Discovering Event Queries from Traces: Laying Foundations for Subsequence-Queries with Wildcards and Gap-Size Constraints

Sarah Kleest-Meißner Humboldt-Universität zu Berlin, Germany
Rebecca Sattler Humboldt-Universität zu Berlin, Germany
Markus L. Schmid Humboldt-Universität zu Berlin, Germany
Nicole Schweikardt Humboldt-Universität zu Berlin, Germany
Matthias Weidlich Humboldt-Universität zu Berlin, Germany

Abstract

We introduce subsequence-queries with wildcards and gap-size constraints (swg-queries, for short) as a tool for querying event traces. An swg-query \(q \) is given by a string \(s \) over an alphabet of variables and types, a global window size \(w \), and a tuple \(c = ((c_1^-, c_1^+), (c_2^-, c_2^+), \ldots, (c_{|s|−1}^-, c_{|s|−1}^+)) \) of local gap-size constraints over \(\mathbb{N} \times (\mathbb{N} \cup \{\infty\}) \). The query \(q \) matches in a trace \(t \) (i.e., a sequence of types) if the variables can uniformly be substituted by types such that the resulting string occurs in \(t \) as a subsequence that spans an area of length at most \(w \), and the \(i \)th gap of the subsequence (i.e., the distance between the \(i \)th and \((i+1)\)th position of the subsequence) has length at least \(c_i^- \) and at most \(c_i^+ \). We formalise and investigate the task of discovering an swg-query that describes best the traces from a given sample \(S \) of traces, and we present an algorithm solving this task. As a central component, our algorithm repeatedly solves the matching problem (i.e., deciding whether a given query \(q \) matches in a given trace \(t \)), which is an NP-complete problem (in combined complexity). Hence, the matching problem is of special interest in the context of query discovery, and we therefore subject it to a detailed (parameterised) complexity analysis to identify tractable subclasses, which lead to tractable subclasses of the discovery problem as well. We complement this by a reduction proving that any query discovery algorithm also yields an algorithm for the matching problem. Hence, lower bounds on the complexity of the matching problem directly translate into according lower bounds of the query discovery problem. As a proof of concept, we also implemented a prototype of our algorithm and tested it on real-world data.

2012 ACM Subject Classification Theory of computation → Database query languages (principles); Theory of computation → Data structures and algorithms for data management; Theory of computation → Problems, reductions and completeness; Information systems → Data mining

Keywords and phrases event queries on traces, pattern queries on strings, learning descriptive queries, complexity of query evaluation and query learning

Digital Object Identifier 10.4230/LIPIcs.ICDT.2022.18

Funding Sarah Kleest-Meißner: Supported by the German Research Foundation (DFG), CRC 1404: “FONDA: Foundation of Workflows for Large-Scale Scientific Data Analysis”. Rebecca Sattler: Supported by the German Research Foundation (DFG), CRC 1404: “FONDA: Foundation of Workflows for Large-Scale Scientific Data Analysis”. Markus L. Schmid: Supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) – project number 416776735 (gefördert durch die Deutsche Forschungsgemeinschaft (DFG) – Projekt Nummer 416776735).

© Sarah Kleest-Meißner, Rebecca Sattler, Markus L. Schmid, Nicole Schweikardt, and Matthias Weidlich; licensed under Creative Commons License CC-BY 4.0

25th International Conference on Database Theory (ICDT 2022)
Editors: Dan Olteanu and Nils Vorthmeier; Article No. 18; pp.18:1–18:21
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
1 Introduction

Event stream processing emerged as a computational paradigm that is based on the continuous evaluation of queries over event streams [10, 22]. Respective systems enable the definition of queries that detect patterns of events, i.e., a match of a query is a joint occurrence of events that satisfy certain properties. Common languages for the definition of event queries, as reviewed in [22, 5], include means to specify such properties related to the order of events, their types, as well as a time window for their joint occurrence.

Event stream processing has traditionally been used for reactive applications in diverse domains, reaching from infrastructure monitoring [7] through financial trading [29] to urban transportation [6]. Here, event queries are specified by expert users to detect situations of interest. For example, consider the case of monitoring a large compute cluster based on events that indicate that a particular job was submitted, scheduled, suspended, resumed, and updated while running, before it either completes successfully, fails due to preemption, or is aborted manually. In addition, events may carry information on the job’s priority and the machine on which the job runs. Given such event streams, abnormal job execution materialises as an event pattern. For instance, a job may be evicted and rescheduled twice on the same machine, with low and unchanged priority, before it eventually fails. Adopting the SASE language [31], Listing 1 formalises this query.

Listing 1 Event query defined in the SASE language [31]. A match is a sequence of events of the respective transition types (Evict, Schedule, Fail), all being related to the same job (with [job] being a short-hand for a.job=b.job, a.job=c.job, etc.) and to the same machine ([machine]), while the priority remains unchanged (b.prio=low, d.prio=low); all within one hour.

```
PATTERN SEQ (Evict a, Schedule b, Evict c, Schedule d, Fail e)
WHERE [job] AND [machine] AND b.prio=low AND d.prio=low
WITHIN 1h
```

In pro-active applications where an event query shall anticipate a situation of interest to prepare for it accordingly [4], users often only know when a specific situation occurred, but they have no or only partial knowledge on the patterns that indicate that the situation will materialise soon. In the above example, a user may be aware that certain jobs fail execution, and potentially possesses anecdotal evidence that only jobs with low priority are affected, but it is not known that repeated eviction and re-scheduling on the same machine may serve to forecast this failure. Against this background, it was suggested to automatically infer the event patterns of interest from historic event data [21, 24], which can then be interpreted and validated by a user, thereby mitigating the risk of overfitting and enabling traceability.

Specifically, historic event data is first split into traces that are considered independent observations (e.g., events may be grouped by jobs and machines), before the traces related to the situation of interest are identified (e.g., based on the presence of failure events). See also Figure 1. Those then serve as a sample of positive examples for the discovery process of event queries that are (i) correct (they match a share of the sample that is above a given support threshold), and (ii) descriptive (any query that is more specific is no longer correct).

In this paper, we introduce subsequence-queries with wildcards and gap-size constraints (swg-queries) as a formal model that covers the essence of the task of event query discovery. Intuitively, an swg-query is a string over an alphabet of variables and types, a global window size and a tuple of local gap-size constraints. It matches a trace, i.e., a sequence of types, if its variables can be substituted by types, such that the resulting string represents a subsequence of the trace, and the global window size and the local gap-size constraints are satisfied.
where window size of with additional payload data (e.g., open; it has not yet received an in-depth investigation from a theoretical perspective. Furthermore, the complexity of the event mining problem is still IL-Miner \[21\] form an exception, but both are limited regarding their expressive power and formalisation of event queries is an active area of research. Defining a query is usually assumed to be a manual step requiring expert knowledge. The iCEP System \[24\] and the swg-queries is based on subsequences, in between the types and variables of commonalities can be captured by an swg-query by explicitly representing the eviction events of the same variable \(t \). Thus, \(\{t_3, t_5, t_6\} \) is our sample of historic event data for which query discovery is to be performed. Each trace contains a subsequence of a scheduling event of low or high priority (SchLow or SchHigh), an eviction event (E), a scheduling event of the same priority as the initial one (SchLow or SchHigh), and another eviction event (E). These commonalities can be captured by an swg-query by explicitly representing the eviction events by the type E, while the occurrence of the scheduling events is captured by two occurrences of the same variable \(x \), i.e., a suitable swg-query would be \(xE \). Since the semantics of swg-queries is based on subsequences, in between the types and variables of \(xE \) also other types like U, Sus and Res may occur. Furthermore, the query matches the traces with global window size of 6. Note that the global window size \(w \) has to be at least 6 to describe \(t_5 \) and \(t_6 \), because from the first scheduling event to the second eviction event both traces consist of 6 events. As gap-size constraint we could choose any tuple of the form \(c = ((0, i), (0, j), (0, k)) \), where \(i, k \in \mathbb{N} \cup \{\infty\} \) and \(j \in \mathbb{N} \cup \{\infty\} \) (observe that in \(t_5 \) two events occur between the last scheduling and eviction event, and in \(t_6 \) two events occur between the first scheduling and eviction event; thus, any \(c \) with \(i, k \geq 2 \) is suitable here). The most restrictive choice that suitably describes our example is \(w = 6 \) and \(c = ((0, 2), (0, 0), (0, 2)) \).}

Languages for complex event processing describe queries which correlate events to detect event patterns, using operators such as sequencing, conjunction, Kleene closure, negation and variables which may be bound to events in a stream \([5, 10, 31]\). However, the differences in semantics and expressiveness of different languages are not yet well-studied and the formalisation of event queries is an active area of research. Defining a query is usually assumed to be a manual step requiring expert knowledge. The iCEP System \[24\] and the IL-Miner \[21\] form an exception, but both are limited regarding their expressive power and scalability, among others. Furthermore, the complexity of the event mining problem is still open; it has not yet received an in-depth investigation from a theoretical perspective.
As illustrated in Example 1.1, we want to find situations of interest that occur in many traces of the given sample set of traces. At a first glance this seems to be a similar problem as solved in the context of frequent sequence mining. Algorithms in this research area as [2, 8, 9, 30] require the a-priori definition of event abstractions; in particular, fine-grained conditions to generalise individual events or to correlate several events are not discovered by these approaches.

In this paper, we try to overcome the issues raised above by proposing a basic language that supports sequencing, variables that range over single events, and different kinds of window size constraints, i.e. local gap-size constraints and a global window size. Hence our swg-queries are located at the core of complex event processing languages while based on classical concepts of theoretical computer science: subsequences and (string) patterns with variables. Subsequences have extensively been studied both in a purely combinatorial sense (in formal language theory, logic and combinatorics on words) and algorithmically (in string algorithms and bioinformatics); see the introductions of the recent papers [20, 11] for a comprehensive list of relevant pointers. Patterns with variables are introduced by Angluin [3] and they play a central role for inductive inference, in formal language theory and combinatorics on words (see [28, 23, 25]). These Angluin-style patterns are just strings with terminal symbols a, b, c, ... and variables x₁, x₂, x₃, ..., e.g., p = x₁ a x₂ b x₂, and they match exactly the strings that can be obtained by uniformly replacing the variables by some terminal strings (i.e., exactly the strings u a u b v with u, v ∈ {a, b, c, ...}∗ for the example pattern).Syntactically, our swg-queries are Angluin-style patterns, but with the semantics adapted to event streams: variables only range over single symbols; and the query matches if, after replacing the variables by events, it occurs as a subsequence that satisfies the window size and gap-size constraints.

Despite the fundamental semantic differences between swg-queries and Angluin-style patterns, it is possible to adapt concepts and algorithms from inductive inference of the so-called pattern languages that can be described by Angluin-style patterns. Most importantly, the classical concept of descriptive patterns, already introduced in [3] for Angluin-style patterns (see also [18, 19]), can be adapted to swg-queries. For a given sample of strings, a descriptive Angluin-style pattern can be computed by Shinohara’s algorithm [27], which employs a rather simple and robust algorithmic idea (see also [14]). The main result of this paper is that Shinohara’s algorithm can also be adapted for computing descriptive swg-queries, and thus to the case of swg-query discovery. Due to the semantic differences, this adaption is non-trivial and requires the development of suitable technical tools. Moreover, our variant of the algorithm has the following special features:

- it allows a support threshold (i.e., a lower bound on the number of matched elements of the sample),
- it can be parameterised by any class of queries that satisfies some mild closure properties (this is crucial for dealing with complexity issues, as explained further below),
- it can also be used in order to check whether a given query is descriptive.

The algorithm computes a descriptive query by performing a number of iterations that is bounded by a low-degree polynomial in the length of the query and the size of the sample. However, in each iteration, the algorithm calls a sub-routine that solves the matching problem: Decide whether a given query matches a given trace. Just like for Angluin-style patterns, matching for swg-queries is intractable; thus, it constitutes a complexity bottleneck in our algorithm. However, as another similarity between Angluin-style patterns and our swg-queries (see [14]), the matching problem for swg-queries reduces to the problem of computing descriptive queries. This means that this complexity bottleneck inevitably exists in any
possible algorithm for computing descriptive swg-queries. Therefore, we perform a thorough complexity analysis of the matching problem for swg-queries (note that for Angluin-style patterns the complexity of the matching problem is well-understood (see [15, 16])). On the positive side, since our algorithm can be parameterised by any arbitrary class of queries (with some natural closure properties), restrictions of swg-queries that lead to a tractable matching problem also lead to tractable computation of descriptive queries via our algorithm.

Typical brute-force approaches to data mining tasks (e.g., the well-known apriori-algorithm [1]) produce the full set of all objects of interest, but operate in exponential running time. Our algorithm produces only one descriptive query, but, for classes of queries with tractable matching problem, is rather fast. Moreover, by considering all possible runs of the algorithm, we can produce a large class of descriptive queries, although not all of them. We further illustrate the feasibility of our approach by developing a prototypical implementation of our algorithm and performing a preliminary experimental study on a real-world dataset of cluster monitoring traces at Google [26].

The remainder of this paper is structured as follows. In Section 2, we propose swg-queries as an adaption of Angluin-style patterns to event streams, and we develop some technical tools for this query class. In Section 3, we present the algorithm, based on Shinohara’s work on discovering descriptive patterns, which can be used (a) for discovering a descriptive swg-query from a given sample, and (b) for checking whether a given swg-query is descriptive with respect to a sample. Motivated by the observation that computing descriptive queries reduces to the matching problem, and vice versa (this connection is discussed at the end of Section 3), we perform in Section 4 a thorough (classical and parameterised) complexity analysis of the matching problem. Our results point out for which classes of queries efficient computation of descriptive queries is possible, and for which classes this is an intractable problem. Finally, in Section 5, we report some experimental results obtained by applying a prototypical implementation to a real-world dataset, and we give some concluding remarks. Due to space restrictions many technical details had to be deferred to the paper’s full version.

2 Traces and Queries

By \mathbb{Z}, \mathbb{N}, $\mathbb{N}_{\geq 1}$ we denote the set of integers, non-negative integers, and positive integers, respectively. For $\ell \in \mathbb{N}$ we let $[\ell] = \{ i \in \mathbb{N}_{\geq 1} : 1 \leq i \leq \ell \}$. For a non-empty set A we write A^* (and A^+) for the set of all strings (the set of all non-empty strings) built from symbols in A. By $|s|$ we denote the length of a string s, and for a position $i \in [|s|]$ we write $s[i]$ to denote the letter at position i in s. A factor of a string $s \in A^*$ is a string $t \in A^*$ such that s is of the form s_1ts_2 for $s_1, s_2 \in A^*$.

An embedding is a mapping $e : [\ell] \to [n]$ with $\ell \leq n$ such that $i < j$ implies $e(i) < e(j)$ for all $i, j \in [\ell]$. Let s and t be two strings with $|s| \leq |t|$. We say that s is a subsequence of t with embedding $e : [|s|] \to [|t|]$, if e is an embedding and $s[i] = t[e(i)]$ for every $i \in [|s|]$. We write $s \preceq_e t$ to indicate that s is a subsequence of t with embedding e; and we write $s \preceq t$ to indicate that there exists an embedding e such that $s \preceq_e t$.

We model traces as finite, non-empty strings over some (finite or infinite) alphabet Γ of types. It will be reasonable to assume that $|\Gamma| \geq 2$. A trace (over Γ) is a string $t \in \Gamma^+$. We write $\text{types}(t)$ for the set of types that occur in t.

This paper studies a basic class of event queries which we call subsequence-queries with wildcards and gap-size constraints, for short: swg-queries. For defining these queries, we fix a countably infinite set Vars of variables, and we will always assume that Vars is disjoint with the set Γ of considered types. An swg-query q (over Vars and Γ) is specified
by a query string \(s \in (\text{Vars} \cup \Gamma)^+ \), a global window size \(w \in \mathbb{N}_+ \cup \{\infty\} \) with \(w \geq |s| \), and a tuple \(c = (c_1, c_2, \ldots, c_{|s|-1}) \) of local gap-size constraints (for \(|s| \) and \(w \)), where \(c_i = (c_i^-, c_i^+) \in \mathbb{N} \times (\mathbb{N} \cup \{\infty\}) \), such that \(c_i^- \leq c_i^+ \) for every \(i \in [|s|-1] \) and \(|s| + \sum_{i=1}^{|s|} c_i^- \leq w \). We denote such queries in the form \(q = (s, w, c) \). Note that setting all gap-size constraints of a swg-query \(q \) to \((0, \infty)\) corresponds to a query without gap-size constraints.

We write \(\text{types}(q) \) (or \(\text{types}(s) \)) and \(\text{vars}(q) \) (or \(\text{vars}(s) \)) for the set of types and the set of variables, respectively, that occur in \(q \)’s query string \(s \). A query \(q \) is called an \((\ell, w, c)\)-query (over \(\text{Vars} \) and \(\Gamma \)) if \(q = (s, w, c) \) with \(|s| = \ell \); the parameter \(\ell \) will be called string length.

We write \(\mathcal{Q} \) to denote the class of all swg-queries.

The semantics of swg-queries is defined as follows: Each variable in \(s \) serves as a wildcard representing an arbitrary type. A query \(q = (s, w, c) \) matches in a trace if the wildcards in \(s \) can be replaced by types in such a way that the resulting string \(s' \) satisfies the following: \(t \) contains a factor \(t' \) of length at most \(w \) such that \(s' \) occurs as a subsequence in \(t' \) and for each \(i < \ell : = |s| \) the gap between \(s'[i] \) and \(s'[i+1] \) in \(t' \) has length at least \(c_i^- \) and at most \(c_i^+ \). I.e., \(t' \) is of the form \(s'[1] g_1 \cdot \ldots \cdot g_j \cdot s'[\ell] \) and \(c_i^- \leq |g_i| \leq c_i^+ \) for all \(i \in [\ell-1] \).

An alternative description of these semantics, which will be more convenient for our formal proofs, involves a bit more notation: We say that an embedding \(e : [\ell] \to [n] \) satisfies a global window size \(w \), if \(e(\ell) - e(1) + 1 \leq w \); and we say that \(e \) satisfies a tuple \(c = (c_1, c_2, \ldots, c_{|s|-1}) \) of local gap-size constraints (for \(\ell \) and \(w \)), if \(c_i^- \leq e(i+1) - e(i) \leq c_i^+ \) for all \(i < \ell \).

A substitution is a mapping \(\mu : (\text{Vars} \cup \Gamma) \to (\text{Vars} \cup \Gamma) \) with \(\mu(\gamma) = \gamma \) for all \(\gamma \in \Gamma \). We extend substitutions to mappings \((\text{Vars} \cup \Gamma)^+ \to (\text{Vars} \cup \Gamma)^+ \) in the obvious way, i.e., \(\mu(s) = \mu(s[1]) \mu(s[2]) \cdots \mu(s[\ell]) \) for \(s \in (\text{Vars} \cup \Gamma)^+ \) and \(\ell := |s| \). We sometimes also consider partial substitutions of the form \((\text{Vars} \cup \Delta) \to (\text{Vars} \cup \Delta) \) for some \(V', \Delta \subseteq \text{Vars} \) and \(\Delta \subseteq \Delta \).

An swg-query \(q = (s, w, c) \) matches in a trace \(t \in \Gamma^+ \) (or, \(t \) matches \(q \), in symbols: \(t \models q \)), if and only if there is a substitution \(\mu : (\text{Vars} \cup \Gamma) \to \Gamma \) and an embedding \(e : [|s|] \to [|t|] \) that satisfies \(w \) and \(c \), such that \(\mu(s) \approx_e t \). We call \((\mu, e) \) a witness for \(t \models q \).

Example 2.1. Let \(x_1, x_2, x_3 \in \text{Vars} \) and \(\Gamma = \{a, b, c\} \). We consider a query \(q = (s, w, c) \), where \(s = x_1 a b x_1 b x_2 c x_1 a x_1 \), \(w = 25 \) and \(c = ((0,1), (0,0), (2,\infty), (4,\infty), (0,5), (0,5), (1,5), (2,3)) \), and a trace \(t = t_1 c a b b b c a b c a b c a b c \), where \(t_1, t_2 \in \Gamma^* \). We observe that \(t \models q \), and a witness substitution and embedding can be illustrated as follows:

\[
\begin{align*}
s &= x_1 \ a \ b \ x_1 \ b \ x_2 \ c \ x_1 \ a \ x_1, \\
t &= t_1 \ c \ a \ b \ b \ c \ a \ b \ a \ c \ b \ a \ c \ t_2 .
\end{align*}
\]

Recall that in the introduction we have presented another, more practical scenario that can also be described by an swg-query (see Example 1.1).

The **model set** of a query \(q \) w.r.t. a type set \(\Delta \subseteq \Gamma \) is \(\text{Mod}_\Delta(q) := \{ t \in \Delta^+ : t \models q \} \). For two queries \(q \) and \(q' \) and a set \(\Delta \subseteq \Gamma \) we say that \(q \) is contained in \(q' \) w.r.t. \(\Delta \) if \(\text{Mod}_\Delta(q) \subseteq \text{Mod}_\Delta(q') \); and we say that \(q \) and \(q' \) are equivalent w.r.t. \(\Delta \) if \(\text{Mod}_\Delta(q) = \text{Mod}_\Delta(q') \). The remainder of this section is devoted to a characterisation of containment and equivalence of \((\ell, w, c)\)-queries via suitable notions of homomorphisms and isomorphisms. Let us fix an \(\ell \in \mathbb{N}_+ \), a \(w \in \mathbb{N} \cup \{\infty\} \) with \(w \geq \ell \), and a tuple \(c \) of local gap-size constraints for \(\ell \) and \(w \).

Definition 2.2. A homomorphism from an \((\ell, w, c)\)-query \(q' = (s', w, c) \) to an \((\ell, w, c)\)-query \(q = (s, w, c) \) is a substitution \(h : (\text{Vars} \cup \Gamma) \to (\text{Vars} \cup \Gamma) \) such that \(h(s') = s \) (i.e., \(h(s'[i]) = s[i] \) for all \(i \in [\ell] \)). We write \(q' \to q \) to express that there exists a homomorphism from \(q' \) to \(q \).

We next characterise containment via homomorphisms (see item (c) of the next theorem).
Theorem 2.3. Let \(q \) and \(q' \) be \((\ell, w, c)\)-queries over \(\text{Vars} \) and \(\Gamma \).

(a) If \(q' \xrightarrow{\text{hom}} q \) then \(\text{types}(q') \subseteq \text{types}(q) \) and \(\text{Mod}_{\Gamma}(q') \supseteq \text{Mod}_{\Gamma}(q) \).

(b) Let \(\Delta \subseteq \Gamma \) be such that \(|\Delta| \geq 2 \) and \(\Delta \supseteq \text{types}(q) \). If \(\text{Mod}_{\Delta}(q') \supseteq \text{Mod}_{\Delta}(q) \) then \(q' \xrightarrow{\text{hom}} q \).

(c) If \(|\Gamma| \geq 2 \), then \(\text{Mod}_{\Gamma}(q') \supseteq \text{Mod}_{\Gamma}(q) \iff q' \xrightarrow{\text{hom}} q \).

Let us consider an example application of this characterisation of containment.

Example 2.4. Let us fix \(\ell \) distinct variables \(x_1, \ldots, x_\ell \in \text{Vars} \), and let \(s_{mg} := x_1 x_2 \cdots x_\ell \).

The query \(q_{mg} = (s_{mg}, w, c) \) is the most general \((\ell, w, c)\)-query in the sense that \(\text{Mod}_{\Gamma}(q_{mg}) \supseteq \text{Mod}_{\Gamma}(q) \) for every \((\ell, w, c)\)-query \(q = (s, w, c) \). To see this, note that the mapping defined via \(h(x_i) := s[i] \) for all \(i \in [\ell] \) provides a homomorphism from \(q_{mg} \) to \(q \) and use Theorem 2.3(a).

One might ask why Theorem 2.3 restricts attention to queries \(q \) and \(q' \) of the same parameters \((\ell, w, c)\). One answer is that this is exactly what is needed for our purposes in Section 3: to ensure that our algorithm for query discovery always produces meaningful results, we precisely need this characterisation (see also Remark 3.2). Another answer is that, when considering queries \(q \) and \(q' \) with different parameters \((\ell, w, c)\) and \((\ell', w', c')\), a characterisation analogous to the one provided by Theorem 2.3(c) simply is not available.

Example 2.5. For the sake of this example, assume that Definition 2.2 applies to arbitrary queries \(q = (s, w, c) \) and \(q' = (s', w', c') \) of the same query string length \(\ell := |s| = |s'| \) but where the global window sizes and the local gap-size constraints may differ from each other.

First consider two SWG-queries \(q = (s, w, c) \) and \(q' = (s, w', c') \) having the same query string \(s = xa x \) and the same global window size \(w = 4 \), but different local gap-size constraints \(c = ((0, 1), (0, 0)) \) and \(c' = ((0, 0), (0, 0)) \). It holds that \(q' \xrightarrow{\text{hom}} q \), but \(\text{Mod}_{\Gamma}(q') \supsetneq \text{Mod}_{\Gamma}(q) \), e.g., \(bca \in \text{Mod}_{\Gamma}(q) \setminus \text{Mod}_{\Gamma}(q') \).

Almost the same example queries show that the characterisation does not also hold for queries with the same query string and the same gap-size constraints but different global window sizes: Let \(q = (s, w, c) \) and \(q' = (s', w', c) \) with \(s = xa x \), \(c = ((0, \infty), (0, \infty)) \), and \(w = 4 \) and \(w' = 3 \). Again, we can observe that \(q' \xrightarrow{\text{hom}} q \), but \(\text{Mod}_{\Gamma}(q') \supsetneq \text{Mod}_{\Gamma}(q) \) (witnessed by the same trace \(bca \)). Note furthermore, that tuples of gap-size constraints of the form \((0, \infty), \ldots, (0, \infty)\) can even be considered as not having any gap-size constraints.

There are natural candidates of extending the concept of homomorphisms to the case of queries with different query string lengths. For example, we could adapt Definition 2.2 by requiring the substitution \(h : (\text{Vars} \times \Gamma) \to (\text{Vars} \times \Gamma) \) to satisfy that \(h(s') \) is a subsequence of \(s \). However, it can be easily seen that for \(q := (s, w, c) \) and \(q' := (s', w', c') \) with \(s = xa x \), \(s' = xa x \), \(w = 4 \), \(w' = 3 \), \(c = ((0, \infty), (0, \infty)) \), and \(c' = ((0, 0), (0, 0)) \), we have \(q' \xrightarrow{\text{hom}} q \) (with respect to the adapted definition), but \(c a b c \in \text{Mod}_{\Gamma}(q) \setminus \text{Mod}_{\Gamma}(q') \).

Definition 2.6. Two \((\ell, w, c)\)-queries \(q = (s, w, c) \) and \(q' = (s', w, c) \) are called isomorphic (denoted by \(q \cong q' \)), if there is a bijection \(\pi : (\text{vars}(q) \cup \Gamma) \to (\text{vars}(q') \cup \Gamma) \) such that \(\pi(\gamma) = \gamma \) for all \(\gamma \in \Gamma \) and \(\pi(s[i]) = s'[i] \) for all \(i \in [\ell] \).

Corollary 2.7. Let \(|\Gamma| \geq 2 \). For all \((\ell, w, c)\)-queries \(q \) and \(q' \) over \(\Gamma \) and \(\text{Vars} \) we have:

\[
q \cong q' \iff (q \xrightarrow{\text{hom}} q' \text{ and } q' \xrightarrow{\text{hom}} q) \iff \text{Mod}_{\Gamma}(q) = \text{Mod}_{\Gamma}(q').
\]

Furthermore, upon input of \(q \) and \(q' \) we can decide in time \(O(\ell) \) whether or not \(q \cong q' \).

The following notion of “partially isomorphic” queries will be useful for Section 3.

Definition 2.8. Let \(q = (s, w, c) \) and \(q' = (s', w, c) \) be \((\ell, w, c)\)-queries and let \(I \subseteq [\ell] \). We say that \(q \) is partially isomorphic to \(q' \) w.r.t. \(I \) (and shortly write \(q \sim_I q' \)) if, and only if,

1. for all \(i, j \in I \) we have \(s[i] = s[j] \iff s'[i] = s'[j] \), and
2. for all \(i \in I \) we have \(s[i] \in \Gamma \iff s'[i] \in \Gamma \) and if \(s[i] \in \Gamma \) then \(s[i] = s'[i] \).

Lemma 2.9. For all \((\ell, w, c)\)-queries \(q \) and \(q' \) we have: \(q \sim_I q' \iff q \cong q' \).
Discovery of Descriptive (ℓ, w, c)-Queries

A sample is a finite, non-empty set S of traces over Γ. The support $\text{supp}(q, S)$ of a query q in S is defined as the fraction of traces in the sample that match q, i.e., $\text{supp}(q, S) := \frac{|\{t \in S : q(t)\}|}{|S|}$. A support threshold is a rational number sp with $0 < sp \leq 1$. A query q is said to cover a sample S with support sp if $\text{supp}(q, S) \geq sp$.

Definition 3.1. Let Q be a class of queries, let S be a sample, and let sp be a support threshold. Let $\ell \in \mathbb{N}_{\geq 1}$, let $w \in \mathbb{N} \cup \{\infty\}$ with $w \geq \ell$, and let c be a tuple of local gap-size constraints for ℓ and w. A query q is called descriptive for S w.r.t. $(Q, sp, (\ell, w, c))$ if q is an (ℓ, w, c)-query in Q, $\text{supp}(q, S) \geq sp$, and there is no (ℓ, w, c)-query $q' \in Q$ with $\text{supp}(q', S) \geq sp$ and $\text{Mod}_\Gamma(q') \subseteq \text{Mod}_\Gamma(q)$.

Let us explain this notion on an intuitive level by considering the case $sp = 1$. In this case, a query q that is descriptive for S w.r.t. $(Q, sp, (\ell, w, c))$ satisfies $\text{Mod}_\Gamma(q) \subseteq S$, and there is no other (ℓ, w, c)-query $q' \in Q$ that can be “wrapped around” S more tightly, i.e., in the sense that $\text{Mod}_\Gamma(q') \subseteq \text{Mod}_\Gamma(q)$. Therefore, among all (ℓ, w, c)-queries from Q, the query q can be considered as one of the best descriptors for S.

Remark 3.2. Throughout this section we assume that $|\Gamma| \geq 2$. Hence, by Theorem 2.3 and Corollary 2.7 we know that, for any query class $Q \subseteq Q$, an swg-query q is descriptive for S w.r.t. $(Q, sp, (\ell, w, c))$ if, and only if, q is an (ℓ, w, c)-query in Q, $\text{supp}(q, S) \geq sp$, and there is no (ℓ, w, c)-query $q' \in Q$ with $\text{supp}(q', S) \geq sp$ and $q \xrightarrow{\text{hom}} q'$ and $q \not\equiv q'$.

The following notions will be convenient throughout the rest of this section. For an (ℓ, w, c)-query $q = (s, w, c)$ and a symbol $z \in \text{Vars} \cup \Gamma$, we let $\text{pos}(q, z)$ (and $\text{pos}(s, z)$) be the set of all positions i of s that carry the symbol z. I.e., $\text{pos}(q, z) = \text{pos}(s, z) = \{i \in [\ell] : s[i] = z\}$. Given a query string $s \in (\text{Vars} \cup \Gamma)^\ell$, a set of positions $P \subseteq [\ell]$, and a symbol $z \in \text{Vars} \cup \Gamma$, we write $s(P \rightarrow z)$ to denote the query string s' obtained from s by replacing z on all positions $i \in P$. I.e., $s'[i] = z$ for all $i \in P$ and $s'[j] = s[j]$ for all $j \in [\ell] \setminus P$. Accordingly, for a query $q = (s, w, c)$ we let $q(P \rightarrow z)$ be the query $(s(P \rightarrow z), w, c)$. For a variable $x \in \text{vars}(q)$ we shortly write $q(x \rightarrow z)$ (and $s(x \rightarrow z)$) instead of $q(\text{pos}(q, x) \rightarrow z)$ (and $s(\text{pos}(s, x) \rightarrow z)$) – i.e., all occurrences of variable x in s are replaced by the symbol z.

Next, we define the problem of computing a descriptive query, and the problem to check for a given query whether it is descriptive; we will refer to these two problems as the query discovery problems. As our definition of descriptiveness (see Definition 3.1) depends on a class Q of swg-queries, the problems of computing a descriptive query or of checking whether a given query is descriptive are also parameterised by an arbitrary class Q of swg-queries. It will be discussed in more detail in Section 4 why this parameterisation by Q is vital.

Q-Compute Descriptive Query Problem (Q-CompDescQuery): The input is a sample S over Γ, a support threshold sp, a string length $\ell \in \mathbb{N}$, a global window size $w \geq \ell$, and a tuple c of local gap-size constraints (for ℓ and w). The task is to compute an (ℓ, w, c)-query $q \in Q$ that is descriptive for S with respect to $(Q, sp, (\ell, w, c))$.

Q-Check Descriptiveness Problem (Q-CheckDescQuery): The input is the same as for Q-CompDescQuery, but in addition also an (ℓ, w, c)-query $q \in Q$, and the task is to decide whether q is descriptive for S with respect to $(Q, sp, (\ell, w, c))$.

Remark 3.3. Since a Q-CompDescQuery- or Q-CheckDescQuery-instance contains at most $2(|s| - 1) + 1$ integers (i.e., w and c_i^+, c_i^- for every $i \in [|s| - 1]$), running times polynomial in w, c_i^+ or c_i^- can be exponential in the input size. We deal with this issue by assuming, without
loss of generality, that \(w = \infty \) or \(w \leq \max \{|t| : t \in \mathcal{S} \} \), \(c_i^+ = \infty \) or \(c_i^+ \leq \max \{|t| : t \in \mathcal{S} \} \) for every \(i \in [s] \), \(\sum_{i=1}^c \) \(c_i^+ \) \(\leq \max \{|t| : t \in \mathcal{S} \} \). I.e., all integers of the input are bounded by \(\max \{|t| : t \in \mathcal{S} \} \) and therefore their values are polynomial in the total input size.

3.1 An Algorithm for Solving the Query Discovery Problems

We now present an algorithm that, for suitable classes \(Q \) of queries, can be used to solve the problems \(Q\text{-CompDescQuery} \) and \(Q\text{-CheckDescQuery} \). As input, the algorithm receives \(\mathcal{S}, \mathcal{S}_p, (\ell, w, c) \), and an “initial” query \(q_0 = (s_0, w, c) \in Q \). The goal is to compute an \((\ell, w, c) \)-query \(q \in Q \) that is descriptive for \(\mathcal{S} \) w.r.t. \((Q, \mathcal{S}_p, (\ell, w, c))\) and that satisfies \(\text{Mod}_\ell(q) \subseteq \text{Mod}_\ell(q_0) \).

If \(\text{supp}(q_0, \mathcal{S}) < \mathcal{S}_p \), then such a query \(q \) does not exist because of the following reasoning: obviously, if \(q_0 \) does not describe \(\mathcal{S} \) with sufficient support, then no other query \(q' \) with \(\text{Mod}_\ell(q') \subseteq \text{Mod}_\ell(q_0) \) can describe \(\mathcal{S} \) with sufficient support.

If \(\text{supp}(q_0, \mathcal{S}) \geq \mathcal{S}_p \), then the algorithm proceeds as follows. It considers the variables \(\text{vars}(q_0) = \{x_1, x_2, \ldots, x_k\} \) in some arbitrary order. For each \(x_i \), it performs the following replacement operation: choose a symbol \(y \) (which can be a type or a variable) and replace all occurrences of \(x_i \) in the current query string by \(y \). However, such a replacement operation is only admissible if the new query \(q' \) is in \(Q \) and satisfies \(\text{supp}(q', \mathcal{S}) \supseteq \mathcal{S}_p \). If no admissible replacement operation is possible, then \(x_i \) is not replaced, i.e., the current query string is not changed. After each variable \(x_i \in \text{vars}(q_0) \) has been considered, the algorithm terminates and produces the current query as output.

This means that the algorithm produces a sequence \(s_0, s_1, \ldots, s_k \) of query strings, where, for every \(i \in [k] \), either \(s_i \) can be obtained from \(s_{i-1} \) by a replacement operation, or \(s_i = s_{i-1} \). For every \(i \in [k] \), let \(q_i = (s_i, w, c) \) be the \((\ell, w, c)\)-query that corresponds to \(s_i \). We note that \(q_0 \xrightarrow{\text{hom}} q_1 \xrightarrow{\text{hom}} \cdots \xrightarrow{\text{hom}} q_k \) and therefore, as a consequence of Theorem 2.3, \(\text{Mod}_\ell(q_0) \supseteq \text{Mod}_\ell(q_1) \supseteq \cdots \supseteq \text{Mod}_\ell(q_k) \). Hence, the algorithm starts with \(q_0 \) and then follows a path of length at most \(k \) in the search space of \((\ell, w, c)\)-queries from \(Q \) that cover \(\mathcal{S} \) with support \(\mathcal{S}_p \), always going from one query to a more specific one. The crucial point is now that if the replacement operations are done in a certain way, then it can be guaranteed that the final query \(q_k \) is necessarily descriptive for \(\mathcal{S} \) w.r.t. \((Q, \mathcal{S}_p, (\ell, w, c))\). In other words, from any \((\ell, w, c)\)-query \(q \in Q \) that covers our sample with sufficient support, we will reach with at most \(|\text{vars}(q_0)| \) replacement operations a descriptive query.

Let us call a replacement operation a type operation or a variable operation if it replaces \(x_i \) by a type or by a variable, respectively. For simplicity, assume that the algorithm considers (and possibly replaces) the variables in the order \(x_1, x_2, \ldots, x_k \). Assume that we are at the \(i \)-th step of the algorithm, i.e., variable \(x_i \) is considered and the goal is to obtain \(s_i \) from \(s_{i-1} \). The symbol \(y \) we choose to replace for \(x_i \) can either be a type or a variable. For a type operation we can choose from all types that occur in sufficiently many traces of the sample \(\mathcal{S} \). For a variable operation we can choose one of the variables \(x_j \) that have been considered before (i.e., \(j < i \)) and that have not been replaced (i.e., at the \(j \)-th step when we considered \(x_j \), no replacement operation was admissible). Let us clarify this with an example.

Let \(s_0 = x_2x_1 \ a \ x_1 \ b \ x_2 \ x_4 \), and let us assume that we first consider \(x_1 \). With the restriction mentioned above, we can initially only use type operations. For the sake of the example, assume further that no type operation for \(x_1 \) is admissible (since it would yield \(q_1 \notin Q \) or \(\text{supp}(q_1, \mathcal{S}) < \mathcal{S}_p \)); thus, \(s_1 = s_0 \). Next we consider variable \(x_2 \) and we note that since \(x_1 \) has already been considered and has not been replaced in the first step, \(y := x_1 \) is a valid candidate for a variable operation. Let us assume that it turns out that it also is admissible. Then, we can replace \(x_2 \) by \(x_1 \) and obtain \(s_2 = x_1x_1 \ a \ x_1 \ b \ x_2 \ x_4 \). However, this also means that \(x_2 \) will never be available as a valid candidate for variable operations later on (which is also the case if a type operation had been used for replacing \(x_2 \) with an admissible type).
To see that this restriction is indeed necessary, assume the following example: The sample \(\mathcal{S} \) consists of only one trace, namely the trace \(\text{aaa} \), and we have \(\ell=3 \), \(w=3 \), \(c=\{(0,0),(0,0)\} \), and \(s_0 = x_1x_2x_3 \). Without the restriction from above, we could obtain \(s_3 = x_1x_1x_1 \) with variable operations by replacing \(x_1 \), \(x_2 \) and \(x_3 \) by the same variable \(x_1 \). Note that replacing these variables by \(x_1 \) indeed violates our restriction, because when considering \(x_1 \) in the first step, replacing \(x_1 \) by the type \(a \) is in fact an admissible replacement operation and therefore we have to replace \(x_1 \) in the algorithm's first step (and hence in later steps the variable \(x_1 \) is not available). If we perform the replacement operations according to our restrictions, we in fact perform the type operation with \(y:=a \) for each of the variables \(x_1, x_2, x_3 \), resulting in the query \(q'=\text{aaa},u,c \). Note that the query \(q=(x_1x_1x_1,u,c) \), which could be obtained when ignoring our restriction, is not descriptive (since \(\text{Mod}_1(q') \subseteq \text{Mod}_1(q) \)). This illustrates that we indeed need the restriction described above. Note that \(q' \) is actually the only descriptive query for the particular example considered here.

With the restricted kind of variable operations, we can show that the algorithm always produces descriptive queries, provided that the query class \(Q \) has suitable closure properties. Pseudocode of the algorithm is provided in Algorithm 1. Let us briefly explain how the pseudocode actually implements the idea outlined above. Initially, we collect in \(\Delta \) the types available for type operations (note that if \(\left| \{\ell \in \mathcal{S} : \gamma \in \text{types}(\ell)\} \right| < \text{sp} \), then the type \(\gamma \) cannot occur in any query that covers \(\mathcal{S} \) with support \(\text{sp} \)), we initialise the set \(U \) of unvisited variables as the set of all variables of \(s_0 \), and we define \(V := \emptyset \) as the (empty) set of variables that are initially available for variable operations. Now the main loop in line 5 considers each variable \(x \in U \) exactly once, and for each such variable, checks whether there exists a type or variable \(y \) from \(\Omega := (\Delta \cup V) \) such that replacing all occurrences of variable \(x \) by the symbol \(y \) is an admissible replacement operation. If such an \(y \in \Omega \) exists, we perform the actual replacement in line 12. If no such element in \(\Omega \) exists, then no replacement operation is possible, and we do not change the current query string but insert \(x \) into the set \(V \) of variables available for future variable operations (line 16).

Theorem 3.4 summarises the guarantees we can provide for Algorithm 1. For the precise statement we need two notions of closure properties that the query class \(Q \) has to satisfy: \(Q \) is called closed under isomorphisms if for all parameters \((\ell,w,c) \) and for every \((\ell,w,c) \)-query \(q \in Q \), the set \(Q \) also contains all \((\ell,w,c) \)-queries \(q' \) with \(q \equiv q' \). \(Q \) is called closed under \(m \)-grained generalisations, for an \(m \in \mathbb{N}_{>1} \cup \{\infty\} \), if the following is true for every query \(q = (s,w,c) \in Q \) and every set of positions \(P \subseteq |s| \) with \(|P| \leq m \) and \(s[i]=s[j] \) for all \(i,j \in P \): There is a variable \(x \in \text{Vars}\setminus\text{vars}(q) \) such that the query \(q(P \mapsto x) \) belongs to \(Q \).

We explain this concept on an intuitive level by considering \(m = 1 \). A 1-grained generalisation takes a \(q \in Q \) and makes it more general by replacing the symbol at some position of the query string by a single occurrence of a new variable. E.g., \(xayzb \leadsto xz_1yxz_2xzb \leadsto z_3z_1z_2xzb \) is a sequence of 1-grained generalisations, where \(z_1, z_2, z_3 \) are new variables. If for every \(q \in Q \) every 1-grained generalisation necessarily produces a query in \(Q \), then \(Q \) is closed under 1-grained generalisations. For example, this is the case for the class \(Q_{|\text{vars}(s)| \leq k} \) of queries with at most \(k \) repeated variables, i.e. variables with at least two occurrences in \(s \), or the class \(Q_{\text{w} \leq k} \) of queries with window size at most \(k \), for every constant \(k \in \mathbb{N} \). On the other hand, the class \(Q_{|\text{vars}(s)| \leq k} \) of queries with at most \(k \) variables is not closed under 1-grained generalisations. An \(m \)-grained generalisation replaces in one step at most \(m \) occurrences of the same symbol by occurrences of the same new variable. Since \(m \)-grained generalisations for \(m \geq 2 \) introduce new repeated variables, the class \(Q_{|\text{vars}(s)| \leq k} \) is not closed under \(m \)-grained generalisations. On the other hand, the class \(Q_{|s| \leq k} \), which consists only of queries with a query string length of at most \(k \), is closed under...
The proof of (a) is obvious while the proof of (b) is quite demanding and proceeds as follows. For simplicity, let us focus here on the case that $Q = Q$. We have already observed above that the output query $q' := q_k$ is necessarily an (ℓ, w, c)-query from Q with $\text{supp}(q_k, \mathcal{S}) \geq \text{sp}$. Now, for contradiction, let us assume that q_k is not descriptive for \mathcal{S} with respect to $(Q, \text{sp}, (\ell, w, c))$. Then, according to Definition 3.1, there exists an (ℓ, w, c)-query $q \in Q$ with support $\text{supp}(q, \mathcal{S}) \geq \text{sp}$.
Remark 3.2). We can now inductively show that for every \(i \in \{0, \ldots, k\} \) the queries \(q_i \) and \(\tilde{q} \) are partially isomorphic (see Definition 2.8) with respect to the positions of the variables already considered by the algorithm. For \(i = k \) this yields \(\tilde{q} \cong q_k \); a contradiction. Proving the induction step is non-trivial and constitutes the most crucial technical contribution of the correctness proof. In particular, we heavily rely on the technical machinery developed in Section 2. A detailed proof will be included in the full version of this paper.

We now discuss how the algorithm can be used to solve the problems \(\text{Q-CompDescQuery} \) and \(\text{Q-CheckDescQuery} \). For solving the problem \(\text{Q-CompDescQuery} \), we only need that \(Q \) is closed under isomorphisms and 1-grained generalisations, since then, we can run it with \(s_0 = x_1x_2\ldots x_I \) (i.e., the most general \((\ell,w,c)\)-query, see Example 2.4) in order to compute a query that is descriptive for \(S \) w.r.t. \((Q,\sp,(\ell,w,c))\). On the other hand, if we want to solve \(\text{Q-CheckDescQuery} \) for some \((\ell,w,c)\)-query \(q \in Q \), then we can run the algorithm with \(q_0 := q \), and then check whether its output equals \(q_0 \). The latter is the case if, and only if, \(q \) is descriptive for \(S \) w.r.t. \((Q,\sp,(\ell,w,c))\). However, this only works for queries \(q = (s,w,c) \) such that \(Q \) is closed under \(m \)-grained generalisations, where \(m \in \mathbb{N} \) is such that \(|\text{pos}(q,x)| \leq m \) for all \(x \in \text{vars}(q) \).

Let us close this subsection by an outlook on future work. Clearly, a single run of Algorithm 1 only outputs a single query that is descriptive w.r.t. \((Q,\sp,(\ell,w,c))\). However, by exploring all possible runs it is possible to enumerate a large number of queries that are descriptive w.r.t. \((Q,\sp,(\ell,w,c))\). But care must be taken when exploring the search space of all possible runs, since two different runs of Algorithm 1 may lead to the same output query and we want to avoid outputting the same query twice. We plan to address this enumeration task and suitable selection strategies in our future work. An obvious question is if every descriptive query can be produced by a suitable run of Algorithm 1. The answer is “no”, as the following example shows. Given the sample \(S = \{aab,abb\} \), \(sp = 1 \) and \(q_0 = (x_1x_2,w,c) \) with \(w = 2 \) and \(c = ((0,\infty)) \), every run of Algorithm 1 outputs the descriptive query \(q := (ab,w,c) \). But note that also the query \(q' := (x_ix_i,w,c) \) (for an arbitrary \(i \in \{1,2\} \)) is descriptive for \(S \) w.r.t. \((Q,\sp,(2,w,c))\). However, there does not exist any run of Algorithm 1 that outputs \(q' \). Obvious future tasks are (a) to find a precise characterisation of the descriptive queries that can be produced by a run of Algorithm 1, and (b) to design an efficient algorithm that is capable of producing all descriptive queries.

3.2 The Complexity of the Query Discovery Problems

In Algorithm 1, we treat the checks of \(q' \in Q \) and \(|\text{supp}(q',S)| \geq \sp \) in line 11 as black-box requests to an oracle. Clearly, we can check if \(|\text{supp}(q',S)| \geq \sp \) by solving the following matching problem for \(|S| \) times. For any fixed query class \(Q \subseteq Q \), the \(\text{Q-Matching Problem} \) \((\text{Q-Match})\) receives as input a query \(q = (s,w,c) \in Q \) and a trace \(t \). The task is to decide if \(t \models q \).

Since \(\text{Q-Match} \)-instances contain integers, we make, w.l.o.g., the same assumptions as described in Remark 3.3: we assume \(w = \infty \) or \(w \leq |t| \), \(c^+ = \infty \) or \(c^+ \leq |t| \) for every \(i \in [s-1] \), and \(\sum_{i=1}^t c^+ \leq \min\{w,|t|\} \). For the following complexity analysis, let us call the oracles that check \(q' \in Q \) and solve \(\text{Q-Match} \) the \(\text{Q-membership oracle} \) and \(\text{Q-match oracle} \), respectively. A straightforward analysis of Algorithm 1 yields the following.

\[\textbf{Theorem 3.5.} \] Every run of \(\text{Q-DescrSWGQuery}(S,\sp,q_0) \) performs \(O(|\text{vars}(q_0)|(|\text{types}(S)|+|\text{vars}(q_0)|)(t+|S|)) \) computational steps, \(O(|\text{vars}(q_0)|(|\text{types}(S)|+|\text{vars}(q_0)|)) \) calls to the \(\text{Q-membership oracle} \) and \(O(|\text{vars}(q_0)|(|\text{types}(S)|+|\text{vars}(q_0)|)|S|) \) calls to the \(\text{Q-match oracle} \).
Theorem 3.5 shows that apart from answering the oracle requests, the complexity of algorithm \(Q\text{-DescrSWGQuery} \) is rather low. For most natural classes of queries \(Q \), it is a reasonable assumption that checking \(q \in Q \) for arbitrary queries \(q \in Q \) is a computationally simple task (i.e., solvable in time linear or quadratic in \(|s| \)). Hence, not much complexity seems to be hidden in the \(Q \)-membership oracle. On the other hand, as shall be discussed in Section 4, \(Q\text{-Match} \) is NP-complete for many classes \(Q \); thus, substantial computational complexity is hidden in the \(Q \)-match oracle.

Upper bounds for \(Q\text{-Match} \) directly yield upper bounds for the query discovery problems via Theorem 3.5. On the other hand, the intractability of \(Q\text{-Match} \) is only an obstacle for efficient query discovery w.r.t. algorithms that are based on solving the matching problem (like \(Q\text{-DescrSWGQuery} \)). However, as we shall demonstrate next, the matching problem can be reduced in polynomial time to our query discovery problems; thus, every algorithm for one of the latter problems necessarily implicitly also solves the matching problem. This implies that lower bounds on the complexity of the matching problem carry over to lower bounds on the complexity of our query discovery problems. Consequently, the problem \(Q\text{-Match} \) (and its complexity) is central for query discovery.

The reduction from \(Q\text{-Match} \) to our query discovery problems is based on the following construction. Let \(Q \subseteq Q \) be an arbitrary set of queries that is closed under isomorphisms and assume that \(|\Gamma| \geq 2 \). Let \(q = (s, w, c) \in Q \) be an \((\ell, w, c)\)-query with \(\text{vars}(q) = \{x_1, x_2, \ldots, x_k\} \), and let \(t \) be a trace. Let \(\delta, \delta' \in \Gamma \) with \(\delta \neq \delta' \). For every \(i \in [k] \), let \(\mu_i \) be the substitution that maps \(x_i \) to \(\delta \) and all other variables to \(\delta' \). Let \(\mu_{\delta,\delta'} \) be the substitution defined by \(\mu_{\delta,\delta'}(x_j) = \delta' \) for every \(j \in [k] \). For every \(z \in \{x_1, x_2, \ldots, x_k, \delta\} \), let \(t_z \) be a trace over \(\Gamma \) defined by

\[
t_z := \mu_z(s[1]) g_1 \mu_z(s[2]) g_2 \cdots \mu_z(s[\ell-1]) g_{\ell-1} \mu_z(s[\ell]),
\]

where, for every \(i < \ell \), \(g_i \) is the “gap string” consisting of \(c_i^- \) copies of some type from \(\Gamma \). We now define the sample \(S_{q,t} := \{t, t_{\delta}, t_{x_1}, t_{x_2}, \ldots, t_{x_k}\} \). By construction, for every \(t' \in S \setminus \{t\} \), \(t' \models q \) is witnessed by the same embedding. We can show the following.

\section{The Complexity of the Matching Problem}

The algorithm presented in Section 3 computes a query that is descriptive for a sample \(S \) with respect to \((Q, sp, (\ell, w, c)) \). This algorithm is based on the matching problem, i.e., it needs a sub-routine that solves \(Q\text{-Match} \): check whether \(t \models q \) for a given query \(q \in Q \) and a given trace \(t \). As discussed at the end of Section 3, the algorithm only performs a polynomial number of such calls to a \(Q \)-match oracle, so the only source of exponential complexity might be hidden in the sub-routine solving \(Q\text{-Match} \). Moreover, as demonstrated by Theorem 3.6 and the explanations following this result, the potential intractability of \(Q\text{-Match} \) inevitably
makes not only the algorithm presented in Section 3 inefficient, but every algorithm that computes descriptive queries. In this section we show that the matching problem for general swg-queries is NP-complete. In order to identify tractable subclasses, it therefore is absolutely vital that our algorithm from Section 3 can be parameterised by an arbitrary class Q of queries, since then it does not need to solve the matching problem for arbitrary queries, but only for queries from Q, for which the matching problem might be tractable.

In other words: From Section 3.2 we know that computing descriptive queries with respect to Q is tractable if, and only if, the matching problem for the class Q is tractable. Therefore, the complexity of the problem Q-Match is crucial for the complexity of computing descriptive queries. This section is devoted to a comprehensive classical and parameterised complexity analysis of the matching problem.

Recall from Section 2 that Q denotes the class of all swg-queries. The input of the matching problem consists of a swg-query \(q = (s, w, c) \) and a trace \(t \). We consider the parameters shown in Figure 2, where\(\text{repvars}(q) = \text{repvars}(s) \) is the set of repeated variables (i.e., variables with at least two occurrences in \(s \)), \(\text{maxgaps}(c) = \max\{c_i^c - c_i^c - 1 : i \in [\#s - 1]\} \) and \(\text{maxc}^+(c) = \max\{c_i^c : i \in [\#s - 1]\} \). Whenever we consider \(w \) as a parameter, we will assume that \(w \neq \infty \); and if we consider \(\text{maxgaps}(c) \) or \(\text{maxc}^+(c) \) as a parameter, we will assume that \(c_i^c \neq \infty \) for every \(i \in [\#s - 1] \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(</td>
<td>t</td>
</tr>
<tr>
<td>(w)</td>
<td>global window size, (\text{</td>
</tr>
<tr>
<td>(</td>
<td>s</td>
</tr>
<tr>
<td></td>
<td>(\text{maxgaps}(c)) maximum gap size.</td>
</tr>
</tbody>
</table>

Figure 2 Parameters of the problem Q-Match.

For studying restricted or parameterised variants of Q-Match, we use the following terminology. Let \(p_1, p_2, \ldots \) be some of the parameters defined above. By Q-Match parameterised by \((p_1, p_2, \ldots) \), we denote the parameterised variant of Q-Match that arises from considering \(p_1, p_2, \ldots \) as parameters. Moreover, if we write \(p_i \leq k \) for some parameter \(p_i \) and some constant \(k \in \mathbb{N} \), then we consider the problem variant were parameter \(p_i \) is bounded by the constant \(k \).

If all mentioned parameters are bounded by a constant, then the resulting problem variant is not a parameterised problem and therefore we write Q-Match with \((p_1 \leq k_1, p_2 \leq k_2, \ldots) \). For example, by Q-Match parameterised by \((|s|, |\text{types}(t)|, \text{maxgaps}(c) \leq 3) \) we denote the parameterised variant of Q-Match where \(|s| \) and \(|\text{types}(t)| \) are parameters, and inputs are restricted to instances satisfying \(\text{maxgaps}(c) \leq 3 \); and by Q-Match with \((|\text{types}(t)| \leq 10, \text{maxgaps}(c) \leq 3) \) we denote the classical decision problem Q-Match where the input is restricted to instances satisfying \(|\text{types}(t)| \leq 10 \) and \(\text{maxgaps}(c) \leq 3 \).

We start by studying the complexity of the classical (non-parameterised) problems: For all subsets \(p_1, p_2, \ldots, p_r \) of the parameters defined above and for all constants \(k_1, k_2, \ldots, k_r \in \mathbb{N} \), we aim at answering the following question:

Question 4.1. Is Q-Match with \((p_1 \leq k_1, p_2 \leq k_2, \ldots, p_r \leq k_r) \) in P, or is it NP-hard?

With respect to parameters \(|t|, w, |s|, \) and \(|\text{repvars}(s)| \), answers to Question 4.1 can be obtained with moderate effort:

Theorem 4.2. For every constant \(k \in \mathbb{N} \), each of the following problems is in P: Q-Match with \(|t| \leq k \), Q-Match with \(w \leq k \), Q-Match with \(|s| \leq k \), Q-Match with \(|\text{repvars}(s)| \leq k \).
Proof sketch. A natural brute-force approach is as follows: Upon input of an swg-query \(q = (s, w, c) \) and a trace \(t \), we enumerate all mappings \(\pi : \text{repvars}(q) \to \text{types}(t) \), and for each such mapping, we construct a regular expression \(R_\pi \) that describes all traces \(t' \) for which there exists a substitution \(\mu : \text{vars}(q) \cup \Gamma \to \Gamma \) such that \(\mu \) is an extension of \(\pi \) and \(\mu(s) \leq t' \) for some embedding \(\epsilon \) that satisfies \(w \) and \(c \). Then, we only have to check for each of these mappings \(\pi \), if the regular expression \(R_\pi \) matches in \(t \). Another approach is to enumerate all embeddings \(e : [\epsilon] \to [t] \) that satisfy \(w \) and \(c \), and check for each such embedding \(e \) whether \(\mu(s) \leq e t \) for some substitution \(\mu \) (which can be done in time \(O(|\epsilon|) \)), since \(\mu \) must satisfy \(\mu(s) = t[e(1)]t[e(2)] \ldots t[e(|\epsilon|)] \). From these two algorithms and the obvious dependencies between the parameters, we can directly conclude the statements of the theorem. ▶

Next, we prove the following theorem. Observe that Theorems 4.3 and 4.2 answer Question 4.1 with respect to every subset \(p_1, p_2, \ldots, p_r \) of the parameters.

Theorem 4.3. Let \(k_1, k_2, k_3 \in \mathbb{N} \). \(\text{Q-Match} \) with \(|\text{types}(t)| \leq k_1 \), \(\text{maxgaps}(c) \leq k_2 \) and \(\text{maxc}^+(c) \leq k_3 \) is NP-complete if \(k_1 \geq 2 \) and \(k_2 \geq 1 \) and \(k_3 \geq 1 \), and it is in \(\mathbb{P} \) if \(k_1 \leq 1 \) or \(k_2 = 0 \) or \(k_3 = 0 \).

Proof sketch. The theorem’s second statement is obtained by simple algorithms. We sketch a hardness reduction that proves the first statement with an example. Let \((x_1, x_2, x_3), (x_4, x_5, x_7) \), and \((x_1, x_3, x_5) \) be the clauses of a Boolean formula in 3-CNF. We construct \(s := y_1x_1x_2x_3y_2 z y_3x_4x_5x_7y_1 z y_5x_1x_3x_5y_6 \) (where all \(x_i, y_i \) and \(z \) are variables) and \(t := 0001000 \ 0001000 \ 0001000 \) (where \(\Gamma = \{0, 1\} \)). It can be verified that if \(\mu(s) \leq e t \) with \(\mu(z) = 1 \) and \(e \) is such that all gaps are 0 or 1, except the gaps between \(x_1 \) variables, which are 0, then \(\mu(x_1) = 1 \) for exactly one variable in each clause (i.e., the Boolean formula is “1-in-3 satisfiable”). In order to force \(\mu(z) = 1 \), we have to add a sufficient number of occurrences of \(z \) and 1 as prefixes to \(s \) and \(t \), respectively. ▶

Our results discussed so far show that for every parameter \(p \in \{|t|, w, |s|, \text{repvars}(s)|\} \), the problem \(\text{Q-Match} \) can be solved in polynomial time if \(p \) is bounded by a constant. However, the degree of the polynomial may depend on \(p \), which even for small \(p \) may lead to prohibitively high running times. Therefore, we ask next for which parameters \(p \) (or parameter combinations \((p_1, \ldots, p_r) \)), we can achieve more attractive running times of the form \(f(p) \cdot \text{poly}(|q|, |t|) \), for some computable function \(f \). More precisely, we investigate the parameterised complexity of \(\text{Q-Match} \) by asking the following questions:

Question 4.4. Is \(\text{Q-Match} \) parameterised by \((p_1, p_2, \ldots, p_r) \) in \(\text{FPT} \) (i.e., can it be solved in time \(O(f(p_1, p_2, \ldots, p_r) \cdot g(|s|, |t|)) \) for some polynomial \(g \) and a computable function \(f \)), or is this not the case (subject to common complexity theoretical assumptions)?

An answer for parameters \((|\text{types}(t)|, \text{maxgaps}(c), \text{maxc}^+(c)) \) follows from Theorem 4.3:

Corollary 4.5. \(\text{Q-Match} \) parameterised by \((|\text{types}(t)|, \text{maxgaps}(c), \text{maxc}^+(c)) \) is not in \(\text{FPT} \) (unless \(\mathbb{P} = \mathbb{NP} \)).

From the brute-force approaches and the (more or less) obvious dependencies between the parameters, we can conclude fixed-parameter tractability for several parameterisations:

Theorem 4.6. \(\text{Q-Match} \) is in \(\text{FPT} \) with respect to any of the following parameterisations: \((|\text{types}(t)|, |\text{repvars}(s)|); (|s|, \text{maxgaps}(c)); (|t|); (w); (|s|, \text{maxc}^+(c)); (|s|, \text{types}(t)) \).

Next, we show that all remaining parameterisations that are not covered by Theorem 4.6 or Corollary 4.5 yield \(\mathbb{W}[1] \)-hard variants, which are therefore not in \(\text{FPT} \) (modulo the
common complexity theoretical assumption that $W[1] \neq FPT$. We assume that the reader is familiar with basic concepts of parameterised complexity theory (cf., e.g., [12, 17, 13]).

Theorem 4.7. Each of the following two problems is $W[1]$-hard:
- Q-Match parameterised by $(\{\text{revars}(s)\}, \text{maxgaps}(c) \leq 1, \text{maxc}^+(c) \leq 1)$,
- Q-Match parameterised by $(|s|, |\text{revars}(s)|)$.

Proof sketch of Theorem 4.7. We devise suitable reductions from the following problem, which is known to be $W[1]$-hard with respect to parameter k (cf., [12]):

Multi-Colored Clique (MCClique). The input is a graph $G = (V, E)$ with a partition V_1, V_2, \ldots, V_k of V such that each V_i is an independent set. The question is whether G has a clique of size k (note that such a clique has to contain exactly one vertex from each V_i).

Let $G = (V, E)$ be a graph with a partition V_1, V_2, \ldots, V_k of V such that every V_i is an independent set. Let $n := |V|$, $p_i := |V_i|$ and $V_i = \{v_{i1}, v_{i2}, \ldots, v_{ip_i}\}$ for all $i \in [k]$. We have to construct a trace t and an SWQ-query $q = (s, w, c)$ such that $t \models q$ iff G has a clique of size k. For constructing the trace t, we use a distinct type for every $v \in V$, and we also use two special types $\$ and \circ. The query string s will be built using distinct variables $x_1, x_2, \ldots, x_k, z_1, y_1, \ldots, y_k$, where r is a suitably chosen number of size polynomial in n and k (the precise choice of r will become clear below, from the construction of s and t). The variables x_1, x_2, \ldots, x_k correspond to the k vertices of the clique, and the variable z_k will be used as a separator. The variables $x_1, x_2, \ldots, x_k, z_k$ may be repeated variables of s, while each of the variables y_1, \ldots, y_r will occur in s only once. To avoid notational clutter, we will denote all occurrences of variables y_i by y and keep in mind that each occurrence of y is actually an occurrence of an individual variable from $\{y_i : i \in [r]\}$. Our choice of s and t relies on some gadgets, which we discuss next. The gadget s_V lists all variables x_i, separated by $y^n z_3 y^n$, and t_V lists the vertices of the sets V_i separated by $\$ and \circ. More formally,

\[
\begin{align*}
s_V := y^n x_1 y^n z_3 y^n x_2 y^n z_3 y^n \cdots y^n z_3 y^n x_k y^n \\
t_V := \text{List of } V_i, \text{separated by } \circ \text{ and } \$.
\end{align*}
\]

The purpose of this gadget is as follows: We can show that if $\mu(s_V) \leq t_V$ for some $\mu : \text{Vars} \rightarrow \Gamma$ with $\mu(z_3) = \$, then $\mu(x_1), \mu(x_2), \ldots, \mu(x_k) \in V_1 \times V_2 \times \cdots \times V_k$, and there exists an embedding e with maximum gap size 1 (i.e., $\max\{e(i+1) - e(i) : i \in [|s_V| - 1]\} \leq 1$) and a substitution μ' that differs from μ only on variables in $\{y_1, \ldots, y_r\}$, such that $\mu'(s_V) \approx_e t_V$.

In order to ensure that the set $\{\mu(x_1), \mu(x_2), \ldots, \mu(x_k)\}$ is a clique, we use the following gadgets. For every i, j with $1 \leq i < j \leq k$, let $(u_{i1}, u_{i2}, \ldots, u_{i, n_1, n_2})$ be a list of exactly the edges between V_i and V_j, and let this list be ordered lexicographically. We let

\[
\begin{align*}
s_{i,j} := y^{3n^2} (x_i x_j)^3 y^{3n^2} \\
t_{i,j} := \text{List of } u_{i1}, u_{i2}, \ldots, u_{in_1, n_2}, \text{separated by } \circ \text{ and } \$.
\end{align*}
\]

The purpose of this gadget is as follows: We can show that if there is a substitution e with $\mu(x_i) \in V_j$, $\mu(x_j) \in V_i$ and $\mu(s_{i,j}) \leq t_{i,j}$, then $(\mu(x_i), \mu(x_j)) \in E$ and there exists an embedding e with maximum gap size 1 and a substitution μ' that differs from μ only on variables in $\{y_1, \ldots, y_r\}$ such that $\mu'(s_{i,j}) \approx_e t_{i,j}$. In particular, this gadget enforces that, for every $1 \leq i < j \leq k$, μ maps x_i and x_j to adjacent vertices from V_i and V_j (for this, we essentially use that the list of edges in $t_{i,j}$ is ordered lexicographically).

Finally, we combine all the gadgets into the query string s and trace t as follows:

\[
\begin{align*}
s := (z_3)^{3n^2+1} s_V z_3 s_{1,2} z_3 s_{1,3} z_3 \cdots z_3 s_{1,k} z_3 z_2 z_3 z_2 \cdots z_2 z_{2,k} z_3 \cdots z_2 z_{k-1,k} \\
t := (\$)^{3n^2+1} t_V \$ t_{1,2} \$ t_{1,3} \$ \cdots \$ t_{1,k} \$ t_{2,3} \$ \cdots \$ t_{2,k} \$ \cdots \$ t_{k-1,k}
\end{align*}
\]
Table 1: An integer entry means that the parameter is bounded by this constant, the entry “p” means that the problem is parameterised by this parameter, and the entry “—” means that the parameter is not bounded by a constant and the problem is not parameterised by this parameter.

| | | | | | | | |
|---|---|---|---|---|---|---|
| | | | | | | |

The construction of the query \(q = (s, w, c) \) is completed by choosing \(w = \infty \) (or \(w = |t| \), which does not make any difference here), and \((c_i^-, c_i^+) = (0, 0) \) for every \(1 \leq i \leq 3n^2 \), and \((c_i^-, c_i^+) = (0, 1) \) for every \(3n^2 + 1 \leq i \leq |s| - 1 \).

It can now be verified that \(t \models q \) if and only if \(G \) contains a clique of size \(k \). This completes the proof sketch of the theorem’s first statement.

For proving the second statement, we modify the reduction such that we use constant length separators \(y \) and \(\phi \) instead of \(y^n, \phi^n, y^{3n^2} \) and \(\phi^{3n^2} \). This modification allows us to use prefixes \((z_k)^2 \) and \((\$)^2 \) instead of \((z_k)^{3n^2+1} \) and \((\$)^{3n^2+1} \), which means that the total length of \(|s| \) only depends on \(k \) (but now neither \(\text{maxgaps}(c) \) nor \(\text{maxc}^+(s) \) are bounded anymore). This yields the theorem’s second statement.

We note that the theorems from above answer Question 4.4 for every subset \(p_1, p_2, \ldots, p_r \) of our parameters – this can be verified with the help of Table 1.

We conclude this section by discussing some related questions. Query strings can also be considered as sequences of distinct variables \(x_1x_2\cdots x_n \) enriched with constraints “\(x_i = x_j \)” and “\(x_i = \gamma \)” for \(\gamma \in \Gamma \). If the first type of constraint is not used, then \(|\text{revars}(s)| = 0 \), and therefore the matching problem is in \(P \) (Theorem 4.2). If, instead, we disallow constraints “\(x_i = \gamma \)” (i.e., query strings must not contain types), then this does not make the matching problem any easier: all our reductions produce query strings that consist of variables only. Giving up the global window size is equivalent to setting it to \(\infty \), which means that the lower bounds of Theorems 4.3 and 4.6 still apply (note that the reduction sets the global window size to \(\infty \)). On the other hand, for swg-queries without local gap-size constraints (i.e., with local gap-size constraints of the form \(((0, \infty), (0, \infty), \ldots, (0, \infty)) \)) the complexity of the matching problem is open. We plan to address this in the full version of this paper.

In order to use the algorithm of Section 3, we need to fix the length \(\ell \) of the query string, the global window size \(w \), and the tuple \(c \) of local gap-size constraints. Finding suitable values for \(\ell \) and \(c \) seems comparatively simple: firstly, we can afford to try out several combinations (e.g., all combinations of values \(\ell \in \{5, 6, \ldots, 10\} \) and \(w \in \{100, 1000, 5000\} \), which requires 18 runs of the algorithm), and, secondly, it seems likely that some a-priori knowledge of the data will lead to reasonable choices for these parameters. The tuple of local gap-size constraints, on the other hand, is a more complex parameter and, especially if we want to try the algorithm on different query string sizes, it seems likely that the best we can do is to give a reasonable gap-size constraint for all gaps, i.e., local gap-size constraints \((i,j), (i,j), \ldots, (i,j) \). Whether the matching problem for such swg-queries is also NP-hard is not answered by the reduction of Theorem 4.3, since it uses different types of gap-size constraints.
constraints. However, the reduction can be easily adapted: Instead of the factors $y_1x_1x_2x_3y_2$ of the query string, we use factors $y_1y_2y_3(x_1)^2(x_2)^2(x_4)^2y_4y_5y_6$, and instead of the factors 0001000 of the trace, we use factors 0^7110^7. It can be verified that if $\mu(s) \leq t$ with $\mu(z) = 1$ and e is such that all gaps are 0 or 1, then $\mu(x_i) = 1$ for exactly one variable in each clause.

5 Practical Considerations and Concluding Remarks

Motivated by the task of discovering patterns of interest in event streams, we introduced swg-queries (Section 2), we formalised query discovery as computing descriptive queries (Section 3), we presented an algorithm for this task (Algorithm 1), and we provided an in-depth complexity analysis of the problem of query discovery (Section 4).

What are possible practical implications of our theoretical study? To approach this question, let us briefly discuss how the complexity bounds of Section 4 can help to manage our expectations. Let $||\ell, w, c||$ and $||S||$ be the size of reasonable encodings of ℓ, w, c and S, respectively. In a practical scenario, we can expect $||S||$ (and therefore possibly also $|w|$ and $|c|$, see Remark 3.3) to be large, but we can assume a moderate query string length ℓ, since queries should still be understandable by users. Hence, running times $O(f(\ell)g(||S||, ||\ell, w, c||))$ might be practically relevant even for exponential function f and low-degree polynomial g. Unfortunately, Theorem 4.7 and the reduction of Theorem 3.6 rule out such algorithms. On the other hand, Theorems 4.6 and 3.5 show that we can indeed solve $Q^{\mathrm{rs}(s)}(\leq k, \mathrm{CompDescQuery})$ in time $O(f(k, ||\mathrm{types}(S)||)g(||S||, ||\ell, w, c||))$ for polynomial g, where $Q^{\mathrm{rs}(s)}(\leq k)$ is the class of queries with $|\mathrm{repvars}(q)| \leq k$. This might be of practical interest, since our examples discussed in Section 1 suggest that $|\mathrm{repvars}(q)|$ and $||\mathrm{types}(S)||$ are small. In fact, even a restriction like, say $|\mathrm{repvars}(q)| \leq 7$ and $||\mathrm{types}(S)|| \leq 15$, seems still practically relevant, and in this case our algorithm has a low-degree polynomial running time.

These theoretical considerations justify hope that, despite the inherent hardness of query discovery, our algorithm is also practically worthwhile. As a proof of concept and in order to investigate our algorithms’ performance on real world data, we implemented a prototype in Python and conducted experiments on Google Cluster Traces [26]. We summarise our experiments’ main results as follows:

- We discovered queries from the Google Cluster Traces, including queries that contain situations of interest. However, we also discovered queries that do not contain real situations of interest (but still are descriptive according to Definition 3.1).
- Considering different query string lengths or support thresholds, we observed expected correlations concerning the overall runtime and the number of queries q' for which the support $\mathrm{supp}(q', S)$ is computed.
- Comparing datasets regarding runtime (or the number of queries q' for which the support $\mathrm{supp}(q', S)$ is computed), for a fixed query string length, it turns out that they do not only depend on the dataset size, but also on the order in which the positions of the query string are considered, and on whether variable operations have to be tested or not.

As future work, we plan to further develop our prototype implementation and extend our initial experiments to a comprehensive experimental analysis. In particular, we are interested in evaluating heuristics and to explore possible ways for improving the algorithm’s practical performance. For example, treating the check of $\mathrm{supp}(q', S) \geq \text{sp}$ as $|S|$ independent instances of the matching problem makes sense for our theoretical considerations, but in practice it might be possible to exploit the fact that q' does not change for these $|S|$ instances, or that in each run of the algorithm S is the same for all checks of $\mathrm{supp}(q', S) \geq \text{sp}$, or that whenever we check $\mathrm{supp}(q', S) \geq \text{sp}$, we already checked $\mathrm{supp}(q'', S) \geq \text{sp}$ for a rather similar query q''.
References

Discovering Event Queries from Traces: Laying Foundations for SWG-Queries

Jianyong Wang and Jiawei Han. BIDE: efficient mining of frequent closed sequences. In Z. Meral Özsoyoglu and Stanley B. Zdonik, editors, *Proceedings of the 20th International