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Abstract
Catalytic equations appear in several combinatorial applications, most notably in the enumeration
of lattice paths and in the enumeration of planar maps. The main purpose of this paper is to show
that under certain positivity assumptions the dominant singularity of the solution function has a
universal behavior. We have to distinguish between linear catalytic equations, where a dominating
square-root singularity appears, and non-linear catalytic equations, where we – usually – have a
singularity of type 3/2.
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1 Introduction

Catalytic equations have their origin mostly in map enumeration [12] and in lattice path
enumeration [3]. Such equations were first solved with the help of the kernel method [3, 11, 1]
(in the linear case) and with the help of the quadratic method [12, 5] (in the quadratic case).
Both approaches were unified and extended by Bousquet-Mélou and Jehanne [4]. They
considered general catalytic equations of the form

P (z, u, M(z, u), M1(z), . . . , Mk(z)) = 0, (1)

where P (z, u, x0, x1, . . . xk) is a polynomial and all power series M(z, u), M1(z), . . . , Mk(z)
are characterized by this equation.

The variable “u” is called catalytic since it is usually an auxiliary variable that counts an
additional (usually combinatorial) parameter which simplifies the recursive decomposition of
the structure of interest. In general, one is just interested in the function M(z, 0), M(z, 1)
or in M1(z).

One of the most prominent examples is the counting problem of rooted planar maps that
goes back to Tutte [12]. Let Mk(z) denote the generating function of those maps, where the
root face has valency k ≥ 0. Then we have M0(z) = 1 and

Mk(z) = z

k−2∑
j=0

Mj(z)Mk−j−2(z) + z

∞∑
j=k−1

Mj(z) (k ≥ 1) (2)
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7:2 Universal Properties of Catalytic Variable Equations

where the right sum arises if the root edge is not a bridge and the left sum if the deletion
of the root edge results in decomposing the map into two components. One is interested
in the generating function M(z) =

∑
k≥0 Mk(z) of all planar maps. By introducing the

variable u and setting M(z, u) =
∑

k≥0 Mk(z)uk, the infinite system (2) rewrites to the
catalytic equation

M(z, u) = 1 + zu2M(z, u)2 + uz
uM(z, u) − M(z, 1)

u − 1 . (3)

By using the above mentioned quadratic method the equation can be explicitly solved:

M(z) = M(z, 1) = 18z − 1 + (1 − 12z)3/2

54z2 .

This leads to an explicit formula Mn = [zn] M(z, 1) = 2(2n)!
(n+2)!n! 3

n and to an asymptotic one:
Mn ∼ (2/

√
π)12nn−5/2. Note that the asymptotic behavior is reflected by the dominant

singular behavior of M(z, 1) at z0 = 1/12. The type of the singularity is 3/2 which translates
to the critical exponent −5/2 = −1 − 3/2 by the well known Transfer Lemma [10].

In [4] several applications mostly from map enumeration (different classes of planar maps,
constellations, hard particles in planar maps etc.) are given. Bousquet-Mélou and Jehanne [4]
considered in particular equations of the form

M(z, u) = F0(z, u) + zQ
(

z, u, M(z, u), ∆(1)(M(z, u)), . . . , ∆(k)(M(z, u))
)

, (4)

where F0(z, u) and Q(z, u, α0, α1, . . . , αk) are polynomials and where we have used the
abbreviations

∆(j)(M(z, u)) = M(z, u) − M(z, 0) − u Mu(z, 0) − · · · uj−1Muj−1(z, 0)
uj

(j ≥ 1).

It is convenient to consider just the catalytic variable u at 0. In the above case of planar
maps we substitute u by u + 1 to reduce it to this case.

One main result of [4] it that equations of the form (1) can be solved with the help of
proper systems of polynomial equations. Hence, the solutions are always algebraic functions
and consequently for every singularity we have a Puiseux expansion. However, this approach
does not specify the kind of the Puiseux expansion. There is in principle no restriction on
the rational exponents that might occur.

However, if we consider the special case k = 1 (in (4))

M(z, u) = F0(z, u) + zQ

(
z, u, M(z, u), M(z, u) − M(z, 0)

u

)
, (5)

where F0(z, u) and Q(z, u, α0, α1) are polynomials with non-negative coefficients, then
Drmota, Noy, and Yu [7] showed that there is a dichotomy (under natural conditions
on Q). If Q is linear in α0 and α1 then the dominant singularity is of type 1

2 , that is, a
square-root singularity which leads to an asymptotic behavior for the coefficients of the
form ∼ cρnn−3/2. However, in the non-linear case the dominant singularity is of type 3

2
(as in the above mentioned example of planar maps) which means that the coefficients are
asymptotically of the form ∼ cρnn−5/2.

In what follows we will focus on the case k = 2, where F0 and Q are polynomials with
non-negative coefficients and we will show that the results for the case k = 1 can be extended.
However, there are several (major) differences. Whereas in the case k = 1 the catalytic
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equation can be solved with the help of a so-called positive system of polynomial equations
(see [2, 7]) which determines directly a dominant square-root singularity for the involved
solution function this property is widely lost for the cases k ≥ 2. Thus, it is necessary
to develop new methods and concepts in order to deduce the universal singular behavior.
Clearly we expect similar properties for all equations of the form (4) as well as for systems
of positive catalytic equations but the cases k > 2 are even more involved.

2 Main results

The solution method by Bousquet-Mélou and Jehanne [4] for an equation of the form (1)
works as follows. One considers the algebraic system of 3k equations

P (z, ui(z), fi(z), M1(z), . . . , Mk(z)) = 0, 1 ≤ i ≤ k,

Px0(z, ui(z), fi(z), M1(z), . . . , Mk(z)) = 0, 1 ≤ i ≤ k, (6)
Pu(z, ui(z), fi(z), M1(z), . . . , Mk(z)) = 0, 1 ≤ i ≤ k,

for the 3k unknown functions u1(z), . . . , uk(z), f1(z), . . . , fk(z), M1(z), . . . , Mk(z). In general
it is not clear that such a system is solvable. However, if the catalytic equation is of the
form (4) then this is granted and leads to the unknown functions M1(z), . . . , Mk(z) (see [4]).

In our context we reformulate the catalytic equation slightly to

u2∆(z, u) + uM1(z) + M0(z) (7)
= zQ

(
z, u, u2∆(z, u) + uM1(z) + M0(z), u∆(z, u) + M1(z), ∆(z, u)

)
=: R(z, u, ∆(z, u), M1(z), M0(z)) (8)

where ∆(z, u) = ∆(2)M(z, u), M1(z) = Mu(z, 0), M0(z) = M(z, 0) and Q(z, u, α0, α1, α2)
and consequently R(z, u, y0, y1, y2) are polynomials with non-negative coefficients. W.l.o.g.
the polynomial part F0(z, u) can be omitted by substituting M(z, u) = M̃(z, u) + F (0, u).
In particular we have

P (z, u, x0, x1, x2) = zQ
(
z, u, u2x0 + ux1 + x2, ux0 + x1, x0

)
− u2x0 − ux1 − x2

= R(z, u, x0, x1, x2) − u2x0 − ux1 − x2.

The system (6) now rewrites to

ui(z)2∆i(z) + ui(z)M1(z) + M0(z) = R (z, ui(z), ∆i(z), M1(z), M0(z)) , i = 1, 2,

ui(z)2 = Ry0 (z, ui(z), ∆i(z), M1(z), M0(z)) , i = 1, 2, (9)
2ui(z)∆i(z) + M1(z) = Ru (z, ui(z), ∆i(z), M1(z), M0(z)) , i = 1, 2,

for the six indeterminate functions M1(z), M0(z), u1,2(z) and ∆1,2(z) (which correspond to
the functions ∆1,2(z) = ∆(z, u1,2(z))). In order to distinguish between i = 1 and i = 2 we
assume that u1(z) > 0 and u2(z) < 0 for z > 0 that are sufficiently small.

We now state our main results that generalize the results of [7] to the case k = 2. We say
that an algebraic function has a square-root singularity at z0 if the dominating term in the
Puiseux expansion at z0 is of the form (z − z0)1/2. Similiarly we say that a singulariy at z0
has type 3/2 if the dominating term is of the form (z − z0)3/2. Recall that all solutions of
(7) are algebraic.

▶ Theorem 1. Suppose that the polynomial Q in the catalytic equation (7) is linear in
(α0, α1, α2) and has non-negative coefficients. Suppose further that Qα0 is not a polynomial
in u2 and that u does not divide Qα1 . Then the functions M(z, 0) and Mu(z, 0) have a
common radius of convergence z0 and a square-root singularity at z0.

AofA 2022



7:4 Universal Properties of Catalytic Variable Equations

For the second theorem we will need an extra condition of the term

T := Ruuu+(3Ruuy0 −6)2u − Ruy0

Ry0y0

+3Ruy0y0

(
2u − Ruy0

Ry0y0

)2
+Ry0y0y0

(
2u − Ruy0

Ry0y0

)3
. (10)

▶ Theorem 2. Suppose that the polynomial Q in the catalytic equation (7) is non-linear
in (α0, α1, α2) and has non-negative coefficients. Suppose further that Qα0u ̸= 0 and that
u does not divide Qα1 . Then the functions M(z, 0) and Mu(z, 0) have a common radius of
convergence z0, and if T ̸= 0 at (z, u) = (z0, u1(z0)) then both M(z, 0) and Mu(z, 0) have a
singularity of type 3/2.

We first comment on the conditions on the polynomial Q. They are just put to simplify
the presentation. They exclude degenerate cases that reduce to finite systems or systems or
to cases where at least one solution to the curve equation is constant 0 (which can further be
reduced to cases with universal laws).

Secondly the condition T ̸= 0 at (z, u) = (z0, u1(z0)) in Theorem 2 seems to be artificial.
Actually one always has T ≥ 0 and we have not found an example yet, where T = 0, but it
is unclear how the zero case could be excluded. A corresponding condition for the case k = 1
always holds, since in this case all (corresponding) summands are positive. Nevertheless, the
case T = 0 can be also discussed and we would get a dominating singularity of the form
(z − z0)4/3.

Finally, as mentioned above for the planar map counting problem, the type of the
dominating singularity is reflected in the asymptotic behavior of the coefficients. In order to
keep the presentation simple we do not go into these details. We just mention that in the
linear case the square-root singularity corresponds to asymptotics of the form c z−n

0 n−3/2

whereas in the non-linear case the singularity of type 3/2 corresponds to asymptotics of the
form c z−n

0 n−5/2. However, in general these kinds of asymptotics hold only in residue classes
(compare with the results of [7]).

▶ Example 3. Let us consider one-dimensional non-negative lattice paths, where we allow
steps of the form ±1 and ±2. The generating functions Ek(z) of walks that start at 0 and
end at level k satisfy the system of equations

E0(z) = 1 + z(E1(z) + E2(z)),
E1(z) = z(E0(z) + E1(z) + E2(z)),
Ek(z) = z(Ek−2(z) + Ek−1(z) + Ek+1(z) + Ek+2(z)) (k ≥ 2).

Hence, the generating function E(z, u) =
∑

k≥0 Ek(z)uk satisfies

E(z, u) = 1+z(u+u2)E(z, u)+z
E(z, u) − E(z, 0)

u
+z

E(z, u) − E(z, 0) − uEv(u, 0)
u2 . (11)

This is precisely a linear equation of the form (4) with k = 2. Theorem 1 applies directly
and implies that the generating function E0(z) = E(z, 0) of excursions has a square-root
singularity, compare also with [3] or with the discussion in Section 6.

▶ Example 4. 3-Constellations are Eulerian maps, where the faces are bi-colored, black
faces have valency 3 whereas white faces have a valency that is a multiple of 3 (more
generally one considers m-constellations, see [4]). The corresponding (catalytic) equation for
3-constellations is given by

C(z, u) = 1 + zuC(z, u)3 + zu(2C(z, u) + C(z, 1))C(z, u) − C(z, 1)
u − 1

+ zu
C(z, u) − C(z, 1) − (u − 1)Cu(z, 1)

(u − 1)2
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This catalytic equation is almost of the form, where we can apply Theorem 2 due to the
additional appearance of C(z, 1). However, the polynomial P in (8) has still non-negative
coefficients. Thus a slight extension of Theorem 2 applies, where we require the determinant
of A in the calculations of Section 5 to be positive at z0. Furthermore, (10) is satisfied.
Consequently, the function C(z, 1) has a dominant singularity of type 3/2, see also the
discussion in Section 6

Further examples can be found in [4, 7]. It should be also mentioned that Theorems 1
and 2 can be extended to prove central limit theorems for several parameters that are encoded
by an additional variable (see [8, 9, 7]).

3 The Curve Equation

Our first observation is that M(z, u) which is defined by equation (7) is analytic by considering
the equation as a fixed point problem in the sequence space of the coefficients. The factor z on
the right hand side can be chosen small enough such that the map is a contraction and yields
a unique solution that is analytic by uniform convergence. Furthermore, by rewriting (7)
into an infinite system (by considering the expansion with respect to u and by iterating this
system) it follows that the solution function has non-negative coefficients.

Given that we know there is a unique solution M(z, u) fulfilling the equation, we may
regard equation (7) (or (8)) as an equation in z and u and differentiate the equation with
respect to u and group the terms with a factor ∂u∆(z, u) into the equation

u2 = Ry0 (z, u, ∆(z, u), M1(z), M0(z)) =: C(z, u)

which was proven to have two unique solutions u1(z) and u2(z), with u1(0) = u2(0) = 0.
We will refer to u2 = C(z, u) as the curve equation. Note that C(z, u) has non-negative
coefficients.

Next we consider u1(z) and u2(z). In general, the two series only have a Puiseux expansion
at 0 but applying the Weierstrass preparation theorem to equation (7), we can see that
locally both ui(z) are zeros of

u2
i − C(z, ui) = K(z, ui)

(
u2

i + a1(z)ui + a2(z)
)

= 0

where K(z, u), a1(z), a2(z) are analytic functions at 0 with a1(0) = a2(0) = 0 and K(0, 0) ̸= 0.
Note that all these functions are uniquely given. Hence, we can express

u1,2(z) = −a1(z)
2 ±

√
a1(z)2

4 − a2(z) =: g(z) ±
√

h(z). (12)

Now the idea is to split u and all power series in u into two parts: one with a factor
√

h and
the other without. That is, for

u2
1,2 = (g ±

√
h)2 = g2 + h ±

√
h 2g.

we define (u2)+ = g2 + h and (u2)− = 2g and further we split

∆(z, u1,2) = ∆+(z, g, h) ±
√

h ∆−(z, g, h).

By doing the same with R(z, u1,2, ∆1,2, M1, M0) and the curve equation

g2 + h ±
√

h2g = C+(z, g, h) ±
√

h C−(z, g, h)

AofA 2022



7:6 Universal Properties of Catalytic Variable Equations

and considering the unique solutions to the system

h = C+(z, g, h) − g2, g = 1
2C−(z, g, h) (13)

that consequently have to be exactly g and h as defined in (12) we may derive the following
result.

▶ Lemma 5. Suppose that C(z, u) is a power series with non-negative coefficients such that
z divides C(z, u). Furthermore let u1,2(z) = g(z) ±

√
h(z) be the two solutions with u(0) = 0

of the equation u2 = C(z, u). Then g(z) and h(z) are power series with g(0) = h(0) = 0 and
non-negative coefficients.

The non-negativity of the coefficients does not follow immediately. In fact, we have to
verify that h′(0), g′(0) > 0 and subsequently that all higher derivatives h(n)(0), g(n)(0) > 0
individually. We will leave out the detailed proof, since it is long and technical and most of
the rest of our results do not rely on this fact. The important part is that u1(z) is positive
and monotone increasing for z > 0 and that |u2(z)| < u1(z) if the curve equation is not a
power series in u2.

4 Proof of Theorem 1 (The Linear Case)

If Q is linear in α0, α1 and α2, we can rewrite (7) to

M(z, u) = R0(z, u) + zR1(z, u)M(z, u) + zR2(z, u)∆M(z, u) + zR3(z, u)∆(2)M(z, u)

where R0(z, u), R1(z, u), R2(z, u), R3(z, u) are polynomials with non-negative coefficients.
Equivalently we have

M(z, u)
(

1 −
(

R1(z, u) + 1
u

R2(z, u) + 1
u2 R3(z, u)

))
(14)

= R0(z, u) − zR2(z, u)M(z, 0)
u

− zR3(z, u)
(

Mu(z, 0)
u

+ M(z, 0)
u2

)
.

In this case, the curve equation is a polynomial equation in u and z

u2 − C(z, u) = u2 −
(
u2R1(z, u) + uR2(z, u) + R3(z, u)

)
and can be independently solved (and is actually the basic equation of the original kernel
method). Subsequently, by using (14) and the two solutions u1,2(z) of the curve equation we
get the following linear system of equations

M(z, 0) +
(

u1(z) − z
R2(z, u1(z))

1 − zR1(z, u1(z))

)
Mu(z, 0) = R0(z, u1(z))

1 − zR1(z, u1(z)) , (15)

M(z, 0) +
(

u2(z) − z
R2(z, u2(z))

1 − zR1(z, u2(z))

)
Mu(z, 0) = R0(z, u2(z))

1 − zR1(z, u2(z)) , (16)

to calculate M(z, 0) and Mu(z, 0). (Of course if these functions are given we can use them
to obtain the full solution function M(z, u).)

We start by determining the singular expansions of u1(z) and u2(z), where we will use
the following lemma to show that g(z), h(z) have a common square root singularity at their
radius of convergence z0 and u2(z) is regular at z0.
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▶ Lemma 6. Let C(z, u) =
∑

k,j≥0 ck,jzkuj be an analytic function with non-negative
coefficients and k1, k2 and j1 < j2 such that ck1,j1 , ck2,j2 ̸= 0. Then, for z, u > 0 inside the
region of convergence, it holds that

C(z, u)Cuu(z, u) − Cu(z, u)2 + Cu(z, u)C(z, u)
u

> 0

Proof. By assumption we clearly have |C(z, ueiθ)| ≤ C(z, u)e−cθ2 for z, u > 0, θ sufficiently
close to 0 and some constant c = c(z, u) > 0 if C is a power series with positive coefficients.
Further, by using an exp-log scheme and the Taylor expansion of the logarithm at θ = 0, it
holds that

C(z, ueiθ) = exp
(

log(C(z, u)) + iu
Cu(z, u)
C(z, u) θ + u2

2 C(z, u)2 b(z, u)θ2 + o(θ2)
)

where b(z, u) = Cu(z, u)2 − Cu(z,u)C(z,u)
u − Cuu(z, u)C(z, u). Thus,

|C(z, ueiθ)| = C(z, u)e
u2

2 C(z,u)2 b(z,u)θ2+o(θ2) ≤ C(z, u)e−cθ2

and consequently, that factor b(z, u) has to be negative. ◀

▶ Lemma 7. Suppose that C(z, u) is not a power series in u2, but a power series with
non-negative coefficients with degree ≥ 3 in u, and where z divides C(z, u). Further denote
by u1,2(z) = g(z) ±

√
h(z) the two solutions with u(0) = 0 of the equation u2 = C(z, u). If

(z0, u1(z0)) is inside the region of convergence of C(z, u), where z0 is the smallest z > 0
such that 2u1(z0) = Cu(z0, u1(z0)), then the critical exponent of u1(z) at z0 is 1/2, while
u2(z) is regular at z0. That is, g(z), h(z) have a common square-root singularity at their
radius of convergence z0, and their square-root singularities cancel in the representation
u2(z) = g(z) −

√
h(z).

Proof. We certainly have

u1(z0)2 = C(z0, u1(z0)), 2u1(z0) = Cu(z, u1(z0)), Cz(z, u1(z0)) > 0.

By Lemma 6 it also follows that 2 < Cuu(z, u1(z0)). Then by standard arguments using the
Weierstrass preparation theorem (compare with [6, Remark 2.20]), we can derive that u1(z)
is locally equal to u1(z) = g1(z) + h1(z)

√
z − z0, where g1(z), h1(z) are analytic functions

around z0 and h1(z0) ̸= 0. Now let us assume that 2u2(z0) = Cu(z0, u2(z0)) as well. This
would imply that

2(g0 +
√

h0) = Cu(z0, g0 +
√

h0) and 2(g0 −
√

h0) = Cu(z0, g0 −
√

h0),

where g0 = g(z0) and h0 = h(z0). Since

Cu(z, g +
√

h) + Cu(z, g −
√

h)
2 = C+

g (z, g, h)

it would follow that 2g0 = C+
g (z0, g0, h0) and therefore C+

g (z0, g0, h0) − C−(z0, g0, h0) = 0.

At this point we mention that(
k

2ℓ

)
(k − 2ℓ) −

(
k

2ℓ + 1

)
=
(

k

2ℓ + 1

)
2ℓ ≥ 0

AofA 2022



7:8 Universal Properties of Catalytic Variable Equations

which ensures that

C+
g (z, g, h) − C−(z, g, h) =

=
∑
k,ℓ

Ck(z)
(

k

2ℓ

)
(k − 2ℓ)gk−2ℓ−1hℓ −

∑
k,ℓ

Ck(z)
(

k

2ℓ + 1

)
gk−2ℓ−1hℓ

=
∑
k,ℓ

Ck(z)
(

k

2ℓ + 1

)
2ℓgk−2ℓ−1hℓ (17)

Since C has degree ≥ 3 in u and g ≠ 0 if C(z, u) is not a power series in u2 this is a
contradiction to being 0. Hence, 2u2(z0) ̸= Cu(z0, u2(z0)) and consequently u2(z) is regular
at z0. This implies further that g(z) = (u1(z) + u2(z))/2 and h(z) = (u1(z) − u2(z))2/4
share a square root singularity at z0. ◀

In a final step we can also detect the singular behavior of M(z, 0) and Mu(z, 0).

▶ Lemma 8. Suppose that the assumptions of Theorem 1 are satisfied and let M(z, 0) and
Mu(z, 0) be the solutions of the linear system (15)–(16). Then M(z, 0) and Mu(z, 0) have
square-root singularities at z0.

Proof. We recall that M(z, 0) and Mu(z, 0) are given by (15)–(16) and that u1(z) and u2(z)
are the solutions to the curve equation, where u1(z) has a square-root singularity at z0,
whereas u2(z) is regular at z0. We recall that (15)–(16) can be rewritten as

M(z, 0) +
(

u1,2(z) − zR2(z, u1,2(z))
1 − zR1(z, u1,2(z))

)
Mu(z, 0) = R0(z, u1,2(z))

1 − zR1(z, u1,2(z)) . (18)

At this point we rewrite u1,2(z) as u1,2(z) = g(z) ±
√

h(z) and split up between the +-part
and the −-part. In particular we have

(1)− = 0 and
(

u − zR2(z, u)
1 − zR1(z, u)

)−

= 1 −
(

zR2(z, u)
1 − zR1(z, u)

)−

,

which leads to(
1 −

(
zR2(z, u)

1 − zR1(z, u)

)−
)

Mu(z, 0) =
(

R0(z, u)
1 − zR1(z, u)

)−

Now notice that by our conditions that Qα0 is not a polynomial in u2 the negative part on
the right hand side is non-zero. Finally, we obtain

Mu(z, 0) =

(
R0(z,u)

1−zR1(z,u)

)−
(z, g(z), h(z))

1 −
(

zR2(z,u)
1−zR1(z,u)

)−
(z, g(z), h(z))

,

where the right hand side depends on z, g and h and has non-negative coefficients. Therefore,
it immediately follows that Mu(z, 0) has a square-root singularity at z0.

Now we can use the equation (18) to deduce that M(z, 0) has at most a square-root-
singularity at z0 – it might be that the singularity cancels. However, by considering the
original catalytic equation (7) for constant u = 0 we have

M(z, 0) = R0(z, 0) + zR1(z, 0)M(z, 0) + zR2(z, 0)Mu(z, 0) + zR3(z, 0)Muu(z, 0)

Thus, it follows that M(z, 0) has at least a square-root-singularity at z0, as u is not a factor
of R2(z, 0). Consequently, M(z, 0) has square-root-singularity at z0. This completes the
proof of the lemma. ◀
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5 Proof of Theorem 2 (The Non-Linear Case)

In this section we use the following notation. If an expression like
R(z, u, ∆(z, u), M1(z), M0(z)) is evaluated along u1(z) (and ∆1(z) = ∆(z, u1(z))),
we just write R. If the expression is evaluated along u2(z), we will write R. We also assume
that (10) holds and that C(z, u) is not a power series in u2.

The proof of Theorem 2 itself will, again, mostly be concerned about the singular-
ity of u1(z). We will first show this at z0, where the determinant of the Jacobian of
the system (9) equals 0. By considering just 5 equations we can compute functions
∆1(z, u1), M1(z, u1), M0(z, u1), u2(z, u1), ∆2(z, u1) that are analytic at z0, u1(z0). By sub-
stituting these functions into the 6th equation (the curve equation) we finally get a single
equation for the unknown function u1 = u1(z). Next we prove that u1(z) has a square root
singularity at z0 (provided that (10) holds) and that the functions M1(z), M0(z), ∆2(z), u2(z)
have at most a 3/2 singularity. Finally we will confirm the 3/2 singularity analogously to
the linear case.

At several points, the derivative of equation (7) with respect to z plays a crucial role.
Along u1,2(z) the terms with factor ∂z∆(z, u) cancel again, and we are left with the system(

1 − Ry2 u − Ry1

1 − Ry2 u − Ry1

)(
M ′

0(z)
M ′

1(z)

)
=
(

Rz

Rz

)
(19)

We will denote the matrix on the left hand side by A and use it in particular to prove that
the critical exponent of M1(z) and M0(z) is 3/2.

The matrix A appears also right in the first step of the proof. We consider the Jacobian
matrix of system (9)A 0 0

C1 B1 0
C2 0 B2


where A, C1, C2, B1, B2 are 2 × 2 matrices such that its determinant decomposes into three
factors. These are the determinants of the submatrices

A, B1 =
(

2u − Ruy0 −Ry0y0

2∆ − Ruu 2u − Ruy0

)
, B2 =

(
2u − Ruy0 −Ry0y0

2∆ − Ruu 2u − Ruy0

)
and we denote them by

D0 = det A, D1 = det B1, D2 = det B2.

In a first step, we show that D0 is never 0 and that the submatrix B2 which corresponds
to the equations for u2(z) and ∆2(z) is invertible, if D1 = 0. Further note that it is fairly
obvious from the curve equation that the smallest positive z0 where u1(z) is singular is
bounded by the convergence radius of M0(z) and M1(z) and that u2(z) will be regular for
all 0 < z < z0.

▶ Lemma 9. Let z0 be the smallest positive z, where u1(z) is singular. Then, the determinants
D0, D1, D2 evaluated at z0 satisfy D0 ̸= 0, D1 = 0, and D2 ̸= 0.

Proof. First, we consider equation (19) and note that Ry2 = Qα0 and Ry1 = uQα0 + Qα1 .
Since u1, u2 fulfill the curve equation, Quα0 ̸= 0 and u1 > u2, we know that

0 < 1 − Ry2 < 1 − Ry2 .

AofA 2022
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Assuming that D0 = 0, it would also have to hold that 0 < u − Ry1 < u − Ry1 . But M1(z)
and M2(z) have non-negative coefficients. Hence, (19) would imply that Rz < Rz which is
certainly wrong. Next in order to prove that D1 and D2 cannot be both 0 we consider the
curve equation first. Its partial derivative with respect to u equals

2u = Ruy0 + Ry0y0 · ∂u∆

If we differentiate equation (7) twice with respect to u, we can see that the terms with factor
∂2

u∆(z, u) add up again to the curve equation.(
u2 − Ry0

)
∂2

u∆ + 2 (2u − Ruy0) ∂u∆ + 2∆ = Ruu + Ry0y0 (∂u∆)2 (20)

Hence, we may compute ∂u∆ along u1(z) as

∂u∆ = 2u − Ruy0 ±
√

D1

Ry0y0

(21)

and along u2(z) analogously. That is, along u1(z) and u2(z) it holds that

Cu(z, ui(z)) = 2ui(z) ±
√

Di.

But if D1 = D2 = 0, then we could repeat the calculations at the end of the proof of Lemma 7
and show that C+

u − C− = 0 which is impossible. ◀

Equation (21) concerning the partial derivative of ∆(z, u) further tells us that 2u > Ruy0

since ∆(z, u) has non-negative coefficients and u1(z) > 0 for z > 0. This means that the
following submatrix of the Jacobian of system (9) is invertible and its inverse equalsA 0 0

C1 2u − Ruy0 0
C2 0 B2

−1

=

 A−1 0 0
D1 (2u − Ruy0)−1 0

−B−1
2 C2A−1 0 B−1

2


where C1, C2 are generally non-zero matrices that contain the partial derivatives with respect
to M0 and M1 of the third, fifth and sixth equation of system (9) respectively and D1
can be computed appropriately. The implicit function theorem yields analytic functions
M0(z, u1), M1(z, u1), u2(z, u1), ∆1(z, u1), and ∆2(z, u2) which have partial derivatives with
respect to u that are equal to

∂u1


M0(z, u1)
M1(z, u1)
∆1(z, u1)
u2(z, u1)
∆2(z, u1)

 = −

 A−1 0 0
D1 (2u − Ruy0)−1 0

−B−1
2 C2A−1 0 B−1

2




0
0

2∆ − Ruu

0
0

 (22)

Hence, depending on the critical exponent of u1(z) in its singular expansion at z0, we can
already state that M0(z), M1(z) have at most 2α-singularities. The following lemma proves
α = 1/2 under the vital condition (10).

▶ Lemma 10. Let u1,2(z) = g(z) ±
√

h be the two solutions to the curve equation, z0 be a the
smallest positive z where u1(z) is singular. If (10) holds at (z, u) = (z0, u1(z0)) then u1(z)
has a square root singularity at z0.
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Proof. First we prove the case where a square root singularity appears. By the computations
above we have analytic functions M0(z, u1), M1(z, u1), and ∆1(z, u1) that we can plug into
our equation u2 = Ry0(z, u, ∆, M1, M0). Now we want to show that for u0 = limz↗z0 u(z),
it holds that

0 = u2
0 − Ry0(z0, u0, ∆1(z0, u0), M1(z0, u0), M0(z0, u0))

∣∣
z=z0,u1=u0

,

0 = 2u0 − ∂u1Ry0(z, u1, ∆1(z, u1), M1(z, u1), M0(z, u1))
∣∣
z=z0,u1=u0

,

0 ̸= 2 − ∂2
u1

Ry0(z, u1, ∆1(z, u1), M1(z, u1), M0(z, u1))
∣∣
z=z0,u1=u0

,

0 ̸= −∂zRy0(z, u1, ∆1(z, u1), M1(z, u1), M0(z, u1))
∣∣
z=z0,u1=u0

.

The square root singularity of u1(z) then follows by standard arguments. So, any of the
following computations are evaluated at (z0, u0).

We already computed that the first partial derivative with respect to u of all plugged in
functions is 0 except for ∂u1∆1(z, u1). Hence, if we consider the second equation which we
want to prove and use the fact that D1 = 0 then

∂u1∆1 = − 2∆1 − Ruu

2u1 − Ruy0

= 2u1 − Ruy0

Ry0y0

= ∂u∆

and further,

2u1 − Ruy0 − Ry0y0∂u1∆1(z, u1) − Ry0y2∂u1M0(z, u1) − Ry0y1∂u1M1(z, u1)

= 2u1 − Ruy0 + Ry0y0

2∆1 − Ruu

2u1 − Ruy0

= 0.

For the third equation, we compute the second partial derivatives of M1(z, u1), M0(z, u1)
and ∆1(z, u1) analogously to our computations above. If we only consider the submatrix for
the relevant derivatives, we obtain that

∂2
u1

M0
M1
∆1

 =
(

A−1 0
D1 (2u1 − Ruy0)−1

)

·

Ruu + (2Ruy0 − 4u1)(∂u1∆1) + Ry0y0(∂u1∆1)2 − 2∆1
0

Ruuu + 2Ruuy0∂u1∆1 + Ruy0y0(∂u1∆1)2 − 4∂u1∆1


Now by dividing the first entry in the right vector above by Ry0y0 , it is easy to see that at
(z0, u0) it is equal to 0. That is,

Ruu − 2∆1

2u − Ruy0

2u − Ruy0

Ry0y0

− 22u − Ruy0

Ry0y0

(∂u1∆1) + (∂u1∆1)2 = 0

Consequently (∂2
u1

M0)(z0, u0) = (∂2
u1

M1)(z0, u0) = 0 and

(∂2
u1

∆1)(z0, u0) =
(

Ruuu + 2Ruuy0∂u1∆1 + Ruy0y0(∂u1∆1)2 − 4∂u1∆1

2u1 − Ruy0

)
The expression from the third equation is thus equal to

2 − Ruuy0 − 2Ruy0y0(∂u1∆1) − Ry0y0y0(∂u1∆1)2 − Ry0y0(∂2
u1

∆1).
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7:12 Universal Properties of Catalytic Variable Equations

If we plug in the expression for ∂2
u1

∆1 and multiply the equation by ∂u1∆1, we obtain

6(∂u1∆1) − Ruuu − 3Ruuy0∂u1∆1 − 3Ruy0y0(∂u1∆1)2 − Ry0y0y0(∂u1∆1)3

which is non-zero by assumption.
What is left to show is that the derivative with respect to z is non-zero. In a first step we

compute

∂z

M0(z, u1)
M1(z, u1)
∆1(z, u1)

 =
(

A−1 0
D1 (2u − Ruy0)−1

) Rz

Rz

Rzy0

 (23)

Note that A−1(Rz, Rz)T = (M ′
0(z), M ′

1(z))T > 0 by (19) and the fact that M0(z), M1(z)
have non-negative coefficients. Further we have to compute D1 = (d11, d12) which equal

d11 = 1
(2u − Ruy0) det A

(
Ruy2(u − Ry1) + (1 − Ruy1)(1 − Ry2)

)
d12 = −1

(2u − Ruy0) det A

(
Ruy2(u − Ry1) + (1 − Ruy1)(1 − Ry2)

)
.

So the right hand side of the fourth inequality that we want to prove is

Rzy0 + Ry0y0∂z∆1(z, u1) + Ry0y2∂zM0(z, u1) + Ry0y1∂zM1(z, u1)
= Rzy0 + Ry0y2M ′

0(z) + Ry0y1M ′
1(z)

+ Ry0y0

(2u − Ruy0) det A

(
Ruy2(u − Ry1) + (1 − Ruy1)(1 − Ry2)

)
Rz

− Ry0y0

(2u − Ruy0) det A

(
Ruy2(u − Ry1) + (1 − Ruy1)(1 − Ry2)

)
Rz

= Rzy0 + Ry0y2M ′
0(z) + Ry0y1M ′

1(z)

+ Ry0y0

(2u − Ruy0) (Ruy2M ′
0(z) − (1 − Ruy1)M ′

1(z)) . (24)

Now let us do a similar trick as in the computation of ∂u∆(z, u). We consider

∂z∂u

(
u2∆(z, u) + uM1(z) + M0(z) − R(z, u, ∆(z, u), M1(z), M0(z))

)
(25)

= (2u − Ruy0 − Ry0y0∂u∆(z, u)) ∂z∆(z, u) +
(
u2 − Ry0

)
∂u∂z∆(z, u)

+ M ′
1(z) − Rzu − Rzy0∂u∆(z, u) − Ruy1M ′

1(z) − Ruy2M ′
0(z)

− Ry0y1∂u∆(z, u)M ′
1(z) − Ry0y2∂u∆(z, u)M ′

0(z)
= (1 − Ruy1 − Ry0y1∂u∆(z, u))M ′

1(z) − (Ruy2 + Ry0y2∂u∆(z, u))M ′
0(z)

− Rzu − Rzy0∂u∆(z, u) = 0

The terms with factor ∂u∂z∆(z, u) add up to the curve equation and cancel, the ones with
factor ∂z∆(z, u) add up to 0 since by (20)(

2u − Ruy0 − 1
2Ry0y0∂u∆

)
= Ruu − 2∆

2 ∂u∆ = 1
2Ry0y0∂u∆

Now if we multiply (24) with ∂u∆(z, u) = ∂u1∆1(z, u1) we can see by our computation of (25)
that it is equal to Rzu > 0 which was left to show. ◀
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We can determine the singularities of M0(z) and M1(z) analogously to the linear case.
Obviously if u1(z) has a square root singularity both of them can have at most 3/2-singularities
by our computation of ∂u1M0(z, u1) and ∂u1M1(z, u1).
The negative part of the equations of (19) gives a positive equation for M ′

1(z)

M ′
1(z) = ∂z (R(z, u, ∆(z, u), M1(z), M0))−

where the right hand side does indeed confirm this 3/2 singularity. Similarly by the positive
equation M0(z) = zQ(z, 0, M0(z), M1(z), M2(z)) the 3/2 singularity of M0(z) is proved as
well.

Finally, we comment on the case where the condition (10) is not satisfied. In this case,
the third equation that we stated in the beginning is satisfied and one may compute analog-
ously to above that ∂3

u1
Ry0 (z, u1, ∆1(z, u1), M1(z, u1), M0(z, u1)) ̸= 0. By the Weierstrass

preparation theorem u1(z) therefore satisfies a cubic equation

(u1(z) − u0)3 + a2(z)(u1(z) − u0)2 + a1(z)(u1(z) − u0) + a0(z) = 0

where ai(z), i = 0, 1, 2 are analytic functions at z0 with ai(z0) = 0 and, since the fourth
equation that we stated in the beginning is satisfied, a0(z) = (z − z0)b(z) with b(z0) ̸= 0.
By considering the critical exponents of each of the summands it follows that u1(z) has a
1/3-singularity, which implies then that the critical exponent of M0(z) and M1(z) is 4/3.

6 Examples

In this section, we will illustrate our generic computations in the proof of Theorems 1 and 2
on the examples given in Section 2.

▶ Example 11 (Example 3 continued). For one-dimensional non-negative lattice paths where
we allow steps of the form ±1 and ±2 we obtained the functional equation

E(z, u) = 1+z(u+u2)E(z, u)+z
E(z, u) − E(z, 0)

u
+z

E(z, u) − E(z, 0) − uEv(u, 0)
u2 . (26)

We know that the curve equation

u2 = z(1 + u)u3 + zu + z.

has two solutions u1(z), u2(z) with u1(0) = u2(0) = 0 and u1(z) is singular at z0 > 0. The
common zeros (z0, u0) of this equation and its partial derivative with respect to u are{

(0, 0),
(

1
4 , 1
)

,

(
−4

9 , −1 −
√

15i

4

)
,

(
−4

9 , −1 +
√

15i

4

)}
Hence, it follows that z0 = 1

4 and u1(z0) = 1. Furthermore, the local expansion of u1(z) at
z = z0 is given by

u1(z) = 1 −
√

8
√

1 − 4z + · · · .

Next we consider the system of equations for g(z) and h(z):

g2 + h = z(g4 + h2 + g3 + 3(2g2 + g)h + g + 1),
2g = z((4g + 1)h + (4g3 + 3g2 + 1)).
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At z0 = 1
4 there are only finitely many solutions, however, the only ones with g0 +

√
h0 = 1

are g0 = (
√

5 − 1)/4 and h0 = (15 − 5
√

5)/8. Consequently we have

u2(z0) = g0 −
√

h0 =
√

5 − 3
2 .

Finally we use the linear system (15)–(16) to obtain the local expansion for M(z, 0) and
Mu(z, 0):

M(z, 0) = (6 − 2
√

5) − 101
√

2 − 45
√

10
19

√
1 − 4z + · · · ,

Mu(z, 0) = (4
√

5 − 8) − 28
√

10 − 62
√

2
19

√
1 − 4z + · · · .

Since there are no periodicities this implies that

[zn]E(z, 0) ∼ 101
√

2 − 45
√

10
38

√
π

n−3/2 4n

▶ Example 12 (Example 4 continued). The functional equation for 3-Constellations can be
transformed to the equation

C(z, v) = 1 + z(v + 1)C(z, v)3 + z(v + 1)(2C(z, v) + C(z, 0))C(z, v) − C(z, v)
v

+ z(v + 1)C(z, v) − C(z, 0) − vCv(z, 0)
v2

by substituting v = u−1. The equations for the unknowns ui(z), di = ∆(2)C(z, ui(z)), i = 1, 2
and m1(z) = Cv(z, ui(z)), m0 = C(z, ui(z)) are given by

u2
i di + uim1 + m0 =z(ui + 1)((u2

i di + uim1 + m0)3)

+ z(ui + 1)((2u2
i di + 2uim1 + 3m0 + 3)(uidi + m1) + di)

u2
i =z(ui + 1)(3(u2

i di + uim1 + m0 + 1)2u2
i + 2(uidi + m1)u2

i )

+ z(ui + 1)((2u2
i di + 2uim1 + 3m0 + 3)ui + 1),

2uidi + m1 =z(ui + 1)(3(u2
i di + uim1 + m0 + 1)2(2uidi + m1) + 2(2uidi + m1)(uidi + m1)

+ z(ui + 1)(2u2
i di + 2uim1 + 3m0 + 3)di) + ((u2

i di + uim1 + m0 + 1)3)

+ z(ui + 1)((2u2
i di + 2uim1 + 3m0 + 3)(diui + m1) + di).

Numerical computations show, that the smallest positive z0 where the Jacobian of this
system is invertible equals z0 ≈ 0.0494. Indeed, the exact value for the singularity is
4/81 = 0, 04938.... The other variables take the approximate values

u1 ≈ 0.6867, u2 ≈ −0.1562, d1 ≈ 0.1070, d2 ≈ 0.0433, m1 ≈ 0.1134, m0 ≈ 0.0833.

Note that all computations can be worked out although the scheme of Theorem 2 is not
strictly satisfied. We need to check the values of the determinants which equal

det A ≈ −0.2588, det B1 ≈ 0, det B2 ≈ 0.1828.

The neccessary condition of Theorem 2 is also satisfied, since the value of the expression
equals T ≈ 2.7209 (after cancellation of a positive factor to simplify computations). Finally
we get the asymptotics

[zn]C(z, 0) ∼ c n−5/2
(

81
4

)n

for c ≈ 0.0731.
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