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Abstract
For a positive integer c, a graph G is said to be c-closed if every pair of non-adjacent vertices in
G have at most c − 1 neighbours in common. The closure of a graph G, denoted by cl(G), is the
least positive integer c for which G is c-closed. The class of c-closed graphs was introduced by Fox
et al. [ICALP ‘18 and SICOMP ‘20]. Koana et al. [ESA ‘20] started the study of using cl(G) as
an additional structural parameter to design kernels for problems that are W-hard under standard
parameterizations. In particular, they studied problems such as Independent Set, Induced
Matching, Irredundant Set and (Threshold) Dominating Set, and showed that each of these
problems admits a polynomial kernel, either w.r.t. the parameter k + c or w.r.t. the parameter k for
each fixed value of c. Here, k is the solution size and c = cl(G). The work of Koana et al. left several
questions open, one of which was whether the Perfect Code problem admits a fixed-parameter
tractable (FPT) algorithm and a polynomial kernel on c-closed graphs. In this paper, among other
results, we answer this question in the affirmative. Inspired by the FPT algorithm for Perfect
Code, we further explore two more domination problems on the graphs of bounded closure. The
other problems that we study are Connected Dominating Set and Partial Dominating Set.
We show that Perfect Code and Connected Dominating Set are fixed-parameter tractable
w.r.t. the parameter k + cl(G), whereas Partial Dominating Set, parameterized by k is W[1]-hard
even when cl(G) = 2. We also show that for each fixed c, Perfect Code admits a polynomial
kernel on the class of c-closed graphs. And we observe that Connected Dominating Set has no
polynomial kernel even on 2-closed graphs, unless NP ⊆ co-NP/poly.
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1 Introduction

For a positive integer c, a graph G is said to be c-closed if every pair of non-adjacent
vertices in G have at most c − 1 neighbours in common. That is, for distinct vertices
u and v of G, |N(u) ∩ N(v)| ≤ c − 1 if uv /∈ E(G). In this paper, we investigate the
parameterized complexity of domination problems on the class of c-closed graphs. The
problems that we study are Perfect Code, Connected Dominating Set and Partial
Dominating Set. All these problems are W[1]-hard (w.r.t. standard parameters) on general
graphs [12, 18, 19], and their complexities on various restricted graph classes have been
studied extensively [4, 15, 22, 29, 30, 31, 34, 41, 44].

Fox et al. [25, 26] introduced the class of c-closed graphs in 2018 as a “distribution-free”
model of social networks. While the literature abounds with models that attempt to capture
the structure of social networks, they are all probabilistic models. (See, for instance, the
survey by Chakrabarti and Faloutsos [13].) And in an attempt to capture the spirit of
“social-network-like” graphs without relying on probabilistic models, Fox et al. [26] “turn[ed]
to one of the most agreed upon properties of social networks – triadic closure, the property
that when two members of a social network have a friend in common, they are likely to
be friends themselves.” It is easy to see that the definition of c-closed graphs is a reasoned
approximation of this property. In a c-closed graph, every pair of vertices with at least c

common neighbours are adjacent to each other. Fox et al. [26, Table A.1], and later Koana
et al. [39, Table 1], showed that several social networks and biological networks are indeed
c-closed for rather small values of c.

Fox et al. [26] showed that an n-vertex c-closed graph contains at most 3c/3 · n2 maximal
cliques.1 This bound, when coupled with an algorithm for enumerating all maximal cliques
in a graph, yields a 2O(c) · poly(n) time algorithm that enumerates all maximal cliques in
c-closed graphs. Observe that an algorithm that enumerates all maximal cliques in a graph
can be used to determine if a graph contains a clique of a given size as well. Thus, the
Clique problem, which, given a graph G and an integer k as input, asks if G contains a
clique of size k, is fixed-parameter tractable with respect to the parameter c. Notice that
Clique, when parameterized by k, is W[1]-complete on general graphs [18], and therefore
does not admit a fixed-parameter tractable algorithm unless FPT=W[1].

In light of this result, we could very well ask: How do other problems that are W-hard
on general graphs fare on the class of c-closed graphs? In particular, is Independent Set,
another canonical W[1]-complete problem [18], fixed-parameter tractable on c-closed graphs?
Koana et al. [39] showed that Independent Set, which takes a graph G and an integer
k as input, and asks if G contains an independent set of size k, is indeed fixed-parameter
tractable w.r.t. the parameter k + c. In fact, by applying a “Buss-like” reduction rule [9],
they showed that the problem admits a kernel with ck2 vertices. Motivated by this example,
they studied the (kernelization) complexity of three more problems – Induced Matching,
Irredundant Set and Threshold Dominating Set (TDS) – and showed that these
problems admit polynomial kernels (either w.r.t. the parameter k + c, or w.r.t. the parameter
k for each fixed c.) TDS is a variant of Dominating Set in which each vertex needs to
be dominated at least r times for a given integer r. The kernels for the first two of these
problems have size poly(c, k) whereas the kernel for TDS has size kO(cr). They also designed
an FPT algorithm for TDS that runs in time 3c/3 + (ck)O(rk)nO(1). A key ingredient in all

1 Note that the classic Moon-Moser theorem only guarantees an upper bound of 3n/3 for the number of
maximal cliques in an n-vertex graph [47].
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these results was a polynomial bound for the Ramsey number on c-closed graphs. Koana et
al. [39] proved that every c-closed graph with O(cb2 + ab) vertices contains either a clique of
size a or an independent set of size b, and predicted that this bound could be useful in settling
the parameterized complexity of other problems as well. In this paper, we use this bound,
and show that two variants of Dominating Set admit fixed-parameter tractable algorithms
on c-closed graphs. In particular, we show that Perfect Code is FPT on c-closed graphs,
and thus settle a question left open by Koana et al. [39].

Closure of a graph. Recall that a graph G is said to be c-closed if every pair of non-
adjacent vertices have at most c − 1 neighbours in common. The closure2 of a graph
G, denoted by cl(G), is the least positive integer c for which G is c-closed. Notice that
cl(G) = 1 + max {|N(u) ∩ N(v)| | u, v ∈ V (G), uv /∈ E(G)}, and therefore cl(G) can be
computed in polynomial time. In this paper, we study the parameterized complexity of
some of the widely-studied problems on graphs of bounded closure, and thus attempt to
present a more comprehensive answer to the following questions. How good a structural
parameter is cl(G) when it comes to the tractability of domination problems? And in this
regard, how does cl(G) differ from some of the other widely-studied structural parameters
such as maximum degree, degeneracy and treewidth? Observe that if the maximum degree
of graph G is ∆(G), then cl(G) ≤ ∆(G) + 1. But the comparability ends there. As noted
by Koana et al. [39], an n-vertex clique is 1-closed, but has degeneracy and treewidth n − 1.
On the other hand, the complete bipartite graph K2,n−2 has treewidth and degeneracy 2,
but cl(K2,n−2) = n − 1. Thus, closure is incomparable with degeneracy and treewidth. We
also note that when parameterized by cl(G) alone, most of the widely-studied problems,
with the exception of Clique, would be para-NP-hard. This applies to problems such as
Vertex Cover, Independent Set, Dominating Set, Connected Dominating Set
and Perfect Code, as all these problems are NP-hard on graphs of maximum degree
4 [21, 27], and therefore NP-hard on 5-closed graphs. So this parameter alone is too small
to yield tractability results, and therefore, has to be used in combination with some other
parameter, for example, the solution size. But this is often the case with other structural
parameters such as degeneracy and maximum degree as well; they are often combined with
the solution size [3, 48].

Our results and methods. Let us first define the concept of domination in graphs. Consider
a graph G. We say that a vertex in G dominates itself and all its neighbours. That is, a
vertex v dominates N [v]. And for a set V ′ ⊆ V (G), V ′ dominates N [V ′]. A dominating set of
a graph is a set of vertices D ⊆ V (G) that dominates the entire vertex set, i.e., N [D] = V (G).
Or equivalently, D ⊆ V (G) is a dominating set of G if |D ∩ N [v]| ≥ 1 for every vertex
v ∈ V (G). A dominating set D ⊆ V (G) is said to be a connected dominating set of G if G[D]
is a connected subgraph of G. A perfect code of G is a dominating set of G that dominates
every vertex exactly once. That is, D ⊆ V (G) is a perfect code of G if |D ∩ N [v]| = 1 for
every vertex v ∈ V (G). For a non-negative integer t, a set of vertices V ′ ⊆ V (G) is said to
be a t-partial dominating set of G if V ′ dominates at least t vertices of G, i.e., if |N [V ′]| ≥ t.

2 Koana et al. [39] use the term c-closure instead of closure. But we believe that closure is more appropriate.
We must note that the term closure is already used in existing graph theory literature to refer to a
certain super-graph of a graph [8, p. 486]. But for that matter, so is the term k-closure [7]. We believe
that given the context, there is no room for ambiguity.
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In the Perfect Code (resp. Connected Dominating Set (CDS)) problem, the
input consists of an n-vertex graph G and a non-negative integer k, and the question is to
decide if G contains a perfect code (resp. connected dominating set) of size at most k. In
the Partial Dominating Set (PDS) problem, the input consists of an n-vertex graph
G and two non-negative integers k and t, and the question is to decide if G contains a
t-partial dominating set of size at most k. We show that Perfect Code and CDS, when
parameterized by k+cl(G), are fixed-parameter tractable, whereas PDS, when parameterized
by k, is W[1]-hard, even for cl(G) = 2. Specifically, we prove the following results. (Here,
n = |V (G)| and c = cl(G).)

1. Perfect Code admits a fixed-parameter tractable algorithm that runs in time
2O(c+k log(ck))nO(1). Moreover, for each fixed c ≥ 1, Perfect Code admits a kernel with
kO(2c) vertices on the family of c-closed graphs.

2. CDS admits a fixed-parameter tractable algorithm that runs in time 2O(ck2 log(ck))nO(1).
But CDS does not admit a polynomial kernel when parameterized by k even when
cl(G) = 2, unless NP ⊆ co-NP/poly. (The kernelization lower bound follows from a result
due to Misra et al. [44].)

3. PDS, when parameterized by k, is W[1]-hard on 2-closed graphs.

Note that a perfect code and a connected dominating set are both dominating sets.
Naturally, our algorithms for Perfect Code and CDS rely on three crucial properties of
dominating sets and c-closed graphs. Consider a c-closed graph G, and a dominating set D

of G of size k. (P1) If G contains an independent set I of size k + 1, then by the pigeonhole
principle, there exists a vertex v ∈ D that dominates at least two vertices of I. That is,
v ∈ N(u) ∩ N(u′) for a pair of vertices u, u′ ∈ I (Lemma 11). (P2) The dominating set
D must intersect every “large” maximal clique (Corollary 7). This follows from the fact
that any vertex outside a maximal clique can dominate at most c − 1 vertices of the clique
(Lemma 6). Thus, if G contains a maximal clique of size (c − 1)k + 1, say Q, then we must
have D ∩ V (Q) ̸= ∅. (P3) If G contains ℓ distinct “large” maximal cliques, then G contains
an independent set of size ℓ as well (Lemma 8). This again is a consequence of the property
that any vertex outside a maximal clique has at most c − 1 neighbours in the clique. Here,
depending on each problem, we will define an appropriate lower bound on the size of a clique
for it to be large. But in both the problems, this bound will be poly(c, k). Finally, we use the
following two results due to Koana et al. [39]. (R1) Every c-closed graph with O(cb2 + ab)
vertices contains either a clique of size a or an independent set of size b (Lemma 1). (R2)
We can find a (k + 1)-sized independent set of an n-vertex c-closed graph, if it exists, or
correctly conclude that no such set exists, in time 2O(k log(ck))nO(1) (Corollary 4).

We now briefly outline how our algorithms exploit these properties. In light of (P1),
we first find an independent set I of size k + 1 using (R2), and branch on the vertices in⋃

u,u′∈I N(u) ∩ N(u′). Note that since |I| = k + 1, we have
(

k+1
2

)
= O(k2) choices for the

pair {u, u′}. And for each pair u, u′ ∈ I, we have |N(u) ∩ N(u′)| ≤ c − 1 as G is c-closed.
Once this branching step is exhaustively applied, every independent set in G has size at most
k. But then (P3) will imply that G contains at most k “large” maximal cliques. Now we
partition the vertex set of G into two parts, L and R, where L is the set of vertices that
belong to at least one large maximal clique and R the set of remaining vertices. Thus, L

is the union (not necessarily disjoint) of at most k large cliques. And the subgraph G[R]
contains no large clique or no independent set of size k + 1. Therefore, by (R1), we will have
|R| = poly(c, k). So we can guess the set of vertices from R that belongs to the “dominating
set” that we are looking for, in case (G, k) is indeed a yes-instance. And corresponding to
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each such guess, we then use the property that L is a union of cliques to solve the problem
appropriately. For example, in the case of Perfect Code, we show that once we guess the
subset of R that belongs to the solution, the problem then reduces to solving an instance
of the d-Exact Hitting Set problem (a variant of Hitting Set in which every set has
size at most d and needs to be hit exactly once) for an appropriate choice of d, which can
then be solved in time dknO(1). In the case of CDS, we reduce the final step to 2poly(c,k)

many instances of the (edge-weighted) Steiner Tree problem, a common technique used in
algorithms that seek connected solutions [32, 44, 45, 46]. And we will have the guarantee that
our original CDS instance is a yes-instance if and only if at least one of the Steiner Tree
instances is a yes-instance. We prove the W-hardness of PDS by designing a parameterized
reduction from the Independent Set problem on regular graphs, which is known to be
W[1]-complete [10]. The inadmissibility of a polynomial kernel for CDS follows from a result
due to Misra et al. [44], which says that CDS admits no polynomial kernel on graphs of
girth 5, and the fact that graphs of girth 5 are 2-closed.

To design our kernel for Perfect Code, we bound the size of independent sets and
cliques in the input graph by kO(2c), and then invoke (R1). The main ingredient in bounding
the independent set size is a reduction rule, by which we find a sufficiently large independent
set with sufficiently many common neighbours and delete an arbitrary vertex from that
independent set. To find this independent set, we design an algorithm that works as follows:
Given a c-closed graph G and an integer k, the algorithm will either output an independent
set of size k or correctly report that every independent set in G has size poly(c, k) (Lemma 10).
After an exhaustive application of this reduction rule, every independent set in the input
graph will have bounded size, and by (P3), the graph will contain only a bounded number of
large cliques. Then, we bound the size of each clique as well, which, by (R1), will result in
the kernel. We note that our fixed-parameter tractable algorithm and polynomial kernel for
Perfect Code do not imply each other. The kernel runs in time 2O(c)nO(c), and therefore,
does not imply a fixed-parameter tractable algorithm w.r.t the parameter k + c.

We must point out that properties (P1) and (P2) have been used by Koana et al. [39] in
their algorithm and kernel for the TDS problem. But these properties alone are inadequate
for Perfect Code and CDS. Hence we introduce (P3), which bounds the number of large
maximal cliques in terms of the maximum size of an independent set. We also note that
while properties (P1) and (P2) are specific to domination problems, (P3) is a general-purpose
bound. Our strategy of partitioning the vertices into L and R (vertices of large cliques and
the remaining vertices) is also not specific to domination problems, and could be applicable
to other problems as well. So is Lemma 10, which, as mentioned above, gives an algorithm
that either outputs an independent set of size k or guarantees an upper bound of poly(c, k)
on the independent set size. We use Lemma 10 to fashion a reduction rule (Reduction
Rule 19), which we use to bound the size of independent sets while designing our kernel for
Perfect Code. The idea behind Reduction Rule 19 is as follows. To bound the size of any
independent in the graph, it is sufficient to bound the size of independent sets within the
induced subgraph G[N(v)] for every v ∈ V (G). Then, to bound the size of independent sets
in G[N(v)], it is sufficient to bound the size of independent sets in G[N(v) ∩ N(u)] for every
u ∈ V (G) \ {v}. And to bound the size of independent sets in G[N(v) ∩ N(u)], it is sufficient
to bound the size of independent sets in G[N(v) ∩ N(u) ∩ N(w)] for every w ∈ V (G) \ {v, u}
and so on. This strategy of successively bounding the independent sets in stages could be
applicable to other problems on c-closed graphs as well. Since G is c-closed, we only need to
continue for c − 1 stages. That is, we only need to bound the size of independent sets in
G[∩x∈Y N(x)] for all Y ⊆ V (G) with |Y | = c − 1.

STACS 2022



39:6 Further Exploiting c-Closure for FPT Algorithms and Kernels

Related work on domination problems. Domination problems have long been the subject
of extensive research in algorithmic graph theory. All the domination problems discussed
above are W-hard on general graphs, when parameterized by the solution size. Therefore,
a great deal of effort has gone into studying the complexity of these problems on various
graph classes. In particular, the classic Dominating Set problem is known to be W[2]-
complete [19] on general graphs, and W[2]-hard even on bipartite graphs (and hence on
triangle-free graphs) [49], but admits a fixed-parameter tractable algorithm on graphs of girth
at least 5 [49], planar graphs [1, 2, 24, 35], graphs of bounded genus [20], map graphs [16],
H-minor free graphs [17] and graphs of bounded degeneracy [3]. The CDS problem is also
known to be W[2]-hard on general graphs [19], but admits a polynomial kernel on planar
graphs, and more generally, on apex-minor-free graphs [22, 30, 41]. The problem is FPT on
graphs of bounded degeneracy [29]. Cygan et al. [14] showed that CDS has no polynomial
kernel even on 2-degenerate graphs unless NP ⊆ co-NP/poly. Misra et al. [44] studied the
effect of the girth of the input graph on the complexity of CDS, and showed that CDS
remains W[1]-hard on graphs of girth 3 and 4, admits a fixed-parameter tractable algorithm
but no polynomial kernel (unless NP ⊆ co-NP/poly) on graphs of girth 5 and 6, and admits
a polynomial kernel on graphs of girth at least 7. Fomin et al. [23] showed that both
Dominating Set and CDS admit linear kernels on graphs with excluded topological minors.
We refer the reader to [23] for a historical overview of the literature on these problems.

The Perfect Code problem, also called Efficient Domination or Perfect Domina-
tion, is known to be W[1]-complete [12, 18], and remains W[1]-hard even on bipartite graphs
of girth 4 [34], but admits a polynomial kernel on planar graphs [31] and graphs of girth
at least 5 [34]. Dawar and Kreutzer [15] showed that Perfect Code is fixed-parameter
tractable on effectively nowhere dense graphs. For a summary of results on the (classical)
complexity of Perfect Code on various graph classes, see [43].

The Partial Vertex Cover (PVC) problem, the “partial variant” of the widely-studied
Vertex Cover problem, asks if t edges of a graph can be covered using k vertices. Both
PVC and PDS have been studied w.r.t. the two natural parameters: k and t. When
parameterized by k, unlike the widely-studied Vertex Cover, PVC is W[1]-hard on general
graphs [32], and remains NP-hard even on bipartite graphs [5]. But Amini et al. [4], using
a nuanced branching strategy called implicit branching, showed that PVC admits fixed-
parameter tractable algorithms on graph classes with “large independent sets.” In particular,
they showed that PVC (parameterized by k) is FPT on bipartite graphs, triangle-free graphs,
and H-minor free graphs, and thus, in particular, on planar graphs and graphs of bounded
genus. As for PDS, note that a PDS instance with t = n is precisely the Dominating Set
problem, and therefore, the W [2]-hardness of Dominating Set (w.r.t. the parameter k)
extends to PDS as well. And in contrast to Dominating Set, PDS remains W[1]-hard even
on graphs of bounded degeneracy [29]. But the results due to Amini et al. [4] for a more
general problem called Weighted Partial-(k, r, t)-Center showed that PDS, in particular,
is FPT on planar graphs, graphs of bounded genus and graphs of bounded maximum degree.
When parameterized by t, both PVC and PDS are FPTon general graphs [6, 11, 36, 37].

Related work on c-closed graphs. As mentioned earlier, Fox et al. [26] showed that every
n-vertex c-closed graph contains at most 3c/3 · n2 maximal cliques, and that all maximal
cliques can be enumerated in time 2O(c)nO(1). In a preprint announced in 2020, Husic and
Roughgarden [33] showed that instead of cliques, other “dense subgraphs” can be enumerated
in time f(c) · poly(n) as well. In particular, they showed that the problems of finding
and enumerating subgraphs of bounded co-degree, bounded co-degeneracy and bounded
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co-treewidth in a c-closed graph admit algorithms that run in time 2O(c)nO(1). This result
was soon followed by the work of Koana and Nichterlein [40], who investigated the complexity
of enumerating all copies of a (small) fixed-graph H in a given c-closed graph. Note that
for each fixed graph H, by brute-force, we can detect and enumerate all copies of H in a
given n-vertex graph in time nO(|V (H)|). Nonetheless, Koana and Nichterlein [40] designed
significantly better combinatorial algorithms for such problems. They showed that for small
graphs (i.e., graphs on 3 or 4 vertices) H, the H-detection and enumeration problems admit
“FPT in P” algorithms [28] w.r.t. the parameter c, i.e., algorithms with runtime O(cℓnimj)
or O(cℓni + mj), where m and n respectively are the number of edges and vertices of the
input graph G, c = cl(G), and ℓ, i and j are small constants independent of c and H. In
particular, they designed such algorithms for 11 out of the 15 graphs on 3 or 4 vertices.

Related work on weakly γ-closed graphs. Along with c-closed graphs, Fox et al. [26] had
also introduced a larger class of graphs called weakly γ-closed graphs. For a positive integer
γ, a graph G is weakly γ-closed if every induced subgraph G′ of G has a vertex v such
that |NG′(v) ∩ NG′(u)| < γ for each u ∈ V (G′) with u ̸= v and uv /∈ E(G′). Note that if
a graph G is c-closed, then G is weakly c-closed as well. In a subsequent work, Koana et
al. [38] extended their result for Independent Set in [39] to weakly γ-closed graphs. They
showed that Independent Set admits a polynomial kernel on weakly γ-closed graphs as
well. And they showed that a similar result holds for the G-Subgraph problem, for a fixed
family of graphs G that is closed under subgraphs, where the goal is to check if a given
graph G contains an induced subgraph on at least k vertices that belongs to G. Notice
that Independent Set is a special case of G-Subgraph with G being the family of all
edgeless graphs. Koana et al. [38] also showed that two variants of Dominating Set, namely,
Independent Dominating Set and Dominating Clique, are FPT on weakly γ-closed
graphs. But they left open the complexity of Dominating Set on weakly γ-closed graphs,
which was recently shown to be FPT by Lokshtanov and Surianarayanan [42]. Koana et
al. [38] also gave bounds and enumeration algorithms for various choices of “dense subgraphs”
in weakly γ-closed subgraphs. See [38, Table 1] for an overview of their results.

Due to space constraints, we only present our kernel for Perfect Code here. We omit
other results and the proofs of statements marked with a ♣.

2 Preliminaries

For a positive integer ℓ, we denote the set {1, . . . , ℓ} by [ℓ]. We define the functions
α, β : N → N as follows: α(a, b) = (a−1)b+1 and β(a, b) = 2[(a−1)(b−1)+1] for every a, b ∈ N.
All graphs in this paper are simple and undirected. For a graph G, V (G) and E(G) respectively
denote the vertex set and edge set of G. For a vertex v ∈ V (G), NG(v) and NG[v] respectively
denote the open and closed neighbourhood of v in G. Also, dG(v) denotes the degree of v in
G, i.e., dG(v) = |NG(v)|. For a set V ′ ⊆ V (G), NG(V ′) and NG[V ′] respectively denote the
open neighbourhood and closed neighbourhood of V ′, i.e., NG(V ′) = (

⋃
v∈V ′ NG(v)) \ V ′ and

NG[V ′] =
⋃

v∈V ′ NG[v]. And CNG(V ′) denotes the common neighbours of the vertices in V ′,
i.e., CNG(V ′) =

⋂
v∈V ′ NG(v). Note that CNG(V ′) ⊆ V (G) \ V ′, because for every v ∈ V ′,

we have v /∈ NG(v), and therefore, v /∈ CNG(V ′). Also, for V ′ ⊆ V (G) with |V ′| ≥ 2, by
N

[2]
G (V ′), we denote the union of the sets of common neighbours of every pair of vertices in V ′,

i.e., N
[2]
G (V ′) = (

⋃
u,v∈V ′

u ̸=v

CNG({u, v})) \ V ′. For a pair of vertices u, v ∈ V (G), distG(x, y)

denotes the length of a shortest path between x and y in G. We may omit the subscript
when the graph G is clear from the context.

STACS 2022



39:8 Further Exploiting c-Closure for FPT Algorithms and Kernels

Consider a graph G. By a maximal clique (resp. maximal independent set) in G, we
mean an inclusion-wise vertex maximal clique (resp. independent set) in G. That is, a clique
Q (resp. an independent set I) in G is a maximal clique (resp. a maximal independent
set) if G[V (Q) ∪ {v}] is not a clique (resp. I ∪ {v} is not an independent set) for any
v ∈ V (G) \ V (Q) (resp. v ∈ V (G) \ I). We say that an independent set I in G is 2-maximal
if I is a maximal independent set and (I \ {v}) ∪ {u, u′} is not an independent set for every
v ∈ I and u, u′ ∈ V (G). That is, I is 2-maximal if I is maximal and no vertex in I can be
replaced by 2 vertices from V (G) \ I.

We use Q(G) to denote the family of all maximal cliques in G. For ℓ > 0, we denote by
Qℓ(G), the family of all maximal cliques in G of size at least ℓ. We also define two vertex
subsets as follows: Lℓ(G) =

⋃
Q∈Qℓ(G) V (Q), and Rℓ(G) = V (G) \ Lℓ(G). That is, Lℓ(G) is

the set of all vertices in G that belong to at least one maximal clique of size at least ℓ, and
Rℓ(G) contains the remaining vertices. Notice that

{
Lℓ(G), Rℓ(G)

}
is a partition of V (G)

(with one of the parts possibly being empty).

2.1 Summary of Results From [26] and [39]

In this section, we briefly summarise the results from [26] and [39] that we will be using
throughout. Following the notation of Koana et al. [39], for positive integers a, b and c, we
let Rc(a, b) = (c − 1)

(
b−1

2
)

+ (a − 1)(b − 1) + 1.

▶ Lemma 1 ([39]). For positive integers a, b and c, every c-closed graph with at least Rc(a, b)
vertices contains either a clique of size a or an independent set of size b.

▶ Remark 2. The proof of the above lemma [39, Proof of Lemma 3.1], in fact, shows that if
G is a c-closed graph on at least Rc(a, b) vertices such that G contains no clique of size a,
then any 2-maximal independent set in G has size at least b.

Recall that the Independent Set problem takes a graph G and a non-negative integer
k as input, and the task is to decide if G has an independent set of size at least k. Koana et
al. [39] also showed that the Independent Set problem on c-closed graphs admits a kernel
with ck2 vertices. Specifically, they proved the following.

▶ Lemma 3 ([39]). There is an algorithm that, given a graph G and a non-negative integer
k as input, runs in polynomial time, and outputs a graph G′ such that (i) G′ is an induced
subgraph of G, (ii) G has an independent set of size k if and only if G′ has an independent
set of size k, and (iii) if |V (G′)| > ck2 then any maximal independent set in G′ has size at
least k.

▶ Corollary 4 (♣). There is an algorithm that, given an n-vertex c-closed graph G and a
non-negative integer k as input, runs in time 2O(k log(ck))nO(1), and either returns a k-sized
independent set of G if one exists, or correctly reports that no such set exists.

Note that Corollary 4 follows immediately from Lemma 3. Fox et al. [26] showed that the
number of maximal cliques in an n-vertex c-closed graph is bounded by 2O(c)n2. Specifically,
they proved the following.

▶ Lemma 5 ([26]). Let G be a c-closed graph on n vertices. Then G contains at most
3(c−1)/3n2 maximal cliques. Moreover, there is an algorithm that, given G as input, runs in
time 2O(c)nO(1), and enumerates all maximal cliques in G.
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2.2 Some Preliminary Lemmas
We now prove a few lemmas that we will be using throughout this paper.

▶ Lemma 6 ([39]). Let G be a c-closed graph, and Q a maximal clique in G. Then, for any
v ∈ V (G) \ V (Q), v has at most c − 1 neighbours in V (Q), i.e., |N(v) ∩ V (Q)| ≤ c − 1.

Lemma 6 implies that in a c-closed graph, every “small” dominating set must intersect
every “large” clique.

▶ Corollary 7 (♣). Let G be a c-closed graph and k a non-negative integer. Let D be a
dominating set of G of size at most k, and C a maximal clique in G of size at least (c−1)k+1.
Then, D ∩ V (C) ̸= ∅.

We now show that if a c-closed graph G contains sufficiently many large cliques, then G

contains a sufficiently large independent set as well.

▶ Lemma 8 (♣). Let ℓ be a positive integer, and G be a c-closed graph such that |Qβ(c,ℓ)(G)| ≥
ℓ. Then, G has an independent set of size ℓ. Moreover, there is a polynomial time algorithm
that, given a c-closed graph G and distinct Q1, Q2, . . . , Qℓ ∈ Qβ(c,ℓ)(G) as input, returns an
ℓ-sized independent set in G.

▶ Lemma 9 (♣). Let ℓ be a positive integer. Let G be a graph and V1, V2, . . . , Vℓ ⊆ V (G) be
such that

⋃
i∈[ℓ] Vi = V (G), and G[Vi] is a clique for every i ∈ [ℓ]. Then, any independent

set in G has size at most ℓ.

▶ Lemma 10. There is an algorithm that, given an n-vertex c-closed graph G and a
positive integer ℓ as input, runs in time 2O(c)nO(1), and either returns an independent
set of size at least ℓ, or correctly concludes that every independent set in G has size at most
(ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1 = O(c · ℓ2).

Proof. Given G and ℓ as input, our algorithm works as follows. We first use the algorithm
in Lemma 5 to construct Q(G) and Qβ(c,ℓ)(G) in time 2O(c)nO(1). If |Qβ(c,ℓ)(G)| ≥ ℓ, then
we return an ℓ-sized independent set constructed using the algorithm in Lemma 8.

Otherwise we construct the sets Lβ(c,ℓ)(G), and Rβ(c,ℓ)(G). By the definition of the sets
Lβ(c,ℓ)(G), and Rβ(c,ℓ)(G), the induced subgraph G′ = G[Rβ(c,ℓ)(G)] contains no clique of size
β(c, ℓ). And G′, being an induced subgraph of G, is c-closed. So, if |V (G′)| ≥ Rc(β(c, ℓ), ℓ),
then by Lemma 1, G′ contains an independent set of size ℓ. And we return a 2-maximal
independent set in G′, which can be computed in polynomial time, and which, by Remark 2,
has size at least ℓ.

Otherwise, if |Qβ(c,ℓ)(G)| ≤ ℓ − 1, and |V (G′)| = |Rβ(c,ℓ)(G)| ≤ Rc(β(c, ℓ), ℓ) − 1, then
we return that every independent set in G has size at most (ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1.

Note that the only time consuming step in this algorithm is the construction of the
families Q(G) and Qβ(c,ℓ)(G) in time 2O(c)nO(1). The rest of the steps run in polynomial
time.

To see the correctness of the last step, assume that |Qβ(c,ℓ)(G)| ≤ ℓ − 1 and |V (G′)| =
|Rβ(c,ℓ)(G)| ≤ Rc(β(c, ℓ), ℓ) − 1. Note that by definition, Lβ(c,ℓ)(G) =

⋃
Q∈Qβ(c,ℓ)(G) V (Q).

And therefore, by Lemma 9, any independent set in G[Lβ(c,ℓ)(G)] has size at most
|Qβ(c,ℓ)(G)| ≤ ℓ − 1. Finally, as

{
Lβ(c,ℓ)(G), Rβ(c,ℓ)(G)

}
is a partition of V (G), for

any independent set I ⊆ V (G), we have |I| = |I ∩ Lβ(c,ℓ)(G)| + |I ∩ Rβ(c,ℓ)(G)| ≤
(ℓ − 1) + |Rβ(c,ℓ)(G)| ≤ (ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1. Hence, the lemma follows. ◀
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▶ Lemma 11 (♣). Let G be a graph and k a non-negative integer. Let I be an independent
set in G of size k +1. Then, for any dominating set D of G, if |D| ≤ k, then D ∩N [2](I) ̸= ∅.
Moreover, if G is c-closed, then |N [2](I)| ≤ (c − 1)

(
k+1

2
)
.

▶ Lemma 12 (♣). Let G be a c-closed graph, and Y ⊆ V (G) be such that |Y | ≤ c − 1. Then,
the graph G[CN(Y )] is (c − |Y |)-closed.

3 A Polynomial Kernel for Perfect Code on c-closed graphs

To design our kernel, we consider a slightly more general version of the problem, which we
call BW-Perfect Code. A bw-graph is a graph G along with a partition of V (G) into two
parts, B and W . We do not require that both B and W be non-empty. We call the elements
of B black vertices and the elements of W white vertices, and for convenience we write that
(G, B, W ) is a bw-graph. A bw-perfect code of (G, B, W ) is a set of vertices D ⊆ B such
that |N [v] ∩ D| = 1 for every v ∈ V (G). That is, a bw-perfect code is a set of black vertices
that dominates every vertex of G exactly once. The definition of a perfect code immediately
implies the following observation.

▶ Observation 13. Let (G, B, W ) be a bw-graph, and D ⊆ B a bw-perfect code of G. Then,
(i) D is a dominating set of G, and (ii) distG(x, y) ≥ 3 for every pair of distinct vertices
x, y ∈ D.

We now formally define the BW-Perfect Code problem below.

BW-Perfect Code Parameter: k + cl(G)
Input: A bw-graph (G, B, W ) and a non-negative integer k.
Question: Does (G, B, W ) have a bw-perfect code of size at most k?

It is not difficult to see that an instance (G, k) of Perfect Code can be reduced to
an equivalent instance ((G, B, W ), k) of BW-Perfect Code by taking B = V (G) and
W = ∅. We now move to designing a kernel for BW-Perfect Code on c-closed graphs.
We first prove that for each fixed positive integer c, the BW-Perfect Code problem on
c-closed graphs admits a kernel with O(k3(2c−1)) vertices. And then argue that an instance
of BW-Perfect Code can be reduced in polynomial time to an equivalent instance of
Perfect Code, which will give us the required kernel. Specifically, we prove the following
theorem.

▶ Theorem 14. Let c be a fixed positive integer. There is an algorithm that, when given an
instance ((G, B, W ), k) of BW-Perfect Code as input, where G is an n-vertex c-closed
graph, runs in polynomial time, and returns an equivalent instance ((G′, B′, W ′), k′) of the
BW-Perfect Code problem such that G′ is a c-closed graph and |V (G′)|+k′ = O(k3(2c−1)).

In addition to Theorem 14, we also need the following two intermediate lemmas to prove
that Perfect Code admits a kernel. The first of these lemmas deals with the Perfect
Code problem on 1-closed graphs, (which are precisely graphs in which every connected
component is a clique), and the second one presents a polynomial time reduction from
BW-Perfect Code to Perfect Code.

▶ Lemma 15 (♣). Perfect Code is polynomial time solvable on 1-closed graphs.

▶ Lemma 16. Let c > 1 be a fixed integer. There is an algorithm that given an instance
((G′, B′, W ′), k′) of BW-Perfect Code, runs in polynomial time, and returns an equivalent
instance (G′′, k′′) of Perfect Code such that (i) G′′ is c-closed if G′ is c-closed, (ii)
|V (G′′)| = O(|V (G′)|), and (ii) k′′ ≤ k′ + 1.
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Finally, as a consequence of Theorem 14, Lemmas 15 and 16, we derive the following.

▶ Theorem 17. Let c be a fixed positive integer. Perfect Code on c-closed graphs admits
a kernel with O(k3(2c−1)) vertices.

Proof. Let (G, k) be an instance of Perfect Code, where G is a c-closed graph. Our
kernelization algorithm returns an equivalent instance (G′′, k′′) of Perfect Code as follows.
If c = 1, then we use the algorithm in Lemma 15 to solve the Perfect Code problem
on (G, k). And if (G, k) is a yes-instance, we take (G′′, k′′) to be a trivial yes-instance of
Perfect Code with |V (G′′)| + k′′ = O(k), and otherwise we take (G′′, k′′) to be a trivial
no-instance of Perfect Code with |V (G′′)| + k′′ = O(k), and return (G′′, k′′).

If c > 1, then we create from (G, k), an equivalent instance ((G, B, W ), k) of BW-
Perfect Code by taking B = V (G) and W = ∅. And then apply the algorithm in
Theorem 14, to obtain an equivalent instance ((G′, B′, W ′), k′) of BW-Perfect Code,
where |V (G′)| + k′ = O(k3(2c−1)). Finally, we apply the algorithm in Lemma 16 to obtain
from ((G′, B′, W ′), k′) an equivalent instance (G′′, k′′) of Perfect Code. Note that as
the algorithms in Lemma 15, Theorem 14 and Lemma 16, run in polynomial time, our
kernelization algorithm returns (G′′, k′′) in polynomial time. And since Lemma 16 guarantees
that |V (G′′)| = O(|V (G′)|), and k′′ ≤ k′ + 1, we have |V (G′′)| + k′′ = O(k3(2c−1)), and the
theorem follows. ◀

So now we only need to prove Theorem 14. We first give a sketch of the proof of
Lemma 16.

Proof Sketch of Lemma 16. Consider an instance ((G′, B′, W ′), k′) of BW-Perfect Code.
If W ′ = ∅, then we take G′′ = G′ and k′′ = k′. Note that this choice of G′′ and k′′ satisfies all
the properties stated in the lemma. So, assume that W ′ ̸= ∅. Let V (G) = {v1, v2, . . . , vn}, and
without loss of generality let W ′ = {v1, v2, . . . , vr} for some r ≤ n. We define the graph G′′

as follows: V (G′′) = X ∪ Y ∪ Z and E(G′′) = E1 ∪ E2 ∪ E3 ∪ E4, where X = {x1, x2, . . . , xn}
and Y = {y1, y2, . . . , yr} and Z = {z, z1, z2, . . . , zk′+2}; and E1 = {xixj | vivj ∈ E(G′)},
E2 = {xiyi | i ∈ [r]} and E3 = {yiz | i ∈ [r]} and E4 = {zzi | i ∈ [k′ + 2]}. And we set
k′′ = k′ + 1. Note that G′′[X] is an isomorphic copy of G′. The set Y is another copy of
W ′. Thus, {x1, x2, . . . , xr} and Y are two copies of W ′, and the set E2 is a matching in G′′

between the two copies.
First, |V (G′′)| = |X|+ |Y |+ |Z| = |V (G′)|+ |W ′|+(k′ +3) = O(|V (G′)|). Second, we can

show that ((G′, B′, W ′), k′) is a yes-instance of BW-Perfect Code if and only if (G′′, k′′)
is a yes-instance of Perfect Code. ◀

The rest of this section is dedicated to proving Theorem 14. To that end, we first
define two functions γ, µ : N → N as follows. (Recall that α(a, b) = (a − 1)b + 1 and
β(a, b) = 2[(a−1)(b−1)+1].) For a, b ∈ N, we have γ(1, b) = b+1, and γ(a, b) = bµ(a−1, b)+1;
and µ(a, b) = γ(a, b) + Ra(β(a, γ(a, b) + 1), γ(a, b) + 1) − 1. These functions γ and µ will be
used to bound the size of independent sets in G when ((G, B, W ), k) is a yes-instance.

▶ Observation 18. Observe that for every fixed a, i ∈ N, and for b ∈ N, we have Ri(a, b) =
O(b2) and β(a, b) = O(b). Therefore, we have

γ(1, b) = O(b) µ(1, b) = O(b) + R1(O(b), O(b)) = O(b2)
γ(2, b) = bµ(1, b) + 1 = O(b3) µ(2, b) = O(b3) + R2(O(b3), O(b3)) = O(b6)
γ(3, b) = bµ(2, b) + 1 = O(b7) µ(3, b) = O(b7) + R3(O(b7), O(b7)) = O(b14)
· · · · · ·
γ(a, b) = O(b2a−1) µ(a, b) = O(b2(2a−1)).
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Outline of the kernel. Our kernel for BW-Perfect Code has two parts. In the first part,
we bound the size of independent sets in (G, B, W ) using Reduction Rule 19, and in the
second part, we bound the size of cliques in (G, B, W ) using Reduction Rules 27-29. Once
the size of cliques and independent sets are bounded, we apply Lemma 1.

To bound the size of independent sets in case ((G, B, W ), k) is a yes-instance, observe
the following fact. Consider an independent set I in G and a bw-perfect code D ⊆ B of
size at most k. Then, we can partition I into at most k parts, say, I1, I2, . . . , Ik, such that
for each j ∈ [k], there exists a unique vertex vj ∈ D that dominates Ij , i.e., Ij ⊆ N(vj).
Thus, to bound |I|, we only need to bound |Ij | for every j ∈ [k]. More generally, we only
need to bound the size of independent sets contained in N(v) for every v ∈ V (G). To do
this, suppose that for every Y ⊆ V (G) with |Y | = 2 we have already managed to bound
the size of independent sets contained in CN(Y ) by some function of c and k, say, f(c, k).
That is, every independent set with at least 2 common neighbours has size at most f(c, k).
Now, consider v ∈ V (G). And let I ′ be an independent set of size at least k · f(c, k) + 1
contained in N(v) and D a bw-perfect code of size at most k. Then, we must have v ∈ D.
If not, there exists u ∈ D that dominates at least |I ′|/k vertices of I. That is, there exist
u ∈ D and I ′′ ⊆ I ′ such that |I ′′| ≥ |I ′|/k > f(c, k) and I ′′ ⊆ N(u). But note that
I ′′ ⊆ I ′ ⊆ N(v). Thus, I ′′ ⊆ CN({u, v}) and |I ′′| > f(c, k), which we have already ruled out
to be impossible. By repeating these arguments, we can show that, to obtain the bound of
f(c, k) for independent sets with 2 common neighbours, we only need to bound the size of
independent sets with 3 common neighbours. This train of arguments only needs to continue
until we reach independent sets with c − 1 common neighbours. Thus, we start with sets Y of
size c − 1 and bound the size of independent sets contained in CN(Y ). Then proceed to sets
Y of size c − 2 and so on. This idea is formalised in Reduction Rule 19. But the difficulty
comes in checking if CN(Y ) contains an independent set of the required size, which cannot
be done in time 2O(c)nO(1). To overcome this, we use the weaker result of Lemma 10, which
causes the bound on the independent set size to increase exponentially in each successive
stage. Thus, after c − 1 stages, we only manage to obtain a bound of µ(c − 1, k) = kO(2c) for
the size of independent sets contained in N(v) for every v ∈ V (G). And this bound is where
the kernel size comes from.

In the second part, bounding the clique size is fairly straightforward. This involves
removing twin vertices (Reduction Rule 27), and identifying irrelevant vertices (vertices
that cannot belong to any bw-perfect code of size at most k) and colouring them white or
removing them (Reduction Rules 28 and 29). (Also, each time we introduce a reduction rule,
we apply it exhaustively. So from that point onwards, we would assume that the reduction
rule is no longer applicable.)

We now formally introduce the following reduction rule.

▶ Reduction Rule 19. For each i ∈ [c − 1], we introduce Reduction Rule 19.i as follows. Let
((G, B, W ), k) be an instance of BW-Perfect Code. For each fixed set Y ⊆ V (G) with
|Y | = c − i, we run the algorithm in Lemma 10 on the graph G[CN(Y )] with ℓ = γ(i, k) + 1.
If the algorithm returns an independent set I of size ℓ, then delete a vertex v ∈ I from G,
and colour NG(v) \ Y white. That is, we create a new instance ((G′, B′, W ′), k) as follows:
G′ = G − v, B′ = B \ (NG[v] \ Y ) and W ′ = V (G′) \ B′ = W ∪ (NG[v] \ Y ). We keep
repeating this proceudre until the algorithm in Lemma 10 returns that every independent set
in G[CN(Y )] has size at most (ℓ − 1) + Rc(β(c, ℓ), ℓ) − 1. Also, we apply Reduction Rule 19.i
in the increasing order of i. That is, we first apply Reduction Rule 19.1 exhaustively, and for
each i ∈ [c − 1] \ {1}, we apply Reduction Rule 19.i only if Reduction Rule 19.(i − 1) is no
longer applicable.
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We now observe the following fact, which will be useful in establishing the correctness of
Reduction Rule 19.

▶ Observation 20. Fix i ∈ [c − 1]. For any Y ⊆ V (G) with |Y | = c − i, by Lemma 12,
the subgraph G[CN(Y )] is i-closed. Therefore, after an exhaustive application of Reduction
Rule 19.i, by Lemma 10, every independent set in G[CN(Y )] has size at most γ(i, k) +
Ri(β(i, γ(i, k) + 1), γ(i, k) + 1) − 1 = µ(i, k). In particular, when i = c − 1, we get that after
an exhaustive application of Reduction Rule 19.(c−1), for every v ∈ V (G), every independent
set in G[N(v)] has size at most µ(c − 1, k).

▶ Lemma 21. Let ((G, B, W ), k) be an instance of BW-Perfect Code. Let Y ⊆ V (G) be
such that |Y | = c − 1, and I ⊆ CN(Y ) be an independent set with |I| ≥ γ(1, k). Then, for
any bw-perfect code D ⊆ B of (G, B, W ) with |D| ≤ k, we have |D ∩ Y | = 1.

Proof. Let D ⊆ B be a bw-perfect code of (G, B, W ) with |D| ≤ k. We first claim that
D ∩ Y ̸= ∅. Assume for a contradiction that D ∩ Y = ∅. Now, since |I| ≥ γ(1, k) = k + 1
and |D| ≤ k, by the pigeonhole principle, there exists a vertex u ∈ D that dominates
at least two vertices of I, say, w1, w2 ∈ I. That is, u ∈ N [w1] ∩ N [w2]. Since I is an
independent set, and uw1, uw2 ∈ E(G), we can conclude that u ̸= w1 and u ̸= w2. Thus,
u ∈ N(w1) ∩ N(w2). But since since w1, w2 ∈ I ⊆ CN(Y ), we get that Y ⊆ N(w1) ∩ N(w2).
Thus, Y ∪ {u} ⊆ N(w1) ∩ N(w2). Because of our assumption that D ∩ Y = ∅, we have u /∈ Y ,
and thus |Y ∪ {u}| = c. Thus, w1 and w2 have at least c common neighbours, and therefore
w1w2 ∈ E(G), which is not possible as w1and w2 belong to the independent set I. Thus,
D ∩ Y ̸= ∅. Now, if there exist y1, y2 ∈ D ∩ Y , where y1 ≠ y2, then for any x ∈ I, we have
y1, y2 ∈ N [x] ∩ D, which, by the definition of a bw-perfect code, is not possible. Therefore,
we conclude that |D ∩ Y | = 1. ◀

▶ Lemma 22. Fix i ∈ [c − 1] \ {1}. Let ((G, B, W ), k) be an instance of BW-Perfect
Code to which Reduction Rule 19.(i − 1) has been applied exhaustively. Let Y ⊆ V (G) be
such that |Y | = c − i, and I ⊆ CN(Y ) be an independent set with |I| ≥ γ(i, k). Then, for
any bw-perfect code D ⊆ B of (G, B, W ) with |D| ≤ k, we have |D ∩ Y | = 1.

Proof. Let D ⊆ B be a bw-perfect code of (G, B, W ) with |D| ≤ k. We first claim that
D ∩ Y ≠ ∅. Assume for a contradiction that D ∩ Y = ∅. Now, since |I| ≥ γ(i, k) =
kµ(i − 1, k) + 1 and |D| ≤ k, by the pigeonhole principle, there exists a vertex u ∈ D that
dominates at least µ(i−1, k)+1 vertices of I. Let I ′ ⊆ I be such that |I ′| ≥ µ(i−1, k)+1 and
u dominates I ′. That is, I ′ ⊆ N [u]. Observe first that u /∈ I ′. To see this, suppose that u ∈ I ′.
Then, for every w ∈ I ′\{u}, since u dominates w, we must have uw ∈ E(G), which contradicts
the fact that I ′ is an independent set. So, u /∈ I ′, and therefore, I ′ ⊆ N(u). And we already
have I ′ ⊆ I ⊆ CN(Y ). We can conclude that I ′ ⊆ N(u)∩CN(Y ) = CN(Y ∪{u}). Because of
our assumption that D∩Y = ∅, we have u /∈ Y , and thus |Y ∪ {u}| = c−i+1 = c−(i−1). That
is, Y ∪{u} is a set of size c−(i−1), and I ′ is an independent set such that I ′ ⊆ CN(Y ∪{u}),
and |I ′| ≥ µ(i − 1, k) + 1. But this conclusion contradicts Observation 20 because of our
assumption that Reduction Rule 19.(i − 1) has been applied exhaustively. Thus, D ∩ Y ̸= ∅.
Now, if there exist y1, y2 ∈ D∩Y , where y1 ̸= y2, then for any x ∈ I, we have y1, y2 ∈ N [x]∩D,
which, by the definition of a bw-perfect code, is not possible. Therefore, we conclude that
|D ∩ Y | = 1. ◀

▶ Lemma 23. Reduction Rule 19.i is safe.
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Proof. Let ((G′, B′, W ′), k) be the instance obtained from ((G, B, W ), k) by a single ap-
plication of Reduction Rule 19.i. Then, there exists Y ⊆ V (G) with |Y | = c − i, and an
independent set I ⊆ CN(Y ) with |I| = γ(i, k) + 1 and a vertex v ∈ I such that G′ = G − v,
B′ = B \ (NG[v] \ Y ) and W ′ = V (G′) \ B′ = W ∪ (NG[v] \ Y ). We shall show that
((G, B, W ), k) and ((G′, B′, W ′), k) are equivalent instances.

First consider the case when i = 1. Then, |Y | = c − 1, and |I| = γ(1, k) + 1. Assume
that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B be a bw-perfect
code of (G, B, W ) of size at most k. Then, by Lemma 21, |D ∩ Y | = 1. Let {y} = D ∩ Y .
But then since y ∈ D, and I ⊆ CN(Y ) ⊆ N(y), we have I ∩ D = ∅. In particular v /∈ D.
Also, for any w ∈ NG(v) \ Y , we have distG(y, w) ≤ 2, and thus, by Observation 13, we have
w /∈ D. Thus, D ∩ (NG[v] \ Y ) = ∅, and therefore, D ⊆ B \ (NG[v] \ Y ) = B′. Thus, D is a
bw-perfect code of (G′, B′, W ′) as well.

Conversely, assume that ((G′, B′, W ′), k) is a yes-instance, and let D′ ⊆ B′ be a bw-perfect
code of (G′, B′, W ′) with |D′| ≤ k. We claim that D′ is a bw-perfect code of (G, B, W ) as well.
Note that for any x ∈ V (G) \ {v}, we have NG′ [x] = NG[x] \ {v}. Therefore, since v /∈ D′, we
have |D′ ∩ NG[x]| = |D′ ∩ NG′ [x]| = 1. So, now we only need to show that |D′ ∩ NG[v]| = 1.
Note that NG[v] = (NG[v] \ Y ) ∪ (NG[v] ∩ Y ). First, since NG[v] \ Y ⊆ W ′, and D′ ⊆ B′, we
get that D′ ∩ (NG[v] \ Y ) = ∅. So we only need to show that |D′ ∩ (NG[v] ∩ Y )| = 1. Now,
observe that as |I \ {v}| = γ(1, k), by Lemma 21, we have |D′ ∩ Y | = 1. Let {y′} = D′ ∩ Y .
Then, y′ ∈ D′ ∩ NG[v], and in fact, {y′} = D′ ∩ (NG[v] ∩ Y ). This completes the proof for
the case when i = 1.

Now, assume that i > 1. First, by assumption, Reduction Rule 19.j is not applicable to
((G, B, W ), k) for any j ∈ [i−1]. And we have |Y | = c−i, and |I| = γ(i−1, k)+1. Assume that
((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B be a bw-perfect code
of (G, B, W ) of size at most k. Then, by Lemma 22, we have |D ∩ Y | = 1. Let {y} = D ∩ Y .
But then since y ∈ D, and I ⊆ CN(Y ) ⊆ N(y), we have I ∩ D = ∅. In particular v /∈ D.
Also, for any w ∈ NG(v) \ Y , we have distG(y, w) ≤ 2, and thus, by Observation 13, we have
w /∈ D. Thus, D ∩ (NG[v] \ Y ) = ∅, and therefore, D ⊆ B \ (NG[v] \ Y ) = B′. Thus, D is a
bw-perfect code of (G′, B′, W ′) as well.

Conversely, assume that ((G′, B′, W ′), k) is a yes-instance, and let D′ ⊆ B′ be a bw-perfect
code of (G′, B′, W ′) with |D′| ≤ k. We claim that D′ is a bw-perfect code of (G, B, W ) as well.
Note that for any x ∈ V (G) \ {v}, we have NG′ [x] = NG[x] \ {v}. Therefore, since v /∈ D′, we
have |D′ ∩ NG[x]| = |D′ ∩ NG′ [x]| = 1. So, now we only need to show that |D′ ∩ NG[v]| = 1.
Note that NG[v] = (NG[v] \ Y ) ∪ (NG[v] ∩ Y ). First, since NG[v] \ Y ⊆ W ′, and D′ ⊆ B′, we
get that D′ ∩ (NG[v] \ Y ) = ∅. So we only need to show that |D′ ∩ (NG[v] ∩ Y )| = 1. Now,
observe that as |I \ {v}| = γ(i, k), by Lemma 22, we have |D′ ∩ Y | = 1. Let {y′} = D′ ∩ Y .
Then, y′ ∈ D′ ∩ NG[v], and in fact, {y′} = D′ ∩ (NG[v] ∩ Y ). This completes the proof for
the lemma. ◀

▶ Remark 24. Observe that each application of Reduction Rule 19 can be executed in time
2O(c)nO(1). Also, for each set Y ⊆ V (G) with |Y | ≤ c − 1, Reduction Rule 19 is applied only
at most |CN(Y )| ≤ n times. And note that the set Y has at most

∑c−1
i=1

(
n
i

)
= nO(c) choices.

Thus, Reduction Rule 19 can be applied exhaustively in time 2O(c)nO(c). Since c is a fixed
constant, we have 2O(c)nO(c) = nO(1). That is, we can exhaustively apply Reduction Rule 19
in polynomial time. So, from now on, we assume that Reduction Rule 19 has been applied
exhaustively.

The following lemma bounds the size of an independent set in G if ((G, B, W ), k) is a
yes-instance.
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▶ Lemma 25. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)
is a yes-instance, then every independent set in G has size at most γ(c, k) − 1.

Proof. Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code, and let D ⊆ B

be a bw-perfect code of (G, B, W ) of size at most k. Let I ⊆ V (G) be an independent set.
Assume for a contradiction that |I| ≥ γ(c, k) = kµ(c − 1, k) + 1. Then, since |D| ≤ k, by the
pigeonhole principle, there exists v ∈ D such that v dominates at least µ(c − 1, k) + 1 vertices
of I. That is, there exists an independent set I ′ such that I ′ ⊆ N(v) and |I ′| ≥ µ(c−1, k)+1,
which, by Observation 20, is not possible, as Reduction Rule 19, and in particular, Reduction
Rule 19.(c − 1) has been applied exhaustively. ◀

We have thus bounded the size of every independent set in G for yes-instances. This
immediately bounds the number of large cliques (by Lemma 8), as well as the number of
vertices that do not belong to any large maximal clique (by Lemma 1).

▶ Lemma 26. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)
is a yes-instance, then
1. |Qβ(c,γ(c,k))(G)| ≤ γ(c, k) − 1, and
2. |Rβ(c,γ(c,k))(G)| ≤ Rc(β(c, γ(c, k)), γ(c, k)) − 1.

Proof. Assume that ((G, B, W ), k) is a yes-instance of BW-Perfect Code.
1. If |Qβ(c,γ(c,k))(G)| ≥ γ(c, k), then by Lemma 8, G contains an independent set of size

γ(c, k), which contradicts Lemma 25.
2. By the definition of Rβ(c,γ(c,k))(G), the induced subgraph G[Rβ(c,γ(c,k))(G)] of G con-

tains no clique of size β(c, γ(c, k)). By Lemma 25, the graph G, and hence the graph
G[Rβ(c,γ(c,k))(G)], contains no independent set of size γ(c, k). The bound then follows
from Lemma 1. ◀

In the next three reduction rules we bound the size of every clique in G as well, which, in
turn, will help us bound |Lβ(c,γ(c,k))(G)|. We begin by introducing a reduction rule, which
says that if two vertices have same closed neighborhood and the same colour, then we can
safely delete one of them.

▶ Reduction Rule 27. Let ((G, B, W ), k) be an instance of BW-Perfect Code. Let
x, y ∈ V (G) be distinct vertices such that NG[x] = NG[y]. If x, y ∈ B or x, y ∈ W , then
delete x.

Let Q be a maximal clique of size at least α(c, k). By Corollary 7, exactly one vertex
from V (Q) is in every bw-perfect code. Therefore, no vertex from N(V (Q)) belongs to a
bw-perfect code of size at most k. So we color N(V (Q)) white in the next reduction rule.

▶ Reduction Rule 28. Let ((G, B, W ), k) be an instance of BW-Perfect Code, and let
Q ∈ Qα(c,k)(G). Colour N(V (Q)) white. That is, we construct the instance ((G, B′, W ′), k)
of BW-Perfect Code, where W ′ = W ∪ N(V (Q)), and B′ = B \ N(V (Q)).

Let Q ∈ Qα(c,k)+1(G). We define Z(Q) to be the set of vertices in V (Q) that have neigh-
bours in some other maximal clique of size at least α(c, k), i.e., Z(Q) = {u ∈ V (Q) | uv ∈
E(G) for some v ∈ V (Q′), where Q′ ∈ Qα(c,k)(G), u /∈ V (Q′), and Q′ ̸= Q}. In the follow-
ing reduction rule we show that we can safely delete Z(Q).

▶ Reduction Rule 29. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If there
exists Q ∈ Qα(c,k)+1(G) and v ∈ Z(Q), then delete v. That is, we construct the instance
((G′, B′, W ′), k) of BW-Perfect Code, where G′ = G−v, B′ = B\{v}, and W ′ = W \{v}.

STACS 2022



39:16 Further Exploiting c-Closure for FPT Algorithms and Kernels

▶ Lemma 30 (♣). Reduction Rules 27, 28, and 29 are safe.

▶ Remark 31. Observe that given an instance ((G, B, W ), k) of BW-Perfect Code, using
the algorithm in Lemma 5, we can construct Qα(c,k)(G) (and Qα(c,k+1)(G)) in time 2O(c)nO(1).
And once we construct these families of cliques, we can then exhaustively apply Reduction
Rules 28 in time |Qα(c,k)(G)|nO(1) and Reduction Rule 29 in time |Qα(c,k+1)(G)|nO(1). Also,
observe that we can exhaustively apply Reduction Rule 27 in polynomial time. So from now
on, we assume that we have exhaustively applied Reduction Rules 27-29.

▶ Lemma 32 (♣). Let ((G, B, W ), k) be an instance of BW-Perfect Code. If
((G, B, W ), k) is a yes-instance, then for every Q ∈ Qβ(c,γ(c,k))(G), we have
1. Z(Q) = ∅, and
2. |V (Q)| ≤ (c − 1)[Rc(β(c, γ(c, k)), γ(c, k)) − 1] + 2.
Finally, Lemmas 26-(1) and 32-(2) together bound |Lβ(c,γ(c,k))(G)|, which bounds |V (G)|.

▶ Lemma 33. Let ((G, B, W ), k) be an instance of BW-Perfect Code. If ((G, B, W ), k)
is a yes-instance, then |V (G)| = O(k3(2c−1)).

Proof. Assume that ((G, B, W ), k) is a yes-instance. Then, by Lemma 26-(1), we have
|Qβ(c,γ(c,k))(G)| ≤ γ(c, k) − 1 = O(k2c−1), and by Lemma 32-(2), we have |V (Q)| ≤ (c −
1)[Rc(β(c, γ(c, k)), γ(c, k)) − 1] + 2 = O((γ(c, k))2) = O(k2(2c−1)). Therefore, we have

|Lβ(c,γ(c,k))(G)| = |
⋃

Q∈Qβ(c,γ(c,k))(G)

V (Q)|

≤ (γ(c, k) − 1) · (c − 1)[Rc(β(c, γ(c, k)), γ(c, k)) − 1] + 2

= O(k2c−1) · O(k2(2c−1))

= O(k3(2c−1)).

Also, by Lemma 26-(2), we have |Rβ(c,γ(c,k))(G)| ≤ Rc(β(c, γ(c, k)), γ(c, k)) − 1 =
Rc(O(k2c−1), O(k2c−1)) = O(k2(2c−1)). Finally, since

{
Lβ(c,γ(c,k))(G), Rβ(c,γ(c,k))(G)

}
is

a partition of V (G), we conclude that |V (G)| = O(k3(2c−1)). ◀

Each of our reduction rules is safe and by Remarks 24 and 31, all the reduction rules we
introduced can be executed in polynomial time, and are applied only polynomially many
times. We have thus proved Theorem 14.

4 Conclusion

We resolved the parameterized complexity of three domination problems – Perfect Code,
CDS and PDS– on c-closed graphs. We believe that our results, along with that of Koana et
al. [39], make a convincing case for pursuing the closure of a graph as a significant structural
parameter. We also believe that the arguments in this paper can be adapted to solve
similar problems on c-closed graphs. In particular, our strategy for Perfect Code may
be applicable to the Even Dominating Set (resp. Odd Dominating Set) problems,
where the goal is to check if a graph G has a dominating set D of size at most k such that
D dominates every vertex of G an even (resp. odd) number of times. While we showed
that PDS is W[1]-hard even on 2-closed graphs, the status of Partial Vertex Cover on
c-closed graphs still remains open. It would be interesting to see if any our results extend to
weakly γ-closed graphs (see [26] and [38]) as well.
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