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Abstract
This article is a companion to an invited talk at ICDT’2022 with the same title.

Cardinality estimation is among the most important problems in query optimization. It is
well-documented that, when query plans go haywire, in most cases one can trace the root cause to
the cardinality estimator being far off. In particular, traditional cardinality estimation based on
selectivity estimation may sometimes under-estimate cardinalities by orders of magnitudes, because
the independence or the uniformity assumptions do not typically hold.

This talk outlines an approach to cardinality estimation that is “model-free” from a statist-
ical stand-point. Being model-free means the approach tries to avoid making any distributional
assumptions. Our approach is information-theoretic, and generalizes recent results on worst-case
output size bounds of queries, allowing the estimator to take into account histogram information
from the input relations. The estimator turns out to be the objective of a maximization problem
subject to concave constraints, over an exponential number of variables. We then explain how the
estimator can be computed in polynomial time for some fragment of these constraints. Overall,
the talk introduces a new direction to address the classic problem of cardinality estimation that
is designed to circumvent some of the pitfalls of selectivity-based estimation. We will also explain
connections to other fundamental problems in information theory and database theory regarding
information inequalities.
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1 Introduction

Cardinality estimation [25] is a crucial component of the query optimization pipeline. The
problem can be formulated as shown in Figure 1. We collect statistical profiles s(D) of
relations in the database D. (Profiles are also called “system catalogs” [51], among other
names.) For a given query Q, the problem is to come up with an accurate estimate q̂ of
|Q(D)| from the profile s(D), as quickly as possible. The main tradeoff dimensions are the
space complexity of s(D), the speed of computing q̂, and the accuracy of the estimate.
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1:2 On an Information Theoretic Approach to Cardinality Estimation

Query Q D Q(D)
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statistical
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q̂ ≈ |Q(D)|

Figure 1 Cardinality Estimation.

Cardinality estimation is one of the most, if not the most, important component of the
query optimization pipeline [38, 42, 40]. Cardinality estimates are the main parameters in
the cost-estimators of logical query plans, physical query plan, parallel query processing, and
in computing budgets for in-memory query processing [1]. Guy Lohman [42] expressed the
issue succinctly:

The root of all evil, the Achilles Heel of query optimization, is the estimation of the
size of intermediate results, known as cardinalities. Everything in cost estimation
depends upon how many rows will be processed, so the entire cost model is predicated
upon the cardinality model. ... In my experience, the cost model may introduce errors
of at most 30% for a given cardinality, but the cardinality model can quite easily
introduce errors of many orders of magnitude!

Cardinality estimation is a very challenging problem. After all, the problem is funda-
mentally a lossy compression problem: different databases may have the same or similar
(small) statistical profiles, how do we tell them apart? After more than half a century of
theory and implementation of relational database systems, whose global market size is more
than 60 billions USD in 20201, commercial database systems still routinely misestimate
cardinalities by a factor of 1000 or more [38]. Two major reasons for the misestimation are:
(1) relational RDBMSs employ estimators that make distributional assumptions about the
data (such as uniformity) which may not hold in real workloads or in standard benchmarks,
and (2) traditional estimators treat selection predicates independently, leading to error
accumulation on large queries. Hence, estimation errors grow exponentially as the number of
joins increases [30, 40]. The lack of whole-query constraints consideration also led to strange
phenomena where “simply by swapping predicates or relations”, the estimates can change
drastically [38].

A natural question is, “how can database theory be (more) helpful in addressing these
challenges?” There are a steady stream of works from the database systems community
studying the cardinality estimation problem, year after year (see [43, 43, 11, 39, 26, 36, 19,
57, 25, 44] and references thereoff). Yet there are remarkably much fewer works from the
database theory community on this fundamental problem. The Alice book [3] does not
have any mention of cardinality estimation (theory or otherwise). The few database theory
papers related to cardinality estimation were on aspects of an existing approach, and the
vast majority of them were published in the 1990s [18, 52, 41, 12, 37, 13, 31, 24, 21, 23, 16].
There are very few papers, if any at all, that attempt to take a fresh look at cardinality
estimation.

1 https://www.gartner.com/en/documents/4001330/market-share-database-management-systems-worldwide-2020
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This talk presents an cardinality estimation approach that is developed and implemented
at RelationalAI Inc. (with collaborators). The approach is aimed to address both of the
weaknesses mentioned above. The first weakness is the (strong) model-based assumptions
which leading to the lack of robustness. The second weakness is the one-selection-at-a-time
estimation strategy which leads to error accumulation, in part due to its inability to take into
account statistical information available in the query but outside the scope of the selection
predicate being considered.

Before describing the approach, we describe the cardinality estimation problem more
formally. We shall start with the profile s(D), and then describe different types of estimators
q̂, the two components shown in Figure 1.

There are several types of (statistical) profiles s(D), which can be collected offline or
online (after seeing the query Q). In the offline case, the simplest profiles involve integrity
constraints such as functional dependencies, number of distinct values of a given attribute,
and base-table cardinalities and number of disk pages. More complex profiles include synopses
such as histograms, approximate histograms, frequency moments [29, 25] of degree sequences,
moments and quantiles for numeric variables, trie or bigrams/trigrams for string variables,
and so on [15]. In the online case, s(D) can contain samples from the database, constructed
based on the query Q. Sampling-based estimator is a deep topic both theoretical and
practically [40, 19, 39, 41, 27]. More recently, machine learning based approaches are starting
to show up in the literature [57, 36], but the jury is still out on whether they are practical
enough to be in production.

This talk concentrates on the offline case, where s(D) contains some forms of histogram
information and integrity constraints. The setup is sufficiently simple for a fresh look at
the problem, yet powerful enough to capture and even generalize standard settings in most
RDBMSs. Simplicity also leads to practicality.

In what follows, we write D′ |= s(D) to mean “database D′ that has the same statistical
profile s(D)”, and D′ ∼ D to mean “D′ drawn from some database distribution D”. There
are two types of cardinality estimators:

q̂ ≈ E
D′∼D

[|Q(D′)| | D′ |= s(D)] average-case / model-based (1)

q̂ ≈ sup
D′|=s(D)

|Q(D′)| worst-case / model-free (2)

The average-case estimator (1) relies on certain distributional assumptions about the data.
The assumptions are modeled with a distribution D from which the data is drawn. The
estimator aims to approximate the conditional expectation of |Q(D′)| over all databases D′

drawn from the distribution D, conditioned on the fact that D′ has the statistical profile
s(D). On the plus side, if D is a good model for the input data, then the estimator adapts
well to the data, giving the query planner more accurate estimates, leading to better query
plans. On the minus side, when the data does not conform on the assumptions baked into D,
one can end up with very bad query plans.

The worst-case estimator (2) approximates the worst-possible output size of query Q over
all databases D′ having the same statistical profile s(D). (These are also called “pessimistic
estimators” [11].) Two main advantages of worst-case estimators are that: (1) they are robust
to outliers, heavy skews or corner cases do not affect the estimator and thus they help avoid
query plans which explode in runtime under bad inputs, and (2) they can be used to guarantee
memory budget during query evaluation. The main disadvantage is that, for a given dataset,
the worst-case estimate may be far from the actual output size |Q(D)|, potentially leading
to sub-optimal query plans. However, there are recent experimental research results showing
that worst-case estimators can be quite effective on some benchmarks [11, 26].

ICDT 2022



1:4 On an Information Theoretic Approach to Cardinality Estimation

Traditional approaches to cardinality estimation are all model-based. In the offline case
(i.e. no sampling / learning), the main approach is stil the one proposed from the System-R
days [54]. What we advocate for and present in this paper is model-free, designed to address
the robustness concern of the traditional estimator.

The model-free estimation problem (2) is exactly the problem of estimating the worst-case
output size of a join query. Studying this problem has led to a new class of join algorithms
called worst-case optimal join algorithms [56, 47, 48]. For a certain class of statistical profile
s(D) (called “degree-constraints” in [6, 7]), the worst-case output size bound (2) is known to
be deeply connected to important information theory questions [7, 5]). This is where our story
begins: how do we solve the worst-case estimation problem (2) beyond the degree-constraints
setup proposed in [7], taking into account, for example, histogram information?

The information-theoretic approach we present in this paper can be thought of as a
“multiway cardinality estimator”, to parallel the notion of “multiway-join operator” that
worst-case optimal join algorithms are, as opposed to “binary-join cardinality estimator”
which does not take into account constraints outside of the binary join being considered,
which is also exactly why binary-join is not worst-case optimal!

The rest of this paper is organized as follows. Section 2 briefly presents the traditional
cardinality estimation approach based on estimating the selectivity, and the notion of degree-
constraints and polymatroid bounds. Section 3 presents an information-theoretic framework
which begins with generalizing degree-constraints to the so-called “histogrammed frequency-
moment constraints”, and ends with an optimization problem for approximating (2) based
on the entropy argument. Section 4 describes some of the main algorithmic and theoretical
challenges we face while realizing the new approach. Section 5 concludes the paper.

2 Background

We use bold-face capital letters, such as X, to denote tuples/sets of variables, capital letters
such as X to denote a variable, bold-face lower-case letters, such as x to denote specific tuples
in the domain Dom(X) of X, and naturally non-bold-face letter x to denote a particular
value in Dom(X).

2.1 Conjunctive Queries
We restrict our attention to estimating the output size of conjunctive queries, with a special
emphasis on full conjunctive queries. We associate a full conjunctive query Q to a multi-
hypergraph H := (V , E), E ⊆ 2V ; the query is written as

Q(V )←
∧

F ∈E

RF (F ), (3)

with variables V and atoms RF (F ) for each F ∈ E . We also write RF to avoid duplication.
The atoms RF represent either relational tables or built-in predicates whose columns are
variables in F .

▶ Example 1. The following query corresponds to a triangle (hyper)graph, it is often called
the “triangle query”:

Q∆(A, B, C)← E(A, B) ∧ E(A, C) ∧ E(B, C). (4)

The relation E contains all edges of the graph that we want to count the number of triangles of.
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Table 1 System-R-style selectivity estimation.

Predicate p s(p) note default assumption
¬p′ 1− s(p′)
p1 ∧ p2 s(p1) · s(p2) independence
A = c 1/dA dA = # of dist. vals 1

10 uniformity
A > c maxA −c

maxA − minA
if known 1

3 uniformity
c1 < A < c2

c2−c1
maxA − minA

if known 1
4 uniformity

R(A, B) 1 S(B, C) 1
max(dR

B
,dS

B
) i.e. |R 1 S| ≈ |R| · |S| · s(1) uniformity

A IN L min{1/2, s(A = c)|L|}
A IN Q |Q|/|X| X is cross-prod

▶ Example 2. Another example is the following query

Q+(A, B)← R(A) ∧ S(B) ∧A + B = 5 (5)

Here, the predicate A + B = 5 is a built-in predicate, which is morally RAB if we want to
write it in the form (3).

2.2 Traditional selectivity estimation

Most modern RDBMSs adopts a variant of System-R [53] cardinality estimation approach,
which works as follows. Consider a (conjunctive) query which contains input relations and a
collection of selection predicates. Without the predicates, the output size estimate is the
product of input relation sizes. Each selection predicate reduces the estimate by a certain
factor called the selectivity of the predicate. Table 1 summarizes how the selectivity of typical
predicates are computed.

On the one hand, this approach has served us sufficiently well for the past 60 years or so,
as evident by the commercial success. On the other hand, drawbacks of this approach are
well-documented [38]. We list here a few key weaknesses:

The approach is (probabilistic) model-based, but there does not seem to be a known
theory for probabilistic guarantee regarding the quality of the estimate.
The approach does not take into account all constraints at once, it is one predicate at a
time, assuming independence. Hence, it is prone to under-estimation when the number
of predicates involved is large.
Is not entirely clear how to incorporate more known constraints into the estimator. The
most obvious omission is in the fact that functional dependencies are not taken into
account. In Example (2) above, for instance, our estimation approach will give a bound
of min{|R|, |S|}, while the traditional estimator approach likely gives |R| × |S|.
It is not clear how to estimate the output size of non-full conjunctive queries. (Of course,
one can always take some trivial bound such as the cross-product of the distinct counts
of the free variables.)
The approach does not take into account histogram information when estimating join
sizes. It does make use of the number of distinct values over the joined variable domain;
however, in practice, histograms over the same attribute on different relations have
mis-aligned boundaries.

ICDT 2022



1:6 On an Information Theoretic Approach to Cardinality Estimation

2.3 Degree constraints

The notion of “degree constraints” was introduced in [7] to model a simple yet powerful form
of statistical profiles s(D). A degree constraint is a triple (X, Y , N), where X ⊊ Y ⊆ V

and N ∈ N. The relation RF is said to guard the degree constraint (X, Y , N) if Y ⊆ F and

max
x
|πY σX=xRF | ≤ N. (6)

In plain language, the degree constraint states that: “in the relation RF , for every fixed
binding X = x, there are at most N bindings y of Y for which y is in the projection of RF

onto the attributes Y . Note that a given relation may guard multiple degree constraints.
Let DC denote a set of degree constraints. The input database D is said to satisfy DC if

every constraint in DC has a guard, in which case we write D |= DC.
A cardinality constraint is an assertion of the form |RF | ≤ N , for some F ∈ E ; it is

exactly the degree constraint (∅, F , N) guarded by RF . A functional dependency X → Y

is a degree constraint (X, Y , 1). In particular, degree constraints strictly generalize both
cardinality constraints and functional dependencies.

In the triangle query (4), suppose in addition to knowing that |E| = N we also know
that the out-degree of every vertex is bounded by D. Then this database (i.e. the graph
G) satisfies the following degree constraints: (∅, {u, v}, N) for every pair u, v ∈ [3]. and
({1}, {1, 2}, D) ({2}, {2, 3}, D) and ({3}, {3, 1}, D).

Our problem setting is general, where we are given a query of the form (3) and a set
DC of degree constraints satisfied by the input database D. The model-free cardinality
estimation problem is to find a good upper bound of, or to determine exactly the quantity
supD|=DC |Q(D)|, the worst-case output size of the query given that the input satisfies the
degree constraints. To describe the solution space, we need a detour to some classes of set
functions.

2.4 Families of set functions

Let n = |V |. A function f : 2V → R+ is called a (non-negative) set function on V . A
set function f on V is modular if f(S) =

∑
X∈S f({X}) for all S ⊆ V , is monotone if

f(X) ≤ f(Y ) whenever X ⊆ Y , and is sub-modular if f(X∪Y )+f(X∩Y ) ≤ f(X)+f(Y )
for all X, Y ⊆ V . A function h : 2V → R+ is said to be entropic if there is a joint distribution
on V with entropy function H such that h(S) = H[S] for all S ⊆ V .

Unless specified otherwise, we will only consider non-negative and monotone set functions
f for which f(∅) = 0; this assumption will be implicit in the entire paper. Furthermore, for
X ⊆ Y , we will write h(Y | X) := h(Y )− h(X) for all our set functions h.

Let Mn and Γn denote the set of all (non-negative and monotone) modular and submodular
set functions on V , respectively. The set Γn is called the set of polymatroidal functions, or
simply polymatroids. Let Γ∗

n denote the set of all entropic functions on n variables, and
Γ∗

n denote its topological closure (in the Euclidean space, where we think of a polymatroid
function f : 2V \ {∅} → R as a vector in R2n−1).

The notations Γn, Γ∗
n, Γ∗

n are standard in information theory. It is known [58] that Γ∗
n is

a cone which is not topologically closed. And hence, when optimizing over this cone we take
its topological closure Γ∗

n, which is convex. It is easy to see that Mn and Γn are polyhedral
cones. (Note that we can view them as either functions or vectors in R2n−1.)
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There is another interesting class of set functions called normal functions [4, 6], defined
as follows. For every W ⊊ V , a step function sW : 2V → R+ is defined by

sW (X) =
{

0 X ⊆W

1 otherwise

A function is normal if it is a non-negative linear combination of step functions. Let Nn

denote the set of normal functions on V .
As mentioned above, entropic functions satisfy non-negativity, monotonicity, and submod-

ularity. Linear inequalities regarding entropic functions derived from these three properties
are called Shannon-type inequalities. For a very long time, it was widely believed that
Shannon-type inequalities form a complete set of linear inequalities satisfied by entropic
functions, namely Γ∗

n = Γn. This indeed holds for n ≤ 3, for example. However, in 1998, in a
breakthrough paper in information theory, Zhang and Yeung [59] presented a new inequality
which cannot be inferred from Shannon-type inequalities. Their result proved that, Γ∗

n ⊊ Γn

for any n ≥ 4.
The following inclusion chain can be found in a combination of [58, 4].

▶ Theorem 3. The following chain of inclusion holds

Mn ⊆ Nn ⊆ Γ∗
n ⊆ Γ∗

n ⊆ Γn (7)

When n ≥ 4, all of the containments are strict.

2.5 Entropic and Polymatroid Bounds
In [7], we used families of set functions to describe answers to the worst-case cardinality
estimation problem supD|=DC |Q(D)| This quantity is called the worst-case output size of the
query, over databases satisfying the input degree constraints. Algorithms evaluating Q running
in time Õ(|D|+ supD|=DC |Q(D)|) are called worst-case optimal join algorithms [47, 49, 56].

To obtain a bound in the general case, we employ the entropy argument, which is widely
used in extremal combinatorics [34, 14, 50, 20], and in database theory [22, 6, 7]. The reader
is referred to [47] for a brief historical account in relation to database theory.

Define the collection HDC of set functions satisfying the degree constraints DC:

HDC := {h | h : 2V → R, h(Y )− h(X) ≤ log N, ∀(X, Y , N) ∈ DC}. (8)

The entropy argument immediately gives the following result, first explicitly formulated in
joint works with Abo Khamis and Suciu [6, 7]:
▶ Theorem 4 (From [6, 7]). Let Q be a conjunctive query and DC be a given set of degree
constraints, then for any database D satisfying DC, we have

sup
D|=DC

log |Q(D)| = max
h∈Γ∗

n∩HDC
h(V ) (entropic bound) (9)

≤ max
h∈Γn∩HDC

h(V ) (polymatroid bound) (10)

Furthermore, the entropic bound is asymptotically tight and the polymatroid bound is not.

3 An Information Theoretic Framework

This section first introduces a more powerful notion of constraints, enriching what can be
stored in the profile s(D). We explain how this type of constraints capture very well the
kind of summary information that histograms store. Finally, we explain how to formulate a
worst-case cardinality estimator subject to these constraints.

ICDT 2022
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actor movie role
alice
bob
bob
bob
bob
carol
carol

dactor(alice) = 1
dactor(bob) = 4

dactor(carol) = 2
dactor(v) = 0 v /∈ {alice, bob, carol}

The (very small) profile s(D) contains
F0(dactor) = ∥dactor∥∞ = 4 (heavy hitter)
F∞(dactor) = ∥dactor∥0 = 3 (distinct counts)
F1(dactor) = ∥dactor∥1 = 7 = |R| (base-table cardinality)
F2(dactor) = ∥dactor∥2

2 = 21 (2nd moment)

Figure 2 An example of degree-norm constraints.

3.1 Frequency-moment constraints

3.1.1 Motivation
To motivate the notion of frequency-moment constraints, let us consider an example shown
in Figure 2. Let’s say we have a table R(actor, movie, role) and we would like to compute a
small statistical profile (that goes into s(D)) of this table. We want to be able to capture as
much of the joint distribution over three variables actor, movie, and role using as little space
as possible.

One possible representation is to look at each of the marginal distributions over individual
variables. On the variable actor, the marginal distribution is summarized with a frequency
vector dactor which counts, for each actor, the number of times the actor occurs in the table.
This marginal mass vector is typically too large to be part of the profile s(D). Instead, the
idea of frequency-moment constraints is to include in s(D) some frequency-moment [8] of
this vector: Fℓ(dactor), for ℓ ∈ {0, 1, 2,∞}. The frequency-moment Fℓ of a vector v is defined
by

Fℓ(v) :=
{
∥v∥ℓ ℓ ∈ {0, 1, +∞}
∥v∥ℓ

ℓ ℓ /∈ {0, 1, +∞}.
(11)

Theoretically, we are certainly free to pick ℓ-moments for values of ℓ beyond {0, 1, 2,∞},
but practically they are not very meaningful. As shown in Figure 2, the 0-, 1-, and ∞-
moments capture commonly used statistics in RDBMSs: heavy hitters, distinct value counts,
and base-table cardinalities.

3.1.2 Formal definition
Let R be a relation, and X, Y be subsets of attributes of the relation. Define the conditional
frequency vector dY |X to be

dR
Y |X(x) = |πY σX=xR| (12)

When R is clear from context, we drop the subscript R to reduce cluttering. Note that X

can be empty, where dR
Y |∅() = |πY (R)| counts the number of distinct Y -tuples in R.
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▶ Definition 5 (Frequency-moment constraint). A frequency-moment constraint (or just FM-
constraints for short) is is a quintuple (X, Y , N, ℓ, R), where X ⊆ Y are sets of variables,
N ∈ R+, and ℓ ∈ [0, +∞] is a nonnegative real number or infinity. R is an input relation.
The constraint states that

Fℓ(dR
Y |X) ≤ N (13)

The values of ℓ that are most meaningful in practice are {0, 1, 2, +∞}.
Note the following fact: for the same relation R, we have

F0(dY |X) = F∞(dX|∅) F1(dY |X) = F∞(dX∪Y |∅) (14)

In particular, adding the ability to measure 1- or 0-moments does not move us beyond the
degree constraints setting of ∞-frequency-moments. This fact will change when we use
FM-constraints in the context of histograms, as presented in the next section.

In the obvious way, FM-constraints capture profile information typically used in RDBMSs,
such as functional dependencies, base-table cardinalities, distinct value counts, and heavy
hitters. It is a strict generalization of degree constraints.

3.1.3 Related recent works
Independent of our work, there are a couple of recent works which dealt with degree sequences
and their norms.

Jayaraman, Ropell and Rudra [32] considered the join problem where the input database
contains arity-2 relations, each of which has a degree vector some of whose norms are given
as input to the join computation problem. They derived a worst-case optimal join algorithm
under this input.

Deeds, Suciu, Balazinska, and Cai [17] considered the problem setting where entire degree
vectors dR

Y |X are given, along with maximum tuple multiplicities. They derived novel bounds
for the output size given this information.

The setup and results of both papers are orthogonal to what is presented in this talk.

3.2 Histograms
The frequency-moment constraints are powerful building blocks for summarizing the data in
a database D. To increase the granularity of the statistical profile s(D), we partition the
data and have frequency-moment constraints for each part of the data space. This is the
idea behind histograms [2, 29]. Given a relation RY and a set X ⊂ Y of its attributes, to
build an X-histogram, we partition the active domain of X into some k parts:

Dom(X) :=
∏

X∈X

Dom(X) = B1 ∪B2 ∪ · · · ∪Bk.

The Bis are called “buckets”. Let B = {B1, B2, . . . , Bk}. For each bucket B ∈ B, the
B-conditional frequency vector dR

Y |X∈B is defined by:

dR
Y |X∈B(x) = |πY σX=xR| x ∈ B (15)

As usual, we drop R and write dY |X∈B when R is clear from context.
If |X| = 1, then the histogram is a 1D-histogram, otherwise it is a multidimensional

histogram. In typical RDBMSs, there are about k ≈ 200 buckets (e.g. MS SQL Server).
Furthermore, the top 10 or so heavy hitters are each in a bucket by themselves. For 1D-
histograms, the bucketization is done via equi-depth partitioning[29]. Multi-dimensional
histograms are algorithically more complicated and require more space to store [46, 45].

ICDT 2022
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▶ Definition 6. A histogrammed FM-constraint (or HFM-constraint for short) is a tuple
(B, X, Y , c, ℓ, R), where X ⊆ Y are sets of variables, B is a partition of Dom(X), c =
(cB)B∈B is a vector of real numbers, and ℓ ∈ [0, +∞]. The constraint states that

Fℓ(dR
Y |X∈B) ≤ cB ∀B ∈ B (16)

Unlike in the histogram-free case, we can no longer use the ∞-moments to capture the 0-
and 1-moments. Each moment is its own useful statistics.

3.3 A model-free cardinality estimator under HFM-constraints
This section explains how in an on-going work, in collaboration with Keshavarz and
Nguyen [35], we were able to generalize Theorem 4 to the case when the input constraints
are HFM-constraints. For the sake of clarity and to simplify the exposition, we will restrict
the HFM-constraints to only 1D-histogram constraints.2

3.3.1 A highly simplified example
To illustrate the main ideas, we start with an example where the query is a simple join
between two relations

Q(X, Y, Z) = R(X, Y ) ∧ S(Y, Z).

We further assume that there are HFM-constraints on both R and S, where the bucketization
on Y is identical on both R and S. In particular, suppose the input HFM-constraints are of
the form:

(B, Y, XY, r,∞, R), where r = (rB)B∈B
(B, Y, XY, c, 0, R), where c = (cB)B∈B
(B, Y, Y Z, s,∞, S), where s = (sB)B∈B

More concretely, the constraints state the following, for every B ∈ B:
given any y ∈ B, we have |πXσY =yR| ≤ rB

|σY ∈BπY R| ≤ cB

given any y ∈ B, we have |πXσY =yS| ≤ sB

We now apply the entropy argument to upper-bound |Q|. The starting point is the traditional
entropy argument. Fix a particular (but arbitrary) input, including relations R and S.
Consider the uniform distribution on (X, Y, Z) chosen from the join R(X, Y ) ∧ S(Y, Z).
(Note that we do not assume anything about input distribution; the uniformity considered
here is only for mathematical reasoning purposes.) Next, we depart from the entropy
argument used to prove the likes of Theorem 4. We add one more random variable to the
joint distribution. Let J ∈ B be the categorical variable, where J = B iff Y ∈ B. Define

pB := Pr[J = B] p := (pB)B∈B (17)

Consider the joint distribution on (X, Y, Z, J). Let h be its entropy function. Then, h ∈ Γ∗
4;

and the following holds:

log |Q| = h(XY Z) h(J | Y ) = 0 h(J) = −
∑

i

pi log pi ∥p∥1 = 1 p ≥ 0 (18)

2 This is the typical case in all existing RDBMSs: by default multidimensional histograms are not built.
Sometimes they are built on-demand, but they are not used in estimating the join sizes, only to estimate
selectivities of filter conditions on the base-tables.
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Furthermore, the following inequalities hold, for every B ∈ B:

h(X | J = B) ≤ log rB (19)
h(Y | J = B) ≤ log cB (20)
h(Z | J = B) ≤ log sB . (21)

We simplify the constraints above by aggregating them:

h(X | J) =
∑

B

h(X | J = B) · pB ≤ ⟨log r, p⟩ (22)

h(Y | J) =
∑

B

h(Y | J = B) · pB ≤ ⟨log d, p⟩ (23)

h(Z | J) =
∑

B

h(Z | J = B) · pB ≤ ⟨log s, p⟩ (24)

Overall, we have the following optimization problem, which is our worst-case cardinality
estimator for the example input:

max h(XY Z) (25)
s.t. h(Y | J) ≤ ⟨p, lg c⟩ (26)

h(X | J) ≤ ⟨p, lg r⟩ (27)
h(Z | J) ≤ ⟨p, lg s⟩ (28)

h ∈ Γ∗
4 (29)

p ≥ 0, (30)
h(J) = −⟨p, lg p⟩ (31)

h(J | Y ) = 0 (32)
∥p∥1 = 1. (33)

For this problem to be solvable, we replace Γ∗
4 with Γ4, which contains all the Shannon-type

inequalities on h.
To show that the above optimization problem makes sense and is non-trivial, we now

show that the estimator matches a combinatorial bound. We do so by applying only the
constraints from the above optimization problem (with Γ∗

4 replaced by Γ4) to derive a bound
on |Q|:

lg |Q| = h(XY Z) (34)
(since h(JY ] = h(Y ]) = h(XY ZJ) = h(XY Z|J) + h(J) (35)

(since h ∈ Γ4) ≤ h(X|J) + h(Y |J) + h(Z|J) + h(J) (36)

≤
∑
B∈B

(lg rB + lg cB + lg sB − lg pB)) · pB (37)

=
∑
B∈B

(lg(rBcBsB/pB)) · pB (38)

(Jensen) ≤ lg
(∑

B

rBcBsB

)
. (39)

We arrive at the bound

|Q| ≤
∑
B∈B

rBcBsB (40)

which is exactly what we would expect from the input conditions; furthermore, it is easy to
see that the bound is tight!
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B1 B2 B3 B4 B5 B6 B7 B8 B9

Figure 3 When boundaries of the blue-histograms and yellow histograms do not align.

U

B1 B2 B3

Figure 4 Refined partitioning of a yellow interval.

3.3.2 When histogram boundaries do not align
We now remove the unrealistic assumption that the histogram boundaries on R and S align
perfectly. We assume the input HFM-constraints are

(B′, Y, XY, r,∞, R), where r = (rB′)B′∈B′

(B′, Y, XY, c, 0, R), where c = (cB′)B′∈B′

(B′′, Y, Y Z, s,∞, S), where s = (sB′′)B′′∈B′′

The natural idea is to compute a refined partition B of Dom(Y ), from intersecting the
partitions B′ and B′′, as shown in Figure 3. The issue is that we do not know the numbers
rB , cB , and sB ; hence, we make them variables, and write down extra constraints to relate
them to rB′ , cB′ , and sB′′ .

The extra constraints depend on the norm-ℓ; for instance, suppose an interval U ∈ B′ is
refined into B1 ∪B2 ∪B3 as shown in Figure 4, then we have two extra constraints:

cB1 + cB2 + cB3 = cU (41)
max{rB1 , rB2 , rB3} = rU . (42)

3.3.3 The general case
The above examples can be generalized as follows. Consider a collection HFM of HFM-
constraints, for a query Q over variables V . Recall that HFM-constraints are a strict super
set of FM-constraints, which is a strict superset of DC-constraints, which is a strict superset
of FD-constraints and cardinality constraints. An HFM-constraint (B, X, Y , c, ℓ, R) is an
FM-constraint if B = {Dom(X)}, and an FM-constraint is a DC-constraint if ℓ = ∞. An
HFM-constraint is called proper if |B| > 1 (i.e. it is a legitimate partition of Dom(X)).
Thanks to (14), if ℓ ∈ {0, 1,∞}, then we can assume that all non-proper HFM-constraints
are DC-constraints. The size |X| is called the dimensionality of the HFM-constraint.

▶ Definition 7. We call a collection C of HFM-constraints simple if the following conditions
are met:

Every constraint in HFM has ℓ ∈ {0, 1, +∞}
Every proper HFM-constraint in HFM is one-dimensional (i.e. |X| = 1)

The idea to parallel Theorem 4 is to write down a set HC of all constraints, and formulate
an optimization problem which mirrors the above examples and that of Theorem 4. We will
assume that the input collection C of HFM-constraints are simple.

To start describing HC, we begin by assuming the “aligned boundary” case for all
proper HFM-constraints. In particular, if there was at least one proper HFM-constraint
(B, X, Y , c, ℓ, R) on X, then all other constraints of the form (B′, X, Y ′, c′, ℓ′, R′) on X, then
all other constraints of the form must have B′ = B.
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For each such X, we add a new categorical variable J (to the joint distribution over V ),
and a new vector p = (pB)B∈B, with the following constraints to HC:

h(J) = −⟨p, lg p⟩ h(J | X) = 0 ∥p∥1 = 1 p ≥ 0 (43)

Next, for each HFM-constraint (B, X, Y , c, ℓ, R), we add the following constraints to HC:

if ℓ = 0 h(X|J) ≤ ⟨p, lg d⟩ (44)
if ℓ = 1 h(XY |J) ≤ ⟨p, lg d⟩ (45)

if ℓ =∞ h(Y |J) ≤ ⟨p, lg d⟩ (46)

The constraints for ℓ ∈ {0,∞} were already explained in the example above (see (22), (23),
(24)). The constraint for ℓ = 1 also follows the same reasoning; the only difference is that
the F1-frequency moment counts the number of (X, Y ) tuples, and hence the bound is on
h(XY |J).

Now, when the boundaries of all the bucketizations B on the same variable X are not
aligned, we do the following.

Create the finest partition B of Dom(X) from taking the intersections of all the input
bucketizations B′ on Dom(X).
For each input HFM-constraint (B′, X, Y , c′, ℓ, R), create a new HFM-constraint
(B, X, Y , c, ℓ, R), where c are variables
Add the following constraints on the quantities c, depending on ℓ. Since B is a finer
partition than B′, every interval U ∈ B′ is a union of some intervals U = B1 ∪ · · · ∪Bq in
B. We relate cB1 , . . . , cBq to c′

U as follows.

if ℓ ∈ {0, 1} cB1 + · · ·+ cBk
≤ c′

U (47)
if ℓ =∞ cBi

≤ c′
U ∀i (48)

Let m denote the number of variables X for which there is a bucketization from C from,
then the joint distribution we considered is on n + m variables: n = |V |, and there is one
variable J for each such X. Thus, h ∈ Γ∗

n+m. In addition, we have variables p for each
X, and new variables c for each input HFM-constraint on which the bucketizations do not
align. Together, the unknowns involve (h, P , C) where P collects all the unknowns p, and
C collects all the unknown c. Let HC denote the list of all constraints. Then, we have the
following.

▶ Theorem 8 (From [35]). Let Q be a conjunctive query and C be a given set of simple
HFM-constraints, then for any database D satisfying C, we have

sup
D|=C

log |Q(D)| ≤ max{h(V ) | h ∈ Γ∗
n+m, (h, P , C) ∈ HC} (entropic bound) (49)

≤ max{h(V ) | h ∈ Γn+m, (h, P , C) ∈ HC} (polymatroid bound) (50)

The (generalized) polymatroid bound (50) is our model-free estimator. It is possible to
relax the simplicity assumption on C, but the description of the abound will be much more
involved. For the sake of clarify, we refrain from doing so here.

4 Research Questions

The approach we sketched in the previous section raises some very interesting and challen-
ging research problems, with deep connections to information theory, linear programming,
combinatorial optimization, and statistical estimation. This section outlines some research
questions arising from our framework. We taxonomize the research questions in three broad
categories:
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The first category involves questions surrounding the computability of the entropic
bounds.
The second category involves questions on how to compute the polymatroid bound
efficiently.
The third category aims to capture questions where probabilistic guarantees are taken into
account, getting data-type specific information and the 2nd-moment (ℓ = 2) constraints
involved in the model.

4.1 Computability and information inequality
In order to compute the best (worst-case) cardinality estimate, we want to compute the
entropic bound. For simplicity, let’s start with the entropic bound (9) under degree constraints
only. The constraints in HDC are linear constraints, and Γ∗

n is known to be a closed convex
cone. Hence, the entropic bound is a conic programming problem [10] of the form:

min ⟨c, h⟩ (51)
s.t. Ah ≤ b (52)

h ∈ Γ∗
n, (53)

where cV = −1 and cX = 0 for X ⊂ V . The inequalities in Ah ≤ b come from the degree
constraints: h(Y )− h(X) ≤ N . We write down a particular Lagrangian dual problem. To
do so, associate dual variables δ to the inequalities Ah ≤ b. The Lagrangian is

L(δ) = inf
h∈Γ∗

n

⟨c, h⟩+ ⟨Ah− b, δ⟩ = −⟨b, δ⟩+ inf
h∈Γ∗

n

⟨c + A⊤δ, h⟩ (54)

Let (Γ∗
n)∗ denote the dual cone of the cone Γ∗

n.
If c + A⊤δ ∈ Γ∗

n, then ⟨c + A⊤δ, h⟩ ≥ 0 and thus infh∈Γ∗
n
⟨c + A⊤δ, h⟩ = 0.

If c + A⊤δ /∈ Γ∗
n, then infh∈Γ∗

n
⟨c + A⊤δ, h⟩ = −∞.

Since the Lagrangian dual problem is to maximize L(δ) subject to δ ≥ 0, solving the above
conic programming problem is essentially equivalent to solving the following dual:

min ⟨b, δ⟩ (55)
s.t. δ ≥ 0 (56)

c + A⊤δ ∈ (Γ∗
n)∗. (57)

There is evidence that the dual problem (55) may not be decidable. Even checking
for feasibility of a given solution seems hard. The reason is as follows. The statement
c + A⊤δ ∈ (Γ∗

n)∗ is equivalent to

⟨c + A⊤δ, h⟩ = ⟨c, h⟩+ ⟨Ah, δ⟩ ≥ 0 ∀h ∈ Γ∗
n.

In particular, this is saying that the inequality

h(V ) ≤
∑

(X,Y )∈DC

δY |Xh(Y |X) (58)

is a valid information inequality, i.e. an inequality that holds for all almost entropic functions.
In joint work with Abo Khamis, Kolaitis, and Suciu [4], we studied this class of problems
(of deciding the validity of information inequalities, and their generalization). While the
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(un)decidability of these bounds are open, we were able to put them on the arithmetic
hierarchy. Studying these inequalities are also closely related to (the decidability of) the
problem of query containment under bag-semantic [4].

On the plus side, it was known [7] that the entropic bound under degree constraints is
asymptotically tight! It is open, however, whether the generalization of the bound under
HFM-constraints (49) is tight or not.

4.2 Computational complexity of the polymatroid bounds

Our next best hope is thus put on the polymatroid bound (10) and its histogrammed
counterpart (50). These are optimization problems on an exponential number of variables
and constraints.

Consider the simpler bound (10), under input DC constraints. On the negative news side,
it is known [7] that the bound is not tight in general, namely there is a gap between the
entropic bound (9) and the polymatroid bound on some input instances. In fact, one can
construct a family of input instances for which the gap-ratio goes to infinity. Furthermore,
as mentioned in [47], the exact computational complexity of computing the polymatroid
bound (10) is open.

What gives us hope that the bound is computably tractable to begin with? After all, the
linear program has an exponential number of variables and constraints. This is when some
positive news emerge. We know that, under certain assumptions about the input degree
constraints, we know that the polymatroid bound is not only computable in polynomial time,
but also is tight (i.e. it is equal to the entropic bound:

If DC contains only cardinality constraints, then we can show that [6] the polymatroid
bound is exactly equal to the AGM bound [9]. One way to prove this is to use Lovasz
“modularization” technique to show that one can replace polymatroids by modular poly-
matroids in the optimization problem while retaining the same objective value. The dual
of the modular polymatroid optimization problem is exactly the AGM bound.
There is one simple further relaxation we can make: if in addition to cardinality constraints,
we have simple FDs, then the bound is also tight an computable in PTime. This fact was
observed in [22] and generalized in [6] in terms of the lattice of FD closures. In particular,
it was shown in [6] that if the FD-closure lattice is distributive [55], then the bound is
tight and computable in PTime. (Simple FDs implies distributive FD-closure lattice.)
Another case when the bound is tight and PTime-computable is when the set DC of input
degree constraints is acyclic [47]. One can use this fact in another way, in order to obtain
an upper-approximation of the bound: find a minimal subset of DC that is acyclic and
use that as the approximation.
Finally, recently in [28] we showed that if all degree constraints are simple then the bound
is tight and PTime-computable. A degree constraint is simple if it is of the form (X, Y, N)
with |X| ≤ 1. In particular, all cardinality constraints are simple, all simple FDs are
simple, and in addition we can also have proper degree constraints with |X| = 1. The
fact that this bound is tight was shown in [4] where we showed that the polymatroids
can be replaced by normal polymatroids in this case. Thanks to (7), this proves tightness
of the bound. However, it still requires an exponential-sized description to describe the
normal polymatroids Nn. In [28] we proved PTime-computability by characterizing the
optimal solution using network flow analysis. We also proved that the bound is tight
using a different strategy than what was used in [28]. Surprisingly, if the input DC are
not (necessarily) simple, then computing the normal-polymatroid bound is NP-hard [28].
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Next, consider the bound (50) under HFM-constraints. This is a concave maximization
problem, which can be numerically solved [10]. An interesting research question is to find
good upper-approximation to this bound that can be computed efficiently. Following the
Jensen inequality strategy presented in Section 3.3.1, we can eliminate the extra variables J

and p; however, we are still studying how much we lose by this approximation [35].

4.3 Probabilistic guarantees

Thus far, we have not made use of the 2nd frequency-moment (ℓ = 2) in the information
theoretic framework. An interesting open problem is to devise a natural way to incorporate
ℓ-moments for ℓ /∈ {0, 1, +∞} – especially ℓ = 2.

One possible way to make use of ℓ = 2 is to start incorporating probabilistic guarantees
into our estimator (instead of a guaranteed upper-bound with probability 1). For example,
consider the R(actor, movie, role) relation and suppose we have F2(dactor) as part of s(D).
Suppose the query is R(actor, movie, role) ∧ actor = “KevinBacon”.

In the System-R approach, the estimate will be |R|
F0(dactor) . This is the average actor-degree,

which would be an under estimate if “Kevin Bacon” was a heavy hitter in the table.
In the information theoretic approach, before taking ℓ = 2 into account, our estimate
would have been F∞(dactor), which is good for a heavy hitter, but would be an over
estimate if “Kevin Bacon” is not a heavy hitter.
Having F2(dactor) allows us to take a probabilistic compromise. Recall Cantelli’s inequality,
which says that, for any random variable X

Pr [X ≥ E[X] + λ] ≤ Var[X]
Var[X] + λ2

Let X be the frequency (degree) of “Kevin Bacon”. We do not know the distribution of
X. To be as model-free as possible, we follow the maximum-entropy principle [33] and
assume “Kevin Bacon” is uniformly distributed among all actors. Then,

E[X] = |R|
F0(dactor)

(59)

Var[X] = F2(dactor)
F0(dactor)

− E[X]2. (60)

From these quantities and Cantelli’s inequality, we can strike a balance between the
traditional approach and our approach: we can guarantee that our upper-bound estimate
is correct with a certain probabilistic threshold.

The idea of applying the maximum entropy principle has been used successfully in selectivity
estimation [43]. It can also be used to deal with other types of information one typically
record in database catalogs: the (non-frequency) moments of continuous variables. For
example, the System-R estimator for the predicate A > c is maxA −c

maxA − minA
, as shown in Table 1.

This assumes a uniform distribution over the interval [minA, maxA]. However, if we also
collect the empirical mean and variance of the variable, then assuming uniformity may not
make sense for these given statistics. Instead, following the maximum entropy principle,
we should fit an exponential family distribution to model and bound this estimate. Then,
Cantelli or Chebyshev inequality can be used to give the probabilistic guarantee at the
desired level.
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5 Conclusions

We presented a recent effort at RelationalAI to formulate and devise a solution to the classic
cardinality estimation problem in query optimization. Our approach aims to be model-free, or
as model-free as possible, in order to avoid well-documented shortcomings of the traditional
selectivity estimation approach. Our formulation is only for the offline case: no sampling nor
learning was incorporated.

The approach is promising, as a variant of it is working well in production. There remain
highly interesting and non-trivial open questions, as presented. We sincerely hope this
presentation inspires more database theorists to study the problem. There are enough deep
connections to information theory, algorithms, optimization, and statistics for long-term
research programs.
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