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Abstract
We investigate a phenomenon of “one-to-two-player lifting” in infinite-duration two-player games on
graphs with zero-sum objectives. More specifically, let C be a class of strategies. It turns out that in
many cases, to show that all two-player games on graphs with a given payoff function are determined
in C, it is sufficient to do so for one-player games. That is, in many cases the determinacy in C can
be “lifted” from one-player games to two-player games. Namely, Gimbert and Zielonka (CONCUR
2005) have shown this for the class of positional strategies. Recently, Bouyer et al. (CONCUR 2020)
have extended this to the classes of arena-independent finite-memory strategies. Informally, these
are finite-memory strategies that use the same way of storing memory in all game graphs.

In this paper, we put the lifting technique into the context of memory complexity. The memory
complexity of a payoff function measures, how many states of memory we need to play optimally in
game graphs with up to n nodes, depending on n. We address the following question. Assume that
we know the memory complexity of our payoff function in one-player games. Then what can be said
about its memory complexity in two-player games? In particular, when is it finite?

In this paper, we answer this questions for strategies with “chromatic” memory. These are
strategies that only accumulate sequences of colors of edges in their memory. We obtain the following
results.

Assume that the chromatic memory complexity in one-player games is sublinear in n on some
infinite subsequence. Then the chromatic memory complexity in two-player games is finite.
We provide an example in which (a) the chromatic memory complexity in one-player games is
linear in n; (b) the memory complexity in two-player games is infinite.

Thus, we obtain the exact barrier for the one-to-two-player lifting theorems in the setting of
chromatic finite-memory strategies. Previous results only cover payoff functions with constant
chromatic memory complexity.

2012 ACM Subject Classification Theory of computation → Logic

Keywords and phrases Games on graphs, one-to-two-player lifting, strategy complexity, positional
determinacy, finite-memory determinacy

Digital Object Identifier 10.4230/LIPIcs.STACS.2022.43

Related Version Full Version: arXiv:2104.13888 [17]

Funding This work was performed at the Steklov International Mathematical Center and supported
by the Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-
2019-1614).

1 Introduction

We study two-player infinite-duration games on graphs. These games are of interest in many
areas of computer science, ranging from purely theoretical disciplines, such as decidability of
logical theories [22, 23], to more practically-oriented ones, such as controller synthesis [15].

These games are played as follows. There is a finite directed graph with a token. We will
call this graph arena. Initially, the token is placed in one of the nodes of the arena. In each
turn, one of the two players takes the token and moves it to some other node. A restriction
is that there must be an edge to the new location of the token. For each node of the arena, it
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is fixed in advance which of the players is the one to move the token in this node. The game
proceeds for infinitely many turns. The outcome of the game is decided by the resulting
trajectory of the token (it forms an infinite path in the arena).

We restrict ourselves to zero-sum games. Correspondingly, the players will be called Max
and Min from now on. In a zero-sum game, objectives of the players are defined through
a payoff function – a function of the form φ : Cω → W, where C is a set of colors, and
(W,≤) is an arbitrary linearly ordered set. Next, we assume that arenas are edge-colored
by elements of C. To compute the outcome of a play (which will be an element of W), we
take the trajectory of the token in this play, then consider the infinite sequence of colors
γ ∈ Cω written on the edges of the trajectory, and, finally, apply φ to γ. The aim of Max is
to maximize φ(γ), while the aim of Min is to minimize it (with respect to the ordering of W).

As usually, a pair of strategies of the players in which the first strategy is the best response
to the second one, and vice versa, is called an equilibrium. Next, a strategy which belongs to
some equilibrium is called optimal. Now, a payoff function is called determined if in every
arena there exists an equilibrium with respect to this payoff function.

We will study determinacy with respect to restricted classes of strategies. Namely, if C is
a class of strategies, then we say that a payoff function is determined in C if the following
holds: in every arena there is an equilibrium for this payoff function in which both strategies
are from C. The smaller is C, the stronger is this requirement.

One of the main research directions in the area of games of graphs is strategy complexity.
Its goal, broadly speaking, is to find out, for a payoff function φ of our interest, what is the
“simplest” class of strategies C in which φ is determined. This is highly relevant when our task
is to actually implement in practice one of the optimal strategies for φ. For instance, this is
the case when we want to produce a device whose performance is measured by φ. If this
device is meant to act in the environment, then the execution of this device can be modeled
as a game – between the controller of the device and the environment. In this framework, the
controller realizes one of the strategies in this game. Ideally, we want an optimal performance
w.r.t. φ at the lowest cost (in terms of the resources we need to implement the controller).
The lower is strategy complexity of φ, the easier is this task.

Classically, there are two classes of strategies that are often considered in this context.
One is the class of positional strategies and the other is the class of finite-memory strategies.

Let us first consider positional strategies. A strategy is positional if, for every node v of
the arena, it always makes the same move when the token is in v, no matter what was the
path of the token to this node. Sometimes these strategies are called memory-less – they do
not need to “remember” anything about the previous development of the game. For brevity,
we call payoff functions that are determined in the class of positional strategies positionally
determined. Classical examples of games with positionally determined payoff functions are
Parity Games, Mean-Payoff Games and Discounted Games [21, 10, 24].

These games, especially Parity Games, had a tremendous impact on such areas as
verification, model checking and program analysis [11, 12, 1]. However, say, in controller
synthesis, it is often required to consider more complex games, namely, those for which
positional strategies do not suffice. This brings us to a more general class of strategies – the
class of finite-memory strategies.

Unlike positional strategies, finite-memory strategies can store some information about
the previous development of the game. The point is that during the whole play, which is
infinitely long, the amount of this information should never exceed some constant.

The storage of information in finite-memory strategies is carried out by memory skeletons.
A memory skeleton M is a deterministic finite automaton whose input alphabet is the set of
colors. Now, an M-strategy is a strategy which, informally, stores information according
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to the memory skeleton M. To understand how it works, imagine that during the game,
each time the token is shifted along some edge, the color of this edge is fed to M. Then,
at every moment, the current state of M represents the current content of the memory.
Correspondingly, the moves of an M-strategy depend solely on the current state of M and
the current node with the token.

A strategy is finite-memory if it is an M-strategy for some memory skeleton M. For
brevity, we call payoff functions that are determined in the class of finite-memory strategies
finite-memory determined.

▶ Remark 1. Finite-memory strategies as defined above are sometimes called “chromatic”.
This is because one can consider a more general definition. Namely, one can allow memory
skeletons to take the whole edge as an input, not only its color. However, as shown by Le
Roux [18], determinacy in general finite-memory strategies is equivalent to determinacy in
chromatic finite-memory strategies. In this paper, we work only with chromatic finite-memory
strategies.

1.1 One-to-two-player lifting
One of the techniques in the area of strategy complexity is called one-to-two-player lifting.
Our paper is devoted to this technique. It relies on the notion of one-player arenas. An
arena is called one-player if for one of the players the following holds: all the nodes of the
arena from which this player is the one to move have exactly one out-going edge. This means
that one of the players is given no choice and has only one way of playing. Correspondingly,
there are two types of one-player arenas – those in which Max has no choice and those in
which Min has no choice.

It turns out that to study determinacy in some class of strategies C, it is sometimes
sufficient to consider only one-player arenas. As was shown by Gimbert and Zielonka [13], this
applies to the class of positional strategies. More specifically, their result states the following.
Assume that a payoff function is such that all one-player arenas have an equilibrium of
two positional strategies1 with respect to this payoff function. Then all arenas, not only
one-player ones, have an equilibrium of two positional strategies with respect to this payoff
function. That is, then this payoff function is positionally determined. In a way, this means
the positional determinacy of one-player games can always be “lifted” to two-player games.

This result has fundamental significance for studying the positional determinacy. This
is because often one-player arenas are considerably easier to analyze than two-player ones.
Indeed, assume we have an arena in which, say, Min has no choice. A question of whether
such an arena has a positional equilibrium reduces to the following question. Is there a
“lasso” (a simple path to a simple cycle over which we rotate infinitely many times) which
maximizes our payoff function over all infinite paths? Often this can be figured out with a
simple graph reasoning. For instance, this is fairly easy for Parity Games and Mean Payoff
Games. Thus, through the lifting theorem of Gimbert and Zielonka one gets simple proofs
of positional determinacy of these games. In turn, proofs that existed prior to the paper of
Gimbert and Zielonka were highly non-trivial.

Given such a success in the case of positional strategies, it is temping to extend this
to larger classes of strategies. This was recently investigated for the class of finite-memory
strategies by Bouyer et al. in [4]. It turns out that the situation is quite different for this

1 Note that in one-player arenas, one of the players has just one strategy (and this strategy is positional).
So this requirement means that the other player has a positional strategy which is at least as good
against the unique strategy of the opponent as any other strategy.
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class. More specifically, Bouyer et al. have constructed a payoff function such that (a) all
one-player arenas have an equilibrium of two finite-memory strategies with respect to this
payoff function (b) there is an arena (in fact, with just 2 nodes) which is not one-player and
which has no equilibrium of two finite-memory strategies with respect to this payoff function.

Thus, the class of positional strategies admits one-to-two-player lifting and the class of
finite-memory strategies does not. Bouyer et al. suggested to study intermediate classes.
Namely, their approach was as follows. By definition, the class of finite-memory strategies
is the union of the classes of M-strategies over all memory skeletons M. Let us now fix a
memory skeleton M and consider the class of M-strategies for this specific M. Bouyer et
al. show that for every M this class admits one-to-two-player lifting.

More precisely, the lifting theorem of Bouyer et al. states that for any memory skeleton
M the following holds. Assume that a payoff function is such that all one-player arenas have
an equilibrium of two M-strategies. Then the same holds for all arenas, with exactly this
memory skeleton M. That is, then this payoff function is determined in M-strategies.

Observe that positional strategies are exactly M-strategies if the memory skeleton M
has just one state. Thus, the lifting theorem Bouyer et al. includes the lifting theorem of
Gimbert and Zielonka as a special case.

Bouyer et al. call payoff functions to which one can apply their lifting theorem arena-
independent finite-memory determined. That is, a payoff function φ is arena-independent
finite-memory determined if there exists a memory skeleton M such that φ is determined in
M-strategies.

In the literature there is a number of games with arena-independent finite-memory determ-
ined payoff functions. For example, one can list games with ω-regular winning conditions [7]
and bounded multidimensional energy games [3]. In turn, unbounded multidimensional
energy games are finite-memory determined but not arena-independently [9].

1.2 Our results

The aim of this work is to extend the lifting technique beyond the class of arena-independent
finite-memory determined payoff functions.

For payoff functions beyond this class, there is no single memory M skeleton which suffices
for all arenas (here “suffices” means the existence of an equilibrium of two M-strategies).
Instead, larger arenas require larger memory skeletons. This motivates a notion of the
memory complexity of a payoff function. It can be defined as follows. For every n consider
the minimal memory skeleton which is sufficient for all arenas with up to n nodes (w.r.t. our
payoff function). Let the size of this memory skeleton (that is, the number of its states)
be Sn. Then we call the function n 7→ Sn the memory complexity of our payoff function.
Observe that arena-independent finite-memory determined payoff functions have memory
complexity O(1).

The memory complexity is the decisive factor in practice – if it grows too quickly, we might
have no resources to implement optimal strategies for our payoff function. This complexity
measure was studied for a number of payoff functions in [8, 9]

We initiate the study of the memory complexity in the context of one-to-two-player lifting.
More specifically, we address the following question. Assume that we know the memory
complexity of our payoff function in one-player arenas. Then what can be said about its
memory complexity in all arenas? Thus, our approach differs from the approach of Bouyer
et al. in the following regard. Instead of lifting determinacy in some fixed class of strategies
from one-player arenas to all arenas, we lift bounds on the memory complexity.
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To formulate our results, we introduce the following notation. Let Z+ denote the set of
positive integers, and let f : Z+ → Z+ be a function. Then by FMD(f) we denote the class
of all payoff functions φ such that for all n ∈ Z+ there exists a memory skeleton M with
at most f(n) states such that every arena with at most n nodes has an equilibrium of two
M-strategies with respect to φ. In other words, FMD(f) is the class of all payoff function
with memory complexity at most f . We also introduce similar notation for one-player arenas.
Namely, we let 1playerFMD(f) be the class of all payoff functions φ such that for all n ∈ Z+

there exists a memory skeleton M with at most f(n) states such that every one-player arena
with at most n nodes has an equilibrium of two M-strategies with respect to φ. Again,
1playerFMD(f) is the class of payoff functions whose memory complexity in one-player arenas
is at most f . Obviously, FMD(f) ⊆ 1playerFMD(f). Additionally, we let FMD stand for the
class of all finite-memory determined payoffs. Finally, let 1playerFMD be the class of all
payoff functions φ such that every one-player arena has an equilibrium of two finite-memory
strategies w.r.t. φ.

In this notation, the question we address in this paper can be formulated as follows: for
which functions f and g do we have 1playerFMD(f) ⊆ FMD(g)?

▶ Remark 2. One could consider an alternative definition of FMD(f), in which different arenas
of size up to n may be mapped to different memory skeletons of size f(n). Unfortunately, it
is not clear how to extend results of this paper to this setting.

Before presenting our results, let us express previous ones in this notation. For technical
convenience, we assume from now on that the set C of colors is finite. This is not an essential
restriction, as any arena involves only finitely many colors. Hence, if C is infinite, one can
study, separately all finite subsets C ′ ⊆ C, arenas that involve colors only from C ′.

First, let us understand what payoff functions are included2 in FMD(1). By definition,
these are payoff functions such that for every n there is a memory skeleton M with 1 state
such that all arenas with up to n nodes are determined in M-strategies – or, equivalently, in
positional strategies. Thus, FMD(1) is exactly the class of positionally determined payoff
functions. Observe then that the lifting theorem of Gimbert and Zielonka can be stated as
the equality 1playerFMD(1) = FMD(1).

In fact, the lifting theorem of Bouyer et al. asserts that, more generally, for any constant
k ∈ Z+ we have 1playerFMD(k) = FMD(k). Indeed, take any φ ∈ 1playerFMD(k). Our goal is
to show that φ ∈ FMD(k). By definition, for every n there exists a memory skeleton M with
at most k states such that all one-player arenas with at most n nodes have an equilibrium
of two M-strategies w.r.t. φ. A problem is that these M may be different for different n.
However, since the set C of colors is finite, there are only finitely many memory skeletons
with up to k states. One of them works for infinitely many n – and, hence, for all one-player
arenas. Due to the lifting theorem of Bouyer et al., the same memory skeleton works for all
arenas. Thus, since this memory skeleton has at most k states, we have φ ∈ FMD(k).

Let us note that the class of arena-independent finite-memory determined payoffs is the
class FMD(O(1)) =

⋃
k∈Z+ FMD(k).

2 Here, formally, by FMD(1) we mean FMD(f) for the function f : Z+ → Z+ such that f(n) = 1 for all
n ∈ Z+. More generally, if there is some expression in n defining a function f : Z+ → Z+, we will use
FMD of this expression instead of FMD(f). For example, if f(n) = 2n2 + 2 for all n ∈ Z+, then we will
write FMD(2n2 + 2) instead of FMD(f).

STACS 2022



43:6 One-To-Two-Player Lifting for Mildly Growing Memory

Finally, since lifting does not hold for the whole class of finite-memory strategies, we have
1playerFMD ̸= FMD. In fact, this means that for some function f we have 1playerFMD(f) ⊈
FMD. This is because

FMD =
⋃
f

FMD(f), 1playerFMD =
⋃
f

1playerFMD(f)

over all f : Z+ → Z+. Why is it so? For example, let us show this for FMD. We have to
show that for any φ ∈ FMD and for every n there exists a memory skeleton M such that all
arenas with up to n nodes have an equilibrium of two M-strategies (w.r.t φ). A point is
that, since C is finite, for every n the number of such arenas is also finite (w.l.o.g. we may
assume that between each pair of nodes there are at most |C| edges). In each of these arenas,
fix a pair of finite-memory strategies forming an equilibrium (this is possible since φ ∈ FMD).
This gives a finite set of finite-memory strategies such that every arena with up to n nodes is
determined in strategies from this set. It remains to set M to be the product of the memory
skeletons of these strategies. Then all these strategies will be M-strategies.

We proceed to our main result. Let Ω(n) denote the set of functions f : Z+ → Z+ for
which there exists C > 0 such that f(n) ≥ Cn for all n ∈ Z+. We obtain the following lifting
theorem:

▶ Theorem 3. Consider any function f : Z+ → Z+, f /∈ Ω(n). Define g : Z+ → Z+, g(n) =
f

(
min

{
m | f(m)

m+1 ≤ 1
2n

})
. Then 1playerFMD(f) ⊆ FMD(g).

First, why is the function g well-defined? Since f /∈ Ω(n), the fraction f(m)/m gets arbitrarily
close to 0 for some m. Hence, the minimum in the definition of g is always over a non-empty
set.

Now consider the case when, as in the lifting theorem of Bouyer et al., the function
f is constant, that is f(n) = k for some constant k ∈ Z+ and for all n ∈ Z+. Then
we have g(n) = k for all n ∈ Z+ as well. That is, our main results implies the equality
1playerFMD(k) = FMD(k), and this equality is the lifting theorem of Bouyer et al.

It is instructive to consider an example when f /∈ Ω(n) and is super-constant. Say, assume
that f(n) = O(nγ) for some γ < 1. It is easy to see that then g(n) = O(nγ/(1−γ)). Now
there is a gap between memory complexity in one-player arenas and in all arenas. The closer
γ is to 1, the larger is this gap.

When γ gets equal to 1, Theorem 3 becomes inapplicable. We demonstrate that this is
not due to the weakness of our technique.

▶ Theorem 4. 1playerFMD(2n+ 2) ⊈ FMD.

This result shows the sharpness of Theorem 3. Namely, in order to obtain at least
some bound on the memory complexity in all arenas, the memory complexity in one-player
arenas should be a function not from Ω(n). In other words, it should be sublinear on some
infinite subsequence. In turn, when it is already just linear, we might have no finite-memory
determinacy.

Thus, our paper pushes the technique of one-to-two-player lifting to its limit. Unfortu-
nately, this limit turns out to be very low. We are not aware of a payoff function which
has been considered in the literature and to which one can apply Theorem 3, but which is
not arena-independent finite-memory determined. For example, let us consider unbounded
multidimensional energy games – as we have indicated, they are finite-memory determined
but not arena-independently. As shown in [16], these games are in FMD(nO(1)). Here the
constant in O(1) depends on the dimension and the maximum of the norms of the weights.
In any case, this bound is not sufficient for Theorem 3.
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Still, we provide an example of a payoff function to which our lifting theorem is applicable
and the lifting theorem of Bouyer et al. is not.

▶ Theorem 5. There exists a function f : Z+ → Z+, f /∈ Ω(n) and a payoff function from
1playerFMD(f) which is not arena-independent finite-memory determined.

1.3 Other related works and concluding remarks
First, the exact analogs of the theorems of Gimbert and Zielonka and Bouyer et al. for
stochastic games were obtained in other works of these authors [14, 5]. We find it plausible
that our result can be lifted to stochastic games as well. Le Roux and Pauly [19] obtained
a two-to-many-players lifting theorem. Namely, they show that, under some conditions,
two-player finite-memory determinacy implies that all multiplayer games have finite-memory
Nash equilibrium. A different approach to study finite-memory determinacy can be found
in [20].

A natural open question is to extend lifting theorems to strategies with non-chromatic
finite memory. As we mentioned, Le Roux [18] has shown that non-chromatic finite memory
can always be replaced by the chromatic one. Unfortunately, this transformation is rather
costly – the size of the memory grows exponentially in the number of nodes. So even the
following modest question seems to be open: is there a payoff function which has constant
non-chromatic memory complexity in one-player games but is not finite-memory determined
in two-player games?

Organization of the paper. In Section 2 we give preliminaries. In Section 3 we give brief
overviews of the proofs of our results. The full proof of Theorem 3 is given in the Appendix B.
The full proofs of Theorems 4 and 5 can be found in the arXiv version of this paper [17].

2 Preliminaries

Notation. We denote the set of positive integer numbers by Z+. Given a set A, by A∗

and Aω we denote the sets of finite and, respectively, infinite sequences of elements of A.
The length of a sequence x ∈ A∗ ∪Aω is denoted by |x|. We write A = B ⊔ C for three sets
A,B,C if A = B ∪ C and B ∩ C = ∅. Function composition is denoted by ◦.

2.1 Arenas
Following previous papers [13, 14, 4, 5], we call graphs on which our games are played arenas.
We start with some notation regarding arenas. First, take an arbitrary finite set C. We will
refer to the elements of C as colors. Informally, an arena is just a directed graph with edges
colored by elements of C and with nodes partitioned into two sets.

▶ Definition 6. A tuple A = ⟨V, VMax, VMin, E, source, target, col⟩, where
V, VMax, VMin, E are four finite sets with V = VMax ⊔ VMin;
source, target, col are functions of the form source : E → V, target : E → V, col : E → C;

is called an arena if for every v ∈ V there exists e ∈ E with v = source(e).

Elements of V will be called nodes of A and elements of E will be called edges of A. We
understand e ∈ E as a directed edge from the node source(e) to the node target(e). There
might be parallel edges and loops. Additionally, every edge e of A is labeled by the color
col(e) ∈ C. Nodes from VMax will be called nodes of Max and nodes from VMin will be called
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nodes of Min. The out-degree of a node v ∈ V is |{e ∈ E | source(e) = v}|. By definition,
every node in every arena has positive out-degree. An arena is called one-player if either
all nodes of Max have out-degree 1 or all nodes of Min have out-degree 1.

Fix an arena A = ⟨V, VMax, VMin, E, source, target, col⟩. We extend the function col
(which determines the coloring of the edges) to arbitrary sequences of edges by setting:
col(e1e2e3 . . .) = col(e1)col(e2)col(e3) . . . for e1, e2, e3, . . . ∈ E.

A non-empty sequence of edges h = e1e2e3 . . . ∈ E∗ ∪ Eω is called a path if for every
1 ≤ n < |h| we have target(en) = source(en+1). We define source(h) = source(e1). When h is
finite, we define target(h) = target(e|h|). In addition, for every v ∈ V we consider a 0-length
path λv identified with v, for which we set source(λv) = target(λv) = v. For every v ∈ V we
define col(λv) as the empty string.

2.2 Infinite-duration games on arenas

An arena A = ⟨V, VMax, VMin, E, source, target, col⟩ induces an infinite-duration two-player
game in the following way. First, we call players of this game Max and Min. Informally,
Max and Min interact by gradually constructing a longer and longer path in A. In each turn
one of the players extends a current path by some edge from its endpoint. Which of the two
players is the one to move is determined by whether this endpoint belongs to VMax or to
VMin.

Formally, positions in the game are finite paths in A. By definition, target(h) ∈ VMax
for a finite path h means that Max is the one to move in the position h; respectively,
target(h) ∈ VMin means that Min is the one to move in the position h. A set of moves
available in a position h is the set {e ∈ E | source(e) = target(h)}. Making a move e ∈ E in
a position h = e1e2 . . . e|h| brings to a position he = e1e2 . . . e|h|e.

We stress that no position is designated as the initial one. We assume that the game can
start in any position of the form λv, v ∈ V , at our choice.

Next we proceed to a notion of strategies. Namely, a strategy of Max is a function
σ : {h | h is a finite path in A with target(h) ∈ VMax} → E such that for every h from the
domain of σ we have source(σ(h)) = target(h). Respectively, a strategy of Min is a function
τ : {h | h is a finite path in A with target(h) ∈ VMin} → E such that for every h from the
domain of τ we have source(τ(h)) = target(h).

Observe that if A is one-player, then one of the players has exactly one strategy. For
technical consistency we assume that even when one of the players owns all the nodes of A,
the other player still has one “empty” strategy.

A strategy induces a set of positions consistent with it (those that can be reached in
a play against this strategy). Formally, a finite path h = e1e2 . . . e|h| is consistent with a
strategy σ of Max if the following conditions hold:

source(h) ∈ VMax =⇒ σ(λsource(h)) = e1;
for every 1 ≤ i < |h| we have target(e1e2 . . . ei) ∈ VMax =⇒ σ(e1e2 . . . ei) = ei+1.

Consistency with the strategies of Min is defined similarly. Further, the notion of consistency
can be extended to infinite paths. Namely, given a strategy, an infinite path is consistent
with it if all finite prefixes of this path are.

For v ∈ V and for a strategy S of one of the players Cons(v,S) denotes the set of all
finite and infinite paths that start at v and are consistent with S. For any strategy σ

of Max, strategy τ of Min and v ∈ V , there is a unique infinite path in the intersection
Cons(v, σ) ∩ Cons(v, τ). We denote this path by h(v, σ, τ) and call it the play of σ and τ

from v.
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2.3 Payoff functions and equilibria
We consider only zero-sum games; correspondingly, in our framework objectives of the
players are always given by a payoff function. A payoff function is any function of the form
φ : Cω → W , where (W,≤) is a linearly ordered set. Informally, the aim of Max is to play in
a way which maximizes the payoff function (with respect to the ordering of W) while the
aim of Min is the opposite one. Technically, to get the value of the payoff function on a play
(which is an infinite path in the underlying arena) we first apply the function col to this
play; this gives us an infinite sequence of colors; in conclusion, we apply φ to the sequence of
colors.

Any payoff function in a standard way induces a notion of an equilibrium of two strategies
of the players (with respect to this payoff function). Let us first introduce a notion of an
optimal response. Namely, take a strategy σ of Max and a strategy τ of Min. We say that σ
is a uniformly optimal response to τ if for all v ∈ V and for all infinite h ∈ Cons(v, τ) we
have φ ◦ col

(
h(v, σ, τ)

)
≥ φ ◦ col(h). The inequality here, of course, is with respect to the

ordering of W . Similarly, we call τ a uniformly optimal response to σ if for all v ∈ V and
for all infinite h ∈ Cons(v, σ) we have φ ◦ col

(
h(v, σ, τ)

)
≤ φ ◦ col(h). Next, we call a pair

(σ, τ) a uniform equilibrium if σ and τ are uniformly optimal responses to each other.

▶ Lemma 7. For any arena A and for any payoff function φ, the set uniform equilibria in
A w.r.t. φ is a Cartesian product.

Proof. See Appendix A. ◀

Strategies which belong to some uniform equilibrium will be called uniformly optimal.
▶ Remark 8. Each payoff function induces a total preoder on Cω. Two payoff functions that
induce the same preorder have the same set of equilibria. Due to this reason, previous papers
in this line of work [13, 14, 4, 5] do not consider payoff functions at all. Instead, they directly
consider total preorders on Cω, to which they refer as preference relations. We prefer to use
a terminology of payoff functions, as it is more standard. Of course, this does not make our
results less general – any preference relation is induced by some payoff function.

2.4 Positional strategies and finite-memory strategies
Positional strategies. A strategy S of one of the players is called positional if for any two
positions h1, h2 from its domain we have target(h1) = target(h2) =⇒ S(h1) = S(h2). In
other words, S(h) depends solely on target(h). It makes convenient to consider positional
strategies as functions on the set of nodes of the corresponding players (rather than on the
set of the positions of this player). I.e., positional strategies of Max can be identified with
functions of the form σ : VMax → E such that source(σ(v)) = v for all v ∈ VMax. Similarly,
positional strategies of Min can be identified with functions of the form τ : VMin → E such
that source(τ(v)) = v for all v ∈ VMin.

Let us fix some notation regarding positional strategies. First, every edge e ∈ E is a path
(of length 1) and hence also a position in the game induced by A. If S is a positional strategy
of one of the players, we let ES be the set of edges that are consistent with S. Observe the
following feature of positional strategies: the set of paths (positions) that are consistent with
a positional strategy S is exactly the set of paths that consist only of edges from ES .

Given a positional strategy S of one of the players, by AS we denote the arena AS =
⟨V, VMax, VMin, ES , source, target, col⟩. That is, AS is obtained from A by deleting all edges
that are inconsistent with S. Observe that the arena AS is one-player; each node of the
player who plays S has exactly one out-going edge in AS .
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Instead of saying “an equilibrium of two positional strategies” we will simply say “a posi-
tional equilibrium”.

Finite-memory strategies. A memory skeleton is a deterministic finite automaton M =
⟨M,minit ∈ M, δ : M × C → M⟩ whose input alphabet is the set C of colors. Here M is the
set of states of M, the state minit ∈ M is a designated initial state, and δ is the transition
function of M. By |M| we denote the number of states of a memory skeleton M. Given
m ∈ M , we extend δ(m, ·) to finite sequences of elements of C in a standard way. Now, a
strategy S of one of the players is called an M-strategy if for any two positions h1 and h2
from the domain of S it holds that[

target(h1) = target(h2) and δ(minit, col(h1)) = δ(minit, col(h2))
]

=⇒ S(h1) = S(h2).

In other words, S(h) depends solely on target(h) (the node with the token in the position
h) and δ(minit, col(h)) (the state into which M comes after reading the sequence of colors
along h).

A strategy S of one of the players is called a finite-memory strategy if it is an M-strategy
for some memory skeleton M. Instead of saying “an equilibrium of two finite-memory
strategies” or “an equilibrium of two M-strategies” we will simply say “a finite-memory
equilibrium” and “an M-strategy equilibrium”.

2.5 Determinacy and memory complexity
▶ Definition 9. Let C be a class of strategies. We say that a payoff function φ is determined
in C if every arena has a uniform equilibrium of two strategies from C w.r.t. φ. In particular,

if C is the class of positional strategies, then we call φ positionally determined.
if C is the class of finite-memory strategies, then we call φ finite-memory determined.
if C is the class of M-strategies for some memory skeleton M, then we call φ arena-
independent finite-memory determined.

For our results it is important that we require equilibria to be uniform in these definitions.
That is, it is important to have a single pair of strategies from C which is an equilibrium no
matter in which node the game starts. As far as we know, this is the case for all positionally
and finite-memory determined payoff functions that have been considered in the literature.

Next we provide definitions regarding the memory complexity.

▶ Definition 10. Let FMD denote the class of functions φ : Cω → W such that C is a finite
set, W is linearly ordered and φ is finite-memory determined. Let 1playerFMD denote the
class of functions φ : Cω → W such that C is a finite set, W is a linearly ordered set and
such that the following holds: every one-player arena (with edges colored by elements of C)
has a uniform finite-memory equilibrium w.r.t. φ.

Next, consider any function f : Z+ → Z+. Let FMD(f) denote the class of functions
φ : Cω → W such that C is a finite set, W is a linearly ordered set and such that the following
holds: for all n ∈ Z+ there exists a memory skeleton M over the set C with |M| ≤ f(n)
such that all arenas (with edges colored by elements of C) with at most n nodes have a
uniform M-strategy equilibrium w.r.t. φ. Similarly, let 1playerFMD(f) denote the class of
functions φ : Cω → W such that C is a finite set, W is a linearly ordered set and such that
the following holds: for all n ∈ Z+ there exists a memory skeleton M over the set C with
|M| ≤ f(n) such that all one-player arenas (with edges colored by elements of C) with at
most n nodes have a uniform M-strategy equilibrium w.r.t. φ.
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3 Overviews of the Proofs

3.1 Theorem 3

First, let us give the exact statement of the lifting theorem of Bouyer et al.

▶ Theorem 11 ([4]). For any payoff function φ and for any memory skeleton M the following
holds. Assume that all one-player arenas have a uniform M-strategy equilibrium w.r.t. φ.
Then all arenas have a uniform M-strategy equilibrium w.r.t. φ.

Our main technical contribution is the following strengthening of Theorem 11.

▶ Theorem 12. For any payoff function φ and for any n ∈ Z+ the following holds. Let M
be a memory skeleton such that all one-player arenas with at most 2n · |M| − 1 nodes have
a uniform M-strategy equilibrium w.r.t. φ. Then all arenas with at most n nodes have a
uniform M-strategy equilibrium w.r.t. φ.

Derivation of Theorem 3 from Theorem 12. Take any φ ∈ 1playerFMD(f). Our goal is to
show that φ ∈ FMD(g), where g is as in Theorem 3. That is, our goal is to establish for
every n ∈ Z+ a memory skeleton M with at most g(n) states such that all arenas with at
most n nodes have a uniform M-strategy equilibrium.

Take any n ∈ Z+. By definition, g(n) = f(m) for some m ∈ Z such that f(m)
m+1 ≤ 1

2n .
Since φ ∈ 1playerFMD(f), there exists a memory skeleton M with at most f(m) states such
that all one-player arenas with at most m nodes have a uniform M-strategy equilibrium.
Now, since f(m)

m+1 ≤ 1
2n , we have m ≥ 2n · f(m) − 1 ≥ 2n · |M| − 1. By Theorem 12, this

means that all arenas with at most n nodes have a uniform M-strategy equilibrium. Since
M has at most f(m) = g(n) states, we are done. ◀

Before discussing our technique, let us briefly overview how Bouyer et al. establish
Theorem 11. They start by defining “M-monotone payoff functions” and “M-selective payoff
functions”. Then they show that any payoff function which is M-monotone and M-selective
is determined in M-strategies. Finally, they show that for any non-M-monotone and for
any non-M-selective payoff function there exists a one-player arena which has no uniform
M-strategy equilibrium w.r.t. this payoff function. This also gives a characterization of M-
determinacy: a payoff function is determined in M-strategies if and only if it is M-monotone
and M-selective.

In this paper, we obtain Theorem 12 (and, thus, Theorem 11) more directly. For the sake
of simplicity, in Section 4 we prove it in a special case when M is a memory skeleton with
just one state. In this special case, M-strategies are positional strategies.

▶ Proposition 13 (Special case of Theorem 12). For any payoff function φ and for any
N ∈ Z+ the following holds. Assume that all one-player arenas with at most 2N − 1 nodes
have a uniform positional equilibrium w.r.t. φ. Then all arenas with at most N nodes have a
uniform positional equilibrium w.r.t. φ.

As all papers in this line of works, we build upon the inductive technique first invented
by Gimbert and Zielonka [13]. Our contribution here is a more direct exposition of this
technique, with the emphasis on the size of arenas.
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We extend Proposition 13 to all memory skeletons3 in two steps. We first prove an
analogue of Proposition 13 for so-called M-trivial arenas. Informally, these are arenas
where states of M are “hardwired” into nodes. In such arenas, M-strategies degenerate to
positional strategies. We show that Proposition 13 is true even when only M-trivial arenas
are taken into account (in the assumption and in the conclusion).

We then derive Theorem 12 from this using the product arena construction [2, Chapter 2].
Take any (two-player) arena A with up to n nodes. We have to derive the existence of an
M-strategy equilibrium in A from the assumption of Theorem 12. It is a classical observation
that M-strategies in A can be viewed as positional strategies in the product arena M × A.
This product arena is obtained by first pairing states of M with nodes of A, and then by
drawing edges of A in all possible ways that are consistent with the transition function
of M. Now we only have to establish a positional equilibrium in M × A. This arena is
M-trivial, so we use Proposition 13 for M-trivial arenas and N = n · |M|. The size of
M × A is the product of the sizes of M and A, so it does not exceed N . It remains to
show that all one-player M-trivial arenas with up to 2N − 1 = 2n · |M| − 1 nodes have a
positional equilibrium. Indeed, by the assumption of Theorem 12, all one-player arenas (not
only M-trivial) of this size have an M-strategy equilibrium. But in M-trivial arenas these
M-strategy equilibria are automatically positional.

The full proof of Theorem 12 is given in Appendix B.

3.2 Theorem 4
Let the set of colors be C = {−1, 1}. We define a payoff function ψ : Cω → {0, 1} as follows.
We set ψ(c1c2c3 . . .) = 1 if and only if either

(
limn→∞

∑n
i=1 ci = +∞

)
or

( ∑n
i=1 ci =

0 for infinitely many n
)
. We assume the standard ordering on {0, 1} = ψ(Cω), so that 1 is

interpreted as victory of Max and 0 is interpreted as victory of Min.
We show that ψ ∈ 1playerFMD(2n+ 2) \ FMD. In fact, this payoff function was defined by

Bouyer et al. in [4, Section 3.4]. They have shown that this payoff function is finite-memory
determined in one-player arenas but not in two-player arenas. So our contribution here is an
upper bound ψ ∈ 1playerFMD(2n+ 2) on its memory complexity in one-player arenas. In
other words, for every n we provide a memory skeleton Mn with 2n + 2 states such that
every one-player arena A with up to n nodes has a uniform Mn-strategy equilibrium. Let
us describe the main ideas needed to obtain this upper bound. In this overview, we only
consider those one-player arenas where all nodes of Min have out-degree 1. We use similar
ideas for one-player arenas of the opposite type (but they require a bit more care).

It will be more convenient to refer to the elements of C as weights rather than as colors.
Correspondingly, by the weight of a path we will mean the sum of the weights of its edges.
Further, we will call a path positive if its weight is positive. We define negative and zero
paths similarly.

Take an arena with up to n nodes where all nodes of Min have out-degree 1 (that is,
essentially Max is the one to move everywhere). First, we can remove all the nodes from
where one can reach a positive cycle. Indeed, Max has a positional winning strategy from
these nodes (Max can go to the closest simple positive cycle, and then start rotating over it
forever). Here it is important that our arena is one-player. Two-player arenas might have
positive cycles, but Max might be unable to stay on them.

3 Our technique in this part is rather similar to a technique from a recent paper of Bouyer et al. [5]
(see the arXiv version [6] of their paper for more details). In this paper, they give a direct proof of an
analogue of Theorem 11 for stochastic games.
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Now the only way Max can win is by making the sum of the weights equal to 0 infinitely
many times. As a first attempt, consider an “illegal” memory skeleton M∞, which simply
stores the sum of the weights along the current play. It is illegal since the sum of the weights
can be arbitrarily large, so M∞ will have infinitely many states. Still, our winning condition
for Max can be reformulated in terms of M∞. Indeed, Max just has to bring M∞ into a
state “the current sum is 0” infinitely many times. Notice that this is a parity condition
in the product of our initial arena and the memory skeleton M∞. Since parity games are
positionally determined [23], we have a uniform positional equilibrium in the product arena,
and this gives a uniform M∞-strategy equilibrium in the initial arena.

To turn this idea into a proof, we “truncate” M∞. For arenas with up to n nodes we
consider a memory skeleton Mn, which stores the current sum of the weights while its
absolute value is at most n; if it exceeds n, our memory skeleton comes into a special invalid
state. Observe that such memory skeleton requires just 2n+ 2 states.

We now make use of the fact that w.l.o.g our arena has no positive cycles. Since our
weights are ±1, there is no path of weight larger than n. Indeed, any path can be decomposed
into cycles and a simple path. The contribution of cycles is non-negative, and the contribution
of a simple path is at most n, just because its length is at most n. So the current sum of the
weights can never become larger than n. It can become smaller than −n, and in this case
Max looses (he can never make it equal to 0 again). So the goal of Max is, first, to avoid
a state “the current sum exceeded n in the absolute value”, and second, to reach a state
“the current sum is 0” infinitely many times. This is a parity condition in the product of
our initial arena and the memory skeleton Mn. Therefore, we get a uniform Mn-strategy
equilibrium in our initial arena.

3.3 Theorem 5

Let the set of colors be C = {0, 1}. Fix a set T ⊆ Z+. Define a payoff function φ : {0, 1}ω →
{0, 1} by setting φ(α) = 1 for α = α1α2α3 . . . ∈ {0, 1}ω if and only if at least one of the
following two conditions holds:

α contains only finitely many 0’s;
for some t ∈ T , the sequence α contains the word 01t0.

We show that, under some condition on T , the payoff function φ is not arena-independent
finite-memory determined, but belongs to 1playerFMD(f) for some f : Z+ → Z+, f /∈ Ω(n).
This condition is called isolation. Roughly speaking, it requires that there are infinitely many
elements in T such that far to the left and to the right of them there are no other elements
of T . More precisely, T ⊆ Z+ is isolated if there are infinitely many k ∈ T such that l /∈ T

for all k/2 < l < k4, l ̸= k. We call such k isolated elements of T .
From now on, we fix any isolated set T , for example, T = {24n | n ∈ Z+}. To show that

φ ∈ 1playerFMD(f) for some f : Z+ → Z+, f /∈ Ω(n), we construct, for every k, the following
memory skeleton Mk. It simply counts the number of 1’s after the last 0. If this number
exceeds k, it stops counting (it just remembers a fact that there are more than k ones after
the last 0). Now, when our memory skeleton receives a 0, there are two cases. If the current
value of the counter is some number from T ∩ [1, k], then Mk transits into a special “winning
state”, and stays in it forever. Otherwise, it resets the counter to 0 and starts counting again.

Note that Mk can be realized with k+O(1) states. We show that if k is an isolated element
of T , then all arenas (even two-player) with up to k2 nodes have a uniform Mk-strategy
equilibrium. This will show that φ ∈ FMD(f) for some function f such that f(n) ≤ 2

√
n for

infinitely many n.
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Consider any arena with up to k2 nodes. We define an auxiliary game in which Max wins
if either Mk was brought to the “winning state” or there were just finitely many 0’s in the
play. Note that if Max wins in the auxiliary game, then Max wins w.r.t. φ. The auxiliary
game, however, is not entirely equivalent to φ, because a play can be winning for Min in the
auxiliary game but loosing for Min w.r.t. φ (if this play contains 01t0 for some t ∈ T, t > k).
Still, it holds that if Min can win in the auxiliary game, then Min can also win w.r.t. φ. To
prove this claim, we notice that the auxiliary game is a parity game in the product of our
initial arena and the memory skeleton Mk. So if Min can win in it, then Min can do so via
some positional strategy τ in the product arena. We observe that τ is also winning w.r.t. φ.
Indeed, otherwise there is a play against τ which contains 01t0 for some t ∈ T, t > k. Since
k is an isolated element of T , we have t ≥ k4. Therefore, as the size of the product arena
is (k +O(1)) · k2 < k4, there must be a cycle which is consistent with τ and which consists
entirely of 1’s. But then Max can win against τ in the auxiliary game, contradiction.

As we pointed out, the auxiliary game is a parity game in the product of our arena with
Mk. Thus, it has a positional equilibrium there. This positional equilibrium translates into
an Mk-strategy equilibrium in the initial arena. Finally, as shown in the previous paragraph,
any equilibrium in the auxiliary game is also an equilibrium w.r.t. φ.

Showing that φ is not arena-independent finite-memory determined is much easier. Take
an isolated element k ∈ T . The idea is to construct an arena with a node which “cuts” the
word 01k0 in Ω(k) different ways near the middle. Due to isolation, the only way for Max to
win in this arena is to go through one of the cuts. However, Min can choose any of the cuts,
so Max needs Ω(k) states to distinguish between different cuts. Since k can be arbitrarily
large, this shows that no single memory skeleton can be sufficient for φ in all arenas.

4 Proof of Proposition 13

The proof is by induction on the number of edges of an arena. More precisely, we are proving
by induction on m the following claim: for every m every arena with m edges and at most
N nodes has a uniform positional equilibrium.

The induction base (m = 1) is trivial (any arena with one edge is one-player and has
exactly one node, so we can just refer to the assumption of the lemma). We proceed to
the induction step. Take an arena A = ⟨V, VMax, VMin, E, source, target, col⟩ with at most N
nodes and assume that all arenas with at most N nodes and with fewer edges than A have a
uniform positional equilibrium. We prove the same for A. Since the set of uniform equilibria
is a Cartesian product by Lemma 7, it is enough to establish the following two claims:

(a) in A there exists a uniform equilibrium including a positional strategy of Max;
(b) in A there exists a uniform equilibrium including a positional strategy of Min.

We only show (a), a proof of (b) is similar.
We may assume that A is not one-player (otherwise we are done due to the assumptions

of the lemma). Hence there exists a node w ∈ VMax with out-degree at least 2. Partition the
set E(w) = {e ∈ E | source(e) = w} into two non-empty disjoint subsets E1(w) and E2(w).
Define two new arenas A1 and A2. The arena A1 is obtained from A by deleting edges from
the set E2(w). Similarly, the arena A2 is obtained from A by deleting edges from the set
E1(w). So in Ai for i = 1, 2 the set of edges with the source in w is Ei(w).

Both A1 and A2 have fewer edges than A. So both these arenas have a uniform positional
equilibrium. Let (σi, τi) be a uniform positional equilibrium in Ai for i = 1, 2. We will first
define two auxiliary strategies τ12 and τ21 of Min; then we will show that either (σ1, τ12) or
(σ2, τ21) is a uniform equilibrium in A. After that (a) will be proved.



A. Kozachinskiy 43:15

Strategies τ12 and τ21 will not be positional. In a sense, they are combinations of τ1
and τ2. In both strategies Min has a counter I which can only take two values, 1 and 2. The
counter I indicates to Min which of the strategies τ1 or τ2 to use. I.e., whenever Min should
make a move from a node v ∈ VMin, he uses an edge τI(v). The value of I changes each time
in the node w Max uses an edge not from a set EI(w). It only remains to specify the initial
value of I. There are two ways to do this, one will give us strategy τ12, and the other will
give τ21. More specifically, in τ12 the initial value of I is 1 and in τ21 the initial value of I
is 2.

It is not hard to see that τ12 is a uniformly optimal response to σ1 and τ21 is a uniformly
optimal response to σ2. For instance, let us show this for τ12 and σ1. By definition, τ1 is a
uniformly optimal response to σ1 in the arena A1, and hence also in the arena A (because
any play against σ takes place inside A1). It remains to notice that τ12 plays exactly as
τ1 against σ1. Indeed, σ1 never uses edges from E2(w), so the counter I always equals 1
against σ1.

It remains to show that either σ1 is a uniformly optimal response to τ12 or σ2 is a
uniformly optimal response to τ21 (in the arena A). We derive it from the assumption of the
lemma applied to an auxiliary one-player arena B with at most 2N − 1 nodes.

Namely, we define B as follows. Recall that in our notation (A1)τ1 and (A2)τ2 stand
for two arenas obtained from, respectively, A1 and A2 by throwing away edges that are
inconsistent with, respectively, τ1 and τ2. Consider an arena consisting of two “independent”
parts one of which coincides with (A1)τ1 and the other with (A2)τ2 (“independent” means
that there are no edges between the parts). From each part take a node corresponding
to the node w. Then merge these two nodes into a single one. The resulting arena with
2|V | − 1 ≤ 2N − 1 nodes will be B.

w

(A1)τ1 (A2)τ2

E1(w) E2(w)

Figure 1 Arena B.

For each node of A there are two “copies” of it in B – one from (A1)τ1 and the other
from (A2)τ2 . We will call copies of the first kind left copies and copies of the second kind
right copies. Note that the left and the right copy of w is the same node in B. Any other
node of A has two distinct copies. Now, by the prototype of a node v′ of B we mean a node
v of A of which v′ is a copy.

Note that in B all nodes of Min have out-degree 1 (because they do so inside (A1)τ1 and
(A2)τ2 , and the only node of B which was obtained by merging two nodes is a node of Max).
Thus, B is a one-player arena.

An important feature of B is that it can “emulate” any play against τ12 and τ21 in A.
Formally,

▶ Lemma 14. For any infinite path h in A which is consistent with τ12 there exists an
infinite path h′ in B with col(h′) = col(h) and with the source in the left copy of source(h).
Similarly, for any infinite path h in A which is consistent with τ21 there exists an infinite
path h′ in B with col(h′) = col(h) and with the source in the right copy of source(h).
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Proof. We only give an argument for τ12, the argument for τ21 is similar. We construct h′

from the left copy of source(h) by always moving in the same “local direction” as h. There
will be no problem with that for the nodes of Max because they have the same set of out-going
edges in B as their prototypes have in A. Now, for the nodes of Min we should be more
accurate. The path h is consistent with τ12, so from the nodes of Min it applies either τ1 or
τ2. Now, in B strategy τ1 is available only in the left ellipse of Figure 1, and τ2 is available
only in the right ellipse. So each time h wants to apply τ1, the path h′ should be in the left
ellipse. Similarly, each time h wants to apply τ2, the path h′ should be in the right ellipse.
Initially, until its counter changes, τ12 applies τ1, and correspondingly h′ starts in the left
ellipse. Now, each time τ12 switches to τ2, it does so because Max used an edge from E2(w)
in w. Correspondingly, h′ enters the right ellipse at this moment. Similarly, whenever τ12
switches back to τ1, the path h′ returns to the left ellipse. ◀

Note that in B Min has exactly one strategy. We denote it by T . The arena B is
one-player and has at most 2N − 1 nodes, so by the assumption of the lemma there is a
uniform positional equilibrium (Σ̂, T ) in it. We claim the following:

if Σ̂ applies an edge from E1(w) in w, then σ1 is a uniformly optimal response to τ12
in A;
if Σ̂ applies an edge from E2(w) in w, then σ2 is a uniformly optimal response to τ21
in A.

We only show the first claim, the proof of the second one is analogous. Consider a restriction
of Σ̂ to the left ellipse of B. This defines a positional strategy σ̂ of Max in A. Note that in each
node of A the strategy σ1 is at least as good against τ12 as σ̂. Indeed, σ1(w), σ̂(w) ∈ E1(w).
Hence σ1, σ̂ are strategies in the arena A1, where σ1 is a uniformly optimal response to τ1.
It remains to notice that τ12 plays exactly as τ1 against σ1 and σ̂ since these two strategies
of Max never use edges from E2(w).

Therefore, it is enough to show that σ̂ is a uniformly optimal response to τ12 in A. Take
any node v ∈ V and any play h against τ12 from v. Our goal is to show that the play of
σ̂ and τ12 from v is at least as good from the Max’s perspective as h. Now, by Lemma 14
some infinite path h′ from the left copy of v is colored exactly as h. On the other hand, the
play of Σ̂ and T from the left copy of v is at least as good for Max as h′ (and hence as h).
This is because h′ is consistent with T (as there are simply no other strategies of Min in
B) and because (Σ̂, T ) is an equilibrium. It remains to note that the play of Σ̂ and T from
the left copy of v is colored exactly as the play of σ̂ and τ12 from v. Indeed, as we have
already observed, τ12 plays exactly as τ1 against σ̂. On the other hand, the play of Σ̂ and T
can never leave the left ellipse as Σ̂ points to the left in w. Moreover, restrictions of these
strategies to the left ellipse coincide with σ̂ and τ1; for Σ̂ this is just by definition and for T
this is because the left ellipse coincides with the arena (A1)τ1 .
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A Uniform equilibria and T -wise equilibria

For the proof of Theorem 12 we need to generalize the notion of a uniform equilibrium. Take
any arena A = ⟨V, VMax, VMin, E, source, target, col⟩ and any payoff function φ : Cω → W.
Fix a subset T ⊆ V , a strategy σ of Max and a strategy τ of Min. We say that σ is a T -wise
optimal response to τ w.r.t. φ if for all v ∈ T and for all infinite h ∈ Cons(v, τ) we have
φ◦col

(
h(v, σ, τ)

)
≥ φ◦col(h). Similarly, we call τ a T -wise optimal response to σ w.r.t. φ

if for all v ∈ T and for all infinite h ∈ Cons(v, σ) we have φ ◦ col
(
h(v, σ, τ)

)
≤ φ ◦ col(h).

Finally, we call a pair (σ, τ) a T -wise equilibrium w.r.t. φ if σ and τ are T -wise optimal
responses to each other.

When T = V is the whole set of nodes, then T -wise equilibria are uniform equilibria, and
vice versa. Thus, the following lemma generalizes Lemma 7.

▶ Lemma 15. For any arena A = ⟨V, VMax, VMin, E, source, target, col⟩, for any payoff
function φ, and for any subset T ⊆ V , the set of T -wise equilibria in A w.r.t. φ is a
Cartesian product.

Proof. It is sufficient to show the following: if (σ1, τ1) and (σ2, τ2) are T -wise equilibria,
then so is (σ1, τ2). That is, our goal is to show that σ1 is a T -wise optimal response to τ2,
and that τ2 is a T -wise optimal response to σ1. We only prove the first claim, the second
one can be proved similarly. Take any v ∈ T and any infinite h ∈ Cons(v, τ2). We have
to show that φ ◦ col

(
h(v, σ1, τ2)

)
≥ φ ◦ col(h). We first show that φ ◦ col

(
h(v, σ1, τ2)

)
=

φ ◦ col
(
h(v, σ1, τ1)

)
= φ ◦ col

(
h(v, σ2, τ2)

)
. Indeed,

φ ◦ col
(
h(v, σ1, τ1)

)
≥ φ ◦ col

(
h(v, σ2, τ1)

)
≥ φ ◦ col

(
h(v, σ2, τ2)

)
≥ φ ◦ col

(
h(v, σ1, τ2)

)
≥ φ ◦ col

(
h(v, σ1, τ1)

)
.

The first inequality here holds because σ1 is a T -wise optimal response to τ1. The second
inequality here holds because τ2 is a T -wise optimal response to σ2. The third inequality
here holds because σ2 is a T -wise optimal response to τ2. The fourth inequality here holds
because τ1 is a T -wise optimal response to σ1.

As we have shown, φ◦col
(
h(v, σ1, τ2)

)
= φ◦col

(
h(v, σ2, τ2)

)
. In turn, since h ∈ Cons(v, τ2),

and since σ2 is a T -wise optimal response to τ2, we have that φ◦ col
(
h(v, σ2, τ2)

)
≥ φ◦ col(h).

Therefore, we get φ ◦ col
(
h(v, σ1, τ2)

)
≥ φ ◦ col(h). ◀

B Proof of Theorem 12

We reduce Theorem 12 to a statement about positional strategies (namely, to Lemma 20
below). First we need a classical concept of product arenas.

▶ Definition 16 (Product arenas). Let M = ⟨M,minit, δ : M×C → M⟩ be a memory skeleton
and A = ⟨V, VMax, VMin, E, source, target, col⟩ be an arena. Then M × A stands for an arena,
where

the set of nodes is M × V ;
the set of Max’s nodes is M × VMax;
the set of Min’s nodes is M × VMin;
the set of edges is M × E;
the source function is defined as follows: source((m, e)) = (m, source(e));
the target function is defined as follows: target((m, e)) =

(
δ(m, col(e)), target(e)

)
;

the coloring function is defined as follows: col((m, e)) = col(e).
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The following is a standard observation that product arenas reduce finite-memory de-
terminacy to positional determinacy.

▶ Observation 17. Let M = ⟨M,minit, δ : M × C → M⟩ be a memory skeleton and
A = ⟨V, VMax, VMin, E, source, target, col⟩ be an arena. Then for every S ⊆ V the following
holds: if M × A has an ({minit} × S)-wise positional equilibrium, then A has an S-wise
M-strategy equilibrium.

Its full proof can be found in the arXiv version of this paper [17].
Next we introduce one more concept which we need for the reduction, namely, one of

M-triviality.

▶ Definition 18. Let M = ⟨M,minit, δ : M × C → M⟩ be a memory skeleton. A pair (A, f)
of an arena A = ⟨V, VMax, VMin, E, source, target, col⟩ and a function f : V → M is called
M-trivial if for every e ∈ E it holds that δ

(
f(source(e)), col(e)

)
= f(target(e)).

Informally, f is a mapping from A to the transition graph of M which takes into account
the colors of the edges. Of course, there are arenas that belong to no M-trivial pair. We
observe that M-strategies, in a sense, degenerate to positional ones in M-trivial pairs.

▶ Observation 19. Let M = ⟨M,minit, δ : M × C → M⟩ be a memory skeleton. Then for
every M-trivial pair (A, f) the following holds: if A has a uniform M-strategy equilibrium,
then A has an f−1(minit)-wise positional equilibrium.

Proof. Note that for any finite path h in A we have:

δ(f(source(h)), col(h)) = f(target(h)).

Indeed, this holds by definition as long as h is a single edge; for longer h this can be easily
proved by induction on |h|.

To show the observation, we simply show that any M-strategy coincides with some
positional one on all plays that start in the nodes of f−1(minit). Indeed, a move of an
M-strategy in a position h depends solely on target(h) and δ(minit, col(h)). However,
δ(minit, col(h)) = δ

(
f(source(h)), col(h)

)
= f(target(h)) for all h with source(h) ∈ f−1(minit).

In other words, for all such h a move of an M-strategy in h is a function only of target(h),
as required. ◀

We are ready to formulate a statement about positional strategies to which we reduce
Theorem 12.

▶ Lemma 20. Let M = ⟨M,minit, δ : M ×C → M⟩ be a memory skeleton. Assume that for
every M-trivial pair (A, f) such that A is one-player and has at most 2N − 1 nodes there
exists an f−1(minit)-wise positional equilibrium in A.

Then for every M-trivial pair (A, f) such that A has at most N nodes there exists an
f−1(minit)-wise positional equilibrium in A.

Derivation of Theorem 12 from Lemma 20. Let A = ⟨V, VMax, VMin, E, source, target, col⟩
be an arena with at most n nodes. Our goal is to show that A has a uniform M-strategy
equilibrium. By Observation 17, it is sufficient to show that the arena M × A has an
{minit} × V -wise positional equilibrium. It is easy to see that a pair (M × A, f), where

f : M × V → M, f((m, v)) = m,

STACS 2022
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is an M-trivial pair, by definition of M × A. Observe that {minit} × V = f−1(minit), so we
only have to show that M × A has an f−1(minit)-wise positional equilibrium. Since M × A
has at most |M| · n nodes, it remains to explain why the assumption of Lemma 20 holds for
N = |M| · n.

By the assumption of Theorem 12 all one-player arenas with at most 2|M|·n−1 = 2N−1
nodes have a uniform M-strategy equilibrium. In particular, this applies to any one-player
arena A′ with at most 2N−1 nodes belonging to some M-trivial pair (A′, f). By Observation
19 this means that all such A′ have a f−1(minit)-wise positional equilibrium, as required. ◀

Proof of Lemma 20. We use the same technique and terminology as in Section 4. We are
now proving by induction on m the following claim: for every m and for every M-trivial
pair (A, f) such that A has m edges and at most N nodes there exists an f−1(minit)-wise
positional equilibrium in A.

Induction base (m = 1) again requires no argument, and we proceed to the induction step.
Consider any M-trivial pair (A, f), where A = ⟨V, VMax, VMin, E, source, target, col⟩ has at
most N nodes. Our goal is to show that A has an f−1(minit)-wise positional equilibrium,
provided that an analogous claim is already proved for all M-trivial pairs (A′, f ′) in which
A′ has at most N nodes and fewer edges than A. Since the set of f−1(minit)-wise equilibria
is a Cartesian product by Lemma 15, it is enough to establish the following two claims:
(a) in A there exists an f−1(minit)-wise equilibrium including a positional strategy of Max;
(b) in A there exists an f−1(minit)-wise equilibrium including a positional strategy of Min.

We only show (a), a proof of (b) is similar. As before, we may assume that A is not
one-player so that there exists a node w ∈ VMax with out-degree at least 2. We partition
the set of its out-going edges into two disjoint non-empty sets E1(w) and E2(w). Then we
define arenas A1 and A2 exactly as in Section 4. Since (A, f) is an M-trivial pair, then so
are pairs (A1, f) and (A2, f). Indeed, A1 and A2 were obtained by simply throwing away
some edges of A. The remaining edges satisfy the definition of M-triviality with respect to
f just because they do so inside A.

Note that A1 and A2 both have fewer edges than A and at most as many nodes. So by the
induction hypothesis both these arenas have an f−1(minit)-wise positional equilibrium. Let
(σ1, τ1) be an f−1(minit)-wise positional equilibrium in A1 and (σ2, τ2) be an f−1(minit)-wise
positional equilibrium in A2. Next, we define two auxiliary strategies τ12 and τ21 of Min
exactly as in Section 4. Our goal is to show that either (σ1, τ12) is an f−1(minit)-wise
equilibrium in A or (σ2, τ21) is an f−1(minit)-wise equilibrium in A.

By the same argument as in Section 4, we have that τ12 is an f−1(minit)-wise optimal
response to σ1 and τ21 is an f−1(minit)-wise optimal response to σ2. The main challenge is
to show the opposite for at least one of the pairs (σ1, τ12) and (σ2, τ21).

For that we define a one-player arena B exactly as in Section 4 (see Figure 1). It has
2|V | − 1 ≤ 2N − 1 nodes. We will apply the assumption of Lemma 20 to B. More precisely,
this will be done for some M-trivial pair which includes B. For that we define the following
mapping g from the set of nodes of B to the set of states of M. Namely, if v′ is a node of B,
we set g(v′) = f(v), where v is the prototype of v′. Observe that (B, g) is an M-trivial pair.
Indeed any edge of B is between two nodes whose prototypes are connected in A by an edge
of the same color. Thus, by the assumption of Lemma 20, the arena B has a g−1(minit)-wise
positional equilibrium (Σ̂, T ) (as before, in B there are no strategies of Min other than T ).
It is sufficient to establish the following two claims:
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if Σ̂ applies an edge from E1(w) in w, then σ1 is an f−1(minit)-wise optimal response to
τ12 in A;
if Σ̂ applies an edge from E2(w) in w, then σ2 is an f−1(minit)-wise optimal response to
τ21 in A.

A key observation here is that g−1(minit) is the union of the left copies of the nodes from
f−1(minit) and the right copies of the nodes of f−1(minit). In fact, for a proof of the first
claim we only need a fact that g−1(minit) includes all the left copies of the nodes from
f−1(minit). Correspondingly, only the right copies of f−1(minit) are relevant for a proof of
the second claim.

We only show the first claim, the second one can be proved similarly. As in Section 4, the
argument is carried out through a positional strategy σ̂ of Max in A obtained by restricting
Σ̂ to the left ellipse. First we observe that in any node from f−1(minit) the strategy σ1 is at
least as good against τ12 as σ̂. Indeed, both σ1 and σ̂ are strategies in A1 whereas σ1 is an
f−1(minit)-wise optimal response to τ1 in A1 by definition. On the other hand, τ12 plays
against σ1 and σ̂ exactly as τ1.

It remains to show that σ̂ is an optimal response to τ12 in any node from f−1(minit).
This can be done by exactly the same argument as in the last paragraph of Section 4. A
difference is that now we have a weaker assumption about Σ̂; namely, we only know that
Σ̂ is optimal in the nodes from g−1(minit) (while before it was optimal everywhere in B).
Correspondingly, we are proving a weaker statement. Namely, instead of proving that σ̂ is
an optimal response to τ12 everywhere in A, we are only proving this for all v ∈ f−1(minit).
It can be checked that in the argument for a specific v we only require optimality of Σ̂ in the
left copy of v; so if v ∈ f−1(minit), then its left copy is in g−1(minit) so that the argument
still works. ◀
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