiv |x|$ holds definitionally. This allows for statements and proofs which would otherwise not be well-typed.

We define $+_k : K_n \to K_n \to K_n$ and $-_k : K_n \to K_n$ by cases on n. When $n = 0$, these are integer addition and negation. Otherwise, we consider the following cases:

When $n = 1$, we define $+_k$ and $-_k$ by cases:

$$
\begin{align*}
| \text{base} | +_k |x| &= |x| & -_k | \text{base} | &= | \text{base} | \\
| \text{loop } i | +_k | \text{base} | &= | \text{loop } i | & -_k | \text{loop } i | &= | \text{loop } (_i) | \\
| \text{loop } i | +_k | \text{loop } j | &= | Q i j |
\end{align*}
$$

where Q is a suitable filler of a square with loop on all sides. The filler Q is easily defined by an hcomp so that $\text{cong}_2 (\lambda x y \to |x| +_k |y|) \text{loop } \text{loop } \equiv \text{cong } |_\equiv | \text{loop } \text{loop }$ holds definitionally. We will, from now on, with some abuse of notation, simply write loop for the canonical loop in K_1, i.e. $\text{cong } |_\equiv | \text{loop }$.

When $n \geq 2$, we need to construct a map $S^n \times S^n \to K_n$ to define addition. Because K_n is n-truncated, it is also an $(n + n - 2)$-Type. By Lemma 8, we are done if we can provide two maps $S^n \to K_n$ and prove that they agree on $*_S^n$. In both cases we choose the truncation map $\lambda x \to |x|$. We then just need to prove that $|*_S^n| \equiv |_*S^n|$, which we do by refl.

To construct $-_k$, we send $|\text{north}|$ and $|\text{south}|$ to 0_k and $|\text{merid } a i| \to \sigma_n a (_i)$. Here, σ_n is the map from the Freudenthal equivalence [38, Section 8.6] defined by:

$$
\begin{align*}
\sigma_n : K_n &\to \Omega K_{n+1} \\
\sigma_n |x| &\equiv \text{cong } |_\equiv | (\text{merid } x \cdot (\text{merid } _*S^n) ^{-1})
\end{align*}
$$

The fact that $+_k$ and $-_k$ satisfy the group laws follows from Lemma 8. In fact, all group laws either hold by refl or have proofs that are at least path-equivalent to refl at 0_k. This in turn simplifies many later proofs and improves the efficiency of computations. We write $\text{lUnit}_k/\text{rUnit}_k$ for the left/right unit laws and $\text{lCancel}_k/\text{rCancel}_k$ for the left/right inverse laws.

The definition of $+_k$ for $n \geq 2$ may seem naive. However, it provably agrees with the definition given in [5, Prop. 5.1.4]. In fact, a simple corollary of Lemma 8 is that there is at most one binary operation on K_n with lUnit_k and rUnit_k such that $\text{lUnit}_k 0_k \equiv \text{rUnit}_k 0_k$ (i.e. there is at most one h-structure [26, Def. 4.1] on K_n). The fact that this is satisfied by $+_k$ holds by refl. The same result was proved for the addition of $[5, \text{Prop. 5.1.4}]$ in [28].

The group structure on K_n allows us to extend the usual encode-decode proof that $\mathbb{Z} \simeq \Omega S^1$ (or, equivalently, $K_0 \simeq \Omega K_1$) to K_n with $n \geq 1$. We should note that a similar proof was used in [26] in order to prove that $\Omega K_1 \simeq \pi_1 (K(G, 1))$.

Theorem 9. $K_n \simeq \Omega K_{n+1}$

Proof. The proof is a direct encode-decode proof involving $+_k$ and σ_n. As usual, this proof technique uses univalence. The details can be found in the formalization. ⊢

In addition to this, the direct definition of $+_k$ gives a short proof that ΩK_n is commutative.

Lemma 10. For $n \geq 1$ and $p, q : \Omega K_n$, we have $p \cdot q \equiv \text{cong}_2 +_k p q$.

Proof. First, we remark that the statement is well-typed due to the definitional equality $0_k +_k 0_k \equiv 0_k$. Recall, $p, q : 0_k \equiv 0_k$ and $\text{cong}_2 +_k p q$ is of type $0_k +_k 0_k \equiv 0_k +_k 0_k$. CSL 2022
Using this definitional equality, we may apply \(r\text{Unit}_k \) and \(l\text{Unit}_k \) pointwise to \(p \) and \(q \):

\[
P ≡ \text{cong} (\lambda x → x +_k 0_k) \; p \quad \text{and} \quad Q ≡ \text{cong} (\lambda y → 0_k +_k y) \; q
\]

By functoriality of \(\text{cong}_2 \), we get

\[
P \cdot Q ≡ \text{cong} (\lambda x → x +_k 0_k) \; P \cdot \text{cong} (\lambda y → 0_k +_k y) \; Q ≡ \text{cong}_2 +_k P \; q \quad \text{and} \quad Q \cdot P ≡ \text{cong}_2 +_k Q \; p \; Q
\]

\[\blacktriangleright \text{Lemma 11.} \quad \text{For } n \geq 1 \text{ and } p, q : ΩK_n, \text{ we have } \text{cong}_2 +_k p \; q ≡ \text{cong}_2 +_k q \; p.\]

\[\blacktriangleright \text{Proof.} \quad \text{By a very similar argument as in Lemma 10, but using commutativity of } +_k.\]

\[\blacktriangleright \text{Theorem 12.} \quad ΩK_n \text{ is commutative with respect to path composition.}\]

\[\text{Proof.} \quad \text{As } \mathbb{Z} \text{ is a set, this is trivial for } n = 0. \quad \text{For } n \geq 1 \text{ it follows from Lemmas 10 and 11.}\]

An alternative proof of Theorem 12 can be found in [5, Prop. 5.1.4]. In that proof, one first translates \(ΩK_n \) into \(Ω^2 K_{n-1} \), applies the Eckmann-Hilton argument and then translates back. This translation back-and-forth is problematic from a computational point of view, and the proof of Theorem 12 is more computationally efficient.

3.2 Group structure on \(H^n(A) \)

We now return to \(H^n(A) \) and define \(0_n = |\lambda x → 0_k| \) together with the group operations:

\[
|f| +_k |g| = |\lambda x → f x +_k g x| \quad \text{and} \quad |f| -_k = |\lambda x → -_k f x|
\]

The fact that \((H^n(A), 0_n, +_k, -_k) \) forms an abelian group follows immediately from the group laws for \(K_n \) and \(\text{funExt} \). We have also defined a reduced version of our cohomology theory and proved that it satisfies the Eilenberg-Steenrod axioms [16]. We refer the interested reader to the formalization for the statement and verification of these axioms. This allows us to use abstract machinery to characterize cohomology groups of many spaces. However, in order to obtain definitions with good computational properties, we often prefer giving direct characterizations not relying on abstract results.

4 The cup product and cohomology ring

We will now equip the cohomology groups studied in the previous section with a multiplicative structure \(\cdot : H^n(A) → H^m(A) → H^{n+m}(A) \). This operation is called the cup product and it turns the \(H^n(A) \) into a graded commutative ring \(H^*(A) \) called the cohomology ring of \(A \).

4.1 Defining the cup product in Cubical Agda

The cup product \(\cdot \) for \(\mathbb{Z} \)-cohomology in HoTT/UF was introduced by Brunerie [5, Section 5.1]. The definition is induced from a pointed map \(K_n ∧ K_m →_s K_{n+m} \), where \(∧ \) is the smash product HIT. This HIT has proved to be surprisingly complex to reason about formally [6] and we therefore consider an alternative definition of \(\cdot \). The key observation in this reformulation is the pointed equivalence of \(A ∧ B →_s C \) and \(A →_s B →_s C \) proved in HoTT/UF by van Doorn [39, Thm 4.3.8]. We hence construct \(\cdot \) by first defining a pointed map \(x ∗_k y : K_n → K_m → K_{n+m} \) by induction on \(n \), thereby avoiding the smash product. When \(n = 0 \), this map just adds \(y \) to itself \(x \) times and similarly when \(m = 0 \). When \(n, m ≥ 1 \), the key lemma is:
Lemma 13. The type $K_m \to K_{n+m}$ is an n-type.

Proof. This is a special case of [9, Corollary 4.3]. We have formalized a direct proof of this special case which does not rely on any explicit connectedness arguments.

Truncation elimination can hence be applied and we only need to define $|a| \rightsquigarrow_k y$ for $a : S^n$.

$$\begin{align*}
|\text{base}| & \rightsquigarrow_k y = 0_k \\
|\text{loop } i| & \rightsquigarrow_k y = \sigma_m y i \\
|\text{merid } a \ i| & \rightsquigarrow_k y = \sigma_{(n-1)+m} (|a| \rightsquigarrow_k y) i
\end{align*}$$

The fact that $\lambda y \to x \rightsquigarrow_k y$ is pointed for $x : K_n$ follows easily. In addition, we get pointedness in x immediately by construction. With this simple definition, we can now define the cup product $\rightsquigarrow : H^n(A) \to H^m(A) \to H^{n+m}(A)$ analogously to $+_h$ by:

$$|f| \rightsquigarrow |g| = |\lambda x \to f x \rightsquigarrow_k g x|$$

4.2 The cohomology ring

We will now prove that \rightsquigarrow turns $H^n(A)$ into a graded ring. First of all, as \rightsquigarrow_k is pointed in both arguments, we get that $x \rightsquigarrow 0_k \equiv 0_k \equiv 0_k \rightsquigarrow y$. Furthermore, it is easy to see that $1_h = |\lambda x \to 1| \equiv H^0(A)$ is a unit for \rightsquigarrow. The key lemma for proving properties of \rightsquigarrow_k is:

Lemma 14. Given a pointed type A and two pointed functions $(f,p), (g,q) : A \to K_n$, we have that if $f \equiv g$ then $(f,p) \equiv (g,q)$.

Proof. This is proved using a notion of homogeneous types, see the formalization.

In order to increase readability, we omit transports in Propositions 15, 17, and 18. We first verify that \rightsquigarrow_k distributes over $+_k$.

Proposition 15. For $z : K_n$ and $x, y : K_m$, we have $z \rightsquigarrow_k (x +_k y) \equiv z \rightsquigarrow_k x +_k z \rightsquigarrow_k y$ and $(x +_k y) \rightsquigarrow_k z \equiv x \rightsquigarrow_k z +_k y \rightsquigarrow_k z$.

Proof. We sketch the proof for left distributivity and focus on the case when $n, m \geq 1$. We want to show that $\lambda z \to z \rightsquigarrow_k (x +_k y)$ and $\lambda z \to z \rightsquigarrow_k x +_k z \rightsquigarrow_k y$ are equal as pointed functions. This allows for truncation elimination on f and y by Lemma 13. Thus we want to show that $z \rightsquigarrow_k (|a| +_k b) \equiv z \rightsquigarrow_k a +_k z \rightsquigarrow_k |b|$, for $a, b : S^m$. We are proving an $(m - 1)$-type and Lemma 8 applies. Hence we need to construct

$$\begin{align*}
f_l : (a : S^n) & \to z \rightsquigarrow_k (|a| +_k 0_k) \equiv z \rightsquigarrow_k |a| +_k z \rightsquigarrow_k 0_k \\
f_r : (b : S^m) & \to z \rightsquigarrow_k (0_k +_k b) \equiv z \rightsquigarrow_k 0_k +_k z \rightsquigarrow_k |b|
\end{align*}$$

such that $f_l(*) \equiv f_r(*)$. By Lemma 14, we only need to construct f_l and f_r for the underlying functions. We get f_l and f_r by applications of $\text{Unit}_k/\text{rUnit}_k$ and the law of right multiplication by 0_k. Due to definitional equalities at 0_k, $f_l(*) \equiv f_r(*)$ holds by refl.

In order to prove that \rightsquigarrow_k is associative, we need the following lemma:

Lemma 16. Let $n, m \geq 1$. For $x : K_n$ and $y : K_m$, $\sigma_{n+m}(x \rightsquigarrow_k y) \equiv \text{cong} (\rightsquigarrow_k y) (\sigma_n x)$.

Lemma 16 occurs in [5, Prop. 6.1.1], albeit for a different definition of \rightsquigarrow. Interestingly, Brunerie does not use it to prove associativity of \rightsquigarrow_k, but to construct the Gysin sequence.
Proposition 17. For \(x : K_n, y : K_m \) and \(z : K_\ell \), we have \(x \bowtie_k (y \bowtie_k z) \equiv (x \bowtie_k y) \bowtie_k z \).

Proof. The proof is easy when one of \(n, m \) or \(\ell \) is 0. When \(n, m, \ell \geq 1 \), we want to show that \(\lambda z y \to x \bowtie_k (y \bowtie_k z) \) and \(\lambda z y \to (x \bowtie_k y) \bowtie_k z \) are equal as doubly pointed functions, i.e. as terms of \(K_n \to K_y \to K_{n+m+\ell} \). This is an \(n \)-type by repeated use of Lemma 13 and we may let \(x = a \) for \(a : K_n \). We again only need to prove the underlying functions equal. We do this by induction on \(n \). For \(n = 1 \), the case \(a = \text{base} \) holds by \text{refl}. In the case \(a = \text{loop} \), we need to prove that \(\sigma_{n+\ell}(y \bowtie_k z) \equiv \text{cong} (\bowtie_k z) (\sigma_m y) \) which is Lemma 16. The \(n \geq 2 \) case follows by an analogous argument using the inductive hypothesis.

Finally, we can verify that \(\bowtie_k \) is graded commutative.

Proposition 18. For \(x : K_n \) and \(y : K_m \), we have \(x \bowtie_k y \equiv \bowtie_k^{m,n} (y \bowtie_k x) \).

Proof. The proof is by induction on \(n \) and \(m \). Due to space constraints, we omit the base cases and focus on the inductive step where \(n, m \geq 2 \) (the case \(n = 1 \) and \(m \geq 1 \) is close to identical). We may assume as our inductive hypothesis that the statement holds for all \(n', m' : \mathbb{N} \) such that \(n' + m' < n + m \). The proof boils down to showing that

\[
\lambda i j \to |\text{merid} a \ i| \bowtie_k |\text{merid} b \ j| \equiv \lambda i j \to \bowtie_k^{m,n} (|\text{merid} b \ j| \bowtie_k |\text{merid} a \ i|)
\]

ignoring coherence paths and transports. Here, \(a : S^{n-1} \) and \(b : S^{m-1} \). We fix \(i \) and \(j \) and give a rough outline of the argument. We have:

\[
|\text{merid} a \ i| \bowtie_k |\text{merid} b \ j| \equiv \sigma_{n+m-1}(|a| \bowtie_k |\text{merid} b \ j|) i
\]

\[
\equiv \bowtie_k^{m(n-1)} (\sigma_{n+m-1}(|\text{merid} b \ j| \bowtie_k |a|) i)
\]

\[
\equiv \bowtie_k^{m(n-1)} (\sigma_{n+m-1}(\sigma_{n+m-2}(|b| \bowtie_k |a|) j) i)
\]

\[
\equiv \bowtie_k^{m(n-1)} (\sigma_{n+m-1}(\sigma_{n+m-2}(\sigma_{n+m-2}(|a| \bowtie_k |b|) j) i)
\]

\[
\equiv \bowtie_k^{n+1} (\sigma_{n+m-1}(\sigma_{n+m-2}(|a| \bowtie_k |b|) j) i)
\]

\[
\equiv \bowtie_k^{n+1} (\sigma_{n+m-1}(\sigma_{n+m-1}(|\text{merid} a \ j| \bowtie_k |b|) i)
\]

\[
\equiv \bowtie_k^{n+1} (\sigma_{n+m-1}(|\text{merid} a \ j| \bowtie_k |\text{merid} a \ j|)
\]

\[
\equiv \bowtie_k^{m-1} (|\text{merid} b \ i| \bowtie_k |\text{merid} a \ j|)
\]

\[
\equiv \bowtie_k^{m-1} (|\text{merid} b \ i| \bowtie_k |\text{merid} a \ j|)
\]

The above chain of equalities repeatedly uses that for a path \(p : \Omega^2 A \), we have \((\lambda i j \to p \ j \ i) \equiv p^{-1} \), and for a path \(q : \Omega K_n \), we have \(\text{cong} \bowtie_k q \equiv q^{-1} \). The remaining steps are just unfoldings of the definition of \(\bowtie_k \) and applications of the inductive hypothesis and \(\sigma_n(\bowtie_k x) \equiv \text{cong} \bowtie_k (\sigma_n x) \).

Although this informal argument is fairly direct, the formal version is much more technical as we also have to verify that the proof sketched above respects the boundary constraints (i.e. our choices of paths for the point constructors). As we also need to express many of these equalities using \text{PathP} or \text{transport} (over paths in \(\mathbb{N} \)), things become even more complicated.

The cup product \(\bowtie \) inherits the properties of \(\bowtie_k \) and we can hence organize \(H^n(A) \) into a graded commutative ring \(H^*(A) \).
5 Characterizing integral cohomology groups

We will now characterize \(H^n(A) \) for \(A \) being the spheres, torus, Klein bottle, and real/complex projective planes. The cases when \(H^n(A) \sim \mathbb{1} \) for \(n \geq 1 \) are easy using connectedness arguments (see the formalization). It is also an easy lemma that \(H^n(X) \sim \mathbb{Z} \) if \(X \) is 0-connected, which is the case for all types considered here. The main focus in this section will hence be on the non-trivial \(H^n(A) \) with \(n \geq 1 \). Furthermore, we only focus on the equivalence parts of the characterizations, but we emphasize that all cases, including homomorphism proofs, have been formalized.

5.1 Spheres

The key to characterizing the cohomology groups of \(S^n \) is the Suspension axiom for cohomology. This axiom says that \(H^n(A) \sim H^{n+1}(\operatorname{Susp} A) \) and a proof can be found in the formalization. Recall that \(S^{m+1} = \operatorname{Susp} S^m \) for \(m \geq 1 \) and thus we have that \(H^{n+1}(S^{m+1}) \sim H^n(S^m) \).

Proposition 19. \(H^n(S^n) \sim \mathbb{Z} \) for \(n \geq 1 \).

Proof. By Suspension and induction, it suffices to consider the \(n = 1 \) case. We inspect the underlying function space of \(H^1(S^1) \), i.e. \(S^1 \to K_1 \). A map \(f : S^1 \to K_1 \) is uniquely determined by \(f \) base \(: K_1 \) and cong \(f \) loop \(: f \) base \(\equiv f \) base. Thus, we have \(H^1(S^1) \sim \| \sum_{x : K_1} x \equiv x \|_0 \).

By a base change we get \((x \equiv x) \equiv (0_k \equiv 0_k) \) for any \(x : K_1 \). Hence

\[
H^1(S^1) \sim \| K_1 \times \Omega K_1 \|_0 \sim \| K_1 \|_0 \times \| \Omega K_1 \|_0 \sim \| \Omega S^1 \|_0 \sim \mathbb{Z}
\]

5.2 The torus

The torus HIT, \(T^2 \), is defined as follows:

\[
data T^2 : Type where
pt : T^2
\ell_1 \ell_2 : pt \equiv pt
\Box : PathP (\lambda i \to \ell_2 i \equiv \ell_2 i) \ell_1 \ell_1
\]

The constructor \(\Box \) corresponds to the usual gluing diagram for constructing the torus in classical topology as it identifies \(\ell_1 \) with itself over an identification of \(\ell_2 \) with itself. As discussed in the introduction, proving \(T^2 \equiv S^1 \times S^1 \) is easy in Cubical Agda. This allows us to curry \(T^2 \to K_n \), which is the key step to prove Propositions 20 and 21.

Proposition 20. \(H^1(T^2) \sim \mathbb{Z} \times \mathbb{Z} \)

Proof. We inspect the underlying function space \(T^2 \to K_1 \), which is equivalent to \(S^1 \to (S^1 \to K_1) \). From Proposition 19, we know that \((S^1 \to K_1) \sim K_1 \times \Omega K_1 \sim K_1 \times \mathbb{Z} \). Hence

\[
H^1(T^2) \sim \| S^1 \to K_1 \times \mathbb{Z} \|_0 \sim \| S^1 \to K_1 \|_0 \times \| S^1 \to \mathbb{Z} \|_0 \equiv H^1(S^1) \times H^0(S^1) \sim \mathbb{Z} \times \mathbb{Z}
\]

Proposition 21. \(H^2(T^2) \sim \mathbb{Z} \)

Proof. The underlying function space, post currying, is \(S^1 \to (S^1 \to K_2) \). Like above, this is \((S^1 \to K_0 \times \Omega K_2) \equiv (S^1 \to K_0 \times K_1) \equiv (S^1 \to K_2) \times (S^1 \to K_1) \). Hence

\[
H^2(T^2) \sim \| (S^1 \to K_2) \times (S^1 \to K_1) \|_0 \sim H^2(S^1) \times H^1(S^1) \sim \mathbb{Z}
\]

CSL 2022
5.3 The Klein bottle and real projective plane

The Klein bottle and real projective plane are also HITs, but with twists in □ just like in the classical gluing diagrams:

\[
\text{data } K^2 : \text{Type where} \\
\quad \begin{aligned}
\text{pt} : K^2 \\
\ell_1, \ell_2 : \text{pt} \equiv \text{pt} \\
\Box : \text{Path} K (\lambda i \to \ell_2 (\sim i) \equiv \ell_2 i) \ell_1, \ell_1 \\
\end{aligned}
\]

\[
\text{data } RP^2 : \text{Type where} \\
\quad \begin{aligned}
\text{pt} : RP^2 \\
\ell : \text{pt} \equiv \text{pt} \\
\Box : \ell \equiv \ell^{-1} \\
\end{aligned}
\]

Note that □ for \(K^2 \) equivalently may be interpreted as the path \(\ell_2 \cdot \ell_1 \cdot \ell_2 \equiv \ell_1 \). To characterize the cohomology groups of \(K^2 \), we need to understand their underlying function spaces. It is easy to see that

\[
\left(K^2 \to K_n \right) \simeq \sum_{x : K_n} \sum_{p, q : x \equiv x} (p \cdot q \cdot p \equiv q)
\]

By Theorem 12, in \(\Omega K_n \) is commutative, so \((p \cdot q \cdot p \equiv q) \simeq (p \cdot p \equiv \text{refl}) \). Hence

\[
\left(K^2 \to K_n \right) \simeq \sum_{x : K_n} \left((x \equiv x) \times \sum_{p : x \equiv x} (p \cdot p \equiv \text{refl}) \right)
\]

for some

\[
\begin{aligned}
\Box : \text{Path} K (\lambda i \to \ell_2 (\sim i) \equiv \ell_2 i) \ell_1, \ell_1 \\
\end{aligned}
\]

\[\Box : \ell \equiv \ell^{-1}\]

\[\Box : \ell \equiv \ell^{-1}\]

\[\Box : \ell \equiv \ell^{-1}\]

\[
\text{Proposition 22. } H^1(\mathbb{K}^2) \simeq \mathbb{Z}
\]

\[
\text{Proof.} \quad \text{Note that for } x : K_1, \text{ we have that } \sum_{p : x \equiv x} (p \cdot p \equiv \text{refl}) \simeq \sum_{a : \mathbb{Z}} (a + a \equiv 0) \simeq 1.
\]

This allows us to simplify (1) and get

\[
H^1(\mathbb{K}^2) \simeq \| K^2 \to K_1 \|_0 \simeq \| \sum_{x : K_1} (x \equiv x) \|_0 \simeq H^1(\mathbb{S}^1) \simeq \mathbb{Z}
\]

\[
\text{Lemma 23.} \quad \text{For } n : \mathbb{Z}, \text{ define } p : \| \sum_{x : K_1} (x +_n x \equiv 0_k) \|_0 \text{ by } p = | (0_k, \text{loop}^n) |. \text{ We have } p \equiv | (0_k, \text{refl}) | \text{ if } n \text{ is even and } p \equiv | (0_k, \text{loop}) | \text{ if } n \text{ is odd.}
\]

\[
\text{Proposition 24. } H^2(\mathbb{K}^2) \simeq \mathbb{Z}/2\mathbb{Z}
\]

\[
\text{Proof.} \quad \text{Using } 0\text{-connectedness of } K_2 \text{ and } (x \equiv x) \text{ for } x : K_2, \text{ it is easy to see that, by truncating both sides of (1), we get}
\]

\[
H^2(\mathbb{K}^2) \simeq \| \sum_{p : K^2} (p \cdot p \equiv \text{refl}) \|_0
\]

Using the equivalence \(\Omega K_2 \simeq K_1 \) and the fact that it takes path composition to addition, this can be further simplified to \(\| \sum_{x : K_1} (x +_k x \equiv 0_k) \|_0 \). It is easy to see that for any \(p : \| \sum_{x : K_1} (x +_k x \equiv 0_k) \|_0 \), we have that \(p \equiv | (0_k, \text{loop}^n) | \) for some \(n : \mathbb{N} \). We map \(p \) into \(\mathbb{Z}/2\mathbb{Z} \) by sending it to \(0 \) if \(n \) is even and \(1 \) if \(n \) is odd. As an immediate consequence of Lemma 23, this map must be an equivalence, and thus we are done.

The attentive reader will have noticed that something reminiscent of the real projective plane, \(RP^2 \), appears in both proofs in this section. We characterize \(H^n(RP^2) \) for \(n \geq 1 \) by

\[
\| RP^2 \to K_n \|_0 \simeq \| \sum_{x : K_n} \sum_{p : x \equiv x} (p \equiv p^{-1}) \|_0 \simeq \| \sum_{x : K_n} \sum_{p : x \equiv x} (p \cdot p \equiv \text{refl}) \|_0
\]

When \(n \) is 1 or 2, this is precisely one of the types appearing in the proofs of Propositions 22 and 24 respectively, so \(H^1(RP^2) \simeq 1 \) and \(H^2(RP^2) \simeq \mathbb{Z}/2\mathbb{Z} \).
5.4 The complex projective plane

We define the complex projective plane, \(\mathbb{C}P^2 \), as the pushout of the span \(S^2 \xleftarrow{h} S^3 \to \mathbb{I} \) where \(h \) is part of the Hopf fibration [38, Section 8.5]. The function space \(\mathbb{C}P^2 \to K_n \) is quite hard to work with directly, so we settle for an indirect characterization of \(H^n(\mathbb{C}P^2) \) via the Mayer-Vietoris sequence (see the formalization). For \(n \geq 2 \), this gives us an exact sequence:

\[
H^{n-1}(S^2) \to H^{n-1}(S^3) \to H^n(\mathbb{C}P^2) \to H^n(S^2) \to H^n(S^3)
\]

For \(n \in \{3, 5, 6, \ldots \} \), we have that \(H^n(\mathbb{C}P^2) \simeq 1 \), as other groups in the sequence become trivial. When \(n = 2 \), all groups but \(H^2(S^2) \) are trivial, and hence \(H^2(\mathbb{C}P^2) \simeq H^2(S^2) \simeq \mathbb{Z} \). When \(n = 4 \), the only non trivial group is \(H^4(S^3) \), and hence we get \(H^4(\mathbb{C}P^2) \simeq H^4(S^3) \simeq \mathbb{Z} \). A simple connectedness argument finally gives us that \(H^1(\mathbb{C}P^2) \simeq 1 \).

6 Proving by computations in Cubical Agda

One of the appealing aspects of developing cohomology theory in Cubical Agda is that we can prove properties purely by computation. This can discharge proof goals involving complex path algebra as soon as the types are fully instantiated. For example, in Proposition 18 when \(m = n = 1 \), the main subgoal involves compositions paths in \(\Omega^2 K_2 \) which can be reduced to a computation purely involving \(\mathbb{Z} \), using the equivalence \(\Omega^2 K_2 \simeq \mathbb{Z} \). As we have been careful about proving things as directly as possible with efficient computations in mind, this works quite well, but there are some cases which are surprisingly slow in Cubical Agda, and we have collected some benchmarks at https://github.com/agda/cubical/blob/master/Cubical/Experiments/ZCohomology/Benchmarks.agda.

Furthermore, we can use the fact that the isomorphisms compute to establish that some types cannot be equivalent. This is the case for all spaces in the previous section, as they have different cohomology groups. However, there are some spaces where it is not enough to only look at the cohomology groups. We have proved that our cohomology theory satisfies the Binary Additivity axiom which says that \(H^n(A \lor B) \simeq H^n(A) \times H^n(B) \). So we can easily prove that \(S^2 \lor S^1 \lor S^1 \) has the same cohomology groups as \(T^2 \). However, these two types are not equivalent and the standard way to prove this is to use the cup product. We can do this traditional proof computationally in Cubical Agda by defining a predicate \(P : \text{Type} \to \text{Type} \) by \(P(A) = (x y : H^1(A)) \to x \sim y \equiv 0_h \) and show that \(P(S^2 \lor S^1 \lor S^1) \) holds while \(P(T^2) \) does not. In Cubical Agda, we have defined isomorphisms:

\[
\begin{align*}
f_1 : H^1(T^2) &\cong \mathbb{Z} \times \mathbb{Z} \\
f_2 : H^2(T^2) &\cong \mathbb{Z} \\
g_1 : H^1(S^2 \lor S^1 \lor S^1) &\cong \mathbb{Z} \times \mathbb{Z} \\
g_2 : H^2(S^2 \lor S^1 \lor S^1) &\cong \mathbb{Z}
\end{align*}
\]

To disprove \(P(T^2) \) we need \(x, y : H^1(T^2) \) such that \(x \sim y \not\equiv 0_h \). Let \(x = f_1^{-1}(0, 1) \) and \(y = f_1^{-1}(1, 0) \). In Cubical Agda, \(f_2(x \sim y) \equiv 1 \) holds by refl and thus \(x \sim y \not\equiv 0_h \). It remains to prove \(P(S^2 \lor S^1 \lor S^1) \). Let \(x, y : H^1(S^2 \lor S^1 \lor S^1) \). In Cubical Agda, we have that \(g_2(g_1^{-1}(g_1 x) \sim g_1^{-1}(g_1 y)) \equiv 0 \), again by refl, and thus \(g_1^{-1}(g_1 x) \sim g_1^{-1}(g_1 y) \equiv x \sim y \equiv 0_h \).

For a more ambitious example, consider [5, Chapter 6]. This is devoted to proving, using sophisticated techniques like the Gysin sequence, that the generator \(e : H^2(\mathbb{C}P^2) \) when multiplied with itself yields a generator of \(H^4(\mathbb{C}P^2) \). Let \(g : Z \to Z \) be the map described by

\[
\begin{align*}
\mathbb{Z} &\xrightarrow{\cong} H^2(\mathbb{C}P^2) \xrightarrow{\lambda x \mapsto x - x} H^4(\mathbb{C}P^2) \xrightarrow{\cong} \mathbb{Z}
\end{align*}
\]

The number \(g(1) \) should reduce to \(\pm 1 \) for \(e \sim e \) to generate \(H^4(\mathbb{C}P^2) \) and by evaluating it in Cubical Agda we should be able to reduce the whole chapter to a single computation. However, Cubical Agda is currently stuck on computing \(g(1) \). This number can hence be
seen as another “Brunerie number” – a mathematically interesting number which is currently infeasible to compute using an implementation of cubical type theory. This computation should be more feasible than the original Brunerie number. As our definition of \(\sim \) produces very simple terms, most of the work has to occur in the two isomorphisms, and we are optimistic that future optimizations will allow us to perform this computation.

7 Conclusions

We have developed multiple classical results from cohomology theory synthetically in Cubical Agda. This has led to new and more direct constructive proofs than what already existed in the HoTT/UF literature. Furthermore, Section 4 contains the first fully formalized verification of the graded commutative ring axioms for \(\mathbb{Z} \)-cohomology. The key to this is the new definition of \(\sim \) which avoids the smash product. The synthetic characterizations of the cohomology groups of \(\mathbb{R}^2 \) and \(\mathbb{R}P^2 \) are also novel. The proofs have been constructed with computational efficiency in mind, allowing us to make explicit computations involving several non-trivial cohomology groups. In particular, the number \(g(1) \) is another “Brunerie number” which should be more feasible to compute, and its computation would allow us to reduce the complex proofs of [5, Chapter 6] to a single computation. This is hence a new challenge for future improvements of Cubical Agda and related systems like cooltt [37].

Related and future work

In addition to the related work already mentioned in the paper, there is some related prior work in Cubical Agda. Qian [32] formalized \(K(G,1) \) as a HIT, following [26], and proved that it satisfies \(\pi_1(K(G,1)) \equiv G \). Alfieri [1] and Harington [18] formalized \(K(G,1) \) as the classifying space \(BG \) using \(G \)-torsors. Using this, \(H^1(S^1;\mathbb{Z}) \equiv \mathbb{Z} \) was proved – however, computing using the maps in this definition proved to be infeasible. It is not clear where the bottlenecks are, but we emphasize that with the definitions in this paper, there are no problems computing with this cohomology group.

Certified computations of homology groups using proof assistants have been considered prior to HoTT/UF. For instance, the Coq system [36] has been used to compute homology [21] and persistent homology [20] with coefficients in a field. This was later extended to homology with \(\mathbb{Z} \)-coefficients in [10]. The approach in these papers was entirely algebraic and spaces were represented as simplicial complexes. However, a synthetic approach to homology in HoTT/UF was developed informally by Graham [17] using stable homotopy groups. This was later extended with a proof of Hurewicz theorem by Christensen and Scoccola [13]. It would be interesting to see if this could be made formal in Cubical Agda so that we can also characterize and compute with homology groups.

The definition of \(H^*(A) \) in HoTT/UF is due to Brunerie [5, Chapter 5.1]. Here, however, \(\sim \) relies on the smash product which has proved very complex to reason about formally [6]. Despite this, Baumann generalized this to \(H^n(X;G) \) and managed to formalize graded commutativity in HoTT-Agda [4]. Baumann’s formal proof of this property is \(\sim 5000 \) LOC while our formalization is just \(\sim 900 \) LOC. This indicates that it would be infeasible to formalize other algebraic properties of \(H^*(A) \) with this definition. Associativity seems particularly infeasible, but with our definition the formal proof is only \(\sim 200 \) LOC. However, this comparison should be taken with a grain of salt as Baumann proves the result for \(H^n(X;G) \). Nevertheless, we conjecture that our constructions should be relatively easy to generalize to cohomology with coefficients in an arbitrary group.
References

