Existential Definability over the Subword Ordering

Pascal Baumann
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Moses Ganardi
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Ramanathan S. Thinniyam
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Georg Zetzsche
Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract

We study first-order logic (FO) over the structure consisting of finite words over some alphabet \(A \), together with the (non-contiguous) subword ordering. In terms of decidability of quantifier alternation fragments, this logic is well-understood: If every word is available as a constant, then even the \(\Sigma_1 \) (i.e., existential) fragment is undecidable, already for binary alphabets \(A \).

However, up to now, little is known about the expressiveness of the quantifier alternation fragments: For example, the undecidability proof for the existential fragment relies on Diophantine equations and only shows that recursively enumerable languages over a singleton alphabet (and some auxiliary predicates) are definable.

We show that if \(|A| \geq 3 \), then a relation is definable in the existential fragment over \(A \) with constants if and only if it is recursively enumerable. This implies characterizations for all fragments \(\Sigma_i \): If \(|A| \geq 3 \), then a relation is definable in \(\Sigma_i \) if and only if it belongs to the \(i \)-th level of the arithmetical hierarchy. In addition, our result yields an analogous complete description of the \(\Sigma_i \)-fragments for \(i \geq 2 \) of the pure logic, where the words of \(A^* \) are not available as constants.

2012 ACM Subject Classification Theory of computation → Complexity theory and logic; Theory of computation → Logic

Keywords and phrases subword, subsequence, definability, expressiveness, first order logic, existential fragment, quantifier alternation

Digital Object Identifier 10.4230/LIPIcs.STACS.2022.7

1 Introduction

The subword ordering. A word \(u \) is a subword of another word \(v \) if \(u \) can be obtained from \(v \) by deleting letters at an arbitrary set of positions. The subword ordering has been studied intensively over the last few decades. On the one hand, it appears in many classical results of theoretical computer science. For example, subwords have been a central topic in string algorithms [4, 12, 28]. Moreover, their combinatorial properties are the basis for verifying lossy channel systems [1]. Particularly in recent years, subwords have received a considerable amount of attention. Notable examples include lower bounds in fine-grained complexity [8, 9] and algorithms to compute the set of all subwords of formal languages [2, 3, 6, 10, 15, 16, 32, 33, 34]. Subwords are also the basis of Simon’s congruence [31], which has been studied from algorithmic [13, 14] and combinatorial [5, 11, 20, 22] viewpoints.

First-order logic over subwords. The importance of subwords has motivated the study of first-order logics (FO) over the subword ordering. This has been considered in two variants: In the pure logic, one has FO over the structure \((A^*, \preceq)\), where \(A \) is an alphabet and \(\preceq \) is the subword ordering. In the version with constants, we have the structure \((A^*, \preceq, (w)_{w \in A^*})\), which has a constant for each word from \(A^* \). Traditionally for FO, the
primary questions are decidability and definability, particularly regarding quantifier alternation fragments Σ_i. Here, decidability refers to the truth problem: Given a formula φ in a particular fragment over (A^*, \preceq) or $(A^*, \preceq, (w)_{w \in A^*})$, respectively, does φ hold? By definability, we mean understanding which relations can be defined by formulas in a particular fragment. The Σ_1-fragment consists of formulas in prenex form that begin with existential quantifiers and then alternate $i - 1$ times between blocks of universal and existential quantifiers. For example, the formula

$$\exists x: (a \not\preceq x \lor b \not\preceq x) \land x \not\preceq u \land x \preceq v$$

belongs to the Σ_1-fragment, also called the existential fragment over $(A^*, \preceq, (w)_{w \in A^*})$ with $A = \{a, b\}$. The formula has free variables u, v and refers to the constants a and b. It holds if and only if v has more b's or more a's than u.

For FO over subwords, decidability is well-understood. In the pure logic, the Σ_2-fragment is undecidable, already over two letters [17, Corollary III.6], whereas the Σ_1-fragment (i.e., existential formulas) is decidable [25, Theorem 2.2] and NP-complete [21, Theorem 2.1]. This fueled hope that the Σ_1-fragment might even be decidable with constants, but this turned out to be undecidable, already over two letters [17, Theorem III.3]. Decidability (and complexity) have also been studied for the two-variable fragment [22, 26], and extended with counting quantifiers and regular predicates [26, 27].

Nevertheless, little is known about definability. Kudinov, Selivanov, and Yartseva have shown that using arbitrary first-order formulas over (A^*, \preceq), one can define exactly the relations from the arithmetical hierarchy1 that are invariant under automorphisms of (A^*, \preceq) [24, Theorem 5], if $|A| \geq 2$. However, this does not explain definability of the Σ_i-fragments. For example, in order to define all recursively enumerable languages, as far as we can see, their proof requires several quantifier alternations. An undecidability proof by Karandikar and Schnoebelen [21, Theorem 4.6] for the Σ_2-fragment can easily be adapted to show that for each alphabet A, there exists a larger alphabet B such that every recursively enumerable language $L \subseteq A^*$ is definable in the Σ_2-fragment over $(B^*, \preceq, (w)_{w \in B^*})$. However, a full description of the expressiveness of the Σ_2-fragment is missing.

Existential formulas. The expressiveness of existential formulas is even further from being understood. The undecidability proof in [17] reduces from solvability of Diophantine equations, i.e., polynomial equations over integers, which is a well-known undecidable problem [29]. To this end, it is shown in [17] that the relations $ADD = \{(a^m, a^n, a^{m+n}) \mid m, n \in \mathbb{N}\}$ and $MULT = \{(a^m, a^n, a^{m \cdot n}) \mid m, n \in \mathbb{N}\}$ are definable existentially using the subword ordering, if one has at least two letters. Since Diophantine equations can be used to define all recursively enumerable relations over natural numbers, this implies that all recursively enumerable relations involving a single letter are definable existentially. However, this says little about which languages (let alone relations) over more than one letter are definable. For example, it is not clear whether the language of all $w \in \{a, b\}^*$ that do not contain aba as an infix, or the reversal relation $REV = \{(u, v) \mid u, v \in A^*, \ v \text{ is the reversal of } u\}$, are definable – it seems particularly difficult to define them over the subword ordering using the methods from [17].

Contribution. We show that for any alphabet A with $|A| \geq 3$, every recursively enumerable relation $R \subseteq (A^*)^k$, $k \in \mathbb{N}$, is existentially definable in $(A^*, \preceq, (w)_{w \in A^*})$. Since every existentially definable relation is clearly recursively enumerable (via a simple enumerative

1 Also known as the Kleene–Mostowski hierarchy.
algorithm), this completely describes the expressiveness of existential formulas for $|A| \geq 3$. Despite the undecidability of the existential fragment [17], we find it surprising that all recursively enumerable relations – including relations like REV_A – are existentially definable.

Our result yields characterizations of the Σ_i-fragments for every $i \geq 2$: It implies that for each $i \geq 2$, the Σ_i-fragment over $(A^*, \preceq, (w)_{w \in A^*})$ can define exactly the relations in Σ_i^0, the i-th level of the arithmetical hierarchy, assuming $|A| \geq 3$. This also provides a description of Σ_i in the pure logic: It follows that in the Σ_i-fragment over (A^*, \preceq), one can define exactly the relations in Σ_i^0 that are invariant under automorphisms of (A^*, \preceq), if $|A| \geq 3$.

Since [17] shows that all recursively enumerable languages over one letter are definable in $(A^*, \preceq, (w)_{w \in A^*})$ if $|A| \geq 2$, it would suffice to define a bijection between a^* and A^* using subwords. However, since this seems hard to do directly, our proof follows a different route. We first show how to define rational transductions and then a special language from which one can build every recursively enumerable relation via rational transductions and intersections. In particular, a byproduct is a direct proof of undecidability of the existential fragment in the case of $|A| \geq 3$ that avoids using undecidability of Diophantine equations.

Key ingredients. The undecidability proof for the existential fragment from [17] shows that the relations ADD and MULT are definable, in addition to auxiliary predicates that are needed for this, such as concatenation and letter counting predicates of the form $\|u|_a = |v|_b\|$. With these methods, it is difficult to express that a certain property holds locally – by which we mean: at every position in a word. Using concatenation, we can define languages like $(a^nb)^*$ for each $n \in \mathbb{N}$ (see Section 3), which “locally look like a^nb^\ast”. But if we want to express that, e.g., aba does not occur as an infix, this is of little help, because words avoiding an infix need not be periodic. The ability to disallow infixes would aid us in defining rational transductions via runs of transducers, as these are little more than configuration sequences where pairs of configurations that are not connected by a transition do not occur as infixes. Such local properties are often easy to state with universal quantification, but this is not available in existential formulas.

An important theme in our proof is to express such local properties by carefully constructing long words in which w has to embed in order for w to have the local property. For example, our first lemma says: Each set $X \subseteq A^{=\ell}$ can be characterized as the set of words (of length $\geq \ell$) that embed into each word in a finite set P. This allows us to define sets X^\ast.

Steps I–III of our proof use techniques of this type to express rational transductions. In Step IV, we then define the special language $G = \{a^nb^n \mid n \geq 0\}^\ast$, which has the property that all recursively enumerable languages can be obtained from G using rational transductions and intersection. This yields all recursively enumerable relations over two letters in Step V.

In sum, Steps I–V let us define all recursively enumerable relations over $\{a, b\}$, provided that the alphabet A contains an additional auxiliary letter. It then remains to define recursively enumerable relations that can also involve all other letters in A. We do this in Step VI by observing that each word $w \in A^\ast$ is determined by its projections to binary alphabets $B \subseteq A$. This allows us to compare words by looking at two letters at a time and use the other (currently unused) letters for auxiliary means.

2 Our proof relies on the definability of concatenation and certain counting predicates (see Section 3), which was shown directly in [17], without using computational completeness of Diophantine equations.
7:4 Existential Definability over the Subword Ordering

2 Main results

We say that u is a subword of v, written $u \subseteq v$, if there exist words u_1, \ldots, u_n and v_0, \ldots, v_n such that $u = u_1 \cdots u_n$ and $v = v_0u_1v_1 \cdots u_nv_n$.

Subword logic. We consider first-order logic over the structure (A^*, \preceq) and first-order logic over the structure $(A^*, \preceq, (w)_{w \in A^*})$ enriched with constant symbols w for every word $w \in A^*$. A first-order formula φ with free variables x_1, \ldots, x_k defines a relation $R \subseteq (A^*)^k$ if R contains exactly those tuples of words (w_1, \ldots, w_k) that satisfy the formula φ.

Let us define the quantifier alternation fragments of first-order logic. A formula without quantifiers is called a Σ_0-formula or Π_0-formula. For $i \geq 1$, a Σ_i-formula (resp. Π_i-formula) is one of the form $\exists x_1 \cdots \exists x_n \varphi$ (resp. $\forall x_1 \cdots \forall x_n \varphi$), where φ is a Π_{i-1}-formula (resp. Σ_{i-1}-formula), x_1, \ldots, x_n are variables, and $n \geq 0$. In other words, a Σ_i-formula is in prenex form and its quantifiers begin with a block of existential quantifiers and alternate at most $i-1$ times between universal and existential quantifiers. The Σ_i-fragment (Π_i-fragment) consists of the Σ_i-formulas (Π_i-formulas). In particular, the Σ_1-fragment (called the existential fragment) consists of the formulas in prenex form that only contain existential quantifiers.

Expressiveness with constants. Our main technical contribution is the following.

\blacktriangleright Theorem 2.1. Let A be an alphabet with $|A| \geq 3$. A relation is definable in the Σ_1-fragment over $(A^*, \preceq, (w)_{w \in A^*})$ if and only if it is recursively enumerable.

We prove Theorem 2.1 in Section 3. Theorem 2.1 in particular yields a description of what is expressible using Σ_i-formulas for each $i \geq 1$. Recall that the arithmetical hierarchy consists of classes $\Sigma_0^0, \Sigma_1^0, \Sigma_2^0, \ldots$, where $\Sigma_0^0 = \text{RE}$ is the class of recursively enumerable relations, and for $i \geq 2$, we have $\Sigma_i^0 = \text{RE}^{\Sigma_{i-1}^0}$. Here, for a class of relations C, RE^C denotes the class of relations recognized by oracle Turing machines with access to oracles over the class C.

\blacktriangleright Corollary 2.2. Let A be an alphabet with $|A| \geq 3$ and let $i \geq 1$. A relation is definable in the Σ_i-fragment over $(A^*, \preceq, (w)_{w \in A^*})$ if and only if it belongs to Σ_i^0.

Expressiveness of the pure logic. Corollary 2.2 completely describes the relations definable in the structure $(A^*, \preceq, (w)_{w \in A^*})$ if $|A| \geq 3$. We can use this to derive a description of the relations definable without constants, i.e., in the structure (A^*, \preceq). The lack of constants slightly reduces the expressiveness; to make this precise, we need some terminology. An automorphism (of (A^*, \preceq)) is a bijection $\alpha : A^* \to A^*$ such that $u \preceq v$ if and only if $\alpha(u) \preceq \alpha(v)$. A relation $R \subseteq (A^*)^k$ is automorphism-invariant if for every automorphism α, we have $(v_1, \ldots, v_k) \in R$ if and only if $(\alpha(v_1), \ldots, \alpha(v_k)) \in R$. It is straightforward to check that every formula over (A^*, \preceq) defines an automorphism-invariant relation. Thus, in the Σ_i-fragment over (A^*, \preceq), we can only define automorphism-invariant relations inside Σ_i^0.

\blacktriangleright Corollary 2.3. Let A be an alphabet with $|A| \geq 3$ and let $i \geq 2$. A relation is definable in the Σ_i-fragment over (A^*, \preceq) if and only if it is automorphism-invariant and belongs to Σ_i^0.

3 The correspondence between the entries in the tuple and the free variables of φ will always be clear, because the variables will have an obvious linear order by sorting them alphabetically and by their index. For example, if φ has free variables x_i for $1 \leq i \leq k$ and y_j for $1 \leq j \leq \ell$, then we order them as $x_1, \ldots, x_k, y_1, \ldots, y_\ell$.

To give some intuition on automorphism-invariant sets, let us recall the classification of automorphisms of \((A^*, \preceq)\), shown implicitly by Kudinov, Selivanov, and Yartseva in [24] (for a short and explicit proof, see [18, Lemma 3.8]): A map \(\alpha: A^* \to A^*\) is an automorphism of \((A^*, \preceq)\) if and only if (i) the restriction of \(\alpha\) to \(A\) is a permutation of \(A\), and (ii) \(\alpha\) is either a word morphism, i.e., \(\alpha(a_1 \cdots a_k) = \alpha(a_1) \cdots \alpha(a_k)\) for any \(a_1, \ldots, a_k \in A\), or a word anti-morphism, i.e., \(\alpha(a_1 \cdots a_k) = \alpha(a_k) \cdots \alpha(a_1)\) for any \(a_1, \ldots, a_k \in A\).

Finally, Corollary 2.3 raises the question of whether the \(\Sigma_1\)-fragment over \((A^*, \preceq)\) also expresses exactly the automorphism-invariant recursively enumerable relations. It does not:

\[\blacktriangleright \text{Observation 2.4.} \text{ Let } |A| \geq 2. \text{ There are undecidable relations definable in the } \Sigma_1\text{-fragment over } (A^*, \preceq). \text{ However, not every automorphism-invariant regular language is definable in it.}\]

We prove Corollaries 2.2 and 2.3 and Observation 2.4 in Section 4.

3 Existentially defining recursively enumerable relations

In this section, we prove Theorem 2.1. Therefore, we now concentrate on definability in the \(\Sigma_1\)-fragment. Moreover, for an alphabet \(A\), we will sometimes use the phrase \(\Sigma_1\text{-definable over } A\) as a shorthand for definability in the \(\Sigma_1\)-fragment over the structure \((A^*, \preceq, (w)_{w \in A^*})\).

Notation. For an alphabet \(A\), we write \(A_{=k}, A_{\geq k},\) and \(A_{\leq k}\) for the set of words over \(A\) that have length exactly \(k\), at least \(k\), and at most \(k\), respectively. We write \(|w|\) for the length of a word \(w\). If \(B \subseteq A\) is a subalphabet of \(A\) then \(|w|_B\) denotes the number of occurrences of letters \(a \in B\) in \(w\), or simply \(|w|_a\) if \(B = \{a\}\) is a singleton. Furthermore, we write \(\pi_B: A^* \to B^*\) for the projection morphism which keeps only the letters from \(B\). If \(B = \{a, b\}\), we also write \(\pi_{a,b}\) for \(\pi_{(a,b)}\). The downward closure of a word \(v \in A^*\) is defined as \(v_\downarrow := \{ u \in A^* \mid u \preceq v \}\).

Basic relations. We will use two kinds of relations, concatenation and counting letters, which are shown to be \(\Sigma_1\)-definable in \((A^*, \preceq, (w)_{w \in A^*})\) as part of the undecidability proof of the truth problem in [17, Theorem III.3]. The following relations are \(\Sigma_1\)-definable if \(|A| \geq 2\).

Concatenation The relation \(\{(u, v, w) \in (A^*)^3 \mid w = uv\}\).

Counting letters The relation \(\{(u, v) \in (A^*)^2 \mid |u|_a = |v|_b\}\) for any \(a, b \in A\). Moreover, we will make use of a classical fact from word combinatorics: For \(u, v \in A^*\), we have \(uv = vu\) if and only if there is a word \(r \in A^*\) with \(u \in r^*\) and \(v \in r^*\) [7]. In particular, if \(p\) is primitive, meaning that \(p \in A^*\) and there is no \(r \in A^*\) with \(|r| < |p|\) and \(p \in r^*\), then \(up = pu\) is equivalent to \(u \in p^*\). Furthermore, note that by counting letters as above, and using concatenation, we can also say \(|u|_a = |vw|_a\), i.e., \(|u|_a = |v|_a + |w|_a\) for \(a \in A\). With these building blocks, we can state arbitrary linear equations over terms \(|u|_a\) with \(u \in A^*\) and \(a \in A\). For example, we can say \(|u| = 3 \cdot |v|_a + 2 \cdot |w|_b\) for \(u, v, w \in A^*\) and \(a, b \in A\). This also allows us to state modulo constraints, such as \(\exists v: |u|_a = 2 \cdot |v|_a\), i.e., “\(|u|_a\) is even”. Finally, counting letters lets us define projections: Note that for \(B \subseteq A\) and \(u, v \in A^*\), we have \(v = \pi_B(u)\) if and only if \(v \preceq u\) and \(|v|_b = |u|_b\) for each \(b \in B\) as well as \(\neg(a \preceq v)\) for every \(a \in A \setminus B\).

For any subalphabet \(B \subseteq A\) one can clearly define \(B^*\) over \(A\). Hence definability of a relation over \(B\) also implies definability over the larger alphabet \(A\).
Existential Definability over the Subword Ordering

Finite state transducers. An important ingredient of our proof is to define regular languages in the subword order, and, more generally, rational transductions, i.e., relations recognized by finite state transducers.

For $k \in \mathbb{N}$, a k-ary finite state transducer $T = (Q, A, \delta, q_0, Q_f)$ consists of a finite set of states Q, an input alphabet A, an initial state $q_0 \in Q$, a set of final states $Q_f \subseteq Q,$ and a transition relation $\delta \subseteq Q \times (A \cup \{\varepsilon\})^k \times Q$. For a transition $(q, a_1, \ldots, a_k, q') \in \delta$, we also write $q \xrightarrow{(a_1, \ldots, a_k)} q'$.

The transducer T recognizes the k-ary relation $R(T) \subseteq (A^*)^k$ containing precisely those k-tuples (w_1, \ldots, w_k), for which there is a transition sequence $q_0 \xrightarrow{(a_{1,1}, \ldots, a_{k,1})} q_1 \xrightarrow{(a_{1,2}, \ldots, a_{k,2})} \cdots \xrightarrow{(a_{1,m}, \ldots, a_{k,m})} q_m$ with $q_m \in Q_f$ and $w_i = a_{i,1}a_{i,2}\cdots a_{i,m}$ for all $i \in \{1, \ldots, k\}$. Such a transition sequence is called an accepting run of T. We sometimes prefer to think of the w_i as produced output rather than consumed input and thus occasionally use terminology accordingly. A relation T is called a rational transduction if it is recognized by some finite state transducer T. Unary transducers (i.e., $k = 1$) recognize the regular languages.

Overview. As outlined in the introduction, our proof consists of six steps. In Steps I–III, we show that we can define all rational transductions $T \subseteq (A^*)^k$ over the alphabet B, if $|B| \geq |A| + 1$. In Step IV, we define the special language $G = \{a^n b^n \mid n \geq 0\}$.

From G, all recursively enumerable languages can be obtained using rational transductions and intersection, which in Step V allows us to define over B all recursively enumerable relations over A, provided that $|B| \geq |A| + 1$. Finally, in Step VI, we use projections to binary alphabets to define arbitrary recursively enumerable relations over A, if $|A| \geq 3$.

Step I: Defining Kleene stars. We first define the languages X^*, where X consists of words of equal length. To this end, we establish an alternative representation for such sets.

Lemma 3.1. Every nonempty set $X \subseteq A^{\leq \ell}$ can be written as $X = A^{\geq \ell} \cap \bigcap_{p \in P} p\downarrow$ for some finite set $P \subseteq A^*$.

Proof. We can assume $\ell \geq 1$ since otherwise $X = \{\varepsilon\} = A^{\geq 0} \cap \varepsilon\downarrow$. Let $w \in A^*$ be any permutation of A (i.e., each letter of A appears exactly once in w). If $a \in A$, then $(w \setminus a)$ denotes the word obtained from w by deleting a. For any nonempty word $u = a_1 \cdots a_k \in A^*$, $a_1, \ldots, a_k \in A$, define the word

$$p_u = (w \setminus a_k) (w \setminus a_1) (w \setminus a_1) (w \setminus a_2) (w \setminus a_2) \cdots (w \setminus a_{k-1}) (w \setminus a_{k-1}) (w \setminus a_k) (w \setminus a_k).$$

Note that p_u does not contain u as a subword: In trying to embed each letter a_i of u into p_u, the first possible choice for a_1 comes after the initial sequence $(w \setminus a_1) (w \setminus a_1)$. Similarly, the next possible choice for each subsequent a_i is right after $(w \setminus a_1) (w \setminus a_i)$. However, this only works until a_{k-1}, since there is no a_k at the end of p_u.

On the other hand, observe that p_u contains every word $v \in A^{\leq k} \setminus \{u\}$ as a subword: Suppose that $v = b_1 \cdots b_m$, $b_1, \ldots, b_m \in A$, and let $i \in [1, m + 1]$ be the minimal position with $b_i \neq a_i$ or $i = m + 1$. The prefix $b_1 \cdots b_{i-1} = a_1 \cdots a_{i-1}$ occurs as a subword of p_u, which in the case $i = m + 1$ already is the whole word v. If $i \leq m$ then b_i occurs in $(w \setminus a_i)$, and $b_{i+1} \cdots b_m$ embeds into the subword $(w \setminus a_i) a_i \cdots (w \setminus a_{k-1}) a_{k-1}$ of p_u. Thus, we can write

$$X = A^{\geq \ell} \cap \bigcap_{u \in (A^{\leq k} \setminus \{u\}) \cup A^{\ell+1}} p_u\downarrow.$$

Here $u \in A^{\ell+1}$ was added to also exclude all words of length greater than ℓ. ▶
Lemma 3.2. Let $A \subseteq B$ be finite alphabets and $\# \in B \setminus A$. Let $X \subseteq A^=k$ and $Y \subseteq A^=\ell$ be sets. Then $(X\#Y\#)^*$ and X^* are Σ_1-definable over B.

Proof. We can clearly assume that X,Y are nonempty. By Lemma 3.1 we can write $X = A^{2k} \cap \bigcap_{p \in P} p \downarrow$ and $Y = A^{2\ell} \cap \bigcap_{q \in Q} q \downarrow$ for some finite sets $P,Q \subseteq A^*$. We claim that $w \in (A \cup \{\#\})^*$ belongs to $(X\#Y\#)^*$ if and only if

$$\exists n \in \mathbb{N}: |w|\# = 2n \land |w|_A = (k + \ell) \cdot n \land \bigwedge_{p \in P, q \in Q} w \preccurlyeq (p\#q\#)^n. \quad (1)$$

Observe that the number n is uniquely determined by $|w|\#$. The “only if”-direction is clear. Conversely, suppose that $w \in (A \cup \{\#\})^*$ satisfies the formula. We can factorize $w = x_1\#y_1 \ldots x_n\#y_n \#$ where each x_i is a subword of each word $p \in P$, and each y_i is a subword of each word $q \in Q$. If some word x_i were strictly longer than k, then it would belong to X by the representation of X, and in particular would have length k, contradiction. Therefore each word x_i has length at most k, and similarly each word y_i has length at most ℓ. However, since the total length of $x_1y_1 \ldots x_ny_n$ is $(k + \ell) \cdot n$, we must have $|x_i| = k$ and $|y_i| = \ell$, and hence $x_i \in X$ and $y_i \in Y$ for all $i \in [1,n]$. This proves our claim.

Finally, (1) is equivalent to the following Σ_1-formula:

$$(k + \ell) \cdot |w|\# = 2 \cdot |w|_A \land \bigwedge_{p \in P, q \in Q} \exists u \in (p\#q\#)^*: (w \preccurlyeq u \land |u|\# = |w|\#).$$

Here, we express $u \in (p\#q\#)^*$ as follows. If $p \neq q$, then $p\#q\#$ is primitive and $u \in (p\#q\#)^*$ is equivalent to $u(p\#q\#) = (p\#q\#)u$. If $p = q$, then $u \in (p\#q\#)^*$ is equivalent to $up\# = p\#u$ and $|u|\#$ being even. Finally, to define X^* we set $Y = \{\varepsilon\}$ and obtain $X^* = \pi_A((X\#Y\#)^*)$.

Step II: Blockwise transductions. On our way towards rational transductions, we work with a subclass of transductions. If $T \subseteq A^* \times A^*$ is any subset, then we define the relation

$$T^* = \{(x_1 \ldots x_n, y_1 \ldots y_n) \mid n \in \mathbb{N}, (x_1, y_1), \ldots, (x_n, y_n) \in T\}.$$

We call a transduction blockwise if it is of the form T^* for some $T \subseteq A^{=k} \times A^{=\ell}$ and $k, \ell \in \mathbb{N}$.

Lemma 3.3. Let $A \subseteq B$ be finite alphabets with $|B| \geq |A| + 1$. Every blockwise transduction $R \subseteq A^* \times A^*$ is Σ_1-definable over B.

Proof. Let $\# \in B \setminus A$ be a symbol. Suppose that $R = T^*$ for some $T \subseteq A^{=k} \times A^{=\ell}$. Define the language $L = \{x\#y \mid (x,y) \in T\}^*$. Note that

$$w \in L \iff w \in (A^{=k}\#A^{=\ell}\#)^* \land \pi_A(w) \in \{xy \mid (x,y) \in T\}^*,$$

and hence L is Σ_1-definable over B by Lemma 3.2. The languages $X = (A^{=k}\#)^*$ and $Y = (\#A^{=\ell}\#)^*$ are also definable over B by Lemma 3.2. Then $(x,y) \in R$ if and only if

$$\exists w \in L, \hat{x} \in X, \hat{y} \in Y: \hat{x}, \hat{y} \preccurlyeq w \land |w|\# = |\hat{x}|\# = |\hat{y}|\# \land x = \pi_A(\hat{x}) \land y = \pi_A(\hat{y}).$$

Step III: Rational transductions. We are ready to define arbitrary rational transductions.

Lemma 3.4. Let $A \subseteq B$ be finite alphabets where $|A| + 1 \leq |B|$ and $|B| \geq 3$. Every rational transduction $T \subseteq (A^*)^k$ is Σ_1-definable over B.

STACS 2022
Existential Definability over the Subword Ordering

Proof. Let \(a, b \in B\). Let us first give an overview. Suppose the transducer for \(T\) has \(n\) transitions. Of course, we may assume that every run contains at least one transition. The idea is that a sequence of transitions is encoded by a word, where transition \(j \in \{1, \ldots, n\}\) is represented by \(a^j b^{n+1-j}\). We will define predicates \(\text{run}\) and \(\text{input}_i\) for \(i \in \{1, \ldots, k\}\) with

\[
(w_1, \ldots, w_k) \in T \iff \exists w \in \{a, b\}^*: \text{run}(w) \land \bigwedge_{i=1}^k \text{input}_i(w, w_i).
\]

Here, \(\text{run}(w)\) states that \(w\) encodes a sequence of transitions that is a run of the transducer. Moreover, \(\text{input}_i(w, w_i)\) states that \(w_i \in A^*\) is the input of this run in the \(i\)-th coordinate.

We begin with the predicate \(\text{run}\). Let us call the words in \(X = \{a^j b^{n+1-j} | j \in \{1, \ldots, n\}\}\) the *transition codes*. Let \(\Delta\) be the set of all words \(a^j b^{n+1-j} a^j b^{n+1-j}\) for which the target state of transition \(i\) and the source state of transition \(j\) are the same. Note that a word \(w \in X^*\) represents a run if

1. \(w\) begins with a transition that can be applied in an initial state,
2. \(w\) ends with a transition that leads to a final state, and
3. either \(w \in \Delta^* \cap X\Delta^* X\) or \(w \in X\Delta^* \cap \Delta^* X\), depending on whether the run has an even or an odd number of transitions.

Thus, we can define \(\text{run}(w)\) using prefix and suffix relations and membership to sets \(\Delta^*\). The prefix and suffix relation can be defined over \(\{a, b\}\). Finally, we can express \(w \in X^*, w \in \Delta^*\) and similar with Lemma 3.2.

It remains to define the \(\text{input}_i\) predicate. In the case that every transition reads a single letter on each input (i.e., no \(\varepsilon\) input), we can simply replace each transition code in \(w\) by its \(i\)-th input letter using a blockwise transduction. To handle \(\varepsilon\) inputs, we define \(\text{input}_i\) in two steps. Fix \(i\) and let \(A = \{a_1, \ldots, a_m\}\). We first obtain an encoded version \(u_i\) of the \(i\)-th input from \(w\): For every transition that reads \(a_j\), we replace its transition code with \(ab^ja^m-a_j\). Moreover, for each transition that reads \(\varepsilon\), we replace the transition code by \(b^{m+3}\). Using Lemma 3.3, this replacement is easily achieved using a blockwise transduction. Hence, each possible input in \(A \cup \{\varepsilon\}\) is encoded using a block from \(Y = \{ab^ja^m-a_j | j \in \{1, \ldots, m\}\}\).

Suppose we have produced the encoded input \(u_i \in (Y \cup \{b^{m+3}\})^*\). In the next step, we want to define the word \(v_i \in Y^*,\) which is obtained from \(u_i\) by removing each block \(b^{m+3}\) from \(u_i\). We do this as follows:

\[
v_i \in Y^* \land v_i \preceq u_i \land |v_i|_a = |u_i|_a.
\]

Note that here, we can express \(v_i \in Y^*\) because of Lemma 3.2. In the final step, we turn \(v_i\) into the input \(w_i \in A\) by replacing each block \(ab^ja^m-a_j\) with \(a_j\) for \(j \in \{1, \ldots, m\}\). This is just a blockwise transduction and can be defined by Lemma 3.3 because \(|B| \geq |A| + 1\).

Remark 3.5. We do not use this here, but Lemma 3.4 also holds without the assumption \(|B| \geq 3\). Indeed, if \(|B| = 2\), then this would imply \(|A| = 1\) for every \(i\). Then we can write \(A_i = \{a_i\}\) for (not necessarily distinct) letters \(a_1, \ldots, a_k\). Since \(T\) is rational, the set of all \((x_1, \ldots, x_k) \in \mathbb{N}^k\) with \((a_1x_1, \ldots, a_kx_k) \in T\) is semilinear, and thus \(\Sigma_1\)-definable in \((\mathbb{N}, +, 0)\). It follows from the known predicates that \(T\) is \(\Sigma_1\)-definable using subwords over \(\{a_1, \ldots, a_k\}\).

Step IV: Generator language. Our next ingredient is to express a particular non-regular language \(G\) (and its variant \(G\#\)):

\[
G = \{a^nb^n | n \geq 0\}^*, \quad G\# = \{a^nb^n# | n \geq 0\}^*.
\]

This will be useful because from \(G\), one can produce all recursively enumerable sets by way of rational transductions and intersection.
Lemma 3.6. The language \(\{ab,\#\}^* \) is \(\Sigma_1 \)-definable over \(\{a, b, \#\} \).

Proof. Note that
\[
u \in \{ab,\#\}^* \iff \exists v \in \#^*ab\#^*, w \in v^* : u \preceq w \land \pi_{a,b}(u) = \pi_{a,b}(w).
\]
Here, the language \(\#^*ab\#^* \) can be defined using concatenation. Moreover, since every word in \(\#^*ab\#^* \) is primitive, we can express \(w \in v^* \) by saying \(vw = wv \).

Lemma 3.7. Let \(\{a, b\} \subseteq A \) and \(|A| \geq 3 \). The language \(G \) is \(\Sigma_1 \)-definable over \(A \).

Proof. Suppose \(\# \in A \setminus \{a, b\} \). Since \(G = \pi_{a,b}(G_{\#}) \), it suffices to define \(G_{\#} \). We can define the language \(a^*b^*\# \) as a concatenation of \(a^*, b^* \), and \(\# \). The next step is to define the language \(K = (a^*b^*\#)^* \). To this end, notice that
\[
w \in K \iff \exists u \in a^*b^*\#, v \in a^* : w \preceq v \land |w|_{\#} = |v|_{\#}.
\]
Here, since the words in \(a^*b^*\# \) are primitive, we can express \(v \in u^* \) by saying \(vu = uv \). Thus, we can define \(K \). Using \(K \) and Lemma 3.6, we can define \(G_{\#} \), since
\[
w \in G_{\#} \iff w \in K \land \exists v \in \{ab,\#\}^* : \pi_{a,\#}(w) = \pi_{a,\#}(v) \land \pi_{b,\#}(w) = \pi_{b,\#}(v).
\]

Step V: Recursively enumerable relations over two letters. We are now ready to define all recursively enumerable relations over two letters in \((A^*, \leq, (w)_{w \in A^*}) \), provided that \(|A| \geq 3 \).
For two rational transductions \(T \subseteq A^* \times B^* \) and \(S \subseteq B^* \times C^* \), and a language \(L \subseteq A^* \), we denote application of \(T \) to \(L \) as \(TL = \{v \in B^* : \exists u \in L : (u, v) \in T\} \subseteq B^* \), and we denote composition of \(S \) and \(T \) as \(S \circ T = \{(u, w) : \exists v \in B^* : (u, v) \in T \land (v, w) \in S\} \subseteq A^* \times C^* \).
The latter is again a rational transduction (see e.g. [7]).

Lemma 3.8 (Hartmanis & Hopcroft 1970). Every recursively enumerable language \(L \) can be written as \(L = \alpha(T_1G_{\#} \cap T_2G_{\#}) \) with a morphism \(\alpha \) and rational transductions \(T_1, T_2 \).

Proof. This follows directly from [19, Theorem 1] and the proof of [19, Theorem 2].

Let us briefly sketch the proof of Lemma 3.8. It essentially states that every recursively enumerable language can be accepted by a machine with access to two counters that work in a restricted way. The two counters have instructions to increment, decrement, and zero test (which correspond to the letters \(a, b \), and \(\# \) in \(G_{\#} \)). The restriction, which we call “locally one-reversal” (LIR) is that in between two zero tests of some counter, the instructions of that counter must be one-reversal: There is a phase of increments and then a phase of decrements (in other words, after a decrement, no increments are allowed until the next zero test).

To show this, Hartmanis and Hopcroft use the classical fact that every recursively enumerable language can be accepted by a four counter machine (without the LIR property). Then, the four counter values \(p, q, r, s \) can be encoded as \(2^p3^q5^r7^s \) in a single integer register that can (i) multiply with, (ii) divide by, (iii) test non-divisibility by the constants \(2, 3, 5, 7 \). Such a register, in turn, is easily simulated using two LIR-counters: For example, to multiply by \(f \in \{2, 3, 5, 7\} \), one uses a loop that decrements the first counter and increments the second by \(f \), until the first counter is zero. The other instructions are similar.

Lemma 3.9. For every recursively enumerable relation \(R \subseteq (\{a, b\}^*)^k \), there is a rational transduction \(T \subseteq (\{a, b\}^*)^{k+2} \) such that
\[
(w_1, \ldots, w_k) \in R \iff \exists u, v \in G : (w_1, \ldots, w_k, u, v) \in T.
\]
Existential Definability over the Subword Ordering

Proof. We shall build T out of several other transductions. These will be over larger alphabets, but since we merely compose them to obtain T, this is not an issue.

A standard fact from computability theory states that a relation is recursively enumerable if and only if it is the homomorphic image of some recursively enumerable language. In particular, there is a recursively enumerable language $L \subseteq B^*$ and morphisms β_1, \ldots, β_k such that $R = \{ (\beta_1(w), \ldots, \beta_k(w)) \mid w \in L \}$. By Lemma 3.8, we may write $L = \alpha(T_1 G_{\#} \cap T_2 G_{\#})$ for a morphism $\alpha : C^* \to B^*$ and rational transductions $T_1, T_2 \subseteq \{a, b, \#\}^* \cap C^*$.

Notice that if $\gamma : \{a, b, \#\}^* \to \{a, b\}^*$ is the morphism with $\gamma(a) = a$, $\gamma(b) = b$, and $\gamma(\#) = abab$, then $G_{\#} = (a^* b^* \#)^* \cap \gamma^{-1}(G)$. This means, there is a rational transduction $S \subseteq \{a, b\}^* \times \{a, b, \#\}$ with $G_{\#} = SG$. Therefore, we can replace $G_{\#}$ in the above expression for L and arrive at $L = \alpha((T_1 \circ S)G \cap (T_2 \circ S)G)$. In sum, we observe that $(w_1, \ldots, w_k) \in R$ if and only if there exists a $w \in C^*$ with $w \in (T_1 \circ S)G$ and $w \in (T_2 \circ S)G$ such that $w_i = \beta_i(\alpha(w))$ for $i \in \{1, \ldots, k\}$. Consider the relation

$$T = \{(\beta_1(\alpha(w)), \ldots, \beta_k(\alpha(w))), u, v) \mid w \in C^*, \ (u, w) \in T_1 \circ S, \ (v, w) \in T_2 \circ S\}.$$

Note that T is rational: A transducer can guess w, letter by letter, and on track $i \in \{1, \ldots, k\}$, it outputs the image under $\beta_i(\alpha(\cdot))$ of each letter. To compute the output on tracks $k + 1$ and $k + 2$, it simulates transducers for $T_1 \circ S$ and $T_2 \circ S$. Moreover, we have $T \subseteq (\{a, b\}^*)^{k+2}$ and our observation implies that (2) holds.

Lemma 3.10. Let A be an alphabet with $\{a, b\} \subseteq A$ and $|A| \geq 3$. Then every recursively enumerable relation $R \subseteq (\{a, b\})^k$ is Σ_1-definable over A.

Proof. Take the rational transduction T as in Lemma 3.9. Since $T \subseteq (\{a, b\})^{k+2}$ and $|A| \geq |\{a, b\}| + 1$, Lemma 3.4 and Lemma 3.7 yield the result.

Step VI: Arbitrary recursively enumerable relations. We have seen that if $|A| \geq 3$, then we can define over A every recursively enumerable relation over two letters. In the proof, we use a third letter as an auxiliary letter. Our last step is to define all recursively enumerable relations that can use all letters of A freely. This clearly implies Theorem 2.1. To this end, we observe that every word is determined by its binary projections.

Lemma 3.11. Let A be an alphabet with $|A| \geq 2$ and let $u, v \in A^*$ such that for every binary alphabet $B \subseteq A$, we have $\pi_B(u) = \pi_B(v)$. Then $u = v$.

Proof. Towards a contradiction, suppose $u \neq v$. We clearly have $|u| = |v|$. Thus, if $w \in A^*$ is the longest common prefix of u and v, then $u = wu'$ and $v = wbv'$ for some letters $a \neq b$ and words $u', v' \in A^*$. But then the words $\pi_{a,b}(u)$ and $\pi_{a,b}(v)$ differ: After the common prefix $\pi_{a,b}(w)$, the word $\pi_{a,b}(u)$ continues with a and the word $\pi_{a,b}(v)$ continues with b.

We now fix $a, b \in A$ with $a \neq b$. For any binary alphabet $B \subseteq A$ let $\rho_B : A^* \to \{a, b\}^*$ be any morphism with $\rho_B(B) = \{a, b\}$ and $\rho_B(c) = \varepsilon$ for all $c \in A \setminus B$, i.e., ρ_B first projects a word over A to B and then renames the letters from B to $\{a, b\}$. Recall that $\binom{|A|}{2}$ is the number of binary alphabets $B \subseteq A$. We define the encoding function $e : A^* \to \{(a, b)^* \binom{|A|}{2}\}$ which maps a word $u \in A^*$ to the tuple consisting of all words $\rho_B(u)$ for all binary alphabets $B \subseteq A$ (in some arbitrary order). Note that e is injective by Lemma 3.11.

Lemma 3.12. If $|A| \geq 3$, then $e : A^* \to \{(a, b)^* \binom{|A|}{2}\}$ is Σ_1-definable over A.
Proof. For binary alphabets $B, C \subseteq A$, a map $\sigma : B^* \rightarrow C^*$ is called a binary renaming if (i) σ is a word morphism and (ii) σ restricted to B is a bijection of B and C. If, in addition, there is a letter $\#$ such that $\sigma(\#) = \#$, then we say that σ fixes a letter.

Observe that if we can Σ_1-define all binary renamings, then the encoding function e can be Σ_1-defined using projections and binary renamings. Thus, it remains to define all binary renamings. For this, note that every binary renaming can be written as a composition of (at most three) binary renamings that each fix some letter. Hence, it suffices to define any binary renaming that fixes a letter. Suppose $\sigma : \{c, \#\}^* \rightarrow \{d, \#\}^*$ with $\sigma(c) = d$ and $\sigma(\#) = \#$. Without loss of generality, we assume $c \neq d$. Then σ is Σ_1-definable since

$$\sigma(u) = v \iff \exists w \in \{cd, \#\}^* : u = \pi_{c,\#}(w) \land v = \pi_{d,\#}(w).$$

and $\{cd, \#\}^*$ is definable by Lemma 3.6.

Theorem 3.13. Let A be an alphabet with $|A| \geq 3$. Then every recursively enumerable relation $R \subseteq (A^*)^k$ is Σ_1-definable in $(A^*, \preceq, (w)_{w \in A^*})$.

Proof. The encoding function e is clearly computable and injective by Lemma 3.11. Therefore a relation $R \subseteq (A^*)^k$ is recursively enumerable if and only if the image

$$e(R) = \{(e(w_1), \ldots, e(w_k)) \mid (w_1, \ldots, w_k) \in R\} \subseteq \{(a, b)^{k\cdot\binom{|A|}{2}}\}$$

is recursively enumerable. This means that $e(R)$ is Σ_1-definable over A by Lemma 3.10. Thus, we can define R as well, since we have

$$(w_1, \ldots, w_k) \in R \iff (e(w_1), \ldots, e(w_k)) \in e(R),$$

and the function e is Σ_1-definable over A by Lemma 3.12.

4 Consequences for other fragments

In this section, we prove Corollaries 2.2 and 2.3 and Observation 2.4. When working with higher levels (Σ^i_0 for $i \geq 2$) of the arithmetic hierarchy, it will be convenient to use a slightly different definition than the one using oracle Turing machines: [23, Theorem 35.1] implies that for $i \geq 1$, a relation $R \subseteq (A^*)^k$ belongs to Σ^i_{n+1} if and only if it can be written as

$$R = \pi((A^*)^{k+\ell} \setminus S),$$

where $S \subseteq (A^*)^{k+\ell}$ is a relation in Σ^i_0 and $\pi : (A^*)^{k+\ell} \rightarrow (A^*)^k$ is the projection to the first k coordinates.

Proof of Corollary 2.2. It is immediate that every predicate definable in the Σ_i-fragment of $(A^*, \preceq, (w)_{w \in A^*})$ belongs to Σ^i_0, because the subword relation is recursively enumerable. We show the converse using induction on i, such that Theorem 2.1 is the base case.

Now suppose that every relation in Σ_0^0 is definable in the Σ_i-fragment of $(A^*, \preceq, (w)_{w \in A^*})$ and consider a relation $R \subseteq (A^*)^k$ in Σ^i_{n+1}. Then we can write $R = \pi((A^*)^{k+\ell} \setminus S)$ for some $\ell \geq 0$, where $\pi : (A^*)^{k+\ell} \rightarrow (A^*)^k$ is the projection to the first k coordinates, and $S \subseteq (A^*)^{k+\ell}$ is a relation in Σ^i_0. By induction, S is definable by a Σ_i-formula φ over $(A^*, \preceq, (w)_{w \in A^*})$. By negating φ and moving all negations inwards, we obtain a Π_i-formula ψ that defines $(A^*)^{k+\ell} \setminus S$. Finally, adding existential quantifiers for the variables corresponding to the last ℓ coordinates yields a Σ^i_{n+1}-formula for $R = \pi((A^*)^{k+\ell} \setminus S)$.

Proof of Corollary 2.3. Clearly, every relation definable with a Σ_i-formula over (A^*, \preceq) must be automorphism-invariant and must define a relation in Σ^i_0.

STACS 2022
Conversely, consider an automorphism-invariant relation $R \subseteq (A^*)^k$ in Σ_1^0. Then R is definable using a Σ_1-formula φ with free variables x_1, \ldots, x_k over $(A^*, \preceq, (w)_{w \in A^*})$ by Corollary 2.2. Let u_1, \ldots, u_ℓ be the constants occurring in φ. From φ, we construct the Σ_1-formula φ' over (A^*, \preceq), by replacing each occurrence of w_j by a fresh variable y_j.

It was shown in [21, Sections 4.1 and 4.2] that from the tuple $(u_1, \ldots, u_\ell) \in (A^*)^\ell$, one can construct a Σ_2-formula ψ with free variables y_1, \ldots, y_ℓ such that $\psi(u_1, \ldots, u_\ell)$ is true if and only if there exists an automorphism of (A^*, \preceq) mapping u_j to w_j for each j. We claim that the formula $\chi = \exists y_1, \ldots, y_\ell. \psi \land \varphi'$ defines the set R. Since ψ belongs to Σ_2 and thus χ belongs to Σ_1, this implies the corollary.

Clearly, every $(v_1, \ldots, v_k) \in R$ satisfies χ. Moreover, if $\chi(v_1, \ldots, v_k)$, then there are $u_1, \ldots, u_\ell \in A^*$ with $\varphi'(v_1, \ldots, v_k, u_1, \ldots, u_\ell)$ and an automorphism α mapping u_j to w_j for each j. Since α is an automorphism, the formula φ' is also satisfied on the tuple $(\alpha(v_1), \ldots, \alpha(v_k), \alpha(u_1), \ldots, \alpha(u_\ell)) = (\alpha(v_1), \ldots, \alpha(v_k), w_1, \ldots, w_\ell)$ and we have $(\alpha(v_1), \ldots, \alpha(v_k)) \in R$. Since R is automorphism-invariant, this implies $(v_1, \ldots, v_k) \in R$. ▶

Proof of Observation 2.4. Take a recursively enumerable, but undecidable subset $S \subseteq \mathbb{N}$. Fix a letter $a \in A$ and define the unary language $L = \{a^n \mid n \in S\}$, which is definable by a Σ_1-formula φ over $(A^*, \preceq, (w)_{w \in A^*})$ by [17, Theorem III.3]. Let w_1, \ldots, w_ℓ be the constants occurring in φ and consider the formula φ' in the Σ_1-fragment of (A^*, \preceq) obtained by replacing each occurrence of w_j by a fresh variable y_j. Then (u, w_1, \ldots, w_ℓ) satisfies φ' if and only if $u \in L$. Thus, φ' defines an undecidable relation.

For the second statement, we claim that every language $L \subseteq A^*$ that is Σ_1-definable in (A^*, \preceq) satisfies $A^* LA^* \subseteq L$. Hence, many automorphism-invariant regular languages such as $\bigcup_{a \in A} a^*$ are not definable. Note that for $a \in A$ and $u, v \in A^*$, we have $u \preceq v$ if and only if $au \preceq av$. Thus, every Σ_0-definable relation $R \subseteq (A^*)^k$ satisfies $(w_1, \ldots, w_k) \in R$ if and only if $(aw_1, \ldots, aw_k) \in R$. Symmetrically, $(w_1, \ldots, w_k) \in R$ is equivalent to $(w_1 a, \ldots, w_k a) \in R$. As a projection of a Σ_0-definable relation, L thus satisfies $A^* LA^* \subseteq L$. ▶

5 Conclusion

We have shown how to define all recursively enumerable relations in the existential fragment of the subword order with constants for each alphabet A with $|A| \geq 3$. If $|A| = 1$, then the relations definable in $(A^*, \preceq, (w)_{w \in A^*})$ correspond to relations over \mathbb{N} definable in (\mathbb{N}, \leq) with constants. Hence, this case is very well understood: This structure admits quantifier elimination [30, Theorem 2.2(b)], which implies that the Σ_1-fragment is expressively complete and also that a subset of A^* is only definable if it is finite or co-finite. In particular, Theorem 2.1 does not hold for $|A| = 1$.

We leave open whether Theorem 2.1 still holds over a binary alphabet. If this is the case, then we expect that substantially new techniques are required. In order to express non-trivial relations over two letters, our proof often uses a third letter as a separator and marker for “synchronization points” in subword embeddings.

References

7:14 Existential Definability over the Subword Ordering

